当前位置:文档之家› 热导检测器TCD原理及操作注意事项

热导检测器TCD原理及操作注意事项

热导检测器TCD原理及操作注意事项
热导检测器TCD原理及操作注意事项

【资料】-热导检测器(TCD)原理及操作注意事项热导检

测器

热导检测器(TCD)是利用被测组分和载气的热导系数不同而响应的浓度型检测器,有的亦称热丝检测器(HWD)或热导计、卡他计(katherometer或Catherometer),它是知名的整体性能检测器,属物理常数检测方法。

一、工作原理

TCD由热导池及其检测电路组成。图3-2-1下部为TCD与进样器及色谱柱的连接示意图,上部为惠斯顿电桥检测电路图。载气流经参考池腔、进样器、色谱柱,从测量池腔排出。

R1、R2为固定电阻;R3、R4分别为测量臂和参考臂热丝。

当调节载气流速、桥电流及TCD温度至一定值后,TCD处于工作状态。从电源E流出之电流I 在A 点分成二路i1、i2 至 B 点汇合,而后回到电源。这时,两个热丝均处于被加热状态,维持一定的丝温Tf,池体处于一定的池温 Tw。一般要求Tf与Tw差应大于100℃以上,以保证热丝向池壁传导热量。当只有载气通过测量臂和参考臂时,由于二臂气体组成相同,从热丝向池壁传导的热量相等,故热丝温度保持恒定;热丝的阻值是温度的函数,温度不变,阻值亦不变;这时电桥处于平衡状态:R1?R3=R2?R4, 或写成R1/R4=R2/R3。M、N二点电位相等,电位差为零,无信号输出。当从2进样,经柱分离,从柱后流出之组分进入测量臂时,由于这时的气体是载气和组分的混合物,其热导系数不同于纯载气,从热丝向池壁传导的热量也就不同,从而引起两臂热丝温度不同,进而使两臂热丝阻值不同,电桥平衡破坏。M、N二点电位不等,即有电位差,输出信号。

二、热导池由热敏元件和池体组成

1 热敏元件

热敏元件是TCD的感应元件,其阻值随温度变化而改变,它们可以是热敏电阻或热丝。

(1)热敏电阻

....热敏电阻由锰、镍、钴等氧化物半导体制成直径约为~的小珠,密封在玻壳内。

热敏电阻有三个优点

..:①热敏电阻阻值大(5~50kΩ),温度系数亦大,故灵敏度相当高。可直接作μg/g级的痕量分析;②热敏电阻体积小,可作成直径的小球,这样池腔可小至50μL;③热敏电阻对载气流的波动不敏感,它耐腐蚀性和抗氧化。

热敏电阻也有三个缺点

..:①热敏电阻#$%的响应值随温度的增加而快速下降,因此,通常热敏电阻要在120℃以下使用。使用范围受到极大的限制;②与热丝相比,热敏电阻的温度系数大,表现为其响应值对于温度的变化十分敏感。例如在60℃时,池温改变1℃,热敏电阻和热丝的基线漂移分别为和,前者比后者大一倍多,因此,热敏电阻的稳定性差,特别是在程升操作时,尤为突出;③热敏电阻对还原条件十分敏感,故不能用氢气作载气。

目前,只有下二情况可用热敏电阻作热敏元件;一是低温痕量分析;二是需小池体积配毛细管柱。其他情况很少用热敏电阻,而多用热丝。而且,近年热敏电阻可作成小池体积的优势也在逐渐下降。

(2)热丝

..一个性能优异的TCD,对热丝的要求主要考虑四点:①电阻率高,以便可在相同长度内得到高阻值;②电阻温度系数大,以便通桥流加热后得到高阻值;③强度

好;④耐氧化或腐蚀。①、②是为了获得高灵敏度

....,同时丝体积小,可缩小池体积,

制作。③、④是为了获得高稳定性

....。表 3 -2-3 列出了商品TCD中常用的热丝性能。

钨丝电阻率低,相同长度之阻值只有铁铼丝的一半,灵敏度难以提高。另外,钨丝强度差,高温下易氧化,致使噪声增加、信!噪比下降。

铼-钨丝与钨丝相比,电阻率高,电阻温度系数略低。因S值大体上正比于α√ρ。3%、5%铼-钨丝和钨丝的α√ρ值分别为×103、×103、×103。可见铼钨丝之α√ρ值均高于钨丝。故前者有利于提高灵敏度。

另外,铼钨丝与钨丝相比,拉断力显着提高,且高温特性好,故性能稳定。但它仍存在高温下易氧化的问题。现在高性能TCD均用铼钨丝。如HP6890型,岛津GC-17A型的μ-TCD热丝。

铼钨丝有两种系列:纯钨加铼(W-Re)合金丝和掺杂钨加铼(Wal2-Re)合金丝。在电阻率、加工成型性能和高温强度等方面,后者均优于前者。因此,在相同结构设计和操作条件下,选用后者可获得较高电阻值。掺杂钨加铼合金丝中,其阻值和TCD灵敏度均随掺铼量的增加而提高,见表 3-2-4。

可以看出,简单地改变Re的配比,可使灵敏度提高一倍。

镀金铼钨丝是指先在支架上焊未镀金铼钨丝,经严格清洗后,再在电解槽中直接镀金的铼钨丝。阻值虽约下降11%,在相同桥流下灵敏度下降约30%,但其抗氧化性和耐腐蚀性显着提高,兼顾了灵敏度和稳定性。先镀金后焊至支架上的镀金铼钨丝,效果较差。

近年Valco公司推出了铁镍合金丝,据称可极大地提高灵敏度,且避免了铼-钨丝的氧化问题。

热丝的安装通常是将其固定在一支架上,放入池体的孔道中。支架可做成各种形式,

见图3-2-3。

2. 池体

池体是一个内部加工成池腔和孔道的金属体。池材料早期多用铜,因它的热传导性能好,但它防腐性能差。故近年已为不锈钢形式示意图所取代。通常将内部池腔和孔道的总体积称池体积。早期TCD的池体积多为 500-800μL,后减小至100-500μL,仍称通常TCD。它适用于填充柱。近年发展了,其池体积均在100μL以下,有的达μL,它适用于毛细管柱。

(1)通常

..TCD

...池.通常TCD池按载气对热丝的流动方式(见图3-2-4)可分直通式(a)、扩散式(b)和半扩散式(c),三种流型性能比较见表3-2-5。

(2)微型

...池.由于池体积已减小至几微升,甚至200nL,故在μ-TCD中,载气流动..TCD

方式已不像通常TCD那样明显,基本上可分成直通和准直通式两种,图3-2-5 列出了几种μ-TCD池结构。

可以看出,μ-TCD池腔体积仅数微升或数十微升,标准毛细管柱可直接与之相连,基本上不会造成峰扩张。当然在灵敏度许可的情况下,适当加尾吹气,对改善峰形还是十分有利的。

μ-TCD池腔体积虽小,但是为使其工作稳定,池块还应有适当的质量,以保证恒温效果,从而使基线稳定。

三、检测条件的选择

(一)、载气种类、纯度和流量

1. 载气种类

TCD通常用He或H2作载气,因为它们的热导系数远远大于其他化合物。用He或H2

作载气的TCD,其灵敏度高,且峰形正常,响应因子稳定,易于定量,线性范围宽。北美多用氦作载气,因它安全。其他地区因氦太昂贵,多用氢。氢载气的灵敏度最高,只是操作中要注意安全,另外,还要防止样品可能与氢反应。

N2或Ar作载气,因其灵敏度低,且易出W峰,响应因子受温度影响,线性范围窄,通常不用。但若分析He或H2时,则宜用N2或Ar作载气。避免用He作载气测H2或用H2作载气测He。用N2或Ar载气时需注意,因其热导系数小,热丝达到相同温度所需的桥流值,比He或H2载气要小得多。

毛细管柱接TCD时,最好都加尾吹气,即使是池体积为μL的μ-TCD,HP公司也建议加尾吹气。尾吹气的种类同载气。

降低TCD池的压力,不仅可避免加尾吹气。而且还可提高TCD的灵敏度。如140μL池体积TCD与50μm内径毛细管柱相连。在约500Pa(4mmHg)低压下操作时,其池体积相当于μL,灵敏度提高近200倍。

2. 载气纯度

载气纯度影响TCD的灵敏度。实验表明:在桥流 160-200mA范围内,用%的超纯氢气比用99%的普氢灵敏度高6%-13%。

载气纯度对峰形亦有影响,用TCD作高纯气中杂质检测时,载气纯度应比被测气体高十倍以上,否则将出倒峰。

3. 载气流速

TCD为浓度型检测器,对流速波动很敏感,TCD的峰面积响应值反比于载气流速。因此,在检测过程中,载气流速必须保持恒定。在柱分离许可的情况下,以低些为妥。流速波动可能导致基线噪声和漂移增大。对,为了有效地消除柱外峰形扩张,同时保持高灵敏度,通常载气加尾吹的总流速在10-20mL/min。参考池的气体流速通常与测量池相等,但在作程升时,可调整参考池之流速至基线波动和漂移最小为佳。

(二)、桥电流

桥流(I)与TCD的灵敏度(S),噪声(N)和检测限(D)的关系见图3-2-16A,B,C 曲线。

由图3-2-16可见,桥电流可显着提高TCD的灵敏度。一般认为S值与成正比。所以,用增大桥流来提高灵敏度是最通用的方法。但是桥流的提高又受到噪声和使用寿命的限制。若桥流偏大,噪声即由逐渐增加变成急剧增大,见曲线B。其结果是信噪比下降,检测极限变大,即曲线C又复上升。另外,桥流越高,热丝越易被氧化,使用寿命越短。过高的桥流甚至使热丝烧断。所以,在满足分析灵敏度要求的前提下,选取桥流以低为好,这时噪声小,热丝使用寿命长。在追求该TCD最大灵敏度的情况下,则选信/噪比最大时之桥流,这时检测极限最低,即曲线C之最低点。但长期在低桥流下工作,可能造成池污染,这时可用溶剂清洗TCD池。

一般商品TCD使用说明书中,均有不同检测器温度时推荐使用的桥流值,见图 3-2-17。通常参考此值设定桥流。

(三)、检测器温度

TCD的灵敏度与热丝和池体间的温差成正比。显然,增大其温差有二个途径:一是提高桥流,以提高热丝温度;二是降低检测器池体温度。这决定于被分析样品的沸点。检测器池体温度不能低于样品的沸点,以免在检测器内冷凝。因此,对沸点不很低的样品,采用此法提高灵敏度是有限的,而对气体样品,特别是永久性气体,可达较好的效果。

四、使用注意事项

为了充分发挥TCD的性能和避免出现异常,在使用中应注意以下几个方面。

1. 确保毛细管柱插入池深度合适

柱相对于检测器池的插入位置十分重要,它影响到最佳灵敏度和峰形。

毛细管柱端必须在样品池的入口处,若毛细管柱插入池体内,则灵敏度下降,峰形差,若毛细管柱离池入口处太远,峰变宽和拖尾,灵敏度亦低。

装柱应按气相色谱仪说明书的要求操作。如果说明书未明确装柱要求,即以得到最大的灵敏度和最好的峰形为最佳位置。

2. 避免热丝温度过高而烧断

任何热丝都有一最高承受温度,高于此温度则烧断。热丝温度的高低是由载气种类、桥电流和池体温度决定的。如载气热导率小,桥电流和池体温度高,则热丝温度就高,反之亦然。

一般商品色谱仪在出厂时,均附有此三者之间的关系曲线(见图3-2-17),按此调节桥电流,就能保证热丝温度不会太高。

图3-2-17中推荐的最大桥电流值,是指在无氧存在的情况,如果有氧接触,则会急速氧化而烧断。因此,在使用TCD时,务必先通载气,检查整个气路的气密性是否完好,调节TCD出口处的载气流速至一定值,并稳定10-15min后,才能通桥流。工作过程中,如需要更换色谱柱、进样隔垫或钢瓶,务必先关桥流,而后换之。虽然近年仪器已有过流保护装置,当载气中断或桥流过大时,可自动切断桥流,但操作时不要依赖此装置。操作者应主动避免出现异常为妥。

3.避免样品或固定液带来的异常

(1)样品损坏热丝酸类、卤代化合物、氧化性和还原性化合物,能使测量臂热丝的阻值改变,特别是注入量很大时,尤为严重。因此,最好尽量避免用TCD作这些样品的分析,如果一定要作,则在保证能正常定量的前提下,尽量使样品浓度低些,桥流小些。这样工作一段时间后,如果TCD不平衡或基线长期缓慢漂移,可使“测量”和“参考”二臂对换,如此交替使用,可缓解此异常。

(2)样品或固定液冷凝高沸点样品或固定液在检测器中或检测器出口连接管中冷凝,将使噪声和漂移变大,以至无法正常工作。在日常工作中注意以下三点,即可避免此异常发生:①切勿将色谱柱连至检测器上进行老化;②检测器温度一般较柱温高

20-30℃;③开机时,先将检测器恒温箱升至工作温度后,再升柱温。

4. 确保载气净化系统正常

载气中若含氧,将使热丝长期受到氧化,有损其寿命,故通常载气和尾吹气应加净化装置,以除去氧气。载气净化系统使用到一定时间,即因吸附饱和而失效,应立即更

换之,以确保正常净化。如未及时更换,此净化系统就成了温度诱导漂移的根源。当室温下降时净化器不再饱和,它又开始吸附杂质,于是基线向下漂移。当室温升高,净化器处于气固平衡状态,向气相中解吸杂质增多,于是基线向上漂移。

5. 注意程序升温时调整基线漂移最小

对双气路气相色谱仪,将参考和测量气路的流量调至相等,通常作恒温分析时,很正常;但在作程序升温时,可能基线漂移较大。这时,为使基线漂移最小,可作如下调整:①调参考和测量气路流量相等;②作程升至最高温度保持一段时间,同时记录基线漂移;③调参考气流量使记录笔返回到程升的起始位置,结束本次程升程序;④重复②、③操作,直至理想。

6. 注意TCD恒温箱的温度控制精度

表3-2-13列出了由于外界因素对TCD响应值的影响。

可以看出热丝温度对灵敏度影响最大,温度改变1℃灵敏度变化竟达12400μV。当然,除要求桥流稳定外,检测器温度的波动亦严重影响丝温。所以TCD灵敏度越高,要求检测器的温度控制精度亦越高。一般均应小于±℃。如果出现基线缓慢来回摆动,一周期约几分钟,即可能与温控精度不够有关。

FID检测器的原理

FID检测器的原理是:从色谱柱出口流出的混合试样蒸气中的有机物分子,在210 0℃氢火焰温度和空气中氧的参于下,1/50万的分子发生热氧化电离生成离子,这些离子在±300v电压的电场作用下定向流动,形成微弱电流,经高阻放大,产生响应信号。水和永久性气体分子以及对称结构的分子不易电离形成离子,所以灵敏度很低或不产生信号。简做参考,详见有关色谱书籍。

4、如何进行TCD和FID检测器的清洗

TCD检测器在使用过程中可能会被柱流出的沉积物或样品中夹带的其他物质所污染。TCD检测器一旦被污染,仪器的基线出现抖动、噪声增加。有必要对检测器进行清洗。HP的TCD检测器可以采用热清洗的方法,具体方法如下: 关闭检测器,把柱子从检测器

接头上拆下,把柱箱内检测器的接头用死堵堵死,将参考气的流量设置到20 ~ 30

ml/min, 设置检测器温度为400℃,热清洗4~8 h,降温后即可使用。

国产或日产TCD检测器污染可用以下方法。仪器停机后,将TCD的气路进口拆下,用50 ml 注射器依次将丙酮(或甲苯,可根据样品的化学性质选用不同的溶剂)无水乙醇、蒸馏

水从进气口反复注入5~10次, 用吸尔球从进气口处缓慢吹气, 吹出杂质和残余液体, 然后重新安装好进气接头, 开机后将柱温升到200 ℃, 检测器温度升到250 ℃, 通入比分析操作气流大1~2倍的载气, 直到基线稳定为止。

对于严重污染, 可将出气口用死堵堵死, 从进气口注满丙酮(或甲苯,可根据样品的化学性质选用不同的溶剂) ,保持8 h左右,排出废液,然后按上述方法处理。

FID检测器的清洗: F ID检测器在使用中稳定性好,对使用要求相对较低,使用普遍,但在长时间使用过程中,容易出现检测器喷嘴和收集极积炭等问题,或有机物在喷嘴或收

集极处沉积等情况。对FID积炭或有机物沉积等问题,可以先对检测器喷嘴和收集极用丙酮、甲苯、甲醇等有机溶剂进行清洗。当积炭较厚不能清洗干净的时候,可以对检测器积炭较厚的部分用细砂纸小心打磨。注意在打磨过程中不要对检测器造成损伤。初步打磨完成后,对污染部分进一步用软布进行擦拭,再用有机溶剂最后进行清洗,一般即可消除。

应用热导池检测器的注意事项

热导池检测器(TCD)是气相色谱仪中应用较为广泛的检测器,尤其是在气体分析中应用最多.由于不断的研究和发展,越来越多应用于ppm级气体成份的微量分析,在许多分析应用中取代了FID,然而,热导池检测器损坏的因素,避免不必要的损失.

热导池中的关键热导元件是用钨铼丝做的,钨铼丝直径一般只有15μ-30μ,材料又比较容易氧化,氧化或受污染后,阻值发生变化或断损,造成热导池测量电桥的对称性被破坏,致使仪器无法正常工作,引起热导元件损坏的因素较多,注意事项归纳如下:

1、热导池接并联双气路应用时,必须同时并联装上二根色谱柱,二路都要同时通载气,如果只装一根柱,而另一路不装柱不通载气,那么,一通电源就会将钨丝元件烧坏。

2、仪器停机后,外界空气往往会返进热导池和柱系统,因此必须在开机时要先通载气10分钟以上再通电,停机时间越长,那么重新开机时先通载气的时间也要长,否则系统中残留的空气中氧气会将钨铼丝元件氧化或烧断。

3、热导检测器使用的载气纯度必须四个9以上(%),最忌载气中含氧量高,载气不纯将会影响热导元件的使用寿命,也会降低检测灵敏度,所以载气必须脱氧净化。

4、在更换装色谱柱时,必须检漏,保证气密性,色谱柱连接处漏气将会造成热导元件损坏,色谱柱出口端必须填装好玻璃棉和不锈钢丝网,避免柱担体吹入TCD。

5、在多次进样分析后,应及时更换进样器上的硅橡胶垫,如果待到硅橡胶垫被多次注射针扎破漏气时再更换就迟了,因为硅橡胶垫一漏,载气漏出,空气漏进,热导元件就会烧坏。分析过程中更换硅橡胶垫时,必须将热导电源关断后,再迅速换垫,换好后必须通载气几分钟后才能再通热导池电源。

6、用平面六通阀做气体进样时,六通阀的位置必须停在二个极端位置,不能将阀旋停在中间位置,因为中间位置是六通阀将载气切断不通,这是很危险的,容易导致热导池中因不通载气而损坏。

7、色谱柱高温老化时,必须将热导池电源关断,热导池温控关断,并且将柱出口连接热导池进口的接头处断开,让高温老化的载气(N2)流入柱箱内,这样可避免因柱子老化而污染热导池及钨铼丝元件。

8、热导池桥电流的设定,必须比被分析试样组份的最高沸点高20-30℃,避免试样中高沸点组份冷凝在热导池中和污染钨铼丝元件。

9、热导池桥电流的设定,必须考虑所用载气的种类、工作温度和钨铼丝元件的冷阻,应明了这样的原则:①轻载气(H2、He)桥电流可大,重载气(N2、Air)桥电流必须小;②热导池工作温度高,桥电流应减小,工作温度低,桥电流可增加;③各生产厂家热导池钨铼丝元件阻值是不同的,因此,使用桥电流大小也不同,元件阻值大的,桥电流就应设定小些,具体桥电流设定可看说明书。

在开机前一定要先通气,然后开机、加热,等温度接近设定值时再加载电流,关机时反过来做。否则热导丝极易烧断,就像电灯泡里一旦漏气,灯丝必被烧断一个道理。电流不宜过大,电流过大就会产生噪音。

载气一定要高纯、载气流量要适中,否则影响测量精度

1、使用热导检测器(TCD),使用不同的载气,桥流和柱温也不同,不然很容易将热导检测器烧坏。

2、色谱热导检测器一旦送电加热,热导检测器(TCD)便不可拆换,热导池中的钨铼丝变得非常脆弱。我们的色谱多时近百台,都是一个TCD、一个FID,使用FID的岗位占2/3。TCD的寿命短,所以TCD和FID需求基本平衡。开始TCD拆换一个报废一个,没有启动能够正常拆换,以后我们整机调换。

气相色谱TCD检测器常见故障的检修方法及原因分析

1 前言

TCD检测器是应用最广泛的一种通用型检测器,但是TCD检测器不稳定的因素却相当多。由于影响基线不稳定的因素涉及到整个色谱仪的大部分部件,而且各个不稳定因素之间又相互作用。下面就TCD常出现故障的现象介绍几种维修方法及原因分析。

2 热导时基线出现有规律圆滑波浪形摆动,波动周期约为。

检修方法

1.流量增大时波动周期相应减少。

2.用手堵住气路出口,转子慢慢降到零。

3.对柱室与检测室温控精度进行检查,都无相应波动。

4.更换稳压阀后现象仍然如故。

5.将检测室温度由180度降到150度后,波动完全消失。

原因分析:检测室处有少量冷凝物挥发,致使基线产生波动"其过程是冷凝物挥发形成基流。而基流又与气路流量相关"当流量大时挥发多,基流大,反之基流小。通常流量是有缓慢波动的,约为1%以下。当气路清洁无污染时,此变化对基线响应影响甚微。而当气路不干净时却能引起较大的波动。当温度降低时,冷凝物挥发量下降"即使流量有波动对基线也无可观察影响。

3 在热导调零处基线不稳!噪声表现为无规则跳动

维修方法

1.衰减增大时,噪声峰峰值随之降低。

2.预热仪器2小时后基线正常。

原因分析:仪器长期不用,器壁有吸附。预热时释放出来,影响基线稳定性。待仪器充分预热后,基线达到正常。

4 不出峰与灵敏度太低

检修方法进行操作条件重复性检查。应核实操作条件是不是与原来已知的条件相接近。这里包括各气路的流量值!柱温及检测器温度;输出衰减档的位置;桥流的大小;电源是否接通。如果发现操作条件有异常,应努力使操作值与原给定值接近,并及时找出影响操作值复原的一些不利因素。原因分析此时应怀疑的因素只有两个,一是热丝位置连线有误,另一个就是热丝表面严重污染。对于前者应着重了解是否重接过热导池引线。对热导池连线来说,除了四个热丝要构成一个桥流之外,还必须注意热导桥路的对臂热丝元件应当处于同一气路当中。如果桥路接线是弄反了将会造成热导灵敏度很小甚至不出峰的现象。在此情况下往往还有双向峰产生。对于热丝表面严重污染来说,应首先尝试清洗热导池,无效时再考虑取下热丝清洗及彻底更换。

5 气化室温度失控

检修方法去掉汽化加热板,观察气化室是否继续处于最高温度之下。如仍然保持失控,则说明可控硅有机击穿,加热丝或引线与机壳相碰。这时切断仪器总电源,然后用万用表测试可控硅及炉丝绝缘的好坏。测试可控硅时,可把阳极引线断开,直接检查可控硅阳极与阴极间正反向电阻。正常时为几兆欧。如此值大小则说明可控硅已击穿,需更换。检查炉丝对外壳绝缘可在加热烙铁芯引线两端分别测试对机壳的电阻,如有一端阻值很小则说明加热电路中在碰壳处。

原因分析:1.可控硅阴阳两极间击穿;2.加热丝或加热引线与机壳相碰。

应用热导池检测器的注意事项有哪些

热导池检测器(TCD)是气相色谱仪中应用较为广泛的检测器,尤其是在气体分析中应用最多.由于不断的研究和发展,科创色谱仪器中的热导池检测器灵敏度最高,已越来越多应用于ppm级气体成份的微量分析,在许多分析应用中取代了FID,然而,热导池检测器损坏的因素,避免不必要的损失.

热导池中的关键热导元件是用钨铼丝做的,钨铼丝直径一般只有15μ-30μ,材料又比较容易氧化,氧化或受污染后,阻值发生变化或断损,造成热导池测量电桥的对称性被破坏,致使仪器无法正常工作,引起热导元件损坏的因素较多,注意事项归纳如下:

1、热导池接并联双气路应用时,必须同时并联装上二根色谱柱,二路都要同时通载气,如果只装一根柱,而另一路不装柱不通载气,那么,一通电源就会将钨丝元件烧坏。

2、在应用科创微型热导池做毛细管色谱分析时,可一路装毛细柱加尾吹,另一路必须也装上一根填充柱或空柱,同时通入载气。大多数人习惯FID毛细柱系统,往往会忽略这一点犯错误。

3、仪器停机后,外界空气往往会返进热导池和柱系统,因此必须在开机时要先通载气10分钟以上再通电,停机时间越长,那么重新开机时先通载气的时间也要长,否则系统中残留的空气中氧气会将钨铼丝元件氧化或烧断。

4、热导检测器使用的载气纯度必须四个9以上(%),最忌载气中含氧量高,载气不纯将会影响热导元件的使用寿命,也会降低检测灵敏度,所以载气必须脱氧净化。

5、在更换装色谱柱时,必须检漏,保证气密性,色谱柱连接处漏气将会造成热导元件损坏,色谱柱出口端必须填装好玻璃棉和不锈钢丝网,避免柱担体吹入TCD。

6、在多次进样分析后,应及时更换进样器上的硅橡胶垫,如果待到硅橡胶垫被多次注射针扎破漏气时再更换就迟了,因为硅橡胶垫一漏,载气漏出,空气漏进,热导元件就会烧坏。分析过程中更换硅橡胶垫时,必须将热导电源关断后,再迅速换垫,换好后必须通载气几分钟后才能再通热导池电源。

7、用平面六通阀做气体进样时,六通阀的位置必须停在二个极端位置,不能将阀旋停在中间位置,因为中间位置是六通阀将载气切断不通,这是很危险的,容易导致热导池中因不通载气而损坏。

8、色谱柱高温老化时,必须将热导池电源关断,热导池温控关断,并且将柱出口连接热导池进口的接头处断开,让高温老化的载气(N2)流入柱箱内,这样可避免因柱子老化而污染热导池及钨铼丝元件。

9、热导池桥电流的设定,必须比被分析试样组份的最高沸点高20-30℃,避免试样中高沸点组份冷凝在热导池中和污染钨铼丝元件。

10、热导池桥电流的设定,必须考虑所用载气的种类、工作温度和钨铼丝元件的冷阻,应明了这样的原则:①轻载气(H2、He)桥电流可大,重载气(N2、Ar)桥电流必须小;②热导池工作温度高,桥电流应减小,工作温度低,桥电流可增加;③各生产厂家热导池钨铼丝元件阻值是不同的,因此,使用桥电流大小也不同,元件阻值大的,桥电流就应设定小些,具体桥电流设定可看说明书。

有几个问题弄不明白,请高手解答:

1、关于灵敏度,是不是分析任何组分都是氢气做载气灵敏度最高,灵敏度的定义好象没有指定分析组分吧,如果分析氦气,好象氢气做载气灵敏度就不如氮气高吧。

2、现在热导池的热丝都是铼钨的吗?

1、关于灵敏度,是不是分析任何组分都是氢气做载气灵敏度最高,灵敏度的定

义好象没有指定分析组分吧,如果分析氦气,好象氢气做载气灵敏度就不如氮气高吧。

2、热导池实际上是测量“参考池”中的载气和“测量池”中二元系混合气热导

系数之差。氦气和氢气的热导系数大,用它们来做载气,载气和组分的热导系数差别大,则电桥输出信号也大,从而提高了热导池检测器的灵敏度。

3、由于氦气和氢气的热导系数相差不大,所以分析氢气或氦气时用氮气或氩气

作载气

我们就是用HP5890GC仪,它的热导检测器的检测限标称为,但实际运用中很难达到,几ppm的CO、CO2,十几ppm的水都测不出来。

平时使用TCD要多注意维护,不然比FID更容易损坏:

1、没载气时不要打开TCD,换载气、换柱子、换进样垫前要将TCD关闭,换载气、柱子、进样垫后不要马上打开TCD。

2、TCD没运行时最好随手关闭,养成习惯。TCD长期不用时最好拆下来存放,若装在色谱仪上又没接色谱柱,检测器连接色谱柱一端要用堵头堵上。

3、当TCD被来自色谱柱的流失物或脏的样品所形成的沉淀物所污染时,可进行热清洗(烘烤)。

热清洗时要做到以下几点:

(1)、关闭检测器。

(2)、从检测器柱头拆下色谱柱,并用堵头把检测器柱接头堵上。

(3)、设定参比气体流量为20-30ml/min,设定检测器温度为400摄氏度。(4)、热清洗可持续几小时,然后将系统冷却至正常的操作条件。

4、我们单位曾经发生过误开停用的TCD而烧坏的情况,因此停用、没连接色谱柱的TCD最好断了电源(HP5890的GC仪将热丝引线和温度传感器引线拔掉就行了)。

5、HP5890、HP6890要求TCD的工作温度不低于150摄氏度。

热导检测器工作原理、结构组成及检测条件

热导检测器 热导检测器(TCD)是利用被测组分和载气的热导系数不同而响应的浓度型检测器,有的亦称热丝检测器(HWD)或热导计、卡他计(katherometer或Catherometer),它是知名的整体性能检测器,属物理常数检测方法。 一、工作原理 TCD由热导池及其检测电路组成。图3-2-1下部为TCD与进样器及色谱柱的连接示意图,上部为惠斯顿电桥检测电路图。载气流经参考池腔、进样器、色谱柱,从测量池腔排出。 R1、R2为固定电阻;R3、R4分别为测量臂和参考臂热丝。 当调节载气流速、桥电流及TCD温度至一定值后,TCD处于工作状态。从电源E流出之电流I 在A 点分成二路i1、i2 至 B 点汇合,而后回到电源。这时,两个热丝均处于被加热状态,维持一定的丝温Tf,池体处于一定的池温 Tw。一般要求Tf与Tw差应大于100℃以上,以保证热丝向池壁传导热量。当只有载气通过测量臂和参考臂时,由于二臂气体组成相同,从热丝向池壁传导的热量相等,故热丝温度保持恒定;热丝的阻值是温度的函数,温度不变,阻值亦不变;这时电桥处于平衡状态:R1R3=R2R4, 或写成R1/R4=R2/R3。M、N二点电位相等,电位差为零,无信号输出。当从2进样,经柱分离,从柱后流出之组分进入测量臂时,由于这时的气体是载气和组分的混合物,其热导系数不同于纯载气,从热丝向池壁传导的热量也就不同,从而引起两臂热丝温度不同,进而使两臂热丝阻值不同,电桥平衡破坏。M、N 二点电位不等,即有电位差,输出信号。 二、热导池由热敏元件和池体组成 1 热敏元件 热敏元件是TCD的感应元件,其阻值随温度变化而改变,它们可以是热敏电阻或热丝。(1)热敏电阻热敏电阻由锰、镍、钴等氧化物半导体制成直径约为~1.0mm的小珠,密封在玻壳内。 热敏电阻有三个优点:①热敏电阻阻值大(5~50kΩ),温度系数亦大,故灵敏度相当高。可直接作μg/g级的痕量分析;②热敏电阻体积小,可作成0.25mm直径的小球,这样池腔可小至50μL;③热敏电阻对载气流的波动不敏感,它耐腐蚀性和抗氧化。 热敏电阻也有三个缺点:①热敏电阻#$%的响应值随温度的增加而快速下降,因此,通常热敏电阻要在120℃以下使用。使用范围受到极大的限制;②与热丝相比,热敏电阻的温度系数大,表现为其响应值对于温度的变化十分敏感。例如在60℃时,池温改变1℃,热敏电阻和热丝的基线漂移分别为和,前者比后者大一倍多,因此,热敏电阻的稳定性差,特别是在程升操作时,尤为突出;③热敏电阻对还原条件十分敏感,故不能用氢气作载气。 目前,只有下二情况可用热敏电阻作热敏元件;一是低温痕量分析;二是需小池体积配毛细管柱。其他情况很少用热敏电阻,而多用热丝。而且,近年热敏电阻可作成小池体积的优势也在逐渐下降。 (2)热丝一个性能优异的TCD,对热丝的要求主要考虑四点:①电阻率高,以便可在相同长度内得到高阻值;②电阻温度系数大,以便通桥流加热后得到高阻值;③强度好;④耐氧化或腐蚀。①、②是为了获得高灵敏度,同时丝体积小,可缩小池体积,制作。③、④是为了获得高稳定性。表 3 -2-3 列出了商品TCD中常用的热丝性能。 钨丝电阻率低,相同长度之阻值只有铁铼丝的一半,灵敏度难以提高。另外,钨丝强度差,高温下易氧化,致使噪声增加、信!噪比下降。

解析各种检测器原理、用途和作用

气相色谱仪-检测系统 1.热导检测器热导检测器 ( Thermal coductivity detector,简称TCD ),是应用比较多的检测器,不论对有机物还是无机气体都有响应。热导检测器由热导池池体和热敏元件组成。热敏元件是两根电阻值完全相同的金属丝(钨丝或白金丝),作为两个臂接入惠斯顿电桥中,由恒定的电流加热。如果 热导池只有载气通过,载气从两个热敏元件带走的热量相同,两个热敏元件的温度变化是相同的,其电阻值变化也相同,电桥处于平衡状态。如果样品混在载气中通过测量池,由于样号气和载气协热导系数不同,两边带走的热量不相等,热敏元件的温度和阻值也就不同,从而使得电桥失去平衡,记录器上就有信号产生。这种检测器是一种通用型检测器。被测物质与载气的热导系数相差愈大,灵敏度也就愈高。此外,载气流量和热丝温度对灵敏度也有较大的影响。热丝工作电流增加—倍可使灵敏度提高3—7倍,但是热丝电流过高会造成基线不稳和缩短热丝的寿命。热导检测器结构简单、稳定性好,对有机物和无机气体都能进行分析,其缺点是灵敏度低。 2.气相色谱仪氢火焰离子化检测器 氢火焰离子化检测器(Flame Ionization Detector,FID) 简称氢焰检测器。它的主要部件是一个用不锈钢制成的离子室。离子室由收集极、极化极(发射极)、气体入口 及火焰喷嘴组成。在离子室下部,氢气与载气混合后通过喷嘴,再与空气混合点火燃烧,形成氢火焰。无样品时两极间离子很少,当有机物进入火焰时,发生离子化反应,生成许多离子。在火焰上方收集极和极化极所形成的静电场作用下,离子流向收集极形成离子流。离子流经放大、记录即得色谱峰。有机物在氢火焰中离子化反应的过程如下:当氢和空气燃烧时,进入火焰的有机物发生高温裂解和氧化反应生成自由基,自由基又与氧作用产生离子。在外加电压作用下,这些离子形成离子流,经放大后被记录下来。所产生的离子数与单位时间内进入火焰的碳原子质量有关,因此,氢焰检测器是一种质量型检测器。这种检测器对绝大多数有机物都有响应,其灵敏度比热导检测器要高几个数量级,易进行痕量

各类气体传感器介绍

各类气体传感器介绍 一、引言 广义的说,传感器(Transducer或Sensor)是一种能把物理量或化学量转变成便于利用的电信号的器件或装置,在有些国家或科学领域,也将传感器称为变换器、检测器或探测器等。将物理量或化学量得变化转变成电信号是传感器的最终目的。 国际电工委员会(IEC:International Electrotechnical Committee)的定义为:“传感器是测量系统中的一种前置部件,它将输入变量转换成可供测量的信号”。国家标准GB 7765—87给传感器的定义是:能感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置,通常由敏感元件和转换元件组成。此处的可用输出信号,一般即指易于处理和传输的电信号。从这个角度也可以说传感器即为将非电信号转换成电信号的器件。当然,可以预料,将来的“可用信号201D或许是光信息或者是更先进、更实用的其他信息。 本文主要介绍气体传感器的工作原理及应用场合,并对气体传感器的发展方向进行一些介绍。 二、工作原理 传感器之所以具有能量信息转换的机能,在于它的工作机理是基于各种物理的、化学的和生物的效应,并受相应的定律和法则所支配。了解这些定律和法则,有助于我们对传感器本质的理解和对新效应传感器的开发。传感器工作物理基础的基本定律和法则有以下四种类型: (1)守恒定律。包括能量、动量、电荷量等守恒定律。这些定律,是我们探索、研制新型传感器时,或在分析、综合现有传感器时,都必须严格遵守的基本法则。 (2)场的定律。包括运动长的运动定律,电磁场的感应定律等,气相互作用与物体在空间的位置及分布状态有关。一半可由物理方程给出,这些方程可做诶许多传感器工作的数学模型。例如:利用静电场定律研制的电容式传感器;利用电磁感性定律研制的自感、互感、电涡流式传感器;利用运动定律与电池感应定律研制的磁电式传感器等。利用场的定律构成的传感器,其形状、尺寸(结构)决定了传感器的量程、灵敏度等主要性能,故此类传感器可统称为“结构型传感器”。 (3)物质定律。它是表示各种物质本身内在性质的定律(如胡克定律、欧姆定律等),通常以这种物质所固有的物理常数加以描述。因此,这些常数的大小决定着传感器的主要性能。如:利用半导体物质法则—压阻、热阻、磁阻、光阻、湿阻等效应,可分别做成压敏、热敏、光敏、湿敏等传感器件;利用压电晶体物质法则—压电效应,可制成压电、声表面波、超声波传感器等等。这种基于物质定律的传感器,可统称为“物性型传感器”。这是当代传感器技术领域中具有广阔发展前景的传感器。 (4)统计法则。它是把围观系统与宏观系统联系起来的物理法则。这些法则,常常与传感器的工作状态有关,它是分析某些传感器的理论基础。这方面的研究尚待进一步深入。 气体传感器(Gas Sensor)是以气敏器件为核心组成的能把气体成分转换成电信号的装置。它具有响应快,定量分析方便,成本低廉,实用性广等优点,应用越来越广。 气体种类繁多,性质各异,因此,气体传感器种类也很多。按待检气体性质可分为:用于检测易燃易爆气体的传感器,如氢气、一氧化碳、瓦斯、汽油挥发气等;用于检测有毒气体的传感器,如氯气、硫化氢、砷烷等;用于检测工业过程气体的传感器,如炼钢炉中的氧气、热处理炉中的二氧化碳;用于检测大气污染的传感器,如形成酸雨的NO x、CH4、O3,家庭污染如甲醛等。按气体传感器的结构还可分为干式和湿式两类;按传感器的输出可分为电阻式和费电阻式两类;按检测院里可分为电化学法、电气法、光学法、化学法几类,如图:

各种仪器分析的基本原理

紫外吸收光谱UV 分析原理:吸收紫外光能量,引起分子中电子能级的跃迁 谱图的表示方法:相对吸收光能量随吸收光波长的变化 提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息 荧光光谱法FS 分析原理:被电磁辐射激发后,从最低单线激发态回到单线基态,发射荧光 谱图的表示方法:发射的荧光能量随光波长的变化 提供的信息:荧光效率和寿命,提供分子中不同电子结构的信息 红外吸收光谱法IR 分析原理:吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁 谱图的表示方法:相对透射光能量随透射光频率变化 提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率 拉曼光谱法Ram 分析原理:吸收光能后,引起具有极化率变化的分子振动,产生拉曼散射 谱图的表示方法:散射光能量随拉曼位移的变化 提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率 核磁共振波谱法NMR 分析原理:在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁 谱图的表示方法:吸收光能量随化学位移的变化 提供的信息:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息 电子顺磁共振波谱法ESR 分析原理:在外磁场中,分子中未成对电子吸收射频能量,产生电子自旋能级跃迁 谱图的表示方法:吸收光能量或微分能量随磁场强度变化 提供的信息:谱线位置、强度、裂分数目和超精细分裂常数,提供未成对电子密度、分子键特性及几何构型信息质谱分析法MS 分析原理:分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e分离 谱图的表示方法:以棒图形式表示离子的相对峰度随m/e的变化 提供的信息:分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息

半导体气体传感器的结构及原理

一、在博物馆文物、档案管理方面的运用 这是温湿度传感器应用的另一个领域。档案的纸张在温湿度适宜的条件可以多存放一些时间,而一旦温湿度条件遭到破坏纸张将要变脆,重要资料也将随之荡然无存,对档案馆进行温湿度记录是必要的,可以预防恶性事故的发生。使用温湿度传感器将使温湿度记录的工作得以简化,也将节约文物保管的成本,使这一工作得以科学化,不受到过多的人为因素的干扰。 二、在疫苗冷链中的运用 气体传感器主要针对于行业中的气体进行检测,在工业、电子、电力、化工、治金等行业中都有一定的应用。气体传感器的种类是比较多的,其中常用的主要有半导体式、接触燃烧方式、化学反应式、光干涉式、热传导式、红外线吸收散式等。而这当中以半导体气体传感器应用更为广泛。 半导体气体传感器由气敏部分、加热丝以及防爆网等构成,它是在气敏部分的sno2、fe2o2、zno2等金属氧化物中添加pt、pd等敏化剂的传感器。传感器的选择性由添加敏化剂的多少进行控制,例如,对于zno2系列传感器,若添加pt,则传感器对丙烷与异丁烷有较高的灵敏度;若添加pd,则对co与h2比较敏感。 气体传感器以陶瓷管为框架,外覆一层敏感膜的材料,利用膜两端的镀金引脚进行测量。敏感膜的材料最常用的有金属氧化物、高分子聚合物材料和胶体敏感膜等。它的两个关键部分是加热电阻和气体敏感膜。金电极连接气敏材料的两端,使其等效为一个阻值随外部待测气体浓度变化的电阻。由于金属氧化物有很高的热稳定性,而且这种传感器仅在半导体表面层产生可逆氧化还原反应,半导体内部化学结构不变,因此,长期使用也可获得较高的稳定性。 原理简介如下:金属氧化物一旦加热,空气中的氧就会从金属氧化物半导体结晶粒子的施主能级中夺走电子,而在结晶表面上吸附负电子,使表面电位增高,从而阻碍导电电子的移动,所以,气体传感器在空气中为恒定的电阻值。这时还原性气体与半导体表面吸附的氧发生氧化反应,由于气体分子的离吸作用使其表面电位高低发生变化,因此,传感器的电阻值要发生变化。对于还原性气体,电阻值减小;对于氧化性气体,则电阻值增大。这样,根据电阻值的变化就能检测气体的浓度。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解相关传感器产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.doczj.com/doc/3412879083.html,。

几种气体传感器的研究进展

一、前言 1964 年,由Wickens 和Hatman 利用气体在电极上的氧化还原反应研制出了第一个气敏传感器,1982年英国Warwick 大学的Persaud 等提出了利用气敏传感器模拟动物嗅觉系统的结构,自此后气体传感器飞速发展,应用于各种场合,比如气体泄漏检测,环境检测等。现在各国研究主要针对的是有毒性气体和可燃烧性气体,研究的主要方向是如何提高传感器的敏感度和工作性能、恶劣环境中的工作时间以及降低成本和智能化等。 下面简单介绍各种常用的气体传感器的工作原理和一些常用气体传感器的最新的研究进展。 二、气体传感器的分类和工作原理 气体传感器主要有半导体传感器(电阻型和非电阻型)、绝缘体传感器(接触燃烧式和电容式)、电化学式(恒电位电解式、伽伐尼电池式),还有红外吸收型、石英振荡型、光纤型、热传导型、声表面波型、气体色谱法等。 电阻式半导体气敏元件是根据半导体接触到气体时其阻值的改变来检测气体的浓度;非电阻式半导体气敏元件则是根据气体的吸附和反应使其某些特性发生变化对气体进行直接或间 接的检测。 接触燃烧式气体传感器是基于强催化剂使气体在其表面燃烧时产生热量,使传感器温度上升,这种温度变化可使贵金属电极电导随之变化的原理而设计的。另外与半导体传感器不同的是,它几乎不受周围环境湿度的影响。电容式气体传感器则是根据敏感材料吸附气体后其介电常数发生改变导致电容变化的原理而设计。 电化学式气体传感器,主要利用两个电极之间的化学电位差,一个在气体中测量气体浓度,另一个是固定的参比电极。电化学式传感器采用恒电位电解方式和伽伐尼电池方式工作。有液体电解质和固体电解质,而液体电解质又分为电位型和电流型。电位型是利用电极电势和气体浓度之间的关系进行测量;电流型采用极限电流原理,利用气体通过薄层透气膜或毛细孔扩散作为限流措施,获得稳定的传质条件,产生正比于气体浓度或分压的极限扩散电流。 红外吸收型传感器,当红外光通过待测气体时,这些气体分子对特定波长的红外光有吸收,其吸收关系服从朗伯—比尔(Lambert-Beer)吸收定律,通过光强的变化测出气体的浓度:

25热导检测器TCD的使用

常州工程职业技术学院 《仪器分析》教案 气相色谱法 基本技能训练 TCD 的使用及灵敏度等参数的测定 复习 n 气路系统的要求 n 气路系统的连接(学生操作) n 气路系统的检漏(学生操作) n 载气流量的测定 课程引入 n 样品在气化室气化后,随着载气的流动进入色谱柱,经色谱柱分离后,以单一 组成流出色谱柱。同学们,你们用肉眼能看出组分什么时候流出色谱柱的吗? 你们用肉眼能看出组分流出了多少吗? n 学生思考并回答:“不能” 。 n 怎么办? n 学生思考…… n 提示:将经色谱柱分离后顺序流出的化学组分的信息转变为便于记录的电信 号。 气相色谱检测器(教师讲解) n 气相色谱检测器的作用是将经色谱柱分离后顺序流出的化学组分的信息转变 为便于记录的电信号,然后对被分离物质的组成和含量进行鉴定和测量。 n 检测器是色谱仪的“眼睛”。 检测器的种类(教师讲解) n 微分型检测器,这类检测器显示的信号是组分随时间的瞬时量的变化。 n 微分型检测器按原理的不同又分为浓度敏感型检测器和质量敏感型检测器。

n 浓度敏感型检测器的响应值取决于载气中组分的浓度。常见的浓度型检测器有 热导检测器及电子捕获检测器等。 n 质量敏感型检测器输出信号的大小取决于组分在单位时间内进入检测器的量, 而与浓度关系不大。常见的质量型检测器有氢火焰离子化检测器和火焰光度检 测器等。 TCD 的结构(教师讲解) n.TCD . 检测器图片。 ...... . . n TCD检测器图片热导池由池体和热敏元件构成,有双臂热导池和四臂热导池两 种。 n 双臂热导池池体用不锈钢或铜制成,具有两个大小、形状完全对称的孔道,每 一孔道装有一根热敏铼钨丝(其电阻值随本身温度变化而变化),其形状、电 阻值在相同的温度下,基本相同。 n 四臂热导池,具有四根相同的铼钨丝,灵敏度比双臂热导池约高一倍。 n 目前大多采用四臂热导池。 n 热导池气路形式有三种,即直通式、扩散式和半扩散式。 n 热导池体中,只通纯载气的孔道称为参比池,通载气与药品的孔道为测量池。 n 双臂热导池是一个参比池,另一个是测量池;四臂热导池中,有两臂为参比池, 另两臂为测量池。 TCD 工作原理(教师讲解) n.TCD ...... . 工作原理动画 . . n 热导池检测器中,热敏元件电阻值的变化可以通过惠斯通电桥来测量。 n 热导池检测器的工作原理是基于不同气体具有不同的热导系数。 n 热丝具有电阻随温度变化的特性。当有一恒定直流电通过热导池热丝时(此时 池内已预先通有一定流速的纯载气),热丝被加热。由于参比池和测量池通入 的都是纯载气,同一种载气有相同的热导系数,因此两臂的电阻值相同,电桥 平衡,无信号输出,记录系统记录的是一条直线。 n 当有试样进入检测器时,纯载气流经参比池,载气携带着组分气流经测量池, 由于载气和待测组分二元混合气体的热导系数和纯载气的热导系数不同,测量

热导式气体传感器的性能特点

1 稳定性 稳定性是指传感器在整个工作时间内基本响应的稳定性,取决于零点漂移和区间漂移。 零点漂移是指在没有目标气体时,整个工作时间内传感器输出响应的变化。 区间漂移是指传感器连续置于目标气体中的输出响应变化,表现为传感器输出信号在工作时间内的降低。 理想情况下,一个热导式气体传感器在连续工作条件下,每年零点漂移小于10% 2 灵敏度 灵敏度是指热导式气体传感器输出变化量与被测输入变化量之比,主要依赖于传感器结构所使用的技术。大多数气体传感器的设计原理都采用生物化学、电化学、物理和光学。首先要考虑的是选择一种敏感技术,它对目标气体的阀限制(tlv-thresh-old limit value)或最低爆炸限(lel-lower explosive limit)的百分比的检测要有足够的灵敏性 3 选择性 选择性也被称为交叉灵敏度。可以通过测量由某一种浓度的干扰气体所产生的传感器响应来确定这个响应等价于一定浓度的目标气体所产生的传感器响应。这种特性在追踪多种气体的应用中是非常重要的,因为交叉灵敏度会降低测量的重复性和可靠性,理想传感器应具有高灵敏度和高选择性 4 抗腐蚀性 抗腐蚀性是指热导式气体传感器暴露于高体积分数目标气体中的能力在气体大量泄漏时,探头应能够承受期望气体体积分数10~20倍,在返回正常工作条件下,传感器漂移和零点校正值应尽可能小。 气体传感器的基本特征,即灵敏度、选择性以及稳定性等,主要通过材料的选择来确定选择适当的材料和开发新材料,使气体传感器的敏感特性达到最优。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。

常见的化学成分分析方法及其原理98394

常见的化学成分分析方法 一、化学分析方法 化学分析从大类分是指经典的重量分析和容量分析。重量分析是指根据试样经过化学实验反应后生成的产物的质量来计算式样的化学组成,多数是指质量法。容量法是指根据试样在反应中所需要消耗的标准试液的体积。容量法即可以测定式样的主要成分,也可以测定试样的次要成分。 重量分析 指采用添加化学试剂是待测物质转变为相应的沉淀物,并通过测定沉淀物的质量来确定待测物的含量。 容量分析 滴定分析主要分为酸碱滴定分析、络合滴定分析、氧化还原滴定分析、沉淀滴定分析。 酸碱滴定分析是指以酸碱中和反应为原理,利用酸性标定物来滴定碱性物质或利用碱性标定物来滴定酸性待测物,最后以酸碱指示剂(如酚酞等)的变化来确定滴定的终点,通过加入的标定物的多少来确定待测物质的含量。 络合滴定分析是指以络合反应(形成配合物)反应为基础的滴定分析方法。如EDTA与金属离子发生显色反应来确定金属离子的含量等。络合反应广泛地应用于分析化学的各种分离与测定中,如许多显色剂,萃取剂,沉淀剂,掩蔽剂等都是络合剂,因此,有关络合反应的理论和实践知识,是分析化学的重要内容之一。 氧化还原滴定分析:是以溶液中氧化剂和还原剂之间的电子转移为基础的一种滴定分析方法。氧化还原滴定法应用非常广泛,它不仅可用于无机分析,而且可以广泛用于有机分析,许多具有氧化性或还原性的有机化合物可以用氧化还原滴定法来加以测定。通常借助指示剂来判断。有些滴定剂溶液或被滴定物质本身有足够深的颜色,如果反应后褪色,则其本身就可起指示剂的作用,例如高锰酸钾。而可溶性淀粉与痕量碘能产生深蓝色,当碘被还原成碘离子时,深蓝色消失,因此在碘量法中,通常用淀粉溶液作指示剂。 沉淀滴定分析:是以沉淀反应为基础的一种滴定分析方法,又称银量法(以

简述热导检测器方法1234

简述热导检测器技术 陈洋洋 (安徽建筑工业学院土木工程学院安全工程(1)班09201040116) 摘要:热导检测器是一种安全检测方法,它是气相色谱法最常用的一种检测器,它具有结构简单,性能稳定,灵敏度适宜,线性范围宽,对各种能作色谱的物质都有响应。本文将介绍一下它的工作原理、使用条件、结构组成、使用范围和一些注意事项。 关键词:热导;检测;注意事项 随着科学检测技术的发展,出现了很多更灵敏、更高效的检测器产品。热导检测器作为一种常见的检测器,尽管在许多方面它已被更灵敏更专属性的各种检测器所取代,但是由于它具有结构简单,性能稳定,灵敏度适宜,线性范围宽,对各种能作色谱的物质都有响应,最适合作微量分析(ppm级)。在分析测试在中,热导检测器不仅用于分析有机污染物,而且用于分析一些用其他检测器无法检测的无机气体,如氢、氧、氮、一氧化碳、二氧化碳等。 1.工作原理 热导检测器又称热导池或热丝检热器,是气相色谱法最常用的一种检测器。基于不同组分与载气有不同的热导率的原理而工作的热传导检测器。敏感元件为热丝,如钨丝、铂丝、铼丝,并由热丝组成电桥。在通过恒定电流以后,钨丝温度升高,其热量经四周的载气分子传递至池壁。当被测组分与载气一起进入热导池时,由于混合气的热导率与纯载气不同(通常是低于载气的热导率),钨丝传向池壁的热量也发生变化,致使钨丝温度发生改变,其电阻也随之改变,进而使电桥输出端产生不平衡电位而作为信号输出。热导检测器是气象色谱法中最早出现和应用最广的检测器。 热导检测器的工作原理是基于不同气体具有不同的热导率。热丝具有电阻随温度变化的特性。当有一恒定直流电通过热导池时,热丝被加热。由于载气的热传导作用使热丝的一部分热量被载气带走,一部分传给池体。当热丝产生的热量与散失热量达到平衡时,热丝温度就稳定在一定数值。此时,热丝阻值也稳定在一定数值。由于参比池和测量池通入的都是纯载气,同一种载气有相同的热导率,因此两臂的电阻值相同,电桥平衡,无信号输出,记录系统记录的是一条直线。当有试样进入检测器时,纯载气流经参比池,载气携带着组分气流经测量池,由于载气和待测量组分二元混合气体的热导率和纯载气的热导率不同,测量池中散热情况因而发生变化,使参比池和测量池孔中热丝电阻值之间产生了差异,电桥失去平衡。检测器有电压信号输出,记录仪画出相应组分的色谱峰。载气中待测组分的浓度越大,测量池中气体热导率改变就越显著,温度和电阻值改变也越显著,电压信号就越强。此时输出的电压信号与样品的浓度成正比,这正是热导检测器的定量基础。 2.热导检测器的使用条件 2.1载气种类 常用的载气有He和H2,因为其热导系数远大于其他化合物,且其具有较高的灵敏度和稳定的响应因子,便于定量,较宽的线性范围。其中,氦气较氢气安全,但氦气较贵,所以许多地区多用氢气作为载气。

气体传感器Word版

实验八气体传感器实验 【实验目的】 1. 理解气体传感器的工作原理; 2. 掌握单片机驱动气体传感器的方法。 【实验设备】 1. 装有IAR 开发工具的PC 机一台; 2. 下载器一个; 3. 物联网多网技术综合教学开发设计平台一套。 【实验要求】 1. 编程要求:编写气体传感器的驱动程序; 2. 实现功能:检测室内的有害气体并输出标志位; 3. 实验现象:将检测到的数据通过串口调试助手显示。 【实验原理】 1. 气体传感器简介 气体传感器是气体检测系统的核心,通常安装在探测头内。从本质上讲,气体传感器是一种将某种气体体积分数转化成对应电信号的转换器。探测头通过气体传感器对气体样品进行调理,通常包括滤除杂质和干扰气体、干燥或制冷处理、样品抽吸,甚至对样品进行化学处理,以便化学传感器进行更快速的测量。 2. 气体传感器分类及在本实验中的应用 气体传感器通常以气敏特性来分类,主要可分为:半导体型气体传感器、电化学型气体传感器、固体电解质气体传感器、接触燃烧式气体传感器、光化学型气体传感器、高分子气体传感器等。 半导体气体传感器是采用金属氧化物或金属半导体氧化物材料做成的元件,与气体相互作用时产生表面吸附或反应,引起以载流子运动为特征的电导率或伏安特性或表面电位变化。这些都是由材料的半导体性质决定的。原理如下图所示:

根据其气敏机制可以分为电阻式和非电阻式两种。 本实验采用的是电阻式半导体气体传感器主要是指半导体金属氧化物陶瓷气体传感器,是一种用金属氧化物薄膜(例如:Sn02,ZnO Fe203,Ti02 等)制成的阻抗器件,其电阻随着气体含量不同而变化。气味分子在薄膜表面进行还原反应以引起传感器传导率的变化。为了消除气味分子还必须发生一次氧化反应。传感器内的加热器有助于氧化反应进程。它具有成本低廉、制造简单、灵敏度高、响应速度快、寿命长、对湿度敏感低和电路简单等优点。 3. 气体传感器MQ-6 灵敏度特性 符号参数名称技术参数备注 Rs敏感体电 阻10KΩ-60KΩ探测范围: 100-1000ppm 检测目标:LPG、 丁烷、丙烷、LNG α (1000ppm/4000PPMLNG) 浓度斜率≤0.6 标准工作条件温度:20℃±2℃ Vc:5.0V ±0.1V 相对湿度:65﹪±5﹪ Vh: 5.0V±0.1V 预热时间不少于24 小时 【电路连接】 电路连接如图所示。

热导检测器(TCD)原理及操作注意事项

【资料】-热导检测器(TCD)原理及操作注意事项 热导检测器 热导检测器(TCD)是利用被测组分和载气的热导系数不同而响应的浓度型检测器,有的亦称热丝检测器(HWD)或热导计、卡他计(katherometer或Catherometer),它是知名的整体性能检测器,属物理常数检测方法。 一、工作原理 TCD由热导池及其检测电路组成。图3-2-1下部为TCD与进样器及色谱柱的连接示意图,上部为惠斯顿电桥检测电路图。载气流经参考池腔、进样器、色谱柱,从测量池腔排出。 R1、R2为固定电阻;R3、R4分别为测量臂和参考臂热丝。 当调节载气流速、桥电流及TCD温度至一定值后,TCD处于工作状态。从电源E 流出之电流I 在A 点分成二路i1、i2 至 B 点汇合,而后回到电源。这时,两个热丝均处于被加热状态,维持一定的丝温Tf,池体处于一定的池温Tw。一般要求Tf与Tw差应大于100℃以上,以保证热丝向池壁传导热量。当只有载气通过测量臂和参考臂时,由于二臂气体组成相同,从热丝向池壁传导的热量相等,故热丝温度保持恒定;热丝的阻值是温度的函数,温度不变,阻值亦不变;这时电桥处于平衡状态:R1?R3=R2?R4, 或写成R1/R4=R2/R3。M、N二点电位相等,

电位差为零,无信号输出。当从2进样,经柱分离,从柱后流出之组分进入测量臂时,由于这时的气体是载气和组分的混合物,其热导系数不同于纯载气,从热丝向池壁传导的热量也就不同,从而引起两臂热丝温度不同,进而使两臂热丝阻值不同,电桥平衡破坏。M、N二点电位不等,即有电位差,输出信号。 二、热导池由热敏元件和池体组成 1 热敏元件 热敏元件是TCD的感应元件,其阻值随温度变化而改变,它们可以是热敏电阻或热丝。 (1)热敏电阻 ....热敏电阻由锰、镍、钴等氧化物半导体制成直径约为0.1~1.0mm 的小珠,密封在玻壳内。 热敏电阻有三个优点 ..:①热敏电阻阻值大(5~50kΩ),温度系数亦大,故灵敏度相当高。可直接作μg/g级的痕量分析;②热敏电阻体积小,可作成0.25mm直径的小球,这样池腔可小至50μL;③热敏电阻对载气流的波动不敏感,它耐腐蚀性和抗氧化。 热敏电阻也有三个缺点 ..:①热敏电阻#$%的响应值随温度的增加而快速下降,因此,通常热敏电阻要在120℃以下使用。使用范围受到极大的限制;②与热丝相比,热敏电阻的温度系数大,表现为其响应值对于温度的变化十分敏感。例如在60℃时,池温改变1℃,热敏电阻和热丝的基线漂移分别为10.4mV和5.0mV,前者比后者大一倍多,因此,热敏电阻的稳定性差,特别是在程升操作时,尤为突出;③热敏电阻对还原条件十分敏感,故不能用氢气作载气。 目前,只有下二情况可用热敏电阻作热敏元件;一是低温痕量分析;二是需小池体积配毛细管柱。其他情况很少用热敏电阻,而多用热丝。而且,近年热敏电阻可作成小池体积的优势也在逐渐下降。 (2)热丝 ..一个性能优异的TCD,对热丝的要求主要考虑四点:①电阻率高,以便可在相同长度内得到高阻值;②电阻温度系数大,以便通桥流加热后得到高 阻值;③强度好;④耐氧化或腐蚀。①、②是为了获得高灵敏度 ....,同时丝体积小 ,可缩小池体积,制作微TCD。③、④是为了获得高稳定性 ....。表 3 -2-3 列出了商品TCD中常用的热丝性能。

气体传感器的分类及应用

气体传感器的分类及应用 所谓气体传感器是指用于探测在一定区域范围内是否存在特定气体和/或能连续测量气体成分浓度的仪表。在煤矿、石油、化工、市政、医疗、交通运输、家庭等安全防护方面,气体传感器常用于探测可燃、易燃、有毒气体的浓度或其存在与否,或氧气的消耗量等。在电力工业等生产制造领域,也常用气体传感器定量测量烟气中各组分的浓度,以判断燃烧情况和有害气体的排放量等。在大气环境监测领域,采用气体传感器判定环境污染状况,更是十分普遍。 气体传感器的分类,从检测气体种类上,常分为可燃气体传感器(常采用催化燃烧式、红外、热导、半导体式)、有毒气体传感器(一般采用电化学、金属半导体、光离子化、火焰离子化式)、有害气体传感器(常采用红外、紫外等)、氧气(常采用顺磁式、氧化锆式)等其它类传感器;从仪表使用方法上,分为便携式和固定式;从获得气体样品的方式上,分为扩散式(即传感器直接安装在被测对象环境中,实测气体通过自然扩散与传感器检测元件直接接触)、吸入式(是指通过使用吸气泵等手段,将待测气体引入传感器检测元件中进行检测。根据对被测气体是否稀释,又可细分为完全吸入式和稀释式等);从分析气体组分上,分为单一式 (仅对特定气体进行检测)和复合式(对多种气体成分进行同时检测);按传感器检测原理,分为热学式、电化学式、磁学式、光学式、半导体式、气相色谱式等。

热学式气体传感器 热学式气体传感器主要有热导式和热化学式两大类。热导式是利用气体的热导率,通过对其中热敏元件电阻的变化来测量一种或几种气体组分浓度的,其在工业界的应用已有几十年的历史,其仪表类型较多,能分析的气体也较广泛(如H2、CO2、SO2、NH3、Ar 等)。热化学式是基于被分析气体化学反应的热效应,其中广泛应用的是气体的氧化反应(即燃烧),其典型为催化燃烧式气体传感器,其关键部件为涂有燃烧催化剂的惠斯通电桥,主要用于检测可燃气体,如煤气发生站、制气厂用来分析空气中的CO、H2 、C2H2等可燃气体,采煤矿井用于分析坑道中的CH4含量,石油开采船只分析现场漏泄的甲烷含量,燃料及化工原料保管仓库或原料车间分析空气中的石油蒸气、酒精乙醚蒸气等。美国RAE Systems公司生产的FGM-3100催化燃烧式可燃气体检测仪,其采样方式为扩散式,检测精度达±2%满量程,响应时间<15s。 催化燃烧式气体传感器 催化燃烧式气体传感器的主要优点是对所有可燃气体的响应有广谱性,对环境温度、湿度影响不敏感,输出信号近线性,且其结构简单,成本低。但其主要不足是精度低,工作温度高 (内部温度可达700~800℃),电流功耗大,易受硫化物、卤素化合物等中毒的不利影响等。

仪器分析简答题

11.原子吸收谱线变宽的主要因素有哪些? 一方面是由激发态原子核外层电子决定,如自然宽度;一方面是由于外界因素,多普勒变宽,碰撞变宽,场致变宽,压力变宽、自吸变宽、电场变宽、磁场变宽等。 1.自然宽度:谱线固有宽度,与原子发生能级间跃迁的激发态原子的有限寿命有关。可忽 略 2.多普勒变宽:由于无规则的热运动而变化,是谱线变宽主要因素。 3.压力变宽:由于吸光原子与蒸汽中原子相互碰撞而引起能级的微小变化,使发射或吸收的光量子频率改变而变宽。与吸收气体的压力有关。包括洛伦兹变宽和霍尔兹马克变宽。场致变宽:在外界电场或磁场作用下,原子核外层电子能级分裂使谱线变宽。 自吸变宽:光源发射共振谱线被周围同种原子冷蒸汽吸收,使共振谱线在V0 处发射强度 减弱所产生的谱线变宽。 原子吸收谱线变宽主要原因是受多普勒变宽和洛伦兹变宽的影响 12.说明荧光发射光谱的形状通常与激发波长无关的原因。 由于荧光发射是激发态的分子由第一激发单重态的最低振动能级跃迁回基态的各振动能级所产生的,所以不管激发光的能量多大,能把电子激发到哪种激发态,都将经过迅速的振动弛豫及内部转移跃迁至第一激发单重态的最低能级,然后发射荧光。因此除了少数特殊情况,如S1 与S2 的能级间隔比一般分子大及可能受溶液性质影响的物质外,荧光光谱只有一个发射带,且发射光谱的形状与激发波长无关。 13.有机化合物产生紫外-可见吸收光谱的电子跃迁有哪些类型? 在有机分子中存在σ、π、n三种价电子,它们对应有σ-σ*、π-π*及n 轨道,可以产 生以下跃迁: 1.σ-σ* 跃迁:σ-σ*的能量差大所需能量高,吸收峰在远紫外(<150nm)饱和烃只有σ- σ*轨道,只能产生σ-σ*跃迁,例如:甲烷吸收峰在125nm;乙烷吸收峰在135nm ( < 150nm) 2.π-π*跃迁:π-π*能量差较小所需能量较低,吸收峰紫外区(200nm左右)不饱和烃类分子中有π电子,也有π* 轨道,能产生π-π*跃迁:CH2=CH2,吸收峰165nm。(吸收系数大,吸收强度大,属于强吸收) 1.n-σ*跃迁:n-σ*能量较低,收峰紫外区(200nm左右)(与π-π*接近)含有杂原子团如:-OH,-NH2 ,-X,-S 等的有机物分子中除能产生π-π*跃迁外,同时能产生n-σ*跃迁4. n-π*跃迁:n-π*能量低吸收峰在近紫外可见区(200 ~ 700nm)含杂原子的不饱和基团,如- C=O,-CN 等 各种跃迁所需能量大小次序为:σ-σ*> n-σ*>π-π*>n-π* 除外分子内部还有电荷迁移跃迁,指用电磁辐射照射化合物时,电子从给予体向接受体相 联系的轨道上跃迁,实质是氧化还原过程,相应的光谱最大特点是摩尔吸光系数较大。14、简单说明紫外-可见吸收光谱法、荧光光谱法、原子吸收光谱法的定量原理和依据是什么?请画出紫外分光光度法仪器的组成图(即方框图),并说明各组成部分的作用? 答:作用: 光源:较宽的区域内提供紫外连续电磁辐射。 单色器:能把电磁辐射分离出不同波长的成分。 试样池:放待测物溶液 参比池:放参比溶液

各类气体传感器的原理、结构及参数

各类气体传感器的原理、结构及参数 气体传感器是气体检测系统的核心,通常安装在探测头内。从本质上讲,气体传感器是一种将某种气体体积分数转化成对应电信号的转换器。探测头通过气体传感器对气体样品进行调理,通常包括滤除杂质和干扰气体、干燥或制冷处理、样品抽吸,甚至对样品进行化学处理,以便化学传感器进行更快速的测量。 气体种类繁多,性质各异,因此,气体传感器种类也很多。按待检气体性质可分为:用于检测易燃易爆气体的传感器,如氢气、一氧化碳、瓦斯、汽油挥发气等;用于检测有毒气体的传感器,如氯气、硫化氢、砷烷等;用于检测工业过程气体的传感器,如炼钢炉中的氧气、热处理炉中的二氧化碳;用于检测大气污染的传感器,如形成酸雨的NOx、CH4、O3,家庭污染如甲醛等。按气体传感器的结构还可分为干式和湿式两类;按传感器的输出可分为电阻式和费电阻式两类;按检测院里可分为电化学法、电气法、光学法、化学法几类。 半导体气体传感器 半导体气体传感器可分为电阻型和非电阻型(结型、MOSFET型、电容型)。电阻型气敏器件的原理是气体分子引起敏感材料电阻的变化;非电阻型气敏器件主要有M()s二极管和结型二极管以及场效应管(M()SFET),它利用了敏感气体会改变MOSFET开启电压的原理,其原理结构与ISFET离子敏传感器件相同。 电阻型半导体气体传感器 作用原理 人们已经发现SnO2、ZnO、Fe2O3、Cr2O3、MgO、NiO2等材料都存在气敏效应。用这些金属氧化物制成的气敏薄膜是一种阻抗器件,气体分子和敏感膜之间能交换离子,发生还原反应,引起敏感膜电阻的变化。作为传感器还要求这种反应必须是可逆的,即为了消除气体分子还必须发生一次氧化反应。传感器内的加热器有助于氧化反应进程。SnO2薄

热导池检测器的维护

https://www.doczj.com/doc/3412879083.html, HTYSP-H油色谱分析仪 热导池检测器的维护 6.1热导池检测器注意事项 在TCD检测器使用期间,一定要注意和遵守下列内容: ●没有通入载气时,禁止设定桥流,以免造成钨丝烧毁的事故。 ●初次老化柱子时,不要将柱后载气接入热导池,应直接放空在柱箱内;老化时不能用氢气!一般是用氮气。老化期间也绝对禁止设定桥流。 ●热导池检测器是个精密的部件,请勿自行拆装池体内钨丝,以免造成不必要的损失。 6.2热导检测器常见故障分析与排除 6.2.1进样不出峰 6.2.2信号输出幅度太大(未进样时)

https://www.doczj.com/doc/3412879083.html, HTYSP-H 6.2.3基线噪音大 附录关于接地 要想使仪器能安全可靠地运行,仪器的接地良好是非常重要的。一般来说,大多数国家和地区都要求给电器设备安装地线,以确保人身的安全。 安全接地 各种标准一般都要求给电器设备安装安全导体。标准中一般都有这样的要求:每根火线回线(中线)都要伴随一个安全导体。安全导体的大小必须与火线的大小一样。 一般来说,安全标准都要求把安全导体接到操作人员可能会碰到的电器设备的导电表面上,或由于电器事故可能激励起来的导电表面。在正常操作情况下,这根线不应带返回的交流电。如果仪器的框架没接地,或者火线偶然碰到框架上,该框架上的电压很可能会达到一定的危害程度。 把安全地线接到仪器的底盘上即可避免触电的危险,因为这样就形成一个极低阻抗回路,发生意外时会使电路的闸刀跳闸或保险丝烧断。每台仪器产品中都

https://www.doczj.com/doc/3412879083.html, HTYSP-H油色谱分析仪 有安全接地装置,只要把仪器接到有地线的接头上,或将仪器中的接地端子接到地线上,这个回路就算完成了。 如上所述,仪器中的安全地线通常是通过绝缘的接地装置接在建筑物的导管上,这样,反过来又使分电路的配电接地。 安全地线必须正确接在总配电接地母线的端子上。从任何负载返回总接地母线的地线阻抗必须小于10欧姆。 无噪声接地 为了使色谱分析仪运行情况良好,我们坚持建议采用无噪声接地装置。这种接地也称作“绝缘接地”,因为它是与建筑物中的其它电器接地装置分开的。这样将有助于保持系统的可靠性。在大多数情况下,普通的接地是不能满足要求的,因为该接地装置不可能不带进一点接地不良所引起的其他电器噪声,该噪声也可能带有一般较稳定的电流。 典型的容易产生噪声的接地情况如下: 1、导管 2、房顶和建筑物的横梁 3、洒水管(把地线接到这些管子是大多数消防规范所不容许的)。 4、提升地板的支撑结构。 5、煤气管 把地线接到这些管子上很容易受到由于接地不良所产生的建筑物噪声的影响,同时,由于天线的影响,它们还会接收到电波频率的干扰。 可以接地的东西如下(应和当地电器检查部门商量,选用当地可以接受的接地方法): 1、用一根尺寸合适的电线接到楼房的总管线上或接到总导管的入地处。 2、把接地用的长钉子或铜网打进潮湿的土层里并接到入地处。 3、也可以接到其它可靠的入地处。 绝缘的地线必须牢固地接在装置上。不要用夹子把地线夹在管子或接地柱上,也不要使用其它会使接头松动的方法来连接。接头必须用铜焊或锡焊,尽可能减小接地接头处的接触电阻。如果安装的不合适,在接头处就可以测量到电阻,再

气体传感器介绍

气体传感器介绍 1气体传感器简介 1、稳定性 2、灵敏度 3、选择性 4、抗腐蚀性 2气体传感器分类 1气体传感器简介 气体传感器是电子鼻系统的核心,通常安装在探测头内。从本质上讲,气体传感器是一种将某种气体浓度转化成对应电信号的转换器。探测头通过气体传感器对气体样品进行调理,通常包括滤除杂质和干扰气体、作干燥或制冷处理、样品抽吸、甚至对样品进行化学处理以便化学传感器进行更快速的测量。 采样方法直接影响传感器的响应时间。目前,气体的采样方式主要是通过简单扩散法,或是将气体吸入检测器。简单扩散是利用气体天然向四处传播的特性。目标气体穿过探头内的传感器,产生一个正比于气体浓度的信号。由于扩散过程渐趋减慢,所以扩散法需要探头的位置非常接近于测量点。扩散法的一个优点是它将气体样本直接引入传感器而无需物理和化学变换。 样品吸入式探头通常用于采样位置接近处理仪器或排气管道的情况,这种技术可以为传感器提供一种速度可控的稳定气流,所以在气流大小和流速经常变化的情况下,这种方法较值得推荐。将测量点的气体样本引到测量探头可能经过一段距离,距离的长短主要是根据传感器的设计。但采样线较长会加大测量滞后时间,该时间是采样线长度和气体从泄漏点到传感器之间流动速度的函数。对于某 SiH以及大多数生物溶剂,气体和汽化物样品量可能会因种目标气体和汽化物如 4 为它们的吸附作用甚至凝结在采样管壁上而减少。 在任何情况下,探头及其内部气体传感器都必须能够检测某给定值以上的气体浓度,并发出报警信号;或者说,当气体浓度低于给定值时,探头不允许发出警报。经常误警会使人对传感器的可靠性产生怀疑,而忽略正确发出的警报,最终可能造成严重的后果。 在介绍气体传感器之前,有必要先对气体传感器的一些特性作一介绍:

相关主题
文本预览
相关文档 最新文档