当前位置:文档之家› 生理实验报告材料神经干复合动作电位

生理实验报告材料神经干复合动作电位

生理实验报告材料神经干复合动作电位
生理实验报告材料神经干复合动作电位

人体解剖及动物生理学实验报告

实验名称神经干复合动作电位

学号

系别

组别

同组

实验室温度20℃

实验日期2015年4月24日

一、实验题目

蟾蜍坐骨神经干复合动作电位(CAP)

A蟾蜍坐骨神经干CAP阈值和最大幅度的确定

B蟾蜍坐骨神经干CAP传导速度的确定

C蟾蜍坐骨神经干CAP不应期的确定

二、实验目的

确定蟾蜍坐骨神经干复合动作电位(CAP)的

(1)临界值和最大值

(2)传导速度

(3)不应期(相对不应期、绝对不应期)

三、实验原理

神经系统对维持机体稳态起着重要作用,动作电位(AP)是神经系统进行通信联

系所采用的信号,多个神经元的轴突集结成束形成神经,APs沿感觉神经有外周传向中枢或沿运动神经由中枢传向外周。坐骨神经干由上百根感觉神经和运动神经组成,分别联系腿部的感受器和效应器(骨骼肌)。如果电刺激一根离体的坐骨神经干,通过细胞外引导方式,就能记录到神经干复合动作电位(CAP)。一个CAP是一系列具有不同兴奋性的神经纤维产生的多个AP的总和。刺激强度越爱,兴奋的神经纤维数目就越多,CAP的幅度也就越大。与胞引导得到的单细胞AP相比,CAP是双相电位,逐级递增(非全或无),并且幅度较小。

阈电位是指一个刚刚能观测到的CAP,所对应的刺激为阈刺激。在一定围增加刺激强度,CAP幅度相应增大。最大CAP所对应的最小刺激电位即最大刺激。

动作电位可以沿神经以一定的速度不衰减地传导,传导速度的快慢基于多种因素,这些因素决定了生物体对其坏境的适应性。它们包括神经的直径、有无髓鞘、温度等等。

神经在一次兴奋过程中,其兴奋性将发生一个周期性的变化,最终恢复正常。兴奋的周期性变化,依次包括绝对不应期、相对不应期等等。绝对不应期,无论多么强大的刺激都不能引起神经再一次兴奋;相对不应期,神经兴奋性较低,较大的刺激能够引起兴奋。绝对不应期决定了神经发放冲动(动作电位)的最高频率,保证了动作电位不能叠加(区别于局部电位),以及单向传导(只能有受刺激部位向远端传导,不能返回)的特性。不应期的产生依赖于细胞膜上特定离子通道的特点,如钠、钾离子通道。

四、实验方法

蟾蜍坐骨神经标本的制作

1.双毁髓处死蟾蜍后,剥去皮肤,暴露腰骶丛神经,游离大腿肌肉之间的坐骨神经

干及其下行到小腿的两个分支:胫神经和腓神经,三段结扎,剪去无关分支后离体。注意保持神经湿润。

2. 将神经搭于标本盒,保证神经与电极充分接触,中枢端接触刺激电极S1和S2,外周端接触记录电极R1-R2,之间接触接地电极。

3. 刺激输出线两夹子分别连接标本盒的刺激电极S1和S2,插头接生物信号采集系统RM6240的刺激输出插口;信号输入倒显得红色和绿色夹子分别连接记录电极(绿色夹子在前,引导出正向波形,即出现的第一个波峰向上),黑色夹子连接接地电极,插头接通道1.

A.蟾蜍坐骨神经干复合动作电位(CAP)临界和最大幅度的确定

(1)打开信号采集软件,从“实验”菜单中选取“神经干动作电位”,出现自动设置的界面,各项参数已设置好,界面中只有一个采集通道,对应仪器面板上的通道1(因此信号输入线应连接在通道1)。

(2)确定装置是否正常工作,以及神经是否具有活性。采用较大的刺激强度,1V,刺激时程0.2ms,延时5ms,刺激模式为但刺激。选择“同步触发”,

按下“开始刺激”后,正常情况下屏幕上会出现一个双相电位即CAP。(3)快速降低刺激强度,确定CAP的阈电位。记录刺激阈值及CAP幅度(波峰与波谷之间的差值)。

(4)以0.05V或更小的间隔,逐渐增大刺激强度,观察CAP幅度的变化,同时,记录刺激电位及对应的CAP幅度,直到CAP达到稳定,即最大值(神

经标本在正常生理活性时,1V以的刺激强度即可引起最大的CAP)。

B.蟾蜍坐骨神经干复合动作电位(CAP)传导速度的确定

(1)从“实验”菜单中选取“动作电位传导速度”,界面出现两个采集通道,对应通道1和通道2,因此采用两对引导电极R1-R2和R3-R4,同时输入两

道信号。

(2)使用单刺激模式,调整刺激强度,使产生最大CAP。

(3)测量两个通道显示的动作电位起点的时间差。

(4)测量R1和R3之间神经的长度。

(5)重复步骤1-4至少三次。

(6)计算传导速度:传导速度=△D(mm)/△T(ms)

(7)计算几次重复测量得到的传导速度的平均值(Mean)和标准误(SEM)。

C.蟾蜍坐骨神经干复合动作电位(CAP)不应期的确定

(1)采用双刺激模式,刺激条件相同,产生一对幅度相同的最大的CAP。

(2)逐渐减小两刺激间隔,直到第二个CAP幅度刚刚开始减小,即进入相对不应期。此波间隔与绝对不应期之差即为相对不应期。

(3)继续减小间隔,直到第二个CAP刚刚完全消失,此间隔即为绝对不应期。

(4)重复步骤1-3至少三次。

(5)计算绝对不应期和相对不应期的均值(Mean)及标准误(SEM)。

五、实验结果

A蟾蜍坐骨神经干CAP阈值和最大幅度的确定

图1. 蟾蜍坐骨神经干CAP的阈电位(当前刺激强度为0.16V)

图2. 蟾蜍坐骨神经干CAP的最大幅度2.28mV(当前刺激强度为0.70V)

表1.蟾蜍坐骨神经干CAP随刺激强度的变化数据

实验次数刺激强度(V)CAP(mV)实验次数刺激强度(V)CAP(mV)

1 0.91 2.080 7 0.49 2.030

2 0.84 2.070 8 0.42 1.842

3 0.77 2.040 9 0.35 1.720

4 0.70 2.280 10 0.28 1.200

5 0.63 2.080 11 0.21 0.570

6 0.56 2.013 12 0.14 0.000

根据上表可绘制下图,曲线图能更加直观的显示蟾蜍坐骨神经干CAP随刺激强度增加的变化趋势。

图3 蟾蜍坐骨神经干CAP随刺激强度的变化曲线图

由以上图表可知,当刺激强度为0.16V时,刚好能观察到一个CAP;之后随着刺激强度增大,动作电位的幅度也就越来越大;当刺激强度达到0.70V时,CAP达到最大,为2.280mV;继续增大刺激强度,动作电位的幅度就不会增大了,而是略微降低。由此可得在一定围,坐骨神经干复合动作电位的幅度随着刺激强度增大而增大。但当刺激强度超过一定围后,坐骨神经干复合动作电位就不再增大了。

神经干是混合纤维,包含着多种兴奋性不同的神经。阈强度的刺激刚刚可以引起其中一些兴奋性较高的纤维产生动作电位,随着刺激强度的增加,其余兴奋性较低的纤维陆续产生动作电位。当刺激超过顶强度时,全部神经纤维产生动作电位。所以神经干的动作电位会随着刺激的增大而增大,直到产生最大动作电位。

B蟾蜍坐骨神经干CAP传导速度的确定

图4. 某次神经干兴奋传导速度的测定图

表2. 蟾蜍坐骨神经干传导时间记录数据

R1、R3电极间距离传导时间差△t(ms)传导速度平均值(mm/ms)标准误

mm/ms )

1 20mm 0.95 21.05 24.335

1.935 2 20mm 0.95 21.05 3 20mm 0.75 26.67 4 20mm 0.7 28.57

由上表数据可计算出标准差为3.87,标准误为1.935,证明各组平行实验间误差并不大,得到的实验结果较为准确。

C 蟾蜍坐骨神经干CAP 不应期的确定

图5.双刺激下刚刚进入相对不应期的神经干CAP 图

图6. 双刺激下刚刚进入绝对不应期的神经干CAP图

表3.蟾蜍坐骨神经干相对不应期和绝对不应期的测量数据

相对不应期(ms)绝对不应期(ms)

1 8.1 1.1

2 7.2 0.5

3 4.8 0.5

Mean 6.7 0.7

SEM 1.59 0.20

减小刺激间隔,直到第二个CAP开始减小,表明第二个刺激进入了前一次兴奋的相对不应期,可得当第二个CAP刚刚开始减小时的刺激间隔平均值为6.7ms,所以相对不应期为6.7ms,但其标准误为1.59,表明各组平行实验间差距较小,实验效果较好。蟾蜍坐骨神经干CAP的绝对不应期其平均值为0.7ms,且三组平行实验的标准误为0.20,

表明各组平行实验间差距很小。本次实验误差可能原因为实验时间较长,未及时将神经标本浸泡在任氏液中,导致神经失活。

三、分析与讨论

1、对比动作电位,分析神经干复合动作电位(CAP)的特点,并解释其随刺激幅度变

化而变化的现象。

神经干动作电位振幅随刺激电压增加而增高,不具有“全或无”性质。神经干动作电位是由许多这种兴奋性不同的单根神经纤维的动作电位综合成的复合性电位变化。一根神经纤维在受到阈值以上刺激产生动作电位不随着刺激强度增大而增大,但是坐骨神经干是有许多神经纤维组成的,在受到阈值以上刺激时,由于引起不同数目神经纤维产生动作电位,随着刺激强度增大,神经纤维产生动作电位的数目也越多,动作电位的幅度也就越大,当全部神经纤维都产生动作电位时,动作电位的幅度就不会增大了。故在一定围,坐骨神经干动作电位的幅度随着刺激强度增大而增大。

2、分析解释测量神经传导速度的实验道2和1所记录的CAP的不同之处;分析蟾蜍坐

骨神经干中所包含的神经纤维种类及其传导速度,判断所测定的纤维类型,分析实验中可影响传导速度数值的因素。

(1)通道2记录的CAP的幅度小于通道1记录的CAP幅度。坐骨神经中枢端的神经纤维多,越向外周端神经纤维越少,而通道2电极位于外周端,通道1电极位于中枢端。所以通道2处发生兴奋的神经纤维比通道1兴奋的神经纤维少,所以幅

度比通道1小。

(2)不同类型的神经纤维传导速度不同,其传导速度主要受神经纤维的直径、阻及有无髓鞘的影响。蛙类的坐骨神经干属于混合性神经,其中包含有粗细不等的各种纤维,其直径一般为3-29μm,其中直径最粗的有髓纤维为Aα类纤维,它是蛙神经的主要组成部分,传导速度在正常室温下为35-40m/s。蟾蜍的坐骨神经是混合神经,由实验测得神经纤维的传导速度是24.335m/s,可知其神经纤维主要类型是A类神经纤维。

(3)实验中可影响传导速度数值的因素:

a)分离坐骨神经时不小心使用了铁质的解剖针、镊子等,而不是玻璃分针,导致

分离出来的神经的活性不是很好,受到了损伤;

b)离体的神经暴露在空气中很容易干燥,生物活性受到影响;

c)神经由于受到连续刺激,活性下降。

d)实验中神经是否剥离干净以及完整会影响其兴奋传导速度

e)环境温度等也会影响神经活性,从而影响其兴奋传导速度。

3、分析不应期之CAP变化的原因;

不应期可分为绝对不应期和相对不应期,在绝对不应期,无论给以多大的刺激,CAP 都不会改变,而在相对不应期,CAP仍然会改变,只是所需的刺激强度更大。

绝对不应期产生的原因:钠通道激活后必须首先进入失活状态,然后才逐渐由失活状态

恢复到关闭状态,以备下一次激活。它不能由激活状态直接进人关闭状态。动作电位产生过程中是由钠通道激活导致钠离子流,所以第一次兴奋后,钠通道由激活状态进人失活状态后,这时无论给予其多么强大的刺激,均不能引起其再次开放,即引起新的动作电位。

相对不应期产生的原因:在绝对不应期之后,Na离子通道部分开放,Na离子流,细胞的兴奋性逐渐恢复,但仍低于原水平,受刺激后可发生兴奋,但刺激强度必须大于原来的阈强度。而且由于通道活性未达到正常水平,所以第二个动作电位幅度小于会正常值。4、分析电生理实验中细胞外记录和细胞记录在方法学、所获信号以及应用方面的不同之处。

细胞外记录是指不用刺入细胞,只放在细胞表面或附近组织即可记录的技术;细胞记录则是要刺入细胞部进行记录。由于电极不刺入细胞,细胞外记录不会对细胞造成伤害,对于非常小的细胞以及血压、呼吸活动引起震动较大的在体情况下,难以用细胞记录时使用细胞外记录是非常实用的。而细胞记录对仪器要求更加精准,可准确测定膜电位以及记录突触等微观结构的活动。所以细胞外记录主要利用可兴奋组织如神经、肌肉等的生物点现象,观察组织细胞的正常功能、病理及药物变化,如脑电图等就是细胞外记录的重要应用。而细胞记录是生理学发展到细胞水平后,研究神经、肌肉等细胞基本生物特性的有利手段,如利用微电极技术将电极插入细胞膜,用于测量膜电位、EPSP 、IPSP 等。

5、分析实验中出现和应该注意的问题

(1)分离坐骨神经时,避免过度牵拉神经,且需将周围的结缔组织去除干净。

(2)用棉线结扎神经时,棉线不要留的太长,以免干扰信号;

(3)分离后的神经和肌肉要随时保持湿润,避免用手或镊子触碰神经,肌肉如果太干燥,又在强烈电刺激下,很可能痉挛,这样不仅损伤了神经和肌肉,也导致实验很难进行下去。

(4)实验过程中要经常用任氏液湿润标本,每次刺激后应使肌肉休息一段时间,防止连续刺激损伤其活性。

(5)标本盒两电极之间不要残留液体,防止电极间短路。

(6)测量神经干传导速度时神经干要尽可能长,两个引导电极之间的距离尽可能远,这样得到的实验数据更为准确。

(7)神经要伸直放置,且确保其接触各个电极。另外,测量神经传导速度时,要确保神经与电极垂直,不然会影响实验结果。

六、参考文献

生理学实验(第三版),解井田静,高等教育,2009

人体及动物生理学(第三版)王玢左明雪,高等教育,2009

人体解剖学及动物生理学实验讲义,生理学实验教学团队,2015年3月

力学实验报告

力学实验报告 篇一:工程力学实验(全) 工程力学实验学生姓名:学号:专业班级:南昌大学工程力学实验中心目录实验一金属材料的拉伸及弹性模量测定试验实验二金属材料的压缩试验实验三复合材料拉伸实验实验四金属扭转破坏实验、剪切弹性模量测定实验五电阻应变片的粘贴技术及测试桥路变换实验实验六弯曲正应力电测实验实验七叠(组)合梁弯曲的应力分析实验实验八弯扭组合变形的主应力测定实验九偏心拉伸实验实验十偏心压缩实验实验十二金属轴件的高低周拉、扭疲劳演示实验实验十三冲击实验实验十四压杆稳定实验实验十五组合压杆的稳定性分析实验实验十六光弹性实验实验十七单转子动力学实验实验十八单自由度系统固有频率和阻尼比实验 1 2 6 9 12 16 19 23 32 37 41 45 47 49 53 59 62 65实验一金属材料的拉伸及弹性模量测定试验实验时间:设备编号:温度:湿度:一、实验目的二、实验设备和仪器三、实验数据及处理引伸仪标距l =mm 实验前 2低碳钢弹性模量测定 E? 实验后 ?F?l = (?l)?A 屈服载荷和强度极限载荷 3载荷―变形曲线(F―Δl曲线)及结果四、问题讨论(1)比较低碳钢与铸铁在拉伸时的力学性能;(2)试从不同的断口特征说明金属的两种基本破坏形式。 4篇二:工程力学实验报告工程力学实验报告自动化12级实验班 1-1 金属材料的拉伸实验一、试验目的 1.测定低碳钢(Q235 钢)的强度性能指标:上屈服强度ReH,下屈服强度ReL和抗拉强度Rm 。 2.测定低碳钢(Q235 钢)的塑性性能指标:断后伸长率A和断面收缩率Z。 3.测定铸铁的抗拉强度Rm。 4.观察、比较低碳钢(Q235 钢)和铸铁的拉伸过程及破坏现象,并比较其机械性能。 5.学习试验机的使用方法。二、设备和仪器 1.试验机(见附录)。 2.电子引伸计。 3.游标卡尺。三、试样 (a) (b) 图1-1 试样拉伸实验是材料力学性能实验中最基本的实验。为使实验结果可以相互比较,必须对试样、试验机及实验方法做出明确具体的规定。我国国标GB/T228-2002 “金属材料室温拉伸试验方法”中规定对金属拉伸试样通常采用圆形和板状两种试样,如图(1-1)所示。它们均由夹持、过渡和平行三部分组成。夹持部分应适合于试验机夹头的夹持。过渡部分的圆孤应与平行部分光滑地联接,以保证试样

实验一 神经干动作电位的引导,兴奋传导速度及不应期的测定

神经干动作电位、传导速度及不应期的测定 【目的和原理】 神经纤维的兴奋表现为动作电位的产生和传导,神经纤维上传导的动作电位通常称为神经冲动。在神经细胞外表面,已兴奋部位带“负电”,未兴奋部位带“正电”,用引导电极引导出此电位差,输入到示波器,则可记录到动作电位的波形。本实验用细胞外记录法,可引导出坐骨神经的复合动作电位。 神经纤维兴奋的标志是产生一个可以传导的动作电位,它依局部电流或跳跃传导的方式沿神经纤维传导。其传导速度取决于神经纤维的直径、内阻、有无髓鞘等因素,可用电生理学方法来记录和测量。 神经纤维在一次兴奋过程中,其兴奋性可发生周期性变化,包括绝对不应期、相对不应期、超常期和低常期。本实验主要目的是学习电生理仪器的使用方法,掌握离体神经干动作电位的细胞外记录法及其基本波形的判断和测量。掌握神经干动作电位传导速度及其不应期的测定方法,通过调整条件刺激和测试刺激之间的时间间隔,来测定坐骨神经干的绝对不应期。 【实验对象】 蟾蜍或蛙。 【实验器材和药品】 蛙类手术器械一套、电子刺激器、示波器(或计算机实时分析系统)、神经屏蔽盒、任氏液。 【实验步骤】 1.制备坐骨神经——胫、腓神经标本操作方法详见3.8。 2.连接装置(见图8-1-1)。 3.准备仪器: (1)刺激器:调节刺激器各项参数:刺激方式连续刺激,频率16Hz,刺激强度0.5v,波宽0.1ms。调节延迟使动作电位的图像位于示波器荧光屏的中央。 (2)示波器:灵敏度:1~2mv/cm,扫描速度:1~2ms/cm,引导电极输入到示波器的“AC”端,双边输入,刺激器的“同步输出”接示波器“外触发输入”,触发选择设置为“同步触发”。 4.观察项目:

复合材料实习报告总结

复合材料实习报告总结 复合材料实习报告总结 ,隔离膜的铺放顺序,应为抽真空的缘故,我们要住辅助材料的边角不能覆盖至制品上,因为受压会使制品表面有压痕影响之间的工艺性能。一般的是隔离膜在制品的表面,然后是吸胶材料,最后是透气毡,而打真空袋是要明确以不能能漏气也就是要保证真空袋通过腻子胶条和模紧密贴合不漏气,另外一个是要是真空袋抽正空后要与模具和制品紧密贴合不能有褶皱。手糊成型的有点很多,如其一不需要复杂的设备,只需要简单的模具,工具,投资少,成本低。其二生产技术易掌控,人员只需经过短期的培训即可生产。其三复合材料产不受尺寸,形状的限制。其四可以与其他材料同时复合制成一体和对于一些不宜运输的大制品等。缺点就是产品质量不够稳定,生产环境差,气味大,加工时粉尘过多。不能用来制造高性能产品,生产效率低下。这是我感受到的,我对于手糊成型的理解。我们不仅要提高制品的工艺性能,更要减少制品的生产成本和提高工做卫生的环境条件。注重团队合作,时间的分配,设计的和理性的。 而手糊成型完了就接着是热压罐成型工艺过程: 一,模具的准备。模具要用软质材料轻轻搽拭干净,并检查时候漏气。然后在模具上涂布脱模剂。 二裁剪和铺叠。按样板裁好带有离型纸的预浸料,剪切时必须注意纤维方向然后将才好的预浸料揭去离型纸按照规定顺序和方向铺叠,每一层要用橡胶辊等工具将预浸料压实,赶出空气。

三组合和装袋,在模具上将预浸料胚料和各种辅助材料组合并装袋,应检查真空袋周边是否良好。 四热压固化,将真空袋系统组合到热压罐中,接好真空管路,关闭热压罐,然后按确定的工艺要求抽真空、加热、固化。最后就是出罐脱模,固化完成后,冷却到室温后,将真空移除热压罐,去除各种辅助材料后进行修整。 典型的热压罐固化工艺过程五个阶段: 1升温阶段; 2吸胶阶段; 3继续升温阶段 4保温热压阶段; 5冷却阶段。 我们小组遇到问题主要有裁剪时不一,就是尺寸不统一。在进行磨具合拢是不能很好的贴合,模具夹合时有缝隙需要要纤维预浸料填补。我们贴挡胶胶条是要注意把要流胶的位置都挡上。 再次,要深化自己的工作任务。熟悉每一件制品的制作方法,细节。做到烂熟于心。学会面对不同的困难,采用不同的操作技巧。力争让每一件制品都能然自己感到称心如意,更力争增加操作经验,提高产品质量。 最后,端正好自己心态。其心态的调整使我更加明白,不论做任何事,务必竭尽全力。这种精神的有无,可以决定一个人日后事业上的成功或失败,而我们的工作中更是如此。如果一个人领悟了通过全力工作来免除工作中的辛劳的秘诀,那么他就掌握了达到成功的原

蟾蜍坐骨神经干动作电位传导速度和兴奋性不应期的测定实验报告

实验二蟾蜍坐骨神经干动作电位传导速度和兴奋性不应期的测定 一、蟾蜍坐骨神经干动作电位引导及传导速度测定 实验目的:加强理解兴奋传导的概念,掌握测定神经干动作电位传导速度的方法。 熟悉仪器设备的操作。 实验原理:通过测出示波器上动作电位传导的距离和传导所需的时间,计算传导速度,可以了解神经的兴奋状态。 1.潜伏期法:测量第一个通道动作电位潜伏期的时间t,输入刺激电极到第一个引导电极间的距离s,v=s/t。 2.潜峰法:测量两个通道的动作电位波峰间的时间差和两对引导电极间的距离,v=(s2-s1)/(t2-t1)。 实验步骤:1.制备坐骨神经-腓神经标本,放入神经屏蔽盒。 2.连接仪器,引导动作电位波形。 3.剪裁编辑图形,计算传导速度。 实验结果:1.(见图) 2.计算 S=10mm,t=0.33ms,v=10mm/0.33ms=33m/s 分析讨论: 1.我们通过对潜伏期法和潜峰法测定结果的比较,结合神经干的特性进行分析:动作电位的起点本质是神经干中传导速度最快的一类神经纤维传导兴奋到达记录点引起的,潜伏期法测量的速度本质是此类神经纤维的传导速度。而潜峰法的形成本质是各种神经纤维兴奋相互叠加后最强的部分。如果采用潜峰法

测量,由于“迁延效应”代表的时间不够准确,不能代表神经干的传导速度,故应该采用潜伏期测量才更准确。 2,.兴奋以局部电流的方式沿着神经干表面传导,兴奋传播过程中造成引导电极下电位改变,故可记录到双相动作电位.通过两对引导电极可观察到兴奋由一对引导电极下传至另一对引导电极下所需时间,根据兴奋传播的距离和所需时间即可计算出传导速度. 实验结论:本实验中测出神经干动作电位的传导速度为33m/s。由实验可知,神经纤维在静息状态下受到有效刺激可产生动作电位,同一条神经干中不同的神经纤维兴奋性不完全相同,且在一次兴奋后兴奋性发生改变,兴奋以一定的速度在神经干表面传导,神经兴奋的传导依赖于神经纤维的完整性。 二、兴奋性不应期的测定 实验目的:了解测定不应期的方法和原理,并加深对兴奋性在兴奋过程中的变化过程的理解。 实验原理:神经纤维受到适宜刺激后,产生兴奋,即动作电位。一次兴奋产生后,必须经绝对不应期、相对不应期、超常期等变化后,兴奋性才能恢复。本实验中先给一个条件刺激,再用另一个检验刺激在兴奋的不同时期给予刺 激,检查神经对检验性刺激反应的兴奋阈值及所引起动作电位的幅度。即可观察到神经组织兴奋性的变化过程。 实验步骤: 1.制备坐骨神经-腓神经标本,并浸在任氏液中,待其兴奋性稳定后实验。 2.连接仪器,设置实验参数,观察并测量神经干的不应期。 实验结果:(见图) 分析讨论:

实验报告神经干动作电位妇人实验报告_0986文档

2020 实验报告神经干动作电位妇人实验报告_0986文档 EDUCATION WORD

实验报告神经干动作电位妇人实验报告_0986文档 前言语料:温馨提醒,教育,就是实现上述社会功能的最重要的一个独立出来的过程。其目的,就是把之前无数个人有价值的观察、体验、思考中的精华,以浓缩、系统化、易于理解记忆掌握的方式,传递给当下的无数个人,让个人从中获益,丰富自己的人生体验,也支撑整个社会的运作和发展。 本文内容如下:【下载该文档后使用Word打开】 1.捣毁脑脊髓 2.分离坐骨神经 3.安放引导电极 4.安放刺激电极 5.启动试验系统 6.观察记录 7.保存 8.编辑输出 1.观察神经干双相动作电位引导(单通道,单刺激) 如图,观察到一个双相动作电位波形。 2.神经干双相动作电位传导速度测定(双通道,单刺激) (1)选择“神经骨骼肌实验”―“传导速度测定”

(2)改变单刺激强度 (3)传导速度=传导距离(R1--R2-)/传导时间(t2-t1) 如图所示,两个波峰之间的传导时间△t=(t2-t1)=0.66ms 实验中,我们设定在引导电极1和3之间的距离△R=(R1--R2-)=1cm 故传导速度v=△R/△t=1cm/0.66ms=15.2m/s 3.神经干双相动作电位不应期观察 由上图可知,当刺激间隔时间为 4.61ms时,两双相动作电位开始融合,此时为总不应期;当刺激间隔时间为1.05ms时,双相动作电位完全融合,此时为绝对不应期。 故相对不应期=总不应期?C绝对不应期=4.61ms?C1.05ms=3.56ms 4.普鲁卡因对神经冲动传导的阻滞作用 如图所示,在两通道之间滴加普鲁卡因后,两双相电位间的波峰间隔时间为 1.03ms,由引导电极之间的间隔距离1cm,得此时传导速度: V1=1cm/1.03ms=9.71m/s 5.机械损伤对坐骨神经干双向动作电位的影响 由图可知,当剪断两引导电极之间的神经干时,第二通道的双相动作电位消失。故机械损伤对神经动作电位传导的阻滞作用比局麻药强。 6.实验注意事项 a)牛蛙腓肠肌后的神经干分支较难找,可以适当剪开周围软

人体解剖及动物生理学实验报告神经干复合动作电位

人体解剖及动物生理学实验报告 神经干复合动作电位 【实验题目】 神经复合动作电位 1、蟾蜍坐骨神经干复合动作电位(CAP)阈值和最大幅度的测定 2、蟾蜍坐骨神经干复合动作电位(CAP)传导速度的测定 3、蟾蜍坐骨神经干复合动作电位(CAP)不应期的测定 【实验目的】 确定蟾蜍坐骨神经干复合动作电位(CAP)的 1、临界值和最大值 2、传导速度 3、不应期(包括绝对不应期和相对不应期) 【实验原理】 神经系统对维持机体稳态起着重要作用,动作电位(AP)是神经系统进行通信联系所采用的信号。多个神经元的轴突集结成束形成神经,APs沿感觉神经经外周传向中枢或沿运动神经由中枢传向外周。坐骨神经干由上百根感觉神经和运动神经组成,分别联系腿部的感受器和效应器(骨骼肌)。如果电刺激一根离体的坐骨神经干,通过细胞外引导方式,就能记录到神经干复合动作电位(CAP)。一个CAP是一系列具有不同兴奋性的神经纤维产生的多个AP的总和。刺激强度越大,兴奋的神经纤维数目就越多,CAP的幅度也就越大。与胞内引导得到的单细胞AP相比,CAP是双相电位,逐级递增(非全或无),并且幅度较小。 阈电位是指一个刚刚能观测到的CAP,所对应的刺激为阈刺激。在一定范围内增加刺激强度,CAP幅度相应增大。最大CAP所对应的最小刺激电位即最大刺激。 动作电位可以沿神经以一定的速度不衰减地传导,传导速度的快慢基于多种因素,这些因素决定了生物体对其坏境的适应性。它们包括神经的直径、有无髓鞘、温度等等。

神经在一次兴奋过程中,其兴奋性将发生一个周期性的变化,最终恢复正常。兴奋的周期性变化,依次包括绝对不应期、相对不应期等等。绝对不应期内,无论多么强大的刺激都不能引起神经再一次兴奋;相对不应期内,神经兴奋性较低,较大的刺激能够引起兴奋。绝对不应期决定了神经发放冲动(动作电位)的最高频率,保证了动作电位不能叠加(区别于局部电位),以及单向传导(只能有受刺激部位向远端传导,不能返回)的特性。不应期的产生依赖于细胞膜上特定离子通道的特点,如钠、钾离子通道。 【实验方法】 1、制作蟾蜍坐骨神经干标本 (1)双毁髓处死蟾蜍后,剥去皮肤,暴露腰骶丛神经,游离大腿肌肉之间的坐骨神经干及其下行到小腿的两个分支:胫神经和腓神经,三段结扎,剪去无关分支后离体。注意保持神经湿润。 (2)将神经搭于标本盒内,保证神经与电极充分接触,中枢端接触刺激电极S1和S2,外周端接触记录电极R1-R5,之间接触接地电极。 (3)刺激输出线两夹子分别连接标本盒的刺激电极S1和S2,插头接生物信号采集系统RM6240的刺激输出插口;信号输入倒显得红色和绿色夹子分别连接记录电极(绿色夹子在前,引导出正向波形,即出现的第一个波峰向上),黑色夹子连接接地电极,插头接通道A、蟾蜍坐骨神经干复合动作电位(CAP)临界和最大幅度的确定 (1)打开信号采集软件,从“实验”菜单中选取“神经干动作电位”,出现自动设置的界面,各项参数已设置好,界面中只有一个采集通道,对应仪器面板上的通道1(因此信号输入线应连接在通道1)。 (2)检查装置链接正确,确定装置是否正常工作,以及神经是否具有活性。采用刺激强度1V,刺激时程0.2ms,延时5ms,刺激模式为单刺激。选择“同步触发”,按下“开始刺激”后,正常情况下屏幕上会出现一个双相电位即CAP。 (3)降低刺激强度,确定CAP的阈电位。记录刺激阈值及CAP幅度(波峰与波谷之间的差值)。 (4)以0.05V或更小的间隔,逐渐增大刺激强度,观察CAP幅度的变化,同时,记录刺激电位及对应的CAP幅度,直到CAP达到稳定,即最大值(神经标本在正常生理活性时,1V 以内的刺激强度即可引起最大的CAP)。

无损探伤实验报告

2011—2012 学年第2 学期实验(实习)报告 课程名称:飞机结构防腐 授课班级:090146A 授课教师:郭巧荣 姓名:李一鲁 学号:090146111

实验一超声波检测法 一、实验目的 1、了解超声波检测法的基本原理、优点和应用局限性。 2、熟悉超声波检测设备的基本使用方法;熟悉使用垂直探头和斜探头探测试件内部缺陷的操作过程。 二、实验仪器设备(只需写明实验设备的重要组成部分,无需写具体型号) 数字式超声波探伤仪、被测试块和耦合剂 三、实验原理 所谓超声波检测法是利用超声波在被检材料中的响应关系来 检测孔蚀、裂纹等缺陷及厚度的一种检测方法。利用压电材料产生超声波,入射到被检材料中。超声波在异质界面上会发生反射、折射等现象,尤其是不能通过气体固体界面。如果金属中有气孔、裂纹、分层等缺陷(缺陷中有气体),超声波传播到金属与缺陷的界面处时,就会全部或部分反射。反射回来的超声波被探头接收,通过仪器内部的电路处理,在仪器的荧光屏上就会显示出不同高度和有一定间距的波形。可以根据波形的变化特征判断缺陷在工件中的深度、位置和形状。 四、实验步骤 1. 探头连接:将直探头、斜探头或其它类型探头与超声波探伤仪相连接。 2. 超声波探伤仪基本参数的设定:根据探伤构件的材料、外形尺寸及选用的探头类型,调节、设定超声波探伤仪的声速、声程等检测参数。 3. 仪器校准:利用标准校准试块,校准仪器,设定仪器零点。 4. 涂耦合剂:在探伤区域内涂抹耦合剂。

5. 进行探伤操作。 五、实验结果描述 纵波进行检测,工件无缺陷时,只显示始波T和底波B,当工件中有缺陷时,在始波和底波之间出现一个伤波;当工件中缺陷横截面积很大时,将无底波,声束被缺陷全反射。 用横波进行检测,工件无缺陷时,一般只显示始波T而不显示底波B,因为横波的穿透能力差,当有缺陷时,在始波后出现一个伤波。 六、回答思考题 1、简述超声波检测法的特点及适用性。 超声波检测法可用于金属、非金属、复合材料制件的损伤探测,既可以检测工件内部的缺陷,也可以检测工件表面的缺陷。可用来检测锻件、型材的裂纹、分层、夹杂,铸件中的气孔、裂纹、疏松等缺陷,焊缝中的裂纹、气孔、未焊透等缺陷,复合材料的分层、脱胶等缺陷,还可以测定工件的厚度。 采用超声波厚度仪从一侧测量构件的厚度,精确度可达到±1%。 可以用超声波厚度仪检测轻微的腐蚀,但不能检测中等或严重的腐蚀损伤。这是因为中等以上的腐蚀损伤,由于超声波的散射,不会得到构件厚度度数。但是,当清除腐蚀产物后,可以用它来测量去腐后的构件的厚度,并可以进一步确定腐蚀造成的材料的减少量。 2、说明纵波探测法根据什么确定缺陷的位置和大小。 设探测面到缺陷的距离为x,材料的厚度为t,从示波器始波T 到伤波F的长度为Lf,从始波到底波的长度为Lb,可得x=(LF/LB)t。由此,可求出缺陷的位置。另外伤波高度随缺陷或损伤增大而增高,所以可由伤波高度估计缺陷或损伤的大小。当缺陷或损伤很大时,可以移动探头,按显示缺陷或损伤的范围求出缺陷或损伤的延伸尺寸。 3、分析超声波探测法中使用斜探头产生横波的特点,说明为

生理实验报告神经干复合动作电位

人体解剖及动物生理学实验报告 实验名称神经干复合动作电位 姓名 学号 系别 组别 同组姓名

实验室温度20℃ 实验日期2015年4月24日 一、实验题目 蟾蜍坐骨神经干复合动作电位(CAP) A蟾蜍坐骨神经干CAP阈值和最大幅度的确定 B蟾蜍坐骨神经干CAP传导速度的确定 C蟾蜍坐骨神经干CAP不应期的确定 二、实验目的 确定蟾蜍坐骨神经干复合动作电位(CAP)的 (1)临界值和最大值 (2)传导速度 (3)不应期(相对不应期、绝对不应期) 三、实验原理 神经系统对维持机体稳态起着重要作用,动作电位(AP)是神经系统进行通信联系所采用的信号,多个神经元的轴突集结成束形成神经,APs沿感觉神经有外周传向中枢或沿运动神经由中枢传向外周。坐骨神经干由上百根感觉神经和运动神经组成,分别联系腿部的感受器和效应器(骨骼肌)。如果电刺激一根离体的坐骨神经干,通过细胞外引导方式,就能记录到神经干复合动作电位(CAP)。一个CAP是一系列具有不同兴奋

性的神经纤维产生的多个AP的总和。刺激强度越爱,兴奋的神经纤维数目就越多,CAP 的幅度也就越大。与胞内引导得到的单细胞AP相比,CAP是双相电位,逐级递增(非全或无),并且幅度较小。 阈电位是指一个刚刚能观测到的CAP,所对应的刺激为阈刺激。在一定范围内增加刺激强度,CAP幅度相应增大。最大CAP所对应的最小刺激电位即最大刺激。 动作电位可以沿神经以一定的速度不衰减地传导,传导速度的快慢基于多种因素,这些因素决定了生物体对其坏境的适应性。它们包括神经的直径、有无髓鞘、温度等等。 神经在一次兴奋过程中,其兴奋性将发生一个周期性的变化,最终恢复正常。兴奋的周期性变化,依次包括绝对不应期、相对不应期等等。绝对不应期内,无论多么强大的刺激都不能引起神经再一次兴奋;相对不应期内,神经兴奋性较低,较大的刺激能够引起兴奋。绝对不应期决定了神经发放冲动(动作电位)的最高频率,保证了动作电位不能叠加(区别于局部电位),以及单向传导(只能有受刺激部位向远端传导,不能返回)的特性。不应期的产生依赖于细胞膜上特定离子通道的特点,如钠、钾离子通道。 四、实验方法 蟾蜍坐骨神经标本的制作 1.双毁髓处死蟾蜍后,剥去皮肤,暴露腰骶丛神经,游离大腿肌肉之间的坐骨神经 干及其下行到小腿的两个分支:胫神经和腓神经,三段结扎,剪去无关分支后离体。注意保持神经湿润。 2. 将神经搭于标本盒内,保证神经与电极充分接触,中枢端接触刺激电极S1和S2, 外周端接触记录电极R1-R2,之间接触接地电极。 3. 刺激输出线两夹子分别连接标本盒的刺激电极S1和S2,插头接生物信号采集系 统RM6240的刺激输出插口;信号输入倒显得红色和绿色夹子分别连接记录电极(绿色夹子在前,引导出正向波形,即出现的第一个波峰向上),黑色夹子连接接地电极,插头接通道1.

生理实验报告神经干复合动作电位

人体解剖及动物生理学实验报告实验名称神经干复合动作电位 姓名 学号 系别 组别 同组姓名 实验室温度20℃ 实验日期2015年4月24日一、实验题目 蟾蜍坐骨神经干复合动作电位(CAP) A蟾蜍坐骨神经干CAP阈值和最大幅度的确定 B蟾蜍坐骨神经干CAP传导速度的确定 C蟾蜍坐骨神经干CAP不应期的确定 二、实验目的 确定蟾蜍坐骨神经干复合动作电位(CAP)的 (1)临界值和最大值

(2)传导速度 (3)不应期(相对不应期、绝对不应期) 三、实验原理 神经系统对维持机体稳态起着重要作用,动作电位(AP)是神经系统进行通信联系所采用的信号,多个神经元的轴突集结成束形成神经,APs沿感觉神经有外周传向中枢或沿运动神经由中枢传向外周。坐骨神经干由上百根感觉神经和运动神经组成,分别联系腿部的感受器和效应器(骨骼肌)。如果电刺激一根离体的坐骨神经干,通过细胞外引导方式,就能记录到神经干复合动作电位(CAP)。一个CAP是一系列具有不同兴奋性的神经纤维产生的多个AP的总和。刺激强度越爱,兴奋的神经纤维数目就越多,CAP的幅度也就越大。与胞内引导得到的单细胞AP相比,CAP是双相电位,逐级递增(非全或无),并且幅度较小。 阈电位是指一个刚刚能观测到的CAP,所对应的刺激为阈刺激。在一定范围内增加刺激强度,CAP幅度相应增大。最大CAP所对应的最小刺激电位即最大刺激。 动作电位可以沿神经以一定的速度不衰减地传导,传导速度的快慢基于多种因素,这些因素决定了生物体对其坏境的适应性。它们包括神经的直径、有无髓鞘、温度等等。 神经在一次兴奋过程中,其兴奋性将发生一个周期性的变化,最终恢复正常。兴奋的周期性变化,依次包括绝对不应期、相对不应期等等。绝对不应期内,无论多么强大的刺激都不能引起神经再一次兴奋;相对不应期内,神经兴奋性较低,较大的刺激能够引起兴奋。绝对不应期决定了神经发放冲动(动作电位)的最高频率,保证了动作电位不能叠加(区别于局部电位),以及单向传导(只能有受刺激部位向远端传导,不能返回)的特性。不应期的产生依赖于细胞膜上特定离子通道的特点,如钠、钾离子通道。 四、实验方法 蟾蜍坐骨神经标本的制作 1.双毁髓处死蟾蜍后,剥去皮肤,暴露腰骶丛神经,游离大腿肌肉之间的坐骨神经干及其下行到小腿 的两个分支:胫神经和腓神经,三段结扎,剪去无关分支后离体。注意保持神经湿润。 2. 将神经搭于标本盒内,保证神经与电极充分接触,中枢端接触刺激电极S1和S2,外周端接触记录 电极R1-R2,之间接触接地电极。

防腐实验报告

2012—2013学年第一学期 实验(实习)报告 课程名称: 授课班级: 授课教师:谭娜 姓名: 学号:

实验一超声波检测法 一、实验目的 1、了解超声波检测法的基本原理、优点和应用局限性。 2、熟悉超声波检测设备的基本使用方法;熟悉使用垂直探头和斜探头探测试件内部缺陷的操作过程。 二、实验仪器设备(只需写明实验设备的重要组成部分,无需写具体型 号) 数字式超声波探伤仪、被测试块和耦合剂 三、实验原理 超声波工作的原理:主要是基于超声波在试件中的传播特性。a 声源产生超声波,采用一定的方式使超声波进入试件;b 超声波在试件中传播并与试件材料以及其中的缺陷相互作用,使其传播方向或特征被改变;c 改变后的超声波通过检测设备被接收,并可对其进行处理和分析;d 根据接收的超声波的特征,评估试件本身及其内部是否存在缺陷及缺陷的特性。 四、实验步骤 1.探头连接:将直探头、斜探头或其它类型探头与超声波探伤仪相连接。 2.超声波探伤仪基本参数的设定:根据探伤构件的材料、外形尺寸及选用的探头 类型,调节、设定超声波探伤仪的声速、声程等检测参数。 3.仪器校准:利用标准校准试块,校准仪器,设定仪器零点。 4.涂耦合剂:在探伤区域内涂抹耦合剂。 5.进行探伤操作。 五、实验结果描述 不同的缺陷显示的波形不一样,随着缺陷深度的增加,显示器上的波形也增加。 六、回答思考题 1、简述超声波检测法的特点及适用性。

答:a 适用于金属、非金属和复合材料等多种制件的无损检测;b 穿透能力强,可对较大厚度范围内的试件内部缺陷进行检测。如对金属材料,可检测厚度为1~2mm 的薄壁管材和板材,也可检测几米长的钢锻件;c 缺陷定位较准确;d 对面积型缺陷的检出率较高;e 灵敏度高,可检测试件内部尺寸很小的缺陷;f 检测成本低、速度快,设备轻便,对人体及环境无害,现场使用较方便。 2、说明纵波探测法根据什么确定缺陷的位置和大小。 答:工件无缺陷时,只显示始波T和底波B。当工件中有缺陷时,在始波和底波之间出现一个伤波;当缺陷横截面积很大时,将无底波,声束被缺陷全反射。设探测面到缺陷的距离为x,材料厚度为t,从示波器始波T到伤波F的长度为LF,从始波到底波的长度为LB,可得x=(LF/LB)t。由此,可求出缺陷的位子。另外,伤波高度岁缺陷或损伤增大而增高,所以可由伤波高度估计缺陷或损伤的大小。当缺陷或损伤很大时,可以移动探头,按显示缺陷或损伤的范围求出缺陷或损伤的延伸范围。 3、分析超声波探测法中使用斜探头产生横波的特点,说明为什么在超声波检测中使用横波探测来辅助纵波探测。 答;通过选择探头角度,使声束与缺陷走向垂直,从而使反射回波最大,达到监测目的。横波检测可以弥补纵波检测的不足之处。用纵波直探头检测,工件中垂直于探测面的缺陷或损伤不易被发现。因此,常辅以横波检查。横波波长短,检查能力比纵波高,波束指向性好,分辨力强。

机能学实验报告

机能学实验报告 实验一、小肠平滑肌生理特性的观察与分析 一、实验目的—— 1.观察温度、乙酰胆碱、肾上腺素等药物对离体家兔小肠平滑肌的作用; 2.观察消化道平滑肌的一般生理特性及分析理化环境改变对其舒缩活动的影响。 二、实验原理 消化道平滑肌和骨骼肌、心肌一样,也具有兴奋性、传导性和收缩性,有些也具有自律性。相比之下消化道平滑肌的兴奋性低,收缩慢,伸展性大,具有紧张性收缩,对化学物质、温度变化

及牵张刺激较敏感等特性。小肠离体后,置于适宜的溶液中,观察其收缩活动及环境变化的影响,观察分析上述生理特性。 三、实验材料--- 1、实验动物:家兔 2、器械、药品:电热恒温水浴锅、浴槽、张力换能器(量程为25g以下)、BL-410生物记录系统、L型通气管、道氏袋、注射器、培养皿、温度计、烧杯、螺丝夹、三维调节器、台氏液、0.01%去甲肾上腺素、0.01%乙酰胆碱、1mol/L NaOH溶液、lmol/L HCl 溶液、2%CaCI2溶液。 四、实验方法和步骤 1、标本制备流程: ①击昏家兔: 用木槌猛击兔头枕部,使其昏迷。 ②剖开腹腔快速取出肠管: 立即剖开腹腔,找出胃幽门与十二指肠交界处,快速取长20~30cm的肠管,先将与该肠管相连的肠系膜沿肠缘剪去,置于供氧台氏液中轻轻漂洗,把肠内容物基本洗净。 ③制作离体肠标本: 将肠管分成数段,每段长2-3cm,两端各系一条

线,保存于供氧的38C左右的台氏液中 2、仪器安装与调试实验安装(如图): 恒温水浴锅控制加热,恒温工作点定在38C。 将充满氧气的道氏袋与通气钩相连接,将肠段一端系在通气管钩上,另一端与张力换能器相连。控制通气量,使氧气从通气管前端呈单个而不是成串逸出。 仪器调试:BL-410系统的使用,选择“实验项目”中的“消化实验”选中“消化道平滑肌生理特性”。相关参数设置的参考值:时间常数t -DC 高频滤波 F —30Hz,显速—4.00s/div,增益—100g。用鼠标左键单击工具条上的“开始” 按钮,调节参数至波形幅度、密度适当,待收缩曲线稳定后,单击记录按钮。 观察项目现象及解释 1.待标本稳定后,记录小肠平滑肌收缩的对照曲线。 2?乙酰胆碱的作用用滴管吸入0.01%乙酰胆碱向灌流浴槽内滴1~2滴。观察到明显效应后,立即从排水管放出浴槽内含乙酰胆碱的台氏液,加入新鲜温台氏液,由此反复3次,以洗涤或稀释残留的乙酰胆碱,使之达到无效浓度,待小肠运动恢复后进行

神经干动作电位与神经纤维动作电位比较

2.神经干动作电位是神经兴奋的客观标志,给具有兴奋性的神经干以一定强度的刺激,会产生动作电位并传导。在神经细胞外面,已兴奋部位的膜外电位负于静息部位。当神经冲动通过后,兴奋处的膜外电位又恢复到静息时的水平。所以兴奋部位和邻近部位之间可出现电位差,用引导电极引导出此电位差,输入到示波器,则可记录到动作电位的波形。本实验采用细胞外记录法,可引导出坐骨神经的复合动作电位。 3.经纤维兴奋的标志是产生一个可以传导的动作电位,它以局部电流或跳跃式传导的方式沿神经纤维传导。其传导速度取决于神经纤维的直径、内阻、有无髓鞘等因素。坐骨神经-腓神经为一混合神经干,其动作电位是由一群不同兴奋阈值、传导速度和幅值的电位总和而成,为复合动作电位。蛙类坐骨神经干中以Aa类纤维为主,传导速度大约35~40m/s。测定神经冲动在神经干上传导的距离和通过这些距离所需的时间,即可计算出该神经干兴奋传导的速度。 4.动作电位在神经纤维上的传导有一定的速度。不同类型的神经纤维,其传导速度各不相同,取决于神经纤维的直径、有无髓鞘、环境温度等因素。蛙类坐骨神经干中以Aα类纤维为主,传导速度大约35~40m/s。测定神经冲动在神经干上传导的距离(d)与通过这一距离所需的时间(t),即可根据V=d/t 求出神经冲动的传导速度。 5.神经纤维的兴奋部位相对于未兴奋部位来说呈负电位,两点之间存在电位差,通过单极或双极电极的引导在记录系统上进行显示和分析。由于采用的是胞外记录的方法,因而在单极记录时,测得的动作电位实际上是组成神经干中的每根神经纤维兴奋后的超射值在神经干表面的叠加。即此动作电位是一复合波,其上升相、下降相及峰值不是相应的单一动作电位波形的去极化相、复极化相及峰电位。在双极记录时,测得的波形实际上是两个记录电极的电位差,与单一动作电位波形相差更大,这使问题的分析更加复杂。动物实验制作的坐骨神经 腓肠肌标本中,神经干是由具有不同生理特性的不同种类神经纤维所组成,故复合动作电位记录的是复合波。然而,每种纤维兴奋后传导速度各不一样,波长也各不相等,加上引导方式不同,这也增加了我们分析复合双相动作电位的复杂性及带来传导速度测定的困难。 6.对于单根神经纤维,其兴奋后产生负波。对于某一点,负波的产生和终止不是突然的,而需要一定的时间才能达到最高点,故记录曲线的上升和下降都具有一定的斜率。神经干受刺激后,由于不同神经纤维兴奋产生了不同的负波,它们波长不等,传导速度也不相等,所以

神经干动作电位实验报告

神经干动作电位实验报Experimental report of neUhtstem action potential 告 Intern ship report 实验报告

一、实验目的: 1. 学习蛙坐骨神经干标本的制备 2. 观察坐骨神经干的双相动作电位波形,并测定最大刺激强度 3. 测定坐骨神经干双相动作电位的传导速度 4. 学习绝对不应期和相对不应期的测定方法 5. 观察机械损伤或局麻药对神经兴奋和传导的影响 二、实验材料 1. 实验对象:牛蛙 2. 实验药品和器材:任氏液,2%普鲁卡因,各种带USB接口或插头的连接导线,神经屏 蔽盒,蛙板,玻璃分针,粗剪刀,眼科剪,眼科镊,培养皿,烧杯,滴管,蛙毁髓探针,BL-420N 系统 三、主要方法和步骤: 1. 捣毁脑脊髓 2. 分离坐骨神经 3. 安放引导电极 4. 安放刺激电极 5. 启动试验系统 6. 观察记录 7. 保存 8. 编辑输出 四、实验结果和讨论 1.观察神经干双相动作电位引导(单通道,单刺激) 如图,观察到一个双相动作电位波形。

Pm驴:i SQOQOKi 2.0 ms 7 射¥ 也00z 时间 一—j .................... : .................. 频率: 最大值- ...... ' ........ ' ......... [ ........ ;...... [协小值: -15 - -20 _ 1 OOY oo: oo. m兀卫EQ创 2.神经干双相动作电位传导速度测定(双通道,单刺激) -ID kUUUChz L.U ns ZlT m¥ii J.ttmz j ................. ■:- I 2? 1. WV 1 I --------------- 14 I I 4 I I I ooTio mo oa nr iins on oo oru oom coe co nr n o日on m nn oo oo ni2 DO on rtu OO CIJ ri^ oo oc OIA (1) 选择“神经骨骼肌实验”一“…传导速度测定” (2) 改变单刺激强度 (3) 传导速度=传导距离(R1--R2-)/传导时间(t 2-t 1) 如图所示,两个波峰之间的传导时间△ t = (t 2-t 1) = 0.66ms 实验中,我们设定在引导电极1和3之间的距离△ R = (R 1--R2-) = 1cm 故传导速度v = △ R/ △ t = 1cm / 0.66ms = 15.2 m/s 释: 最 大ii; ■小 值: 平均值: 嶂赠但? 面租 BJ祠; 最知宜. 环值: 平均值: 而租

复材综合实验报告

本科实验报告 课程名称: 复合材料工程综合实验 姓 名: 贾高洪 专业班级 复材1301 学 号: 130690101 指导教师: 母静波、侯俊先、王光硕 2016年 5 月 27 日 装备制造学院实验报告 课程名称:__复合材料工程综合实验__________指导老师:实验名称: 手糊成型工艺实验 实验类型:_____操作实验_ 同组学生姓名:_____ _____ 一、实验目的和要求 1.掌握手糊成型工艺的技术要点、操作程序和技巧; 2.学会合理剪裁玻璃布、毡和铺设玻璃布、毡; 3.进一步理解不饱和聚酯树脂、脱模剂和胶衣树脂配方、凝胶、固化和富树脂层等概念和实际意义。 二、实验内容和原理 实验内容: 1.根据具体条件设计一种切实可行的制品(脸盆、垃圾桶)。 2.制品约为3mm ~4mm 厚,形状自定。 3.按制品要求剪裁玻璃布、毡。

4.手糊工艺操作,贴制作人标签。 5.固化后修毛边,如有可能还可装饰美化。 6.对自己手糊制品进行树脂含量测定。 实验原理: 手糊成型是最早使用的一种工艺方法。随着坡璃钢工业的迅速发展,尽管新的成型工艺不断涌现,但由于手糊成型具有投资少;无需复杂的专用设备和专门技术;可根据产品设计要求合理布置增强材料的材质、数量和方向,可以局部随意加强;不受产品几何形状和尺寸限制,适合于大型产品和批量不大的产品的生产等特点,至于仍被国外普遍采用,在各国玻璃钢工业生厂中仍占有工要地位。象我国这样人口众多的国家,在相当长的一段时间内,手糊成型仍将是发展玻璃钢工业的一种主要成型方法。 不饱和聚酯树脂中的苯乙烯既是稀释剂又是交联剂,在固化过程中不放出小分子,手糊制品几乎90%是采用不饱和聚酯树脂作为基体。模具结构形式大致分为阴模、阳模、对模三种。 阴模可使产品获得光滑的外表面,因此适用于产品外表面要求较光,几何尺寸较准确的产品,如汽车车身、船体等。阳模能使产品获得光滑的内表面,适用于内表几何尺寸要求较严的制品,如浴缸、电镀槽等。 脱模材料是玻璃钢成型中重要的辅助材料之一,如果选用不当,不仅会给施工带来困难,而且会使产品及模具受到损坏。脱模材料的品种很多,而且又因选用的粘接剂不同而各有所别。常用的脱模剂可归纳为三大类:即薄膜型脱模材料、混合溶液型脱模剂和油膏、蜡类脱模剂。薄膜型脱模材料有:玻璃纸、聚酯薄膜,聚氯乙烯薄膜,聚乙烯醇薄膜等等。本次实验我们选用聚乙烯醇做脱模剂。 本实验利用手糊工艺制备简单的玻璃纤维增强聚合物基复合材料制件。常温常压固化。 三、主要仪器设备 管式炉:差示扫描量热仪 仪器型号:OTF-1200X 生产厂商:合肥科晶材料技术有限公司 1.手糊工具:辊子、毛刷、刮刀、剪刀。 2.玻璃纤维布、毡,不饱和聚酯树脂,引发剂,促进剂,塑料盆,塑料桶。 四、操作方法和实验步骤 (1)配制脱模剂:聚乙烯醇8克溶解于64克水,在缓慢的加入64克乙醇。 (2)按制件形状和大小裁剪玻璃布或毡备用。 (3)在模具表面均匀连续的用纱布涂上一层聚乙烯醇溶液,脱模剂完全干透后,应随即上胶衣或进

完整word版,人体机能 蟾蜍坐骨神经干动作电位传导速度和兴奋性不应期的测定实验报告

神经干双向动作电位的引导传导速度及不应期的测定作者:2011222681宋利婷组员:2011222702曾惜2011222709张芮2011222698杨袁虹 一、实验对象:蟾蜍 二、实验目的:观察蟾蜍坐骨神经动作电位的基本波形,掌握坐骨神经制备方法与引导动作电位的方法,理解与刺激和最大刺激强度的概念测定潜伏期时程和波幅,学会通过潜伏期法和潜峰法测定神经冲动的传导速度,通过测定神经干不应期理解兴奋性在兴奋过程中的变化过程。 三、实验内容 图一:阈刺激和最大刺激强度的测定 由上图可知,以0.100v为起始刺激强度,在0.100到0.300v的刺激时,不产生动作电位,

逐渐增大强度,一直到当刺激强度为0.4V时,刚好引产生动作电位,即阈刺激为0.4V,当刺激强度达到1.4V后,即使再增加刺激强度,动作电位的幅也不再改变,即最大(适)刺激强度为1.4V. 图二:潜伏期波幅时程及速度的测定 由在最适刺激强度时动作电位原图上进行区间测量可知,潜伏期为0.60ms,时程t1为2.84ms ,波幅为2.72mV,输入刺激电极到第一个引导电极间距离s=1.3cm,以传导速度和根据速度的公式计算传导速度v1=s/t1,求得的速度v1=45m/s 图三:潜峰法测量速度

如图是通过测量两个通道的动作电位波峰间的时间差,为(t1-t2),测量并输入两对引导电极间的距离为(s2-s1),s2=4.7cm,s1=3.8cm,t1-t2=0.28ms,由传导速度和用公式计算传导速度:v2=(s2-s1)/(t1-t2),v2=321m/s 图四:绝对不应期和相对不应期的测定

实验报告

2011—2012学年第一学期实验(实习)报告 课程名称:飞机结构防腐 授课班级:100141D 授课教师:谭娜 姓名:靳勇 学号:100141412

实验一超声波检测法 一、实验目的 1、了解超声波检测法的基本原理、优点和应用局限性。 2、熟悉超声波检测设备的基本使用方法;熟悉使用垂直探头和斜探头探 测试件内部缺陷的操作过程。 二、实验仪器设备(只需写明实验设备的重要组成部分,无需写具 体型号) 数字式超声波探伤仪、被测试块和耦合剂 三、实验原理 主要是基于超声波在试件中的传播特性。a 声源产生超声波,采用一定的方式使超声波进入试件;b 超声波在试件中传播并与试件材料以及其中的缺陷相互作用,使其传播方向或特征被改变;c 改变后的超声波通过检测设备被接收,并可对其进行处理和分析;d 根据接收的超声波的特征,评估试件本身及其内部是否存在缺陷及缺陷的特性。 四、实验步骤 1、探头连接:将直探头、斜探头或其它类型探头与超声波探伤 2、仪相连接。 3、超声波探伤仪基本参数的设定:根据探伤构件的材料、外形尺寸及选用的探头类型,调节、设定超声波探伤仪的声速、声程等检测参数。 4、仪器校准:利用标准校准试块,校准仪器,设定仪器零点。 5、涂耦合剂:在探伤区域内涂抹耦合剂。 6、进行探伤操作 五、实验结果描述

在检测中,超声波探伤仪探头在被测工件移动,当工件无缺陷时,仪器上只显示开始波T和底波B,当工件有缺陷时在始波和底波之间出现一个伤波。当缺陷横波面积很大时,将无底波、声束被缺陷全反射。可以从伤波与始波的相对位置上分析,判断出工件上裂纹的位置。 六、回答思考题 1、简述超声波检测法的特点及适用性。 答:超声波检测可用于金属、非金属、复合材料制件的损伤检测,既可以检测工件内部的缺陷。也可以检测锻件、型材的裂纹、分层、夹杂,铸件中的气孔、裂纹、疏松等缺陷,焊缝中的裂纹、气孔、未焊透等缺陷,复合材料的分层、脱胶等缺陷,还可以测定工件的厚度。 2、说明纵波探测法根据什么确定缺陷的位置和大小。 答:设探测面到缺陷的距离为x,材料厚度为t,示波器始波T到伤波F的长度为Lf,从始波到底波的长度为Lb,可得x=(Lf/Lb)t由此,可求出缺陷的位置。 3、分析超声波探测法中使用斜探头产生横波的特点,说明为什么在超声波检测中使用横波探测来辅助纵波探测。 答:在超声波检测中,使用斜探头产生的波既有横波时又有纵波。斜探头产生的波在平行于探测面方向上是纵波,在垂直于探测面方向上是横波。横波检测可弥补纵波检测的不足之处。用纵波探头检测,工件中垂直于探测面的缺陷或损伤不易发现。因此,常辅以横波检查。横波波长短,检查缺陷能力比纵波高,波束指向性比较好,分辨力强。

神经干动作电位传导速度的测定

For personal use only in study and research; not for commercial use 神经干动作电位传导速度的测定 实验对象:蟾蜍 一实验目的 掌握坐骨神经标本的制备方法。 掌握引导神经干复合动作电位和测定其传导速度的基本原理。 二相关知识 (一)兴奋及兴奋性的概念 (二)动作电位的潜伏期、动作电位时程和幅值 1、动作电位:各种可兴奋细胞在受到刺激而兴奋时,可以在细胞膜静息电位的基础 上发生一次短暂的,可向周围扩布的电位波动。这种电位波动称为动作电位。(三)、动作电位的传导 局部电流的形式 1、细胞外记录 2、神经干的动作电位 神经干是由许多粗细不等的有髓和无髓神经纤维组成的混合神经,故神经干动作电位与单根神经纤维的动作电位不同,它是由许多神经纤维的动作电位合成的一种复合电位。 三实验原理 (一)、单根神经纤维动作电位的引导及其传导 1、记录出了一个先升后降的双相动作电位的原理 当神经纤维未受刺激时,膜外与电极所接触的两点之间没有电位差,所以两电极之间也无电位差存在,扫描线为一水平基线。在神经干左端给予电刺激后,则产生一个向右传导的冲动(负电位),当冲动传到1电极(负电极)下方时,此处电位较2处为低,产生了电位差,扫描线向上偏转,记录出一个向上的波形(在电生理实验中,为了便于观察,习惯上规定负波向上)。随后,冲动继续向右侧传导,离开1电极传向2电极处。当它到达2电极(正电极)下方时,因1电极处神经差不多已恢复到原来的状态,于是2电极处又较1电极处为负,引起扫描线向下偏转,记录出一个向下的波形。这样,在神经冲动向右传导的过程中,就记录出了一个先升后降的双相动作电位。 负电极在前时,它首先记录到神经干表面由正变负的电位变化,经历了由正到负再到正的过程,因此记录出动作电位的上相。当在后的正电极记录到这种同样的电位变化过程时,显示相反的情况,记录出动作电位的下相。如果互换正、负电极的位置,则记录到先降后升的双相动作电位。 C.?? A点神经纤维多于B点(次要原因)。 (二)、神经干动作电位的引导及其传导 四实验步骤 (一)、制备蛙类坐骨神经-胫腓神经标本 通过观看录象让学生学习制作方法

相关主题
文本预览
相关文档 最新文档