当前位置:文档之家› 【数学建模学习】第三章 离散模型

【数学建模学习】第三章 离散模型

【数学建模学习】第三章 离散模型
【数学建模学习】第三章 离散模型

数学建模专题汇总-离散模型

离散模型 § 1 离散回归模型 一、离散变量 如果我们用0,1,2,3,4,?说明企业每年的专利申请数,申请数是一个离散的变量,但是它是间隔尺度变量,该变量类型不在本章的讨论的被解释变量中。但离散变量0和1可以用来说明企业每年是否申请专利的事项,类似表示状态的变量才在本章的讨论中。在专利申请数的问题中,离散变量0,1,2,3 和4 等数字具 有具体的经济含义,不能随意更改;而在是否申请专利的两个选择对象的选择问题中,数字0和1只是用于区别两种不同的选择,是表示一种状态。本专题讨论有序尺度变量和名义尺度变量的被解释变量。 、离散因变量

在讨论家庭是否购房的问题中,可将家庭购买住房的决策用数字1 表示,而将家庭不购买住房的决策用数字0 表示。 1 yes x 0 no 如果x 作为说明某种具体经济问题的自变量,则应用以前介绍虚拟变量知识就足够了。如果现在考虑某个家庭在一定的条件下是否购买住房问题时,则表示状态的虚拟变量就不再是自变量,而是作为一个被说明对象的因变量出现在经济模型中。因此,需要对以前讨论虚拟变量的分析方法进行扩展,以便使其能够适应分析类似家庭是否购房的问题。因为在家庭是否购房问题中,虚拟因变量的具体取值仅是为了区别不同的状态,所以将通过虚拟因变量讨论备择对象选择的回归模型称为离散选择模型。 三、线性概率模型 现在约定备择对象的0 和1 两项选择模型中,下标i 表示各不同的经济主体,取值

0或l的因变量 y i表示经济主体的具体选择结果,而影响经济主体进行选择的自变量 x i 。如果选择响应YES 的概率为 p(y i 1/ x i ) ,则经济主体选择响应NO 的概率为 1 p(y i 1/ x i), 则E(y i /x i) 1 p(y i 1/x i) 0 p(y i 0/x i)= p(y i 1/x i)。根据经典线性回归,我们知道其总体回归方程是条件期望建立的,这使我们想象可以构造线性概率模型 p(y i 1/ x i) E(y i / x i) x iβ 0 1 x i1 L k x ik u i 描述两个响应水平的线性概率回归模型可推知,根据统计数据得到的回归结果并不一定能够保证回归模型的因变量拟合值界于[0,1]。如果通过回归模型式得到的因变量拟合值完全偏离0或l两个数值,则描述两项选择的回归模型的实际用途就受到很大的限制。为避免出现回归模型的因变量预测值偏离0或1的情形,需要限制因变量的取值范围并对回归模型式进行必要的修正。由于要对其进行修正,那么其模型就会改变,模型改变会导致似然函

离散数学在计算机科学中的应用

离散数学在计算机科学中的应用 本学期我们开了一门新的课程——离散数学,这是一门艰深又充满挑战的课程,随着学习的深入,我逐步加深了对它的了解。 首先简单介绍一下离散数学的定义及其在各学科领域的重要作用。离散数学(Discrete mathe matics)是研究离散量的结构及其相互关系的数学学科,是现代数学的一个重要分支。它在各学科领域,特别在计算机科学与技术领域有着广泛的应用,同时离散数学也是计算机专业的许多专业课程,如程序设计语言、数据结构、操作系统、编译技术、人工智能、数据库、算法设计与分析、理论计算机科学基础等必不可少的先行课程。通过离散数学的学习,不但可以掌握处理离散结构的描述工具和方法,为后续课程的学习创造条件,而且可以提高抽象思维和严格的逻辑推理能力,为将来参与创新性的研究和开发工作打下坚实的基础。 随着信息时代的到来,工业革命时代以微积分为代表的连续数学占主流的地位已经发生了变化,离散数学的重要性逐渐被人们认识。离散数学课程所传授的思想和方法,广泛地体现在计算机科学技术及相关专业的诸领域,从科学计算到信息处理,从理论计算机科学到计算机应用技术,从计算机软件到计算机硬件,从人工智能到认知系统,无不与离散数学密切相关。 由于数字电子计算机是一个离散结构,它只能处理离散的或离散化了的数量关系,因此,无论计算机科学本身,还是与计算机科学及其应用密切相关的现代科学研究领域,都面临着如何对离散结构建立相应的数学模型;又如何将已用连续数量关系建立起来的数学模型离散化,从而可由计算机加以处理。 由此可见,离散数学在计算机科学中具有广泛的应用,下面我将一一陈述。 1 离散数学在关系数据库中的应用 关系数据库中的数据管理系统向用户提供使用的数据库语言称为数据子语言,它是以关系代数或谓词逻辑中的方法表示。由于用这种数学的方法去表示,使得对这些语言的研究成为对关系代数或逻辑谓词的研究,优化语言的表示变成为对关系代数与谓词逻辑的化简问题。由于引入了数学表示方法,使得关系数据库具有比其它几种数据库较为优越的条件。正因为如此关系数据库迅速发展成为一种很有前途、很有希望的数据库。另外,离散数学中的笛卡儿积是一个纯数学理论,是研究关系数据库的一种重要方法,显示出不可替代的作用。不仅为其提供理论和方法上的支持,更重要的是推动了数据库技术的研究和发展。关系数据模型建立在严格的集合代数的基础上,其数据的逻辑结构是一个由行和列组成的二维表来描述关系数据模型。在研究实体集中的域和域之间的可能关系、表结构的确定与设计、关系操作的数据查询和维护功能的实现、关系分解的无损连接性分析、连接依赖等问题都用到二元关系理论。 2 离散数学在数据结构中的应用 计算机要解决一个具体问题,必须运用数据结构知识。对于问题中所处理的数据,必须首先从具体问题中抽象出一个适当的数学模型,然后设计一个解此数学模型的算法,最后编出程序,进行测试、调整直至得到问题的最终解答。而寻求数学模型就是数据结构研究的内容。寻求数学模型的实质是分析问题,从中提取操作的对象,并找出这些操作对象之间含有的关系,然后用数学的语言加以描 述。数据结构中将操作对象间的关系分为四类:集合、线性结构、树形结构、图状结构或网状结构。

建立数学模型的方法步骤特点及分类

§16.3 建立数学模型的方法、步骤、特点及分类 [学习目标] 1.能表述建立数学模型的方法、步骤; 2.能表述建立数学模型的逼真性、可行性、渐进性、强健性、可转移性、非预制性、条理 性、技艺性和局限性等特点;; 3.能表述数学建模的分类; 4.会采用灵活的表述方法建立数学模型; 5.培养建模的想象力和洞察力。 一、建立数学模型的方法和步骤 —般说来建立数学模型的方法大体上可分为两大类、一类是机理分析方法,一类是测试分析方法.机理分析是根据对现实对象特性的认识、分析其因果关系,找出反映内部机理的规律,建立的模型常有明确的物理或现实意义.§16.2节的示例都属于机理分析方法。测试分折将研究对象视为一个“黑箱”系统,内部机理无法直接寻求,可以测量系统的输人输出数据、并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个与数据拟合得最好的模型。这种方法称为系统辨识(System Identification).将这两种方法结合起来也是常用的建模方法。即用机理分析建立模型的结构,用系统辨识确定模型的参数. 可以看出,用上面的哪一类方法建模主要是根据我们对研究对象的了解程度和建模目的决定的.如果掌握了机理方面的一定知识,模型也要求具有反映内部特性的物理意义。那么应该以机理分析方法为主.当然,若需要模型参数的具体数值,还可以用系统辨识或其他统计方法得到.如果对象的内部机理基本上没掌握,模型也不用于分析内部特性,譬如仅用来做输出预报,则可以系统辩识方法为主.系统辨识是一门专门学科,需要一定的控制理论和随机过程方面的知识.以下所谓建模方法只指机理分析。 建模要经过哪些步骤并没有一定的模式,通常与实际问题的性质、建模的目的等有关,从§16.2节的几个例子也可以看出这点.下面给出建模的—般步骤,如图16-5所示. 图16-5 建模步骤示意图 模型准备首先要了解问题的实际背景,明确建模的目的搜集建模必需的各种信息如现象、数据等,尽量弄清对象的特征,由此初步确定用哪一类模型,总之是做好建模的准备工作.情况明才能方法对,这一步一定不能忽视,碰到问题要虚心向从事实际工作的同志请教,尽量掌握第一手资料. 模型假设根据对象的特征和建模的目的,对问题进行必要的、合理的简化,用精确的语言做出假设,可以说是建模的关键一步.一般地说,一个实际问题不经过简化假设就很难翻译成数学问题,即使可能,也很难求解.不同的简化假设会得到不同的模型.假设作得不合理或过份

《数学模型》

《数学模型》考试大纲 适应专业:数学与应用数学、信息与计算科学、统计学、应用统计学专业 一、课程性质与目的要求 数学模型课亦称为数学建模课,它是数学与应用数学、信息与计算科学、统计学、应用统计学专业必修课或限选课,教育部1998年颁布的高等学校本科专业目录中,把“数学模型”课作为数学类专业的必开课。数学模型是架于实际问题与数学理论之间的桥梁。数学模型就是应用数学语言和方法,对于现实世界中的实际问题进行抽象、简化和假设所得到的数学结构。本课程是研究数学建模的理论、思想和方法,研究建立数学模型、简单的优化模型、数学规划模型、微分方程模型、代数方程与差分方程模型、稳定性模型、离散模型、概率模型等。 数学模型课需要用到数学分析、高等代数、微分方程、图论、概率统计、运筹学等数学知识,它是学生所学数学知识的综合应用,是培养学生综合素质以及应用数学知识解决实际问题的能力的良好课程。该课程的考试评价依据是按照课程目标、教学内容和要求,把握合适的难易程度出试卷,用笔试的方法对学生学习情况和学习成绩做出评价。 二、课程内容和考核要求 第一章建立数学模型 1、考核知识点: 数学建模的背景及重要意义、数学模型与数学建模、数学模型的分类与特点、数学建模的基本方法和步骤、数学建模举例等。 2、考核要求: (1)理解数学建模的背景及意义、原型、模型、数学模型、数学建模等概念。 (2)理解数学模型的各种分类、数学模型的特点。 (3)理解数学建模的基本方法和步骤、通过实例初步了解数学建模的思想和方法。 第二章简单的优化模型 1、考核知识点: 存储模型、生猪的出售时机、森林救火、冰山运输等。

2、考核要求: (1)掌握应用微积分理论建立存储问题模型。 (2)理解应用微积分理论建立生猪的出售时机模型和森林灭火模型。 (3)理解应用微积分理论建立冰山运输问题模型。 第三章数学规划模型 1、考核知识点: 数学规划问题的基本概念、数学规划问题图解法步骤、生产安排问题、奶制品的生产与销售等。 2、考核要求: (1)掌握数学规划问题的基本概念、数学规划问题图解法步骤。 (2)掌握生产安排问题的模型及图解法。 (3)理解奶制品的生产与销售的模型及求解。 第四章微分方程模型 1、考核知识点: 传染病模型、正规战与游击战、药物在体内的分布与排除、香烟过滤嘴的作用等。 2、考核要求: (1)理解传染病问题的建模及讨论。 (2)理解战争问题、房室问题的建模及讨论。 (3)了解香烟过滤嘴作用问题的建模及讨论。 第五章代数方程与差分方程模型 1、考核知识点: 量纲、量纲齐次原理、量纲分析法、差分方程的基本概念、市场经济中蛛网模型、节食与运动问题等。 2、考核要求: (1)掌握量纲、量纲齐次原理、量纲分析法建模及解法步骤。 (2)掌握市场经济中蛛网模型及解法步骤。 (3)理解理解差分方程的基本概念、减肥问题的建模思想。 第六章稳定性模型

数学建模中常见的十大模型讲课稿

数学建模中常见的十 大模型

精品文档 数学建模常用的十大算法==转 (2011-07-24 16:13:14) 转载▼ 1. 蒙特卡罗算法。该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。 2. 数据拟合、参数估计、插值等数据处理算法。比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MA TLAB 作为工具。 3. 线性规划、整数规划、多元规划、二次规划等规划类算法。建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件求解。 4. 图论算法。这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。 5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。 6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。 7. 网格算法和穷举法。两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。 8. 一些连续数据离散化方法。很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。 9. 数值分析算法。如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。 10. 图象处理算法。赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MATLAB 进行处理。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 2 十类算法的详细说明 2.1 蒙特卡罗算法 大多数建模赛题中都离不开计算机仿真,随机性模拟是非常常见的算法之一。 举个例子就是97 年的A 题,每个零件都有自己的标定值,也都有自己的容差等级,而求解最优的组合方案将要面对着的是一个极其复杂的公式和108 种容差选取方案,根本不可能去求解析解,那如何去找到最优的方案呢?随机性模拟搜索最优方案就是其中的一种方法,在每个零件可行的区间中按照正态分布随机的选取一个标定值和选取一个容差值作为一种方案,然后通过蒙特卡罗算法仿真出大量的方案,从中选取一个最佳的。另一个例子就是去年的彩票第二问,要求设计一种更好的方案,首先方案的优劣取决于很多复杂的因素,同样不可能刻画出一个模型进行求解,只能靠随机仿真模拟。 2.2 数据拟合、参数估计、插值等算法 数据拟合在很多赛题中有应用,与图形处理有关的问题很多与拟合有关系,一个例子就是98 年美国赛A 题,生物组织切片的三维插值处理,94 年A 题逢山开路,山体海拔高度的 收集于网络,如有侵权请联系管理员删除

离散数学在计算机学科中的应用

信息技术与课程整合本栏目责任编辑:贾薇薇离散数学在计算机学科中的应用 陈敏,李泽军 (湖南工学院计算机科学系,湖南衡阳421002) 摘要:离散数学作为有利的数学工具,对计算机的发展与计算机科学的研究起着重大的作用。阐述了离散数学在计算机科学的几个不同领域中的应用,分析了离散数学与计算机专业其他学科间的关系,指出了离散数学在从事计算机及相关科学工作中的重要性。关键词:离散数学;数据结构;编译原理;人工智能 中图分类号:O158,TP305文献标识码:A 文章编号:1009-3044(2009)01-0251-02 The Application of Discrete Mathematics in Computer Science CHEN Min,LI Ze-jun (Department of Computer Science and Technlology,Hunan Insititute of Technology,Hengyang 421002,China) Abstract:Being a helpful mathematical tool,discrete mathematics plays a significant role in the development and research of computer sci -ence.This paper introduces the application of discrete mathematics in different fields of computer science,analyzes the relationship between discrete mathematics and other subjects in computer specialty and points out the importance of discrete mathematics in computer science and related fields. Key words:discrete mathematics;data structure;decoding principles;artificial intelligence 1引言 离散数学是现代数学的一个重要分支,是计算机科学中基础理论的核心课程。它是以研究离散性的结构和相互间的关系为主要目标,其研究对象一般地是有限个或可数个元素。由于计算机科学的迅速发展,与其有关的领域中,提出了许多有关离散量的理论问题,需要用某些数学的工具做出描述和深化[1]。离散数学把计算机科学中所涉及到的研究离散量的数学综合在一起,进行较系统的、全面的论述,为研究计算机科学的相关问题提供了有力的工具。 离散数学课程所涉及的概念、方法和理论,大量地应用在数据结构、数据库系统、编译原理、人工智能、计算机体系结构、算法分析与设计、软件工程、多媒体技术、数字电路、计算机网络等专业课程以及信息管理、信号处理、模式识别、数据加密等相关课程中[2-4]。它所提供的训练十分有益于学生概括抽象能力、逻辑思维能力、归纳构造能力的提高,十分有益于学生严谨、完整、规范的科学态度的培养。这些能力与态度是一切软、硬件计算机科学工作者所不可缺少的,为学习计算机科学的后续课程、从事科研或工程技术工作以及进一步提高科学技术水平奠定理论基础。离散数学提供的营养滋补了计算机科学的众多领域,学好了离散数学就等于掌握了一把开启计算机科学之门不可缺少的钥匙。 2离散数学在数据结构中的应用 计算机要解决一个具体问题,必须运用数据结构知识。对于问题中所处理的数据,必须首先从具体问题中抽象出一个适当的数学模型,然后设计一个解此数学模型的算法,最后编出程序,进行测试、调整直至得到问题的最终解答。而寻求数学模型就是数据结构研究的内容。寻求数学模型的实质是分析问题,从中提取操作的对象,并找出这些操作对象之间含有的关系,然后用数学的语言加以描述。数据结构中将操作对象间的关系分为四类:集合、线性结构、树形结构、图状结构或网状结构。数据结构研究的主要内容是数据的逻辑结构,物理存储结构以及基本运算操作。其中逻辑结构和基本运算操作来源于离散数学中的离散结构和算法思考。离散数学中的集合论、关系、图论、树四个章节就反映了数据结构中四大结构的知识。如集合由元素组成,元素可理解为世上的客观事物。关系是集合的元素之间都存在某种关系。例如雇员与其工资之间的关系。图论是有许多现代应用的古老题目。伟大的瑞士数学家列昂哈德·欧拉在18世纪引进了图论的基本思想,他利用图解决了有名的哥尼斯堡七桥问题。还可以用边上带权值的图来解决诸如寻找交通网络里两城市之间最短通路的问题[5]。而树反映对象之间的关系,如组织机构图、家族图、二进制编码都是以树作为模型来讨论。 3离散数学在数据库中的应用 数据库技术被广泛应用于社会各个领域,关系数据库已经成为数据库的主流,离散数学中的笛卡儿积是一个纯数学理论,是研究关系数据库的一种重要方法,显示出不可替代的作用。不仅为其提供理论和方法上的支持,更重要的是推动了数据库技术的研究和发展。关系数据模型建立在严格的集合代数的基础上,其数据的逻辑结构是一个由行和列组成的二维表来描述关系数据模型。在研究实体集中的域和域之间的可能关系、表结构的确定与设计、关系操作的数据查询和维护功能的实现、关系分解的无损连接性分析、连接依赖等问题都用到二元关系理论[6]。 4离散数学在编译原理中的应用 编译程序是计算机的一个十分复杂的系统程序。一个典型的编译程序一般都含有八个部分:词法分析程序、语法分析程序、语义分析程序、中间代码生成程序、代码优化程序、目标代码生成程序、错误检查和处理程序、各种信息表格的管理程序[7]。离散数学里的计算模型章节里就讲了三种类型的计算模型:文法、有限状态机和图灵机。具体知识有语言和文法、带输出的有限状态机、不带输出的有限状态机、语言的识别、图灵机等。短语结构文法根据产生式类型来分类:0型文法、1型文法、2型文法、3型文法。以上这些收稿日期:2008-12-10 基金项目:“湖南省教育厅教学改革研究项目(湘教通2008第263号) ISSN 1009-3044 Computer Knowledge and Technology 电脑知识与技术 Vol.5,No.1,January 2009,pp.251-252E-mail:kfyj@https://www.doczj.com/doc/344386208.html, https://www.doczj.com/doc/344386208.html, Tel:+86-551-56909635690964251

初等数学建模试题极其标准答案

1.你要在雨中从一处沿直线走到另一处,雨速是常数,方向不变。 你是否走得越快,淋雨量越少呢? 2.假设在一所大学中,一位普通教授以每天一本的速度开始从图书 馆借出书。再设图书馆平均一周收回借出书的1/10,若在充分长的时间内,一位普通教授大约借出多少年本书? 3.一人早上6:00从山脚A上山,晚18:00到山顶B;第二天,早 6:00从B下山,晚18:00到A。问是否有一个时刻t,这两天都在这一时刻到达同一地点? 4.如何将一个不规则的蛋糕I平均分成两部分? 5.兄妹二人沿某街分别在离家3公里与2公里处同向散步回家,家 中的狗一直在二人之间来回奔跑。已知哥哥的速度为3公里/小时,妹妹的速度为2公里/小时,狗的速度为5公里/小时。分析半小时后,狗在何处? 6.甲乙两人约定中午12:00至13:00在市中心某地见面,并事先 约定先到者在那等待10分钟,若另一个人十分钟内没有到达,先到者将离去。用图解法计算,甲乙两人见面的可能性有多大? 7.设有n个人参加某一宴会,已知没有人认识所有的人,证明:至 少存在两人他们认识的人一样多。 8.一角度为60度的圆锥形漏斗装着10 端小孔的 面积为0.5 9.假设在一个刹车交叉口,所有车辆都是由东驶上一个1/100的斜

坡,计算这种情 下的刹车距离。如果汽车由西驶来,刹车距离又是多少? 10. 水管或煤气管经常需要从外部包扎以便对管道起保护作用。包扎时用很长的带子缠绕在管道外部。为了节省材料,如何进行包扎才能使带子全部包住管道而且带子也没有发生重叠。 :顶=1:a:b ,选坐v>0,而设语雨速 L( 1q -+v x ),v≤x Q(v)= L( v x -q +1),v>x 2.解:由于教授每天借一本书,即一周借七本书,而图书馆平均每周

(完整word版)离散数学建模

离散建模 专业计算机科学与技术 班级 姓名 学号 授课教师 二 O 一七年十二月

离散建模是离散数学与计算机科学技术及IT技术应用间的联系桥梁。也是学习离散数学的根本目的。 它有两部分内容组成: 1.离散建模概念与方法 2.离散建模应用实例 一.离散建模概念与方法 1.1离散建模概念 在客观世界中往往需要有许多问题等待人们去解决。而解决的方法很多,最为常见的方法是将客观世界中的问题域抽象成一种形式化的数学表示称数学模型,从而将对问题域的求解变成为对数学表示式的求解。而由于人们对数学的研究已有数千年历史,并已形成了一整套行之有效的对数学求解的理论与方法,因此用这种数学方法去解决实际问题可以取得事倍功半的作用。而采用这种方法的关键之处是数学模型的建立,它称为数学建模,而当这种数学模型是建立在有限集或可列集之上时,此种模型的建立称离散建模。 1.2.离散建模方法 (1)两个世界理论 在离散建模中有两个世界,一个是现实世界另一个是离散世界。现实世界是问题域产生的世界,离散世界则是一种数学世界,它有三个特性:离散世界采用离散数学语言,该语言具有简洁性且表达力丰富。 离散世界所表示的是一种抽象符号,它是一种形式化符号体系。 离散世界中的环境简单,它在离散建模时设立,可以屏蔽大量无关信息对问题求解的干扰。 为求解问题须将问题域转换成离散模型,然后对离散模型求解,再逆向转换成现实世界中的解. (2)两个世界的转换 在离散建模方法中需要构作两种转换,即由现实世界到离散世界的转换以及由离散世界到现实世界的逆转换,而其中第一种转换尤为重要,这种转换我们一般即称之为离散建模。 下面对两种转换作介绍: 现实世界到离散世界的转换

一些经典初等数学模型

初等数学模型 本章重点是:雨中行走问题、动物的身长与体重、实物交换、代表名额的分配与森林救火模型的建立过程和所使用的方法 复习要求 1.进一步理解基本建模过程,掌握类比法、图示法以及问题分析、合理假设的内涵。 2.进一步理解数学模型的作用与特点。 类比法是建立数学模型的一个常见而有力的方法.作法是把问题归结或转化为我们熟知的模型上去给以类似的解决:这个问题与我们熟悉的什么问题类似?如果有类似的问题曾被解决过,我们的建模工作便可省去许多麻烦.实际上,许多来自不同领域的问题在数学模型上看确实具有相类似的甚至相同的结构. 利用几何图示法建模.有不少实际问题的解决只要从几何上给予解释和说明就足以了,这时,我们只需建立其图模型即可,我们称这种建模方法为图示法.这种方法既简单又直观,且其应用面很宽. 1.雨中行走问题 雨中行走问题的结论是: (1)如果雨是迎着你前进的方向落下,即2 0π θ≤ ≤,那么全身被淋的雨水总量为 ? ? ? ??++=++= +=h v hr dr pwD v r h dr v pwD C C C θθθθcos sin )] cos (sin [21 这时的最优行走策略是以尽可能大的速度向前跑. (2)如果雨是从你的背后落下,即πθπ≤≤2 . 令απθ+=2 ,则2 0π α<<. 那么全身被淋 的雨水总量为 ?? ? ??+-=h v rh rd Dpw v C ααθsin cos ),( 这时你应该控制在雨中行走的速度,使得它恰好等于雨滴下落速度的水平分量. 从建模结果看,“为了少些淋雨,应该快跑”,这个一般的“常识”被基本上否定,那么根据何在?由此提出了建模目的:减少雨淋程度. 而为减少雨淋程度,便自然提出“被淋在身上的雨水量”这个目标函数C ,而C =C (v ),于是问题便归结为确定速度v ,使C (v )最小——本模型的关键建模步骤便得以确定。 有了确定的建模目的,自然引出与C (v )有关的量的设定与简化假设. 一般地,开始时不要面面俱到地把所有相关量都涉及到,往往只需考虑几个主要量,甚至暂时舍弃某个主要量,以求尽快建立模型.尤其对初学者,这样做有助于建模信心的增强.自不必说建模过程往往如此,更有模型尚有的进一步修改和推广的主要步骤.而一旦建立起简单模型后,其进一步的改善也相对容易多了.这就是本模型只所以建立了两个模型的原因,是符合人们的认识规律的. 另外,为了检验所建模型的合理性,建模后用较为符合实际的几组数据对模型加以检验是重要的,它既是对所建模型是否基本符合实际的检测,也是进一步完善模型的需要. 例1 在某海滨城市附近海面有一台风.据监测,当前台风中心位于城市O (如

数学建模中常见的十大模型

数学建模中常见的十大 模型 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

数学建模常用的十大算法==转 (2011-07-24 16:13:14) 1. 蒙特卡罗算法。该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。 2. 数据拟合、参数估计、插值等数据处理算法。比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MATLAB 作为工具。 3. 线性规划、整数规划、多元规划、二次规划等规划类算法。建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件求解。 4. 图论算法。这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。 5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。 6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。 7. 网格算法和穷举法。两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。

8. 一些连续数据离散化方法。很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。 9. 数值分析算法。如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。 10. 图象处理算法。赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MATLAB 进行处理。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 2 十类算法的详细说明 蒙特卡罗算法 大多数建模赛题中都离不开计算机仿真,随机性模拟是非常常见的算法之一。 举个例子就是97 年的A 题,每个零件都有自己的标定值,也都有自己的容差等级,而求解最优的组合方案将要面对着的是一个极其复杂的公式和108 种容差选取方案,根本不可能去求解析解,那如何去找到最优的方案呢随机性模拟搜索最优方案就是其中的一种方法,在每个零件可行的区间中按照正态分布随机的选取一个标定值和选取一个容差值作为一种方案,然后通过蒙特卡罗算法仿真出大量的方案,从中选取一个最佳的。另一个例子就是去年的彩票第二问,要求设计一种更好的方案,首先方案的优劣取决于很多复杂的因素,同样不可能刻画出一个模型进行求解,只能靠随机仿真模拟。

《数学模型第三版》学习笔记完整版

《数学模型第三版》学 习笔记 集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]

《数学模型(第三版)》学习笔记 写在开始 ---小康社会欢迎您今天第一次归纳、复习,整理思路重点,从最后两章(除了“其他模型”)开始,想可能印象比较深刻。可实际开始总结才发现对于知识的理解和掌握还有很大差距,自己也是自学看书,非常希望各位提出宝贵意见,内容、学习方法经验上的 都是. 整本书读下来感觉思路、数学都有很大拓展,总结起来有一下几个特点: (一)“实际—>模型”的建模过程很关键,本书的模型很多虽然所谓“简单”、“假设多”,但简化分析中,还真难找到比它更合适、更合理、更巧妙的建模、假 设了; (二)模型求解之后的处理,许多地方似乎求解完毕可以结束,但却都未戛然而止,而是进一步“结果分析”、“解释”,目的不一,要看进程而定,有的促进了模型的改进,有的对数学结果做出了现实对应的解释(这一点建模过程中也经常做,就是做几步解释一下实际意义),也还有纯数学分析的,这些都是很重要的,在我看来,这本书中的许多模型、论文似乎到了“结果分析”这一步才刚刚开始,前面的 求解似乎是家常便饭了; (三)用各种各样的数学工具、技巧、思想来建模的过程,这本书读下来愈发觉得线性代数、高等数学基础的重要性,同时书中也设计到了一些(虽是浅浅涉及)新的

数学知识和技巧,许多我在读的过程中只是试图了解这个思想,而推导过程未能花很多时间琢磨,但即便如此,还是让我的数学知识有了很大的拓展(作为工科专业 学生)。 从上周六继续自学《数学模型》开始一周,比预期的时间长了许多,但是过程中我觉得即便如此也很难领会完整这本书的内容。最近学习任务比较多,所以两天前快看完时到现在一直未能做个小结,从今天起每天做2章的小结,既是复习总结重点,也是请诸位同学指教、提意见交流——毕竟自己领会很有限。 也可以作为未读过、准备读这本书的同学的参考~ ——Tony Sun July 2012, TJU (目前已更新:全12章) 第1章建立数学模型关键词:数学模型意义特点 第1章是引入的一章,对数学模型的意义来源,做了很好的解释。其实数学模型 也是模型的一种,是我们用来研究问题、做实验的工具之一,只不过它比较“理论”、“摸不着”而已。但通常,数学模型有严谨的特点,而且我们可以根据建模实际需要改变模型,成本也比较低;同时数学模型手段之一计算机模拟也有很好的效果。 椅子在不平的地面上放稳、商人安全过河、预报人口增长这3个熟悉的例子,用 简单的数学进行描述、建模分析,给数学模型一个最好的诠释:用数学语言描述事

数学建模常用算法模型

数学模型的分类 按模型的数学方法分: 几何模型、图论模型、微分方程模型、概率模型、最优控制模型、规划论模型、马氏链模型等 按模型的特征分: 静态模型和动态模型,确定性模型和随机模型,离散模型和连续性模型,线性模型和非线性模型等 按模型的应用领域分: 人口模型、交通模型、经济模型、生态模型、资源模型、环境模型等。 按建模的目的分: 预测模型、优化模型、决策模型、控制模型等 一般研究数学建模论文的时候,是按照建模的目的去分类的,并且是算法往往也和建模的目的对应 按对模型结构的了解程度分: 有白箱模型、灰箱模型、黑箱模型等 比赛尽量避免使用,黑箱模型、灰箱模型,以及一些主观性模型。 按比赛命题方向分: 国赛一般是离散模型和连续模型各一个,2016美赛六个题目(离散、连续、运筹学/复杂网络、大数据、环境科学、政策) 数学建模十大算法 1、蒙特卡罗算法 (该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,比较好用的算法) 2、数据拟合、参数估计、插值等数据处理算法 (比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具) 3、线性规划、整数规划、多元规划、二次规划等规划类问题 (建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现) 4、图论算法 (这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)

5、动态规划、回溯搜索、分治算法、分支定界等计算机算法 (这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中) 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法 (这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用) 7、网格算法和穷举法 (当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具) 8、一些连续离散化方法 (很多问题都是从实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的) 9、数值分析算法 (如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用) 10、图象处理算法 (赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的这些图形如何展示,以及如何处理就是需要解决的问题,通常使用Matlab进行处理) 算法简介 1、灰色预测模型(必掌握) 解决预测类型题目。由于属于灰箱模型,一般比赛期间不优先使用。 满足两个条件可用: ①数据样本点个数少,6-15个 ②数据呈现指数或曲线的形式 2、微分方程预测(高大上、备用) 微分方程预测是方程类模型中最常见的一种算法。近几年比赛都有体现,但其中的要求,不言而喻。学习过程中 无法直接找到原始数据之间的关系,但可以找到原始数据变化速度之间的关系,通过公式推导转化为原始数据的关系。 3、回归分析预测(必掌握) 求一个因变量与若干自变量之间的关系,若自变量变化后,求因变量如何变化; 样本点的个数有要求: ①自变量之间协方差比较小,最好趋近于0,自变量间的相关性小; ②样本点的个数n>3k+1,k为自变量的个数;

数学模型的分类有哪些

数学模型的分类有哪些? 数学模型可以按照不同的方式分类,下面介绍常用的几种. 1.按照模型的应用领域(或所属学科)分:如人口模型、交通模型、环境模型、生态模型、城镇规划模型、水资源模型、再生资源利用模型、污染模型等.范畴更大一些则形成许多边缘学科如生物数学、医学数学、地质数学、数量经济学、数学社会学等. 2.按照建立模型的数学方法(或所属数学分支)分:如初等数学模型、几何模型、微分方程模型、图论模型、马氏链模型、规划论模型等. 按第一种方法分类的数学模型教科书中,着重于某一专门领域中用不同方法建立模型,而按第二种方法分类的书里,是用属于不同领域的现成的数学模型来解释某种数学技巧的应用.在本书中我们重点放在如何应用读者已具备的基本数学知识在各个不同领域中建模. 3.按照模型的表现特性又有几种分法: 确定性模型和随机性模型取决于是否考虑随机因素的影响.近年来随着数学的发展,又有所谓突变性模型和模糊性模型. 静态模型和动态模型取决于是否考虑时间因素引起的变化. 线性模型和非线性模型取决于模型的基本关系,如微分方程是否是线性的. 离散模型和连续模型指模型中的变量(主要是时间变量)取为离散还是连续的. 虽然从本质上讲大多数实际问题是随机性的、动态的、非线性的,但是由于确定性、静态、线性模型容易处理,并且往往可以作为初步的近似来解决问题,所以建模时常先考虑确定性、静态、线性模型.连续模型便于利用微积分方法求解,作理论分析,而离散模型便于在计算机上作数值计算,所以用哪种模型要看具体问题而定.在具体的建模过程中将连续模型离散化,或将离散变量视作连续,也是常采用的方法. 4.按照建模目的分:有描述模型、分析模型、预报模型、优化模型、决策模型、控制模型等. 5.按照对模型结构的了解程度分:有所谓白箱模型、灰箱模型、黑箱模型.这是把研究对象比喻成一只箱子里的机关,要通过建模来揭示它的奥妙.白箱主要包括用力学、热学、电学等一些机理相当清楚的学科描述的现象以及相应的工程技术问题,这方面的模型大多已经基本确定,还需深入研究的主要是优化设计和控制等问题了.灰箱主要指生态、气象、经济、交通等领域中机理尚不十分清楚的现象,在建立和改善模型方面都还不同程度地有许多工作要做.至于黑箱则主要指生命科学和社会科学等领域中一些机理(数量关系方面)很不清楚的现象.有些工程技术问题虽然主要基于物理、化学原理,但由于因素众多、关系复杂和观测困难等原因也常作为灰箱或黑箱模型处理.当然,白、灰、黑之间并没有明显的界限,而且随着科学技术的发展,箱子的“颜色”必然是逐渐由暗变亮的.

数学建模常用算法模型

按模型的数学方法分: 几何模型、图论模型、微分方程模型、概率模型、最优控制模型、规划论模型、马氏链模型等 按模型的特征分: 静态模型和动态模型,确定性模型和随机模型,离散模型和连续性模型,线性模型和非线性模型等 按模型的应用领域分: 人口模型、交通模型、经济模型、生态模型、资源模型、环境模型等。 按建模的目的分: 预测模型、优化模型、决策模型、控制模型等 一般研究数学建模论文的时候,是按照建模的目的去分类的,并且是算法往往也和建模的目的对应 按对模型结构的了解程度分: 有白箱模型、灰箱模型、黑箱模型等 比赛尽量避免使用,黑箱模型、灰箱模型,以及一些主观性模型。 按比赛命题方向分: 国赛一般是离散模型和连续模型各一个,2016美赛六个题目(离散、连续、运筹学/复杂网络、大数据、环境科学、政策) 数学建模十大算法 1、蒙特卡罗算法 (该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,比较好用的算法) 2、数据拟合、参数估计、插值等数据处理算法 (比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)

3、线性规划、整数规划、多元规划、二次规划等规划类问题 (建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现) 4、图论算法 (这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备) 5、动态规划、回溯搜索、分治算法、分支定界等计算机算法 (这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中) 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法 (这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用) 7、网格算法和穷举法 (当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具) 8、一些连续离散化方法 (很多问题都是从实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的) 9、数值分析算法 (如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)10、图象处理算法 (赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的这些图形如何展示,以及如何处理就是需要解决的问题,通常使用Matlab进行处理) 算法简介 1、灰色预测模型(必掌握)

数学建模实验答案 离散模型讲解

实验09 离散模型(2学时) (第8章离散模型) 1. 层次分析模型 1.1(验证,编程)正互反阵最大特征根和特征向量的实用算法p263~264 已知正互反阵 261????1/21A?4????1/461/1?? 注:[263]定理2 n阶正互反阵A的最大特征根≥n。 ★(1) 用MATLAB函数求A的最大特征根和特征向量。 调用及运行结果(见[264]): 1 3.0092 k = 1 >> w=V(:,k)/sum(V(:,k))

w = 0.5876 0.3234 0.0890 [263])(2) 幂法(见n正互反矩阵,算法步骤如下:A为n×(0)w 1);a. 任取n 维非负归一化初始列向量(分量之和为)k?1)((k2,0,1,?Aww,k?;计算b. 1)?(k w 1)k?(?w1)k?(w归一化,即令c. ;n ?1)?(k w i 1i?)(1)k(k?1)k?(?)n|?|w,(i?w?1,2,w即,当d. 对于预先给定的精度ε时,ii b;为所求的特征向 量;否则返回到步骤1)?(kn w1??i?。e. 计算最大特征根 )(k wn1i?i 注:)k(k?1)(((k)k)???wAw??ww? 1)(k? w?i n,i?1,2,?? )k(w i 文件如下:函数式m [lambda w]=p263MI(A,d) function——求正互反阵最大特征根和特征向量%幂法% A 正互反方阵% d 精度 2 % lambda 最大特征根归一化特征列向量% w 0.000001,则d取if(nargin==1) %若只输入一个变量(即A)d=1e-6; end 的阶数取方阵A n=length(A); %任取归一化初始列向量 w0=w0/sum(w0);%w0=rand(n,1); 1 while ww=A*w0; %归一化w=ww/sum(ww); all(abs(w-w0)

相关主题
文本预览
相关文档 最新文档