当前位置:文档之家› 薄膜材料技术复习题090526

薄膜材料技术复习题090526

薄膜材料技术复习题090526
薄膜材料技术复习题090526

1.薄膜定义:按照一定需要,利用特殊的制备技术,在基体表面形成厚度为亚微米至微米级的膜层。这种二维伸展的薄膜具有特殊的成分、结构和尺寸效应而使其获得三维材料所没有的特性,同时又很节约材料,所以非常重要。通常是把膜层无基片而能独立成形的厚度作为薄膜厚度的一个大致的标准,规定其厚度约在1μm左右。

2.一些表面定义:

1)理想表面:沿着三维晶体相互平行的两个面切开,得到的表面,除了原子

平移对称性破坏,与体内相同。

2)清洁表面:没有外界杂质。

3)弛豫表面:表面原子因受力不均向内收缩或向外膨胀。

4)重构表面:表面原子在与表面平行的方向上的周期也发生变化,不同于晶

体内部原子排列的二维对称性(再构)。

5)实际表面:存在外来原子或分子。

3. 薄膜的形成的物理过程

驰豫

重构驰豫+重构?

?

?

?

?

驰豫:表面向下收缩,表面层原子与内层原子

结构缺陷间距比内层原子相互之间有所减小。

重构:在平行表面方向上原子重排。

①小岛阶段——成核和核长大,透射电镜观察到大小一致(2-3nm)的核突然出现.平行基片平面的两维大于垂直方向的第三维。说明:核生长以吸附单体在基片表面的扩散,不是由于气相原子的直接接触。

②结合阶段——两个圆形核结合时间小于0.1s,并且结合后增大了高度,减少了在基片所占的总面积。而新出现的基片面积上会发生二次成核,复结合后的复合岛若有足够时间,可形成晶体形状,多为六角形。核结合时的传质机理是体扩散和表面扩散(以表面扩散为主)以便表面能降低。

③沟道阶段——圆形的岛在进一步结合处,才继续发生大的变形→岛被拉长,从而连接成网状结构的薄膜,在这种结构中遍布不规则的窄长沟道,其宽度约为5-20nm ,沟道内发生三次成核,其结合效应是消除表面曲率区,以使生成的总表面能为最小。

④连续薄膜——小岛结合,岛的取向会发生显著的变化,并有些再结晶的现象。沟道内二次或三次成核并结合,以及网状结构生长→连续薄膜。

4. 薄膜的附着类型及影响薄膜附着力的工艺因素

???????????????????????(在新面积处)稳定核(在捕获区)单体的吸附形成小原子团临界核临界核(在非捕获区)大岛大岛连合沟道薄膜小岛 二次成核二、三次成核二、三次成核 连续薄膜(在沟道和孔洞处)三次成核

薄膜的附着类型

①简单附着:薄膜和基片间形成一个很清楚的分界面,薄膜与基片间的

结合力为范德华力

②扩散附着—由两个固体间相互扩散或溶解而导致在薄膜和基片间形

成一个渐变界面。实现扩散方法:基片加热法、离子注入法、离子轰

击法、电场吸引法。

③通过中间层附着—在薄膜与基片之间形成一个化合物而附着,该化合物多为薄膜材料与基片材料之间的化合物。

④通过宏观效应—机械锁合双电层吸引

5. 真空相关

?真空是指低于一个大气压的气体空间。常用“真空度”度量。真空度越高,压强越小。

?常用计量单位:Pa, Torr, mmHg, bar, atm.。关系如下:

?1mmHg=133.322Pa,

? 1 Torr=atm/760=133.322Pa≈1mmHg

? 1 bar=105Pa

●粗真空:1×105~1×102Pa 目的获得压力差。电容器生产中的真空侵

渍工艺

●低真空:1×102~1×10-1Pa 真空热处理。

●高真空:1×10-1~1×10-6Pa 真空蒸发。

●超高真空:<1×10-6Pa 得到纯净的气体;获得纯净的固体表面。

6. 物理气相沉积PVD(Physics Vapor Deposition,主要是在真空环境下利用

各种物理手段或方法沉积薄膜。

1)需要使用固态的或熔化态的物质作为沉积过程的源物质;

2)源物质要经过物理过程进入气相;

3)需要相对较低的气体压力环境;

4)在气相中及衬底表面不发生化学反应。

蒸发定义:当温度升高时,材料会经历典型的固相,液相到气相的变化。任何温度下,材料上面都存在蒸气,具有平衡蒸气压。材料温度低于熔化温度时,产生蒸气的过程称为升华;样品熔化时,产生蒸气的过程称为蒸发。在微电子工艺中,蒸发较为广义,包括一切蒸气产生的过程。

对环境的要求:超真空,<1mTorr

对材料的要求:具有合适的蒸气压,得到合适的淀积速率,>10mTorr

影响因素:

蒸发源的纯度;加热装置、坩埚可能造成的污染;真空系统中的残留气体。

解决办法:

使用高纯物质作为蒸发源;改善装置;改善真空条件,提高物质的蒸发以及薄膜沉积速度。

7. MOCVD

概念:利用金属有机物的热分解进行化学气相沉积制备薄膜的CVD方法。

特点:近十几年发展发展起来的一种新的表面气相沉积技术,它一般使用金属有机化合物和氢化物作为原料气体,进行热解化学气相沉积。

制备范围:在较低温度下沉积各种无机材料,如金属氧化物、氢化物、碳化物、氟化物及化合物半导体材料和单晶外延膜、多晶膜和非晶态膜,已成功应用于制备超晶格结构、超高速器件和量子阱激光器。

8.离子镀:IP (Ion plating),同时结合蒸发和溅射的特点,让靶材原子蒸发电离后与气体离子一起受电场的加速,而在基片上沉积薄膜的技术。

离子镀特点:

1)具有蒸发镀膜和溅射镀膜的特点

2)膜层的附着力强。

3)绕射性好,可镀复杂表面。

4)沉积速率高、成膜速度快、可镀厚膜。

5)可镀材料广泛,有利于化合物膜层的形成。

9. 溶液镀膜法:是在溶液中利用化学反应或电化学反应等化学方法在基板表面沉积薄膜的一种技术,常称为湿法镀膜。

1)化学镀

2)溶胶—凝胶法

3)阳极氧化法

4)LB法

5)电镀法

10. 溶胶-凝胶法特点

优点:

1)起始原料是分子级的能制备较均匀的材料

2)较高的纯度

3)组成成分较好控制,尤其适合制备多组分材料

4)可降低程序中的温度

5)具有流变特性,可用于不同用途产品的制备

6)可以控制孔隙度

7)容易制备各种形状

缺点

1)原料成本较高

2)存在残留小孔洞

3)存在残留的碳

4)较长的反应时间

5)有机溶剂对人体有一定的危害性

13. 薄膜的分类

1)从功能上分:

电学薄膜,光学薄膜,磁性薄膜,保护膜,装饰用膜、包装膜……

2)从结构上分:

无机薄膜,有机分子膜,单晶薄膜,多晶薄膜,非晶薄膜,多孔膜……

14. 外延生长【epitaxial growth】

在单晶衬底(基片)上生长一层有一定要求的、与衬底晶向相同的一薄层单晶层的方法。外延生长的最终目的是:沉积一层缺陷少,且可控制厚度及掺入杂质的单晶薄膜

15. 外延生长可分为多种

①按照衬底和外延层的化学成分不同,可分为同质外延和异质外延;

②按照反应机理可分为利用化学反应的外延生长和利用物理反应的外延生

长;

③按生长过程中的相变方式可分为气相外延、液相外延和固相外延等。

16. PVD和CVD两种工艺的对比

同PVD工艺相比,CVD的最大优势就是良好的阶梯覆盖性能,同时具有便于制备复合产物、不需高真空和淀积速率高等优点。CVD技术在19世纪60年代被引入半导体材料制备并快速发展。随PECVD,HDPCVD和MOCVD等技术的出现,CVD在集成电路制造中广泛应用于多晶硅、绝缘介质和金属薄膜的制备。

I.工艺温度高低是CVD和PVD之间的主要区别。温度对于高速钢镀膜具

有重大意义。CVD法的工艺温度超过了高速钢的回火温度,用CVD法镀制的高速钢工件,必须进行镀膜后的真空热处理,以恢复硬度。镀后热处理会产生不容许的变形。

II.CVD工艺对进人反应器工件的清洁要求比PVD工艺低一些,因为工件表面的一些脏东西很容易在高温下烧掉。此外,高温下得到的镀层结合强度要更好些。

III.CVD镀层往往比各种PVD镀层略厚一些,前者厚度在7.5μm左右,后者通常不到2.5μm厚。CVD镀层的表面略比基体的表面粗糙些。相反,PVD镀膜如实地反映材料的表面,不用研磨就具有很好的金属光泽,这在装饰镀膜方面十分重要。

IV.CVD反应发生在低真空的气态环境中,具有很好的绕镀性,所以密封在CVD反应器中的所有工件,除去支承点之外,全部表面都能完全镀好,

甚至深孔、内壁也可镀上。相对而论,所有的PVD技术由于气压较低,

绕镀性较差,因此工件背面和侧面的镀制效果不理想。PVD的反应器必

须减少装载密度以避免形成阴影,而且装卡、固定比较复杂。在PVD反

应器中,通常工件要不停地转动,并且有时还需要边转边往复运动。V.在CVD工艺过程中,要严格控制工艺条件,否则,系统中的反应气体或反应产物的腐蚀作用会使基体脆化。

VI.比较CVD和PVD这两种工艺的成本比较困难,有人认为最初的设备投资PVD是CVD的3一4倍,而PVD工艺的生产周期是CVD的1/10。

在CVD的一个操作循环中,可以对各式各样的工件进行处理,而PVD

就受到很大限制。综合比较可以看出,在两种工艺都可用的范围内,采

用PVD要比CVD代价高。

VII.最后一个比较因素是操作运行安全问题。PVD是一种完全没有污染的工序,有人称它为“绿色工程”。而CVD的反应气体、反应尾气都可能具有

一定的腐蚀性,可燃性及毒性,反应尾气中还可能有粉末状以及碎片状

的物质,因此对设备、环境、操作人员都必须采取一定的措施加以防范。

17. CVD特点

①在中温或高温下,通过气态的初始化合物之间的气相化学反应而沉积固体;需要使用固态的或熔化态的物质作为沉积过程的源物质。

②可以在大气压(常压)或者低于大气压(低压)下进行沉积。一般说低压效果要好一些;

③采用等离子和激光辅助技术可以显著地促进化学反应,使沉积可在较低的温度下进行;

④能有效控制薄膜的化学成分和厚度,均匀性和重复性好;镀层的化学成分可改变,从而获得梯度沉积物或得到混和镀层;

⑤可以控制镀层的密度和纯度;

⑥绕镀性好,可在复杂形状的基体上以及颗粒材料上镀制;

⑦气流条件通常是层流的,在基体表面形成厚的边界层;

⑧沉积层通常具有柱状晶结构,不耐歪曲。但通过各种技术对化学反应进行气相扰动,可以得到细晶粒的等轴沉积层;

⑨台阶覆盖能力最好,对衬底损伤最小,可以形成多种金属、合金、陶瓷和化合物层。

⑩设备和运转成本低,与其它相关工艺有较好的相容性;

18. 溅射

是一个离子轰击物质表面,并在碰撞过程中发生能量与动量的转移,从而最终将物质表面原子激发出来的复杂过程。

溅射具有良好的台阶覆盖能力是由于:

有较高的压力和较高的淀积原子的入射能量。进行衬底加热,增强表面扩散,可以更显著的改善台阶覆盖。

考试范围大致在上面。

薄膜材料与薄膜技术复习资料完整版本

1.为了研究真空和实际使用方便,根据各压强范围内不同的物理特点,把真空划分为 粗真空,低真空,高真空,超高真空四个区域。 2.在高真空真空条件下,分子的平均自由程可以与容器尺寸相比拟。 3.列举三种气体传输泵旋转式机械真空泵,油扩散泵和复合分子泵。 4.真空计种类很多,通常按测量原理可分为绝对真空计和相对真空计。 5.气体的吸附现象可分为物理吸附和化学吸附。 6.化学气相反应沉积的反应器的设计类型可分为常压式,低压式,热壁 式和冷壁式。 7.电镀方法只适用于在导电的基片上沉积金属和合金,薄膜材料在电解液中是以 正离子的形式存在。制备有序单分子膜的方法是LB技术。 8.不加任何电场,直接通过化学反应而实现薄膜沉积的方法叫化学镀。 9.物理气相沉积过程的三个阶段:从材料源中发射出粒子,粒子运输到基片和粒子 在基片上凝聚、成核、长大、成膜。 10.溅射过程中所选择的工作区域是异常辉光放电,基板常处于负辉光区,阴极 和基板之间的距离至少应是克鲁克斯暗区宽度的3-4倍。 11.磁控溅射具有两大特点是可以在较低压强下得到较高的沉积率和可以在较低 基片温度下获得高质量薄膜。 12.在离子镀成膜过程中,同时存在吸附和脱附作用,只有当前者超 过后者时,才能发生薄膜的沉积。 13.薄膜的形成过程一般分为:凝结过程、核形成与生长过程、岛形成与 结合生长过程。 14.原子聚集理论中最小稳定核的结合能是以原子对结合能为最小单位不连续变化 的。 15.薄膜成核生长阶段的高聚集来源于:高的沉积温度、气相原子的高的动能、 气相入射的角度增加。这些结论假设凝聚系数为常数,基片具有原子级别的平滑度。 16.薄膜生长的三种模式有岛状、层状、层状-岛状。 17.在薄膜中存在的四种典型的缺陷为:点缺陷、位错、晶界和 层错。 18.列举四种薄膜组分分析的方法:X射线衍射法、电子衍射法、扫描电子 显微镜分析法和俄歇电子能谱法。 19.红外吸收是由引起偶极矩变化的分子振动产生的,而拉曼散射则是由引起极化率 变化的分子振动产生的。由于作用的方式不同,对于具有对称中心的分子振动,红外吸收不敏感,拉曼散射敏感;相反,对于具有反对称中心的分子振动,红外吸收敏感而拉曼散射不敏感。对于对称性高的分子振动,拉曼散射敏感。 20.拉曼光谱和红外吸收光谱是测量薄膜样品中分子振动的振动谱,前者 是散射光谱,而后者是吸收光谱。 21.表征溅射特性的主要参数有溅射阈值、溅射产额、溅射粒子的速度和能 量等。 什么叫真空?写出真空区域的划分及对应的真空度。 真空,一种不存在任何物质的空间状态,是一种物理现象。粗真空105~102Pa 粘滞流,分子间碰撞为主低真空102~10-1 Pa 过渡流高真空102~10-1 Pa分子流,气体分子与器壁碰撞为主超高真空10-5~10-8 Pa气体在固体表面吸附滞留为主极高真空10-8 Pa以下·什么是真空蒸发镀膜法?其基本过程有哪些?

高分子膜材料的制备方法

高分子膜材料的制备 方法 xxx级 xxx专业xxx班 学号:xxxxxxx xxx

高分子膜材料的制备方法 xxx (xxxxxxxxxxx,xx) 摘要:膜技术是多学科交叉的产物,亦是化学工程学科发展的新增长点,膜分离技术在工业中已得到广泛的应用。本文主要介绍了高分子分离膜材料较成熟的制膜方法(相转变法、熔融拉伸法、热致相分离法),而且介绍了一些新的制膜方法(如高湿度诱导相分离法、超临界二氧化碳直接成膜法以及自组装制备分离膜法等)。 关键词:膜分离,膜材料,膜制备方法 1.引言 膜分离技术是当代新型高效的分离技术,也是二十一世纪最有发展前途的高新技术之一,目前在海水淡化、环境保护、石油化工、节能技术、清洁生产、医药、食品、电子领域等得到广泛应用,并将成为解决人类能源、资源和环境危机的重要手段。目前在膜分离过程中,对膜的研究主要集中在膜材料、膜的制备及膜过程的强化等三大领域;随着膜过程的开发应用,人们越来越认识到研究膜材料及其膜技术的重要性,在此对膜材料的制备技术进行综述。 2.膜材料的制备方法

2.1 浸没沉淀相转化法 1963年,Loeb和Sourirajan首次发明相转化制膜法,从而使聚合物分离膜有了工业应用的价值,自此以后,相转化制膜被广泛的研究和采用,并逐渐成为聚合物分离膜的主流制备方法。所谓相转化法制膜,就是配置一定组成的均相聚合物溶液,通过一定的物理方法改变溶液的热力学状态,使其从均相的聚合物溶液发生相分离,最终转变成一个三维大分子网络式的凝胶结构。相转化制膜法根据改变溶液热力学状态的物理方法的不同,可以分为一下几种:溶剂蒸发相转化法、热诱导相转化法、气相沉淀相转变法和浸没沉淀相转化法。 2.1.1 浸没沉淀制膜工艺 目前所使用的膜大部分均是采用浸没沉淀法制备的相转化膜。在浸没沉淀相转化法制膜过程中,聚合物溶液先流延于增强材料上或从喷丝口挤出,而后迅速浸入非溶剂浴中,溶剂扩散进入凝固浴(J2),而非溶剂扩散到刮成的薄膜内(J1),经过一段时间后,溶剂和非溶剂之间的交换达到一定程度,聚合物溶液变成热力学不稳定溶液,发生聚合物溶液的液-液相分离或液-固相分离(结晶作用),成为两相,聚合物富相和聚合物贫相,聚合物富相在分相后不久就固化构成膜的主体,贫相则形成所谓的孔。 浸入沉淀法至少涉及聚合物/溶剂/非溶剂3个组分,为适应不同应用过程的要求,又常常需要添加非溶剂、添加剂来调整铸膜液的配方以及改变制膜的其他工艺条件,从而得到不同的结构形态和性能的膜。所制成的膜可以分为两种构型:平板膜和管式膜。平板膜用于板

薄膜技术复习题

1.简述薄膜的形成过程。 薄膜:在被称为衬底或基片的固体支持物表面上,通过物理过程、化学过程或电化学过程使单个原子、分子或离子逐个凝聚而成的固体物质。主要包括三个过程:(1)产生适当的原子、分子或离子的粒子;(2)通过煤质输运到衬底上;(3)粒子直接或通过化学或电化学反应而凝聚在衬底上面形成固体沉淀物,此过程又可以分为四个阶段:(1)核化和小岛阶段;(2)合并阶段;(3)沟道阶段;(4)连续薄膜 2.图2为溅射镀膜的原理示意图,试结合图叙述溅射镀膜的基本过程,并介绍常用的溅射镀膜的方法和特点。 图 2 溅射镀膜的原理示意图 过程:该装置是由一对阴极和阳极组成的冷阴极辉光放电结构。被溅射靶(阴极)和成膜的基片及其固定架(阳极)构成溅射装置的两个极,阳极上接上1-3KV的直流负高压,阳极通常接地。工作时通常用机械泵和扩散泵组将真空室抽到*10-3Pa,通入氩气,使真空室压力维持在()*10-1Pa,而后逐渐关闭主阀,使真空室内达到溅射电压,即10-1-10Pa,接通电源,阳极耙上的负高压在两极间产生辉光放电并建立起一个等离子区,其中带正电的氩离子在阴极附近的阳极电位降的作用下,加速轰击阴极靶,使靶物质由表面被溅射出,并以分子或原子状态沉积在基体表面,形成靶材料的薄膜。 将欲沉积的材料制成板材——靶,固定在阴极上。基片置于正对靶面的阳极上,距靶几厘米。系统抽至高真空后充入 10~1帕的气体(通常为氩气),在阴极和阳极间加几千伏电压,两极间即产生辉光放电。放电产生的正离子在电场作用下飞向阴极,与靶表面原子碰撞,受碰撞从靶面逸出的靶原子称为溅射原子,其能量在1至几十电子伏范围。溅射原子在基片表面沉积成膜 直流阴极溅射镀膜法:特点是设备简单,在大面积的基片或材料上可以制取均匀的薄膜,放电电流随气压和电压的变化而变化,可溅射高熔点金属。但是,它的溅射电压高、沉积速率低、基片温升较高,加之真空度不良,致使膜中混入的杂质气体也多,从而影响膜的质量。 高频溅射镀膜法:利用高频电磁辐射来维持低气压的辉光放电。阴极安置在紧贴介质靶材的后面,把高频电压加在靶子上,这样,在一个周期内正离子和电子可以交替地轰击靶子,从而实现溅射介质材料的目的。这种方法可以采用任何材料的靶,在任何基板上沉积任何薄膜。若采用磁控源,还可以实现高速溅射沉积。 磁控溅射镀膜法:磁控溅射的特点是电场和磁场的方向互相垂直,它有效的克服了阴极溅射速率低和电子使基片温度升高的致命弱点,具有高速、低温、低损伤等优点,易于连续制作大面积膜层,便于实现自动化和大批量生产,高速指沉积速率快;低温和低损伤是指基片的温升低,对膜层的损伤小。此外还具有一般溅射的优点,如沉积的膜层均匀致密,针孔少,纯度高,附着力强,应用的靶材广,可进行反应溅射,可制取成分稳定的合金膜等。工作压力范围广,操作电压低也是其显著

薄膜物理与技术复习资料

第一章 最可几速率:根据麦克斯韦速率分布规律,可以从理论上推得分子速率在m v 处有极大值,m v 称为最可几速率 M RT M RT m kT 41.122==,Vm 速度分布 平均速度: M RT m RT m kT 59.188==ππ,分子运动平均距离 均方根速度:M RT M RT m kT 73.133==平均动能 真空的划分:粗真空、低真空、高真空、超高真空。 真空计:利用低压强气体的热传导和压强有关; (热偶真空计) 利用气体分子电离;(电离真空计) 真空泵:机械泵、扩散泵、分子泵、罗茨泵 机械泵:利用机械力压缩和排除气体 扩散泵:利用被抽气体向蒸气流扩散的想象来实现排气作用 分子泵:前级泵利用动量传输把排气口的气体分子带走获得真空。 平均自由程:每个分子在连续两次碰撞之间的路程称为自由程;其统计平均值成为平均自由程。 常用压强单位的换算 1Torr=133.322 Pa 1 Pa=7.5×10-3 Torr 1 mba=100Pa 1atm=1.013*100000Pa 真空区域的划分、真空计、各种真空泵 粗真空 1×105 to 1×102 Pa 低真空 1×102 to 1×10-1 Pa 高真空 1×10-1 to 1×10-6 Pa 超高真空 <1×10-6 Pa 旋转式机械真空泵 油扩散泵 复合分子泵 属于气体传输泵,即通过气体吸入并排出真空泵从而达到排气的目的 分子筛吸附泵 钛升华泵 溅射离子泵 低温泵 属于气体捕获泵,即通过各种吸气材料特有的吸气作用将被抽气体吸除,以达到所需真空。 不需要油作为介质,又称为无油泵 绝对真空计: U 型压力计、压缩式真空计 相对真空计:

薄膜材料考试题目

本资料仅限于中科大材料系研究生同学使用,禁止一切摘抄、翻录、复印等行为。 孙兆威2016年6月9日 1.Z在抽真空的过程中,在不同真空度下腔体内的主要气体成分。 2.管道的设计与连接对抽真空效率的影响,检漏方法 抽气效率:为保持系统真空度而需要的抽速,取决于真空元件的总流导(一般指导管、阀门、挡板真空系统中的常见元件),使得真空泵的实际抽速S 永远小于理论抽速Sp: 同时,极限真空度会受到被抽容器(真空器)的体积及漏气、放气的影响,公式为 因此,要保证抽真空效率,就要减少真空元件总流导和系统的漏气放气。 总流导C:,因此,在允许范围内增大各个元件流导即可增加系统总流导。对阀门,C=11.7A,对导管,C=12.2D3/L,因此,选用口径较大的阀门,尽量减少导管的长度,增加导管直径可以相应增大总流导。 装置放气:是指在常温或高温下真空装置自身的饱和蒸汽、某些内表面存在的污垢、联结装置中存在的残余空气,这些气体会对极限真空度造成影响,

因此必须在组装装置时选用饱和蒸汽压尽可能低、且高温稳定性理想的元件材料,减少需要连接的部位,尽可能清洁装置的内表面。 装置漏气:装置漏气存在两种情况,一是空气通过装置器壁渗透;二是装置存在漏气部位。第二种情况是必须尽量克服的,同样是通过减少连接部分,使用气密性高、热变形小的材料。 常见检漏方法: 1. rate-of-rise 检测 2. He质谱漏气检测 3. He气+真空计检测 4. RGA检测 检漏部位: 检漏仪与系统的连接处; 过去经常出问题的元器件; 经常沿着密封表面运动的密封件; 阀门的动密封; 旋转部件的动密封; 舱门的密封; 波纹管轴的密封; 真空官道上的柔性连接; 螺纹连接处; 静密封,如观察窗,引线端; 焊点(特别是钎焊的焊点); 3.估计常见晶体不同面的表面能 100110111 SC123 FCC463 BCC426 HCP366 0001 1100 1120 自己计算即可,不会来问我 4.表面扩散的几种机制 表面扩散:是指原子在固体表面上由一个表面位置向另一个位置移动。机制有两种: 1.增原子迁移和替换 2.表面空位迁移 表面扩散的原子理论:表面扩散主要是增原 子的迁移和表面空位迁移。 具体采用哪种机制则看那种机制的扩散激活能 (Ef和Em)小 5.扩散生长的薄膜厚度与时间的关系 反应扩散生成中间相γ薄膜,

传感器与测试技术复习题与答案

传感器与测试技术习题及答案 1.什么是传感器?它由哪几个部分组成?分别起到什么作用? 2.传感器技术的发展动向表现在哪几个方面? 3.传感器的性能参数反映了传感器的什么关系?静态参数有哪些?各种参数代表什么意义?动态参数有那些?应如何选择? 4.某位移传感器,在输入量变化5 mm 时,输出电压变化为300 mV ,求其灵敏度。 5. 某测量系统由传感器、放大器和记录仪组成,各环节的灵敏度为: S1=0.2mV/℃、S2=2.0V/mV 、S3=5.0mm/V ,求系统的总的灵敏度。 6.什么是应变效应?什么是压阻效应?什么是横向效应? 7、试说明金属应变片与半导体应变片的相同和不同之处。 8、 应变片产生温度误差的原因及减小或补偿温度误差的方法是什么? 9、钢材上粘贴的应变片的电阻变化率为0.1%,钢材的应力为10kg/mm 2 。试求 10、如图所示为等强度梁测力系统,1R 为电阻应变片,应变片灵敏度系数 05.2=k ,未受应变时Ω=1201R ,当试件受力F 时,应变片承受平均应变4108-?=ε,求 (1)应变片电阻变化量1R ?和电阻相对变化量11/R R ?。 (2)将电阻应变片置于单臂测量电桥,电桥电源电压为直流3V ,求电桥 输出电压是多少。 (a ) (b ) 图等强度梁测力系统

11、单臂电桥存在非线性误差,试说明解决方法。 12、某传感器为一阶系统,当受阶跃函数作用时,在t=0时,输出为10mV;t →∞时,输出为100mV;在t=5s 时,输出为50mV,试求该传感器的时间常数。 13. 交流电桥的平衡条件是什么? 14.涡流的形成围和渗透深度与哪些因素有关?被测体对涡流传感器的灵敏度有何影 响? 15.涡流式传感器的主要优点是什么? 16.电涡流传感器除了能测量位移外,还能测量哪些非电量? 17.某电容传感器(平行极板电容器)的圆形极板半径)(4mm r =,工作初始极板间距离)(3.00mm =δ,介质为空气。问: (1)如果极板间距离变化量)(1m μδ±=?,电容的变化量C ?是多少? (2)如果测量电路的灵敏度)(1001pF mV k =,读数仪表的灵敏度52=k (格/mV )在)(1m μδ±=?时,读数仪表的变化量为多少? 18.寄生电容与电容传感器相关联影响传感器的灵敏度,它的变化为虚假信号影响传感器的精度。试阐述消除和减小寄生电容影响的几种方法和原理。 19.简述电容式传感器的优缺点。 20.电容式传感器测量电路的作用是什么? 21.简述正、逆压电效应。 22.压电材料的主要特性参数有哪些? 23.简述电压放大器和电荷放大器的优缺点。 24.能否用压电传感器测量静态压力?为什么? 25.说明霍尔效应的原理? 26.磁电式传感器与电感式传感器有何不同? 27.霍尔元件在一定电流的控制下,其霍尔电势与哪些因素有关? 28.说明热电偶测温的原理及热电偶的基本定律。 29.将一只灵敏度为0.08mv/℃ 的热电偶与毫伏表相连,已知接线端温度为50℃,毫伏表的输出为60 mv, 求热电偶热端的温度为多少? 30.试比较热电阻与热敏电阻的异同。 31.什么是光电效应,依其表现形式如何分类,并予以解释。

工程测试技术基础复习题

工程测试技术基础复习题 选择题: 1、以下哪项不属于常用的弹性元件(D) A、弹簧管 B、薄膜式弹性元件 C、波纹管C、悬臂梁 2、滤波器对不同频率的信号有不同的作用,下列说法错误的是(A) A、在通带内使信号受到很大的衰减而不通过。 B、在通带与阻带之间的一段过滤带使信号受到不同程度的衰减。 C、在阻带内使信号受到很大的衰减而起到抑制作用。 D、在通带内使信号受到很小的衰减而通过。 3、以下哪项指标不属于滤波器的特征频率(D) A、通带截止频率 B、阻带截止频率 C、转折频率 D、载波频率 4、关于传感器,下列说法不正确的是(B) A、传感器一般由敏感元件、转换元件以及其他辅助元件构成。 B、电容式传感器有变面积型和变极距型两种。 C、应变片式传感器是利用应变片电阻的应变效应制成的。 D、有些传感器中的敏感元件既是敏感元件又起转换元件的作用。 5、对测量控制电路的主要要求,一下说法不正确的是(C) A、测控电路应具有较高的精度。 B、测控电路应具有较好的动态性能。 C、测控电路只要能够保证“精、快、灵”就可以了。 D、测控电路应具有合适的输入与输出阻抗。 6、下列指标中,哪项不是滤波器的主要特性指标(C) A、特征频率 B、群时延函数 C、线性度 D、阻尼系数与品质因数 7、下列哪项不正确(B) A、有些半导体材料也可以制成电阻式应变片。 B、只有金属导体才能制成电阻式应变片。

C、当金属电阻丝受拉时,其长度和截面积都要发生变化,其阻值也发生变化 D、当金属电阻丝受拉时,其电阻率要发生变化,阻值也要发生变化。 8、单臂电桥的灵敏度为(D ) A、U B、U/2 C、U/3 D、U/4 9、下面属于光生伏特效应的光电元件是(A) A、光敏晶体管B、光敏电阻 C、光电管D、光电倍增器 10、以下关于温度测量的说法中不正确的是(A) A、热电偶、热电阻都是常用的测温方法,但热电偶用于中低温度区测量,而热电阻用于高温度区测量。 B、热电偶、热电阻都是常用的测温方法,但热电偶用于高温度区测量,而热电阻用于中低温度区测量。 C、采用热电偶测温必须考虑冷增温度补偿问题。 D、才用热电阻测温必须采用三线制接法。 11、在保持幅频特性单调变化的前提下,通带内特性最为平坦的逼近方法是(D) A、贝塞尔逼近B、切比雪夫逼近 C、以上都不是D、巴特沃斯逼近 12、以下说法错误的一项是(B) A、传感器的灵敏度越大越好B、传感器的灵敏度越小越好C、滤波器的灵敏度越小越好D、滤波器的灵敏度越小,容错能力越强 13、在采用应变片测量时,实现温度补偿的前提是(D) A、补偿片应该贴在与被测试件相同材质的材料上。 B、补偿片应该贴在与被测试件处于同一环境温度中。 C、补偿片应该为测量片的相邻桥臂上。 D、以上条件都需满足。 14、工业用热电阻一般采用(C) A、单线制 B、双线制 C、三线制 D、四线制 15、若允许通带内有一定的波动量,而要求频率特性比较接近矩形时,

IWE材料复习习题及答案修订版

I W E材料复习习题及答 案 集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]

1.炼钢的过程是: A.将生铁中的有害伴生元素如硫、磷等元素去除的过程 B.生铁的氧化反应过程 C.通过高炉进行还原反应的过程 D.将铁矿石中的有益元素通过化学反应获得一种复杂合金的过程 2.碳钢中有益的伴生元素: A.Al B.Si C.S D.H 3.钢浇注时,加入脱氧剂0.2%Si+0.02%A1+少量Mn时,可得到: A.沸腾钢 B.镇静钢 C.特殊镇静钢 D.半镇静钢 4.镇静钢的特征: A.金属表面外层较纯 B.无偏析区 C.有偏析区 D.夹杂物分布均匀 5.13CrMo4-5中成分的含量: A.Cr含量4% B.Cr含量1% C.Mo含量0.5% D.Mo含量5% 6.通过哪些试验方法来测定金属材料的可变形性能? A.拉伸试验 B.弯曲试验 C.缺口冲击试验 D.硬度试验 7.通过缺口冲击试验可获得材料的特性值: A.延伸率 B.冲击功 C.抗拉强度 D.脆性转变温度 8.提高材料强韧性的强化方法: A.固溶退火 B.析出硬化 C.冷加工 D.晶粒细化 9.冷作变形会导致钢的哪些性能变坏? A.抗拉强度 B.冲击韧性 C.延伸率 D.硬度 10.关于珠光体叙述正确的: A.钢中很脆、很硬的化合物 B.碳含量为0.77%的共析产物 C.碳含量为2.06%的共晶产物 D.低碳钢中铁素体与渗碳体的混合物 11.碳钢中,与包晶反应紧密相关的裂纹: A.氢致裂纹 B.再热裂纹 C.淬火脆断 D.凝固裂纹 12.正火的主要作用为: A.提高强度和硬度 B.应力释放 C.晶粒细化 D.降低脆性(改善韧性) 13.钢的焊接接头退火目的: A.部分恢复金属晶粒组织到焊前状态 B.恢复其组织,但是降低其机械性能 C.改变其组织,以改善其机械性能 D.完全恢复金属晶粒组织到焊前状态

薄膜材料技术复习题090526

1.薄膜定义:按照一定需要,利用特殊的制备技术,在基体表面形成厚度为亚微米至微米级的膜层。这种二维伸展的薄膜具有特殊的成分、结构和尺寸效应而使其获得三维材料所没有的特性,同时又很节约材料,所以非常重要。通常是把膜层无基片而能独立成形的厚度作为薄膜厚度的一个大致的标准,规定其厚度约在1μm左右。 2.一些表面定义: 1)理想表面:沿着三维晶体相互平行的两个面切开,得到的表面,除了原子 平移对称性破坏,与体内相同。 2)清洁表面:没有外界杂质。 3)弛豫表面:表面原子因受力不均向内收缩或向外膨胀。 4)重构表面:表面原子在与表面平行的方向上的周期也发生变化,不同于晶 体内部原子排列的二维对称性(再构)。 5)实际表面:存在外来原子或分子。 3. 薄膜的形成的物理过程 驰豫 重构驰豫+重构? ? ? ? ? 驰豫:表面向下收缩,表面层原子与内层原子 结构缺陷间距比内层原子相互之间有所减小。 重构:在平行表面方向上原子重排。

①小岛阶段——成核和核长大,透射电镜观察到大小一致(2-3nm)的核突然出现.平行基片平面的两维大于垂直方向的第三维。说明:核生长以吸附单体在基片表面的扩散,不是由于气相原子的直接接触。 ②结合阶段——两个圆形核结合时间小于0.1s,并且结合后增大了高度,减少了在基片所占的总面积。而新出现的基片面积上会发生二次成核,复结合后的复合岛若有足够时间,可形成晶体形状,多为六角形。核结合时的传质机理是体扩散和表面扩散(以表面扩散为主)以便表面能降低。 ③沟道阶段——圆形的岛在进一步结合处,才继续发生大的变形→岛被拉长,从而连接成网状结构的薄膜,在这种结构中遍布不规则的窄长沟道,其宽度约为5-20nm ,沟道内发生三次成核,其结合效应是消除表面曲率区,以使生成的总表面能为最小。 ④连续薄膜——小岛结合,岛的取向会发生显著的变化,并有些再结晶的现象。沟道内二次或三次成核并结合,以及网状结构生长→连续薄膜。 4. 薄膜的附着类型及影响薄膜附着力的工艺因素 ???????????????????????(在新面积处)稳定核(在捕获区)单体的吸附形成小原子团临界核临界核(在非捕获区)大岛大岛连合沟道薄膜小岛 二次成核二、三次成核二、三次成核 连续薄膜(在沟道和孔洞处)三次成核

薄膜材料及其制备技术-2015级研究生

《薄膜材料及其制备技术》作业 ——材料科学与工程学院2015级研究生 1,在T=291K 时,水的表面张力系数(或表面能)10.07 3N m s -=?,63118.01610v m mol a --=醋,如果水滴半径810r m -=,请计算此时的蒸汽压'p (用p 表示)以及水滴内外压强差p D 。(10分) 2,从热力学的角度证明:当从过饱和(压强为p ’)的气相析出凝聚相时,凝聚 相的临界晶核尺寸r c 满足:2exp()'/B c v p p K Tr a s =;并由此得到结论:①当凝聚体晶核的尺寸rr c 时,随时间的演化,晶核将长大;③当r=r c 时,晶核随时间既不消逝也不长大。(v a 为凝聚体原子或分子的体积;p ’为过饱和蒸气压;p 为饱和蒸气压;σ为表面能)(10分) 3,当有衬底存在时,气体的形核就称作非均匀形核,证明:形核功 3** 23cos cos []4G G q q -+D =D ?均 。式中,*G D 均为均匀形核时的形核功;θ为浸润角。由此可以判断:当薄膜能够充分浸润衬底时,薄膜的形核功为0。(10分) 4,试从微观键能的观点证明:描述浸润问题的Young 方程cos LV SV SL s q s s =-可以近似写作2cos 2 LL LS u u q =(其中,LL u 为单位面积的液相原子之间的键能;LS u 为固-液界面上单位面积的固-液原子之间的键能),进而说明若A 能够浸润B ,并不能够推出B 也能够浸润A 的结论。(10分) 5,请论述真空度对成膜质量的影响。(10分) 6,衬底温度(即生长温度)是如何影响薄膜生长模式的?(10分) 7,论述晶格失配(既失配应力)与薄膜生长模式的关系。(10分) 8,论述衬底表面对形核难易程度:凹面>平面>凸面。即凹面处最容易形核,而凸面处最难形核。(10分) 9,试解释二维成核的层状生长机理与Step-flow 生长机理,并进一步论证在何种情况下薄膜倾向于step-flow 生长。(10分) 10, 自行查找文献,阐述一种流行的薄膜生长技术及其特点,并举例讲述其具体制备薄膜的实例及成膜质量。(10分) *作业可以打印。不准抄袭,一经发现,即作零分处理。作业于2016年6月1日前汇总上交。

《材料现代分析测试方法》复习题

《近代材料测试方法》复习题 1.材料微观结构和成分分析可以分为哪几个层次?分别可以用什么方法分析? 答:化学成分分析、晶体结构分析和显微结构分析 化学成分分析——常规方法(平均成分):湿化学法、光谱分析法 ——先进方法(种类、浓度、价态、分布):X射线荧光光谱、电子探针、 光电子能谱、俄歇电子能谱 晶体结构分析:X射线衍射、电子衍射 显微结构分析:光学显微镜、透射电子显微镜、扫面电子显微镜、扫面隧道显微镜、原 子力显微镜、场离子显微镜 2.X射线与物质相互作用有哪些现象和规律?利用这些现象和规律可以进行哪些科学研究工作,有哪些实际应用? 答:除贯穿部分的光束外,射线能量损失在与物质作用过程之中,基本上可以归为两大类:一部 分可能变成次级或更高次的X射线,即所谓荧光X射线,同时,激发出光电子或俄歇电子。另一部分消耗在X射线的散射之中,包括相干散射和非相干散射。此外,它还能变成热量逸出。 (1)现象/现象:散射X射线(想干、非相干)、荧光X射线、透射X射线、俄歇效 应、光电子、热能 (2)①光电效应:当入射X射线光子能量等于某一阈值,可击出原子内层电子,产 生光电效应。

应用:光电效应产生光电子,是X射线光电子能谱分析的技术基础。光电效应 使原子产生空位后的退激发过程产生俄歇电子或X射线荧光辐射是 X射线激发俄歇能谱分析和X射线荧光分析方法的技术基础。 ②二次特征辐射(X射线荧光辐射):当高能X射线光子击出被照射物质原子的 内层电子后,较外层电子填其空位而产生了次生特征X射线(称二次特征辐射)。 应用:X射线被物质散射时,产生两种现象:相干散射和非相干散射。相干散射 是X射线衍射分析方法的基础。 3.电子与物质相互作用有哪些现象和规律?利用这些现象和规律可以进行哪些科学研究工作,有哪些实际应用? 答:当电子束入射到固体样品时,入射电子和样品物质将发生强烈的相互作用,发生弹性散射和非弹性散射。伴随着散射过程,相互作用的区域中将产生多种与样品性质有关的物理信息。 (1)现象/规律:二次电子、背散射电子、吸收电子、透射电子、俄歇电子、特征X射 线 (2)获得不同的显微图像或有关试样化学成分和电子结构的谱学信息 4.光电效应、荧光辐射、特征辐射、俄歇效应,荧光产率与俄歇电子产率。 特征X射线产生机理。 光电效应:当入射X射线光子能量等于某一阈值,可击出原子内层电子,产生光电效应。 荧光辐射:被打掉了内层电子的受激原子,将发生外层电子向内层跃迁的过程,同时辐射出波长严格一定的特征X射线。这种利用X射线激发而产生的特征辐射为二次特

光学薄膜技术复习提纲讲解

光学薄膜技术复习提纲 、典型膜系 减反射膜(增透膜) 1、减反射膜的主要功能是什么? 是减少或消除透镜、棱镜、平面镜等光学表面的反射光,从而增加这些元件的透光量, 减少或消除系统的杂散光。 ★ 2、单层减反射膜的最低反射率公式并计算 厂 宀 >2 llo —111 /11;#-1 R= ------------ <山+爲沁+/ ★ 3、掌握常见的多层膜系表达,例如 G| H L | A 代表什么? G| 2 H L | A ? ★ 4、什么是规整膜系?非规整膜系? 把全部由入0/4整数倍厚度组成的膜系称为规整膜系,反之为非规整膜系。 ★ 5、单层减反射膜只能对某个波长和它附近的较窄波段内的光波起增透作用。 为了在较宽的 光谱范围达到更有效的增透效果,常采用双层、三层甚至更多层数的减反射膜。 ★ 6 V 形膜、W 形膜的膜系结构以及它们的特征曲线。P16-17 ㈡高反射膜 ★ 1、镀制金属反射膜常用的材料有铝(AI )、银(Ag )、金(Au )、铬等。 ★ 2、金属反射膜四点特性。P29 ① 高反射波段非常宽阔,可以覆盖几乎全部光谱范围,当然,就每一种具体的金属而言,它 都有自己最佳的反射波段。 V --G I HL| A / M |=! !膜 / fix 一上 —\ >< WG | 2HL | A 0 400 450 500 550 600 650 700 VUavelsnqth (rm ) 43 2 yuf5o2lpu 家

②各种金属膜层与基底的附着能力有较大差距。如Al、Cr、Ni (镍)与玻璃附着牢固;而Au、 Ag与玻璃附着能力很差。 ③金属膜层的化学稳定性较差,易被环境气体腐蚀。 ④膜层软,易划伤。 ㈢分光膜 1什么是分光膜? 中性分束镜能够在一定波段内把一束光按比例分成光谱成分相同的两束光,也即它在一定的 波长区域内,如可见区内,对各波长具有相同的透射率和反射率之比值一一透反比。因而反射光和透射光不带有颜色,呈色中性。 ★2、归纳金属、介质分束镜的优缺点: 金属分束镜p32 优点:中性好,光谱范围宽,偏振效应小,制作简单 缺点:吸收大,分光效率低。 使用注意事项:光的入射方向 介质分束镜p30 优点:吸收小,几乎可以忽略,分光效率高。 缺点:光谱范围窄,偏振分离明显,色散明显。 5、偏振中性分束棱镜是利用斜入射时光的偏振,实现50/50中性分光。 ㈣、截止滤光片 ★1、什么是截止滤光片?什么是长波通、短波通滤光片?p33 截止滤光片是指要求某一波长范围的光束高效透射,而偏离这一波长的光束骤然变化为高反 射的干涉截止滤光片。 抑制短波区、透射长波区的截止滤光片称为长波通滤光片。 抑制长波区、透射短波区的截止滤光片称为短波通滤光片。 2、截止光滤片的应用:彩色分光膜。P51 ①图2.4.13分光原理;②解决棱镜式分光元件偏振效应的方法是合理设计分光棱镜的形式,尽可能减小光束在膜面上的入射角。 ㈤、带通滤光片 ★1、什么是带通滤光片?P58

薄膜材料制备原理、技术及应用知识点

薄膜材料制备原理、技术及应用知识点1 一、名词解释 1. 气体分子的平均自由程:自由程是指一个分子与其它分子相继两次碰撞之间,经过的直线路程。对个别分子而言,自由程时长时短,但大量分子的自由程具有确定的统计规律。气体分子相继两次碰撞间所走路程的平均值。 2. 物理气相沉积(PVD):物理气相沉积(Physical Vapor Deposition,PVD)技术表示在真空条件下,采用物理方法,将材料源——固体或液体表面气化成气态原子、分子或部分电离成离子,并通过低压气体(或等离子体)过程,在基体表面沉积具有某种特殊功能的薄膜的技术。物理气相沉积的主要方法有,真空蒸镀、溅射镀膜、电弧等离子体镀、离子镀膜,及分子束外延等。发展到目前,物理气相沉积技术不仅可沉积金属膜、合金膜、还可以沉积化合物、陶瓷、半导体、聚合物膜等。 3. 化学气相沉积(CVD):化学气相沉积(Chemical vapor deposition,简称CVD)是反应物质在气态条件下发生化学反应,生成固态物质沉积在加热的固态基体表面,进而制得固体材料的工艺技术。它本质上属于原子范畴的气态传质过程。 4. 等离子体鞘层电位:等离子区与物体表面的电位差值ΔV p即所谓的鞘层电位。 在等离子体中放入一个金属板,由于电子和离子做热运动,而电子比离子的质量小,热速度就比离子大,先到达金属板,这样金属板带上负电,板附近有一层离子,于是形成了一个小局域电场,该电场加速了离子,减速电子,最终稳定了以后,就形成了鞘层结构,该金属板稳定后具有一个电势,称为悬浮电位。 5. 溅射产额:即单位入射离子轰击靶极溅出原子的平均数,与入射离子的能量有关。 6. 自偏压效应:在射频电场起作用的同时,靶材会自动地处于一个负电位下,导致气体离子对其产生自发的轰击和溅射。 7. 磁控溅射:在二极溅射中增加一个平行于靶表面的封闭磁场,借助于靶表面上形成的正交电磁场,把二次电子束缚在靶表面特定区域来增强电离效率,增加离子密度和能量,从而实现高速率溅射的过程。 8. 离子镀:在真空条件下,利用气体放电使气体或被蒸发物部分离化,产生离子轰击效应,最终将蒸发物或反应物沉积在基片上。结合蒸发与溅射两种薄膜沉积技术而发展的一种PVD方法。 9. 离化率:被离化的原子数与被蒸发气化的原子数之比称为离化率.一般离化装置的离化率仅为百分之几,离化率较高的空心阴极法也仅为20~40% 10. 等离子体辅助化学气相沉积(PECVD)技术:是一种用等离子体激活反应气体,促进在基体表面或近表面空间进行化学反应,生成固态膜的技术。等离子体化学气相沉积技术的基本原理是在高频或直流电场作用下,源气体电离形成等离子体,利用低温等离子体作为能量源,通入适量的反应气体,利用等离子体放电,使反应气体激活并实现化学气相沉积的技术。 11. 外延生长:在单晶衬底(基片)上生长一层有一定要求的、与衬底晶向相同的单晶层,犹如原来的晶体向外延伸了一段,故称外延生长。 12. 薄膜附着力:薄膜对衬底的黏着能力的大小,即薄膜与衬底在化学键合力或物理咬合力作用下的结合强度。 二、填空: 1、当环境中元素的分压降低到了其平衡蒸气压之下时,元素发生净蒸发。反之,元素发生净沉积。 2、在直流放电系统中,气体放电通常要经过汤生放电阶段、辉光放电阶段和弧光放电阶段三个放电过程,其中溅射法制备薄膜主要采用辉光放电阶段所产生的大量等离子体来形成溅射。 3、溅射仅是离子轰击物体表面时发生的物理过程之一,不同能量的离子与固体表面相互作用的过程不同,不仅可以实现对物质原子的溅射,还可以在固体表面形成沉积现象和离子注入现象。 4、溅射法所采有的放电气体多为Ar气,主要原因是惰性气体做为入射离子时,物质溅射产额高,从经济方面考虑,多使用Ar做为溅射气体。 5、直流溅射要求靶材具有良好的导电性,否则靶电流过小,靶电压过高,而射频溅射方法以交流电源提供高频电场,高频电场可经由其它阻抗形式进入沉积室,不再要求电极一定是导电体,使溅射过程摆脱对靶材导电性的要求。 6、磁控溅射存在的缺点。 1 微观永远大于宏观你永远大于人类今天永远大于永远■■■■■■■■纯属个人行为,仅供参考■■■■■■■■勿删■■■■■■■■■

薄膜材料复习

名词解释: 1、薄膜材料:一层厚度为几纳米(单层)到几微米的材料。 2、平均自由程:一个分子连续两次碰撞所经过的自由路程的平均值。 3、化学气相沉积:是指通过化学反应的方式,利用加热、等离子激励或光辐射等各种能源,在反应器内使气态或蒸汽状态的化学物质在气相或气固界面经化学反应形成固态沉积物的技术。 4、物理气相沉积:利用某种物理过程,如物质的热蒸发或在受到粒子轰击时,物质表面原子的溅射等现象,实现物质原子从源物质到薄膜的可控转移过程 5、临界核:比最小稳定核再小点,或者说在小一个原子,原子团就变成不稳定的。这种原子团为临界核 6、稳定核:要在基片上形成稳定的薄膜,在沉积过程中必须不断产生这样的小原子团,即一旦形成就不分解。 7、平均弛豫时间:一个吸附原子与基片到达热平衡所需要的平均时间 8、平均停留时间:一个吸附原子从吸附于表面开始到脱附表面为止的平均时间 9、化学键:是纯净物分子内或晶体内相邻两个或多个原子(或离子)间强烈的相互作用力的统称。使离子相结合或原子相结合的作用力通称为化学键。 10、外延生长:在基片上生长具有相同或相近的晶体学取向的薄膜单晶的过程。11、纳米材料:指在三维空间中至少有一维处于纳米尺寸(0.1-100 nm)或由它们作为基本单元构成的材料。

12、溅射阈值:将靶材原子溅射出来所需的入射离子最小能量值。 13、溅射率:一个正离子轰击到靶子后溅射下来的原子数,用s表示。 14、蒸发温度:规定物质在饱和蒸气压为10-2Torr时的温度为该物质的蒸发温度。 1、简述平均自由程在薄膜材料制备过程中的重要性, 2、请画出PVD的简易示意图,并说明其基本工作原理。 PVD的工作原理: 从源材料中发射出粒子,粒子运输到基片,粒子在基片上凝结、成核、长大、成膜。 图: 3.真空室发装置般包括哪三个部分?何者为最关键的部分,为什么?其主要的作用是什么? 答:(1)真空室(2)蒸发源和蒸发加热装置(3)放置基片及给基片加热装置关键部分:蒸发源作用: 是支撑或盛装待蒸发物,同时提供蒸热使蒸发物达到足够高的温度,以产生所需的蒸汽压。 4、在实际的溅射沉积中,辉光放电有哪四个明暗光区会出现?基片应该置于哪-区?为什么? 四个暗光区:阿斯顿暗区、阴极辉光区、克鲁克斯暗区、负辉光曲。基片置于:负辉光区 原因:在负辉光区正离子质量较大,向阴极运动速度较慢,形成高浓度的正离子,是该区域电位升高,且负辉光区电势趋于0。

玻璃深加工技术复习题答案汇总

平板玻璃深加工试题 一、填空题。 1、“玻璃结构”是指离子或原子在空间的几何配置以及它们在玻璃中形成的结构形成体。最有影响的近代玻璃结构的假说有:凝胶学说、无规则网络学说、晶子学说、五角形对称学说、高分子学说等,其中能够最好地解释玻璃性质的是晶子学说和无规则网络学说。 2、影响玻璃化学稳定性的主要因素有:化学组成的影响、热处理、 温度、压力。 3、玻璃的实际强度比理论强度小2-3个数量级。这是出于实际玻璃中存在有微裂纹(尤其是表面微裂纹)和不均匀区(分相等)所致。 4、玻璃中的气泡是可见的气体夹杂物,根据气泡产生的原因不同,可以分成一次气泡(配合料残留气泡)、二次气泡、外界空气气泡、 耐火材料气泡和金属铁引起的气泡等多种。 5、结石是出现在玻璃体中的固体状夹杂物,根据产生的原因,将结石分为以下几类:配合料结石(未熔化的颗粒)、耐火材料结石、 玻璃液的析晶结石、硫酸盐夹杂物(碱性类夹杂物)、“黑斑”与外来污染物。 6、玻璃体内存在的异类玻璃夹杂物称为玻璃态夹杂物(条纹和节瘤),条纹和节瘤根据其产生的原因不同,可以分成熔制不均匀、窑碹玻璃滴、耐火材料侵蚀和结石熔化四种。 7、钢化玻璃的种类有:物理钢化玻璃、化学钢化玻璃。 8、影响化学钢化法离子交换的工艺因素有:玻璃成分对离子交换的影响、溶盐成分对玻璃强度的影响、处理温度、处理时间。 9、影响玻璃抛光过程的主要因素有:磨料性质与粒度、 磨料悬浮液的浓度和给料量、研磨盘转速和压力、磨盘材料。 10、影响物理钢化的工艺因素有:淬火温度及冷却速度、 玻璃的化学组成、玻璃厚度。 11、影响化学沉积法镀膜玻璃质量的因素有:气体物质的浓度、安装镀膜反应器处的玻璃温度、反应副产物及未反应物的排出速度、 玻璃拉引速度。 12、对于下列情况,则必须使用离子交换法钢化玻璃:要求强度高、薄壁或形状复杂的玻璃、使用物理钢化时不易固定的小片、

《薄膜光学与技术》2012期末考试试题A-答案

《薄膜光学与技术》2012期末考试试题A-答案

2012-2013学年第1学期《薄膜光学与技术》期末考试试题(A 卷) 参考答案及评分标准 一、 填空题 (每空1分,共24分) 1、在折射率为3.5的基底表面镀单层减反射膜,对于4000nm 的光波,理论上能达到最佳减反射效果的薄膜折射率为: 1.8708 ,需要镀制的薄膜光学厚度为 1000 nm 。 2、若薄膜的折射率为n ,光线在薄膜内的折射角为θ,则s 、p 光的修正导纳分别为 ncos θ 、 n/cos θ 。 3、对于波长为λ的光来说,单层膜的光学厚度每增加 λ/4 ,薄膜的反射率就会出现一次极值变化。当薄膜的折射率小于基底折射率时,出现的第一个反射率极值是 极小 (极大、极小)值。 4、虚设层的形成条件是: 薄膜的光学厚度等于半波长的整数倍 。 5、周期性对称膜系(pqp)s 的等效折射率和 基本周期/pqp 的等效折射率完全相同,其等效位相厚度等于 基本周期的s 倍 。 6、折射率为n 1,光学厚度为λ0/4,基底的折射率为n s ,那么,该单层膜与基底的组合导纳为: s n Y 21 7、介质高反射膜的波数宽度仅与两种膜料的 折射率 有关,折射率 差值越大 ,高反射带越宽。 8、热偶真空规是通过测量温度达到间接测量 真空 的目的。 9、镀膜室内真空度高表明气体压强 小 ,真空度低则气体压强 大 。 10、薄膜几何厚度的监控通常用 石英晶振 膜厚仪来实现,光学厚度常常采用 光电 膜厚仪来监控。 11、采用PVD 技术制造薄膜器件时,薄膜折射率的误差主要来自三个方面: 膜层的聚集密度 、 膜层的微观组织物理结构 、 膜层的化学成分 。 12、改善膜层厚度均匀性的措施包括 旋转夹具 和 膜层厚度调节板 。 13、采用光电极值法监控膜厚,如果需要镀制光学厚度为900nm 的薄膜,在500-700nm 范围内,可以选取的监控波长为 600 和 514.3 nm 。

材料表面工程技术练习题(答案)

材料表面工程技术练习题(答案) 一、解释名词 1.喷丸强化技术:利用高速喷射的细小弹丸在室温下撞击受喷工件的表面,使表层材料在再结晶温度下产生弹、塑性变形,并呈现较大的残余压应力,从而提高工件表面强度、疲劳强度和抗压力腐蚀能力的表面工程技术。 2.干法热浸渗:先将经常规方法脱脂除锈清洗后的清洁工件或钢材进行溶剂处理,干燥后再将工件浸入欲渗金属溶液中,保温数分钟后抽出,水冷。 3.粘结底层:某些材料能够在很宽的条件下喷涂并粘结在清洁、光滑的表面上,而且这类涂层表面粗糙度适中,对随后喷涂的其它涂层有良好的粘结作用。 4.溅射镀膜:用高能粒子轰击固体表面,通过能量传递,使固体的原子或分子逸出表面并沉积在基片或工件表面形成薄膜的方法。(在真空室中,利用荷能粒子轰击材料表面,使其原子获得足够的能量而溅出进入气相,然后在工件表面沉积的过程。) 5.分子束外延:在超高真空环境中,将薄膜诸组分元素的分子束流,直接喷到温度适宜的衬底表面上,在合适的条件下就能沉积出所需要的外延层。 6.激光合金化技术:激光合金化就是利用激光束将一种或多种合金元素快速熔入基体表面,从而使基体表层具有特定的合金成分的技术。换言之,它是一种利用激光改变金属或合金表面化学成分的技术。 7.物理气相沉积:在真空条件下,利用各种物理方法,将镀料气化成原子、分子或使其粒子化为离子,直接沉积到基体表面上的方法。 8.真空蒸镀:在真空条件下,用加热蒸发的方法使镀料转化为气相,然后凝聚在基体表面的方法。

9.热喷涂工艺:热喷涂是用专用设备把某种固体材料熔化并使其雾化,加速喷射到机件表面,形成一特制薄层,以提高机件耐蚀、耐磨、耐高温等性能的一种工艺方法。 10.气相沉积:气相沉积技术也是一种在基体上形成一层功能膜的技术,它是利用气相之间的反应,在各种材料或制品表面沉积单层或多层薄膜,从而使材料或制品获得所需的各种优异性能。 气相沉积技术一般可分为两大类:物理气相沉积(pvd)和化学气相沉积(cvd)。 11.合金电镀:在一个镀槽中,同时沉积含有两种或两种以上金属元素镀层称为合金电镀。 12.腐蚀:材料与环境介质作用而引起的恶化变质或破坏。 13.电镀:在含有欲镀金属的盐类溶液中,在直流电的作用下,以被镀基体金属为阴极,以欲镀金属或其它惰性导体为阳极,通过电解作用,在基体表面上获得结合牢固的金属膜的表面工程技术。 14.堆焊:在零件表面熔敷上一层耐磨、耐蚀、耐热等具有特殊性能合金层的技术。 15.离子镀膜:真空蒸发镀膜:在真空室内,加热蒸发容器中待形成薄膜的原材料,使其原子或分子从表面气化逸出,形成蒸气流,入射到固体(基片/基板/衬底、工件)表面,凝结形成固态薄膜的方法。 16.化学转化膜:通过化学或电化学方法,使金属表面形成稳定的化合物膜层而不改变其金属外观(形状及几何尺寸)的一类技术。 17.表面工程技术:为满足特定的工程需求,使材料或零部件表面具有特殊的成分、结构和性能(或功能)的化学、物理方法与工艺。 18.表面能:严格意义上指材料表面的内能,包括原子的动能、原子间的势能以及原子中原子核和电子的动能和势能等。

相关主题
文本预览
相关文档 最新文档