当前位置:文档之家› 天然水体中的溶解性有机氮

天然水体中的溶解性有机氮

天然水体中的溶解性有机氮
天然水体中的溶解性有机氮

全世界河流中的总氮有14%~90%由有机氮组成。而作为有机氮的主要成分,溶解有机氮(Dissolved organic nitrogen, DON)是多数天然水体中溶解氮的主要组成部分,所占百分比约达60%~69%。传统观点认为DON是一类难以被利用、生物有效性(bioavailability)低的有机氮库,不会促进水体水质富营养化,因而不重视DON的管理和控制,甚至在水体氮负荷估算时忽略不计DON含量。DON 是天然水体有机质的重要组成成分,其含量、生物有效性及其生态环境效应逐渐受到关注。目前世界上DON的研究报道主要关注河口、近海和海洋生态系统,而淡水生态系统中的DON研究相对较为缺乏。

能利用DON的浮游植物,特别是一些有毒藻种(如水华束丝藻Aphanizomenon flosaquate、铜绿微囊藻Microcystis aeruginosa)具有其他藻种所没有的强大竞争力,可在无机氮缺乏而有机氮浓度相对较高的环境中很好的生长。有毒藻种可以产生肝毒素、神经毒素等藻毒素,不利于作为饮用水源的淡水水体的安全保障。当前我国微污染原水普遍存在有机物含量超标、含氮化合物浓度高、藻类大量繁殖等问题。另外,DON绝大部分物质本身对人体具有直接或间接的毒害作用。研究发现,水中DON 大部分组成物质本身对人体具有直接或间接致毒作用,可生成更多的消毒副产物、产生较为严重的膜污染等,因此DON 相关研究已成为国际饮用水处理领域新的研究方向。尤其是近年来,研究人员发现DON 易和消毒剂发生反应生成含氮消毒副产物( N-DBPs) ,如卤化腈、二甲基亚硝胺、卤代硝基甲烷、卤代酰胺等,这些N-DBPs 的浓度远低于三卤甲烷、卤乙酸等常规消毒副产物,但其“三致”特性却远超过后者。DON 是N-DBPs 的前体物,有效削减DON 是控制消毒过程中N-DBPs 生成的重要手段,而了解微污染原水中DON 的组成规律是关键。

1.淡水水体DON 含量与来源

(1)含量

多数自然水体中的TDN含量与其中的DON密切相关。开阔海洋表面DON 约占TDN的83%,河口DON约占13%;近海约占18%。在淡水生态系统中,其DON浓度要比DIN浓度高。

当前,测定DON含量的所有方法都是采用差减法,需依赖于测定总溶解性氮(TDN, Totaldissolved nitrogen)浓度的测定,然后再减去溶解性无机氮(DIN,

dissolved inorganic nitrogen)浓度(分别测定的NH4+,NO3-和NO2-浓度的加和),这使得测定结果具有3方面的分析误差,即测定TDN、NH4+和(NO3-、NO2-)的分析误差,因此DON含量测定时,为了提高其测定精度,应尽可能的减少上述3方面的分析误差。TDN测定的常见方法有:①过硫酸钾硝化湿化学氧化测定NO3-(Persulfate Oxidation, PO);②高温催化氧化至NO,分光光谱或化学发光测定。

(2)来源

DON来源可分为外源和内源两种。外源包括陆地径流、植物碎屑和土壤淋溶液、沉积物释放与大气沉降等。内源可能包括藻类、大型植物以及细菌、细胞死亡或自我分解,微型及大型浮游动物捕食和排泄、分泌物释放等。DON的来源是影响水体中DON含量动态特征的关键因素。

①外源

在淡水水体中,大部分DON来自陆地径流、植物碎屑和土壤淋溶液。不同流域属性的DON特征因土壤、植被、人类扰动强度等可能具有较大的差异性。沉积物释放是水生态系统中上覆水相DON的重要来源之一,大气DON 输入是水生态系统中DON 的又一重要来源。

②内源

水生态系统中DON内源也是DON来源的重要形式。DON内源产生的过程包括:藻类胞外分泌物(extracellular exudate production),浮游动物捕食(Zooplankton sloppy feeding),排泄物分解(faecal pellet decay),滤过性毒菌细胞溶解(viralcell lysis),颗粒物溶解,以及细菌转换和释放作用等。

2.淡水水体DON 生物可利用性与估算

(1)生物可利用性

传统观点认为DON是一类难以被利用、生物有效性(bioavailability)低的有机氮库。研究表明,DON可作为氮源而被藻类和细菌利用,是水生态系统中重要的活性组成成分,可直接参与固氮、同化、氨基化等氮循环过程。近年来,DON生物可利用性评价引起较为广泛的关注,研究范围主要包括雨水和不同土地利用(森林、牧场、湿地、城市和城市郊区)径流输入源的DON对河口、近海等水体DON生物可利用性和浮游生物群落的影响,而对淡水水体(水库、湖

泊等)研究较为缺乏。

由氮限制的细菌生物测试的天然水体DON生物有效性一般在8%~72%之间。天然水体DON的生物有效性变化幅度较大,其原因可能是DON来源不同引起的。细菌在天然水体DON对藻类的生物有效性具有重要作用。若在藻类培养试验中缺少细菌,可能导致天然水体DON对藻类生物有效性量的低估。

多数研究天然水体DON的生物有效性都集中研究藻类利用尿素、溶解游离氨基酸(dissolvedfree amnio acids, DFAA)和溶解复合氨基酸(dissolved amino acids,DCAA)的动力学特征和物质代谢特征。DFAA能够直接被藻类利用,但是DCAA在藻类吸收之前,须水解为单体和寡聚物或者是通过细菌矿化。但是尿素、DFAA和DCAA含量占DON的比例较低,不到30%。因而能被藻类利用的DON化合物应该还有其他一类化合物。

但是完全认识DON库中的所有化合物十分困难,从而很难评估DON的生物有效性。因而近年来有学者从相对分子质量分布探讨藻类对废水源DON的生物有效性,一般认为是小相对分子质量的污水源DON易被藻类利用。另外亲水性和疏水性也是DON化合物的重要化学特征。藻类利用DON不同相对分子质量分布组分和极性组分特征的报道还很少,尤其是淡水水体。因而,有必要开展藻类对DON的不同相对分子质量和极性组分的生物有效性研究,深入理解藻类利用DON的化学本质。

随着DON 的生物有效性研究的深入,人们逐渐认识到自然水体DON 含量活性很高,是许多微生命体包括有毒藻种的氮营养源,可能导致的饮用水源安全以及富营养化等方面的生态环境问题不容忽视。目前淡水水体DON 的研究还较为缺乏。未来研究应重视淡水水体DON 生物有效性与其化学本质(相对分子质量分布、极性等特征)的揭示,尤其是对有毒藻种。这些成果的取得,有助于深入理解DON 在浮游植物生长中

的重要营养作用与潜在的生态风险、环境效应,有助于阐述淡水水体氮循环过程、水质恶化演变规律和趋势,可为水体环境保护和饮用水供水安全提供科学依据。

常见有机溶剂的溶解性汇总

常用溶剂的沸点、溶解性和毒性 溶剂名称沸点(101.3kPa)溶解性毒性 液氨-33.35℃特殊溶解性:能溶解碱金属和碱土金属剧毒性、腐蚀性 液态二氧化硫-10.08 溶解胺、醚、醇苯酚、有机酸、芳香烃、溴、二硫化碳,多数饱和烃不溶剧毒 甲胺-6.3 是多数有机物和无机物的优良溶剂,液态甲胺与水、醚、苯、丙酮、低级醇混溶,其盐酸盐易溶于水,不溶于醇、醚、酮、氯仿、乙酸乙酯中等毒性,易燃 二甲胺7.4 是有机物和无机物的优良溶剂,溶于水、低级醇、醚、低极性溶剂强烈刺激性 石油醚不溶于水,与丙酮、*****、乙酸乙酯、苯、氯仿及甲醇以上高级醇混溶与低级烷相似 ***** 34.6 微溶于水,易溶与盐酸.与醇、醚、石油醚、苯、氯仿等多数有机溶剂混溶*****性 戊烷36.1 与乙醇、*****等多数有机溶剂混溶低毒性员?婷疋0? 二氯甲烷39.75 与醇、醚、氯仿、苯、二硫化碳等有机溶剂混溶低毒,*****性强 二硫化碳46.23 微溶与水,与多种有机溶剂混溶*****性,强刺激性 溶剂石油脑与乙醇、丙酮、戊醇混溶较其他石油系溶剂大 丙酮56.12 与水、醇、醚、烃混溶低毒,类乙醇,但较大 1,1-二氯乙烷57.28 与醇、醚等大多数有机溶剂混溶低毒、局部刺激性 氯仿61.15 与乙醇、*****、石油醚、卤代烃、四氯化碳、二硫化碳等混溶中等毒性,强*****性甲醇64.5 与水、*****、醇、酯、卤代烃、苯、酮混溶中等毒性,*****性 四氢呋喃66 优良溶剂,与水混溶,很好的溶解乙醇、*****、脂肪烃、芳香烃、氯化烃吸入微毒,经口低毒己烷68.7 甲醇部分溶解,比乙醇高的醇、醚丙酮、氯仿混溶低毒。*****性,刺激性 三氟代乙酸71.78 与水,乙醇,*****,丙酮,苯,四氯化碳,己烷混溶,溶解多种脂肪族,芳香族化合物 1,1,1-三氯乙烷74.0 与丙酮、、甲醇、*****、苯、四氯化碳等有机溶剂混溶低毒类溶剂 四氯化碳76.75 与醇、醚、石油醚、石油脑、冰醋酸、二硫化碳、氯代烃混溶氯代甲烷中,毒性最强 乙酸乙酯77.112 与醇、醚、氯仿、丙酮、苯等大多数有机溶剂溶解,能溶解某些金属盐低毒,*****性 乙醇78.3 与水、*****、氯仿、酯、烃类衍生物等有机溶剂混溶微毒类,*****性 丁酮79.64 与丙酮相似,与醇、醚、苯等大多数有机溶剂混溶低毒,毒性强于丙酮 苯80.10 难溶于水,与甘油、乙二醇、乙醇、氯仿、*****、、四氯化碳、二硫化碳、丙酮、甲苯、二甲苯、冰醋酸、脂肪烃等大多有机物混溶强烈毒性 乙睛81.60 与水、甲醇、乙酸甲酯、乙酸乙酯、丙酮、醚、氯仿、四氯化碳、氯乙烯及各种不饱和烃混溶,但是不与饱和烃混溶中等毒性,大量吸入蒸气,引起急性中毒 异丙醇82.40 与乙醇、*****、氯仿、水混溶微毒,类似乙醇 1,2-二氯乙烷83.48 与乙醇、*****、氯仿、四氯化碳等多种有机溶剂混溶高毒性、致癌 乙二醇二甲醚85.2 溶于水,与醇、醚、酮、酯、烃、氯代烃等多种有机溶剂混溶。能溶解各种树脂,还是二氧化硫、氯代甲烷、乙烯等气体的优良溶剂吸入和经口低毒 三氯乙烯87.19 不溶于水,与乙醇.*****、丙酮、苯、乙酸乙酯、脂肪族氯代烃、汽油混溶有机有毒品_ 三乙胺89.6 水:18.7以下混溶,以上微溶。易溶于氯仿、丙酮,溶于乙醇、***** 易爆,皮肤黏膜刺激性强 丙睛97.35 溶解醇、醚、DMF、乙二胺等有机物,与多种金属盐形成加成有机物高度性,与氢氰酸相似 庚烷98.4 与己烷类似低毒,刺激性、*****性

最全的常用有机溶剂参数表

溶剂危害性分类 一类溶剂:应避免 致癌物;备受怀疑的致癌物;环境危害物 二类溶剂:设定残余量,限量使用 非基因性动物致癌物;可能导致不可逆中毒,比如神经性中毒,畸形;可能导致其他可逆性中毒 三类溶剂: 低毒 对人体有潜在毒性,可以接触,但不超过50mg/day。 Solvent Other Names Structure Class Acetic acid Ethanoic acid CH3COOH三类溶剂 2-Propanone Acetone CH3COCH3三类溶剂 Propan-2-one Acetonitrile CH3CN二类溶剂 Anisole Methoxybenzene三类溶剂 Benzene Benzol一类溶剂 n-Butyl alcohol 1-Butanol CH3(CH2)3OH三类溶剂 Butan-1-ol sec-Butyl alcohol 2-Butanol CH3CH2CH(OH)CH3三类溶剂 Butan-2-ol Butyl acetate Acetic acid butyl ester CH3COO(CH2)3CH3三类溶剂 tert-Butylmethyl ether2-Methoxy-2-methyl- propane(CH3)3COCH3三类溶剂Carbon tetrachloride Tetrachloromethane CCl4一类溶剂 Chlorobenzene二类溶剂Chloroform Trichloromethane CHCl3二类溶剂 Isopropylbenzene Cumene 三类溶剂 (1-Methyl)ethylbenzene Cyclohexane Hexamethylene二类溶剂 1,2-Dichloroethane sym-Dichloroethane CH2ClCH2Cl一类溶剂

高聚物与有机溶剂溶度参数及有机溶剂溶解性对照表

高聚物与有机溶剂溶度参数及有机溶剂溶解性对照表 溶剂δ/103(J/m3)1/2 聚合物δ/103(J/m3)1/2 溶剂δ/103(J/m3)1/2戊烷14.4(13.8) 聚乙烯15.8~17.0 水47.9 正已烷14.9 聚丙烯16.6~16.8 氨水25 环已烷16.8 聚氧化丙烯15.3~20.3 乙二醇32.1(29.0)正庚烷15.2 聚苯乙烯17.4~19.0 丙三醇33.8 正辛烷15.4 聚甲基丙烯酸甲酯18.6(26.2) 环已醇23.3 异辛烷14 聚氯乙烯19.2~19.8 甲醇29.7 正壬烷15.7 聚丙烯酸甲酯19.8~21.3 乙醇26 正癸烷15.9 聚偏二氯乙烯20.3~25.0 正丁醇23.3 正十四烷16.3 氯磺化聚乙烯16.4~20.5 正戊醇 22.3~21.6 丁二烯13.9 环氧树脂19.8~22.5 异戊醇19.6异戊二烯14.8 聚甲醛20.3~22.5 环已酮19 苯18.7 尼龙-66 27.8 四氢呋喃19 甲苯18.2 聚丙烯腈25.6~31.5 醋酸25.6(18.9)二甲苯17.9~18.4 酚醛树脂23.5 甲酸27.6 乙苯18 聚三氟氯乙烯14.7~16.2 甲酸甲酯21.9氯苯19.4(19.8) 聚四氟乙烯12.7 乙酸乙酯18.6 硝基苯20.5(19.6) 聚丁二烯16.6~17.6 甲基丙烯17.8乙醚15.7 天然橡胶16.2(16.7) 三乙胺14.9 正已醇21.9 氯丁橡胶16.8~18.8 苯甲醛22.1正辛醇21.1 丁苯橡胶16.6~17.6 乙醛20.1 正庚醇20.5 聚硫橡胶18.4~19.2 甲酰胺36.4苯胺16.1(24.3) 聚碳酸酯19.4~20.1 乙酰胺34.2丙烯腈21.4 丁基橡胶15.8 二乙酮18 DMF 24.8 聚醋酸乙酯19.2(22.5) 氰乙烯17.8 DMAC 22.7 丁腈橡胶19.4(18.9) 偏二氯乙烯17.6丙酮20.1(20.5) 聚硅氧烷19.2 氯丁二烯19 丁酮19 二硝基纤维素21.5(23.5) 二硫化碳20.5苯乙烯17.7(18.8) 醋酸纤维素22.3~23.3 二甲砜29.9二氯甲烷19.8(20.5) 聚氨基甲酸酯20.5 二甲亚砜27.4氯仿19 聚乙烯醇47.9(25.8) 萘20.3 四氯化碳17.6 乙丙橡胶16.2 溶纤剂19 三氯乙烯18.8 聚二甲基硅氧烷14.9~15.5 四氯乙烯19.1 聚对苯二甲酸乙二醇酯21.9(19.8) 四氯乙烷21.3(19.4) 聚二甲基硅氧烷14.9~15.5

【精品】常用试剂的溶解性

常用试剂的溶解性 1 . 二甲胺:有机物和无机物的优良溶剂,溶于水、低级醇、醚、低极性溶剂, 强烈刺激性。 2 . 石油醚:不溶于水,与丙酮、乙醚、乙酸乙酯、苯、氯仿及甲醇以上高级醇 混溶,与低级烷相似。 3 . 乙醚:微溶于水,易溶与盐酸,与醇、醚、石油醚、苯、氯仿等多数有机溶 剂混溶。麻醉性 4 . 戊烷:与乙醇、乙醚等多数有机溶剂混溶,低毒性。 5 .二氯甲烷:与醇、醚、氯仿、苯、二硫化碳等有机溶剂混溶。低毒性,麻醉 性强 7 . 二硫化碳:微溶与水,与多种有机溶剂混溶。麻醉性,强刺激性 8 .丙酮:与水、醇、醚、烃混溶。低毒,类乙醇,但较大 9 . 1,1-二氯乙烷:与醇、醚等大多数有机溶剂混溶。低毒、局部刺激性 10 . 氯仿:与乙醇、乙醚、石油醚、卤代烃、四氯化碳、二硫化碳等混溶。中 等毒性,强麻醉性 11 . 甲醇:与水、乙醚、醇、酯、卤代烃、苯、酮混溶。中等毒性,麻醉性 12 . 四氢呋喃:优良溶剂,与水混溶,很好的溶解乙醇、乙醚、脂肪烃、芳香烃、氯化烃。吸入微毒,经口低毒。 13 . 己烷:与甲醇部分溶解,与比乙醇高的醇、醚、丙酮、氯仿混溶。低毒, 麻醉性,刺激性 14 . 三氟代乙酸:与水、乙醇、乙醚、丙酮、苯、四氯化碳、己烷混溶,溶解 多种脂肪族、芳香族化合物。 15 . 1,1,1-三氯乙烷:与丙酮、、甲醇、乙醚、苯、四氯化碳等有机溶剂混溶。低毒类溶剂 16 . 四氯化碳:与醇、醚、石油醚、冰醋酸、二硫化碳、氯代烃混溶。氯代甲 烷中毒性最强。 17 . 乙酸乙酯:与醇、醚、氯仿、丙酮、苯等大多数有机溶剂互溶,能溶解某

些金属盐。低毒,麻醉性 18 . 乙醇:与水、乙醚、氯仿、酯、烃类衍生物等有机溶剂混溶。微毒类,麻 醉性 19 . 丁酮:与丙酮相似,与醇、醚、苯等大多数有机溶剂混溶。低毒,毒性强 于丙酮 20 . 苯:难溶于水,与甘油、乙二醇、乙醇、氯仿、乙醚、四氯化碳、二硫化碳、丙酮、甲苯、二甲苯、冰醋酸、脂肪烃等大多有机物混溶。强烈毒性 21 . 乙睛:与水、甲醇、乙酸甲酯、乙酸乙酯、丙酮、醚、氯仿、四氯化碳、 氯乙烯及各种不饱和烃混溶,但是不与饱和烃混溶。中等毒性,大量吸入蒸气, 引起急性中毒 22 . 异丙醇:与乙醇、乙醚、氯仿、水混溶。微毒,类似乙醇 23 . 甲苯:不溶于水,与甲醇、乙醇、氯仿、丙酮、乙醚、冰醋酸、苯等有机 溶剂混溶。低毒类,麻醉作用。 24 .乙二胺:溶于水、乙醇、苯和乙醚,微溶于庚烷。刺激皮肤、眼睛 25 . 丁醇:与醇、醚、苯混溶。低毒,大于乙醇3倍。 26 . 乙酸:与水、乙醇、乙醚、四氯化碳混溶,不溶于二硫化碳及C12以上高级脂肪烃。低毒,浓溶液毒性强 27 .吡啶:与水、醇、醚、石油醚、苯、油类混溶。能溶多种有机物和无机物。 低毒,皮肤黏膜刺激性 28 . 乙酸丁酯:优良有机溶剂,广泛应用于医药行业,还可以用做萃取剂。一 般条件毒性不大 29 . N,N-二甲基甲酰胺:与水、醇、醚、酮、不饱和烃、芳香烃烃等混溶, 溶解能力强。低毒。 30 . N,N-二甲基乙酰胺:溶解不饱和脂肪烃,与水、醚、酯、酮、芳香族化 合物混溶。微毒类 31 . 二甲亚砜:与水、甲醇、乙醇、乙二醇、甘油、乙醛、丙酮乙酸乙酯吡啶、 芳烃混溶。微毒,对眼有刺激性 32 . 甲酰胺:与水、醇、乙二醇、丙酮、乙酸、二氧六环、甘油、苯酚混溶, 几乎不溶于脂肪烃、芳香烃、醚、卤代烃、氯苯、硝基苯等。皮肤、黏膜刺激性、

常用有机溶剂

常用有机溶剂 Prepared on 22 November 2020

常用有机溶剂 一、乙醇(ethylalcohol,ethanol) 1.理化性质: (1)分子式C2H6O (2)相对分子质量 (3)结构式CH3CH2OH (4)外观与性状:无色液体,有酒香。 (5)熔点(℃): (6)沸点(℃): (7)相对密度(水=1): (8)相对密度(空气=1): (9)溶解性:与水混溶,可混溶于醚、氯仿、甘油等多数有机溶剂。(10)禁忌物:强氧化剂、酸类、酸酐、碱金属、胺类。 危险类别: (1)燃烧性:易燃 (2)闪点(℃):12 (3)引燃温度(℃):363 (4)爆炸下限(%): (5)爆炸上限(%): 二、甲醇(methylalcohol,Methanol) 1.理化性质:

(1)分子式CH4O (2)相对分子质量32 (3)结构式CH3OH (4)外观与性状:无色澄清液体,有刺激性气味。 (5)熔点(℃): (6)沸点(℃): (7)相对密度(水=1): (8)相对密度(空气=1): (9)溶解性:与水混溶,可混溶于醇、醚等多数有机溶剂。(10)禁忌物:强氧化剂、酸类、酸酐、碱金属。 危险类别: (1)燃烧性:易燃 (2)闪点(℃):11 (3)引燃温度(℃):385 (4)爆炸下限(%): (5)爆炸上限(%): 乙酸乙酯,醋酸乙酯(ethylacetate,aceticester) 1.理化性质: (1)分子式:C4H8O2 (2)相对分子质量 (3)结构式 CH3-C-OCH2CH3 (4)外观与性状:无色澄清液体,有芳香气味,易挥发。

土壤可溶性有机氮,硝态氮,铵态氮和微生物量氮测定

土壤可溶性有机氮、硝态氮、铵态氮、微生物量氮最方便最简单的测定方法 1.母液制样:称取新鲜土壤(30.0g)于放置烧杯中,加约等于田间持水量60%水在25℃下培养7~15d。取15.0g土于烧杯,置于真空干燥器中,同时内放一装有用100ml精制氯仿的小烧杯,密封真空干燥器,密封好的真空干燥器连到真空泵上,抽真空至氯仿沸腾5分钟,静置5分钟,再抽滤5分钟,同样操作三次。干燥器放入25℃培养箱中24小时后,抽真空15-30分钟以除尽土壤吸附的氯仿。按照土:0.5M K2SO4=1:4(烘干土算,一般就是湿土:0.5M K2SO4=1:2),加入0.5M K2SO4溶液(未熏蒸为空白直接称取15.0g土,加同样比例0.5M K2SO4溶液)震荡30分钟,过滤。其中熏蒸后的土壤过滤液为A母液,未熏蒸的土壤过滤液为B母液。母液要是不及时测定,需立即在-15℃以下保存 2.测定 可溶性有机氮=可溶性全氮-(铵态氮+硝态氮) 要是有流动分析仪器还有TOC的话可以利用A母液测得碳氮减去B母液的碳氮含量根据公式计算得出微生物碳氮,可以用B母液测的铵态氮、硝态氮和可溶性全氮,是很方便的。 以下的是用传统的方法测定以上指标,经过852个土壤样品试验结果还是很好的。

土壤可溶性全氮测定 氧化剂:将6g NaOH 和30g K2S2O8溶于蒸馏水中并定容至1 L(K2S2O8 比较难溶,在低于60℃得瑟水浴中溶解,高于60℃配置的溶液至其氧化性失效,NaOH制成溶液,致其温度达到常温后与K2S2O8 溶液混合定容至1L) 测定:移取A母液10ml至消化试管,加入10ml氧化剂,水浴中加热,温度升高到120℃后保持90min,使用紫外分光光度计测定A220和A275,空白需加入1ml氧化剂并同时作水浴处理。(Tips:农化上母液与氧化剂各取25ml,此处取其比例为1:1。) 标准曲线:0.7218g硝酸钾溶于水中,转入1000ml容量瓶中定容摇匀,制得浓度为100mg/L的氮标准贮存液。稀释10倍即为10mg/L 的氮标准溶液。吸取氮标准溶液(梯度为0ml,1ml,2ml,3ml,4ml,5ml,6ml;对应浓度分别为0 mg/L,0.02 mg/L,0.04 mg/L,0.06 mg/L,0.08 mg/L,0.10 mg/L,0.12mg/L)于50ml容量瓶中,各加入1ml 氧化剂并定容,得氮的标准系列,与样品同样消煮测定A220和A275。以A(A= A220-A275)为纵标,氮浓度为横标绘制标准曲线。 硝态氮测定1 注:硝态氮测定1仅适合于农田土壤,腐殖质含量比较低的土壤,森林土壤和腐殖质含量比较高的土壤不适用,因为森林土壤和腐殖质高的土壤有腐植酸的颜色,干扰比色可采用硝态氮测定2进行测定

常见有机溶剂的性质大全

溶剂的定义 溶剂(solvent)这个词广义指在均匀的混合物中含有的一种过量存在的组分。狭义地说,在化学组成上不发生任何变化并能溶解其他物质(一般指固体)的液体,或者与固体发生化学反应并将固体溶解的液体。溶解生成的均匀混合物体系称为溶液。在溶液中过量的成分叫溶剂;量少的成分叫溶质。 溶剂也称为溶媒,即含有溶解溶质的媒质之意。但是在工业上所说的溶剂一般是指能够溶解油脂、蜡、树脂(这一类物质多数在水中不溶解)而形成均匀溶液的单一化合物或者两种以上组成的混合物。这类除水之外的溶剂称为非水溶剂或有机溶剂,水、液氨、液态金属、无机气体等则称为无机溶剂。 溶解现象 溶解本来表示固体或气体物质与液体物质相混合,同时以分子状态均匀分散的一种过程。事实上在多数情况下是描述液体状态的一些物质之间的混合,金与铜、铜与镍等许多金属以原子状态相混合的所谓合金也应看成是一种溶解现象。所以严格地说,只要是两种以上的物质相混合组成一个相的过程就可以称为溶解,生成的相称为溶液。一般在一个相中应呈均匀状态,其构成成分的物质可以以分子状态或原子状态相互混合。 溶解过程比较复杂,有的物质在溶剂中可以以任何比例进行溶解,有的部分溶解,有的则不溶。这些现象是怎样发生的,其影响的因素很多,一般认为与溶解过程有关的因素大致有以下几个方面: ⑴相同分子或原子间的引力与不同分子或原子间的引力的相互关系(主要是范德华引力); ⑵分子的极性引起的分子缔合程度; ⑶分子复合物的生成; ⑷溶剂化作用; ⑸溶剂、溶质的相对分子质量; ⑹溶解活性基团的种类和数目。 化学组成类似的物质相互容易溶解,极性溶剂容易溶解极性物质,非极性溶剂容易溶解非极性物质。例如,水、甲醇和乙醇彼此之间可以互溶;苯、甲苯和乙醚之间也容易互溶,但水与苯,甲醇与苯则不能自由混溶。而且在水或甲醇中易溶的物质难溶于苯或乙醚;反之在苯或乙醚中易溶的却难溶于水或甲醇。这些现象可以用分子的极性或者分子缔合程度大小进行判断。纤维素衍生物易溶于酮、有机酸、酯、醚类等溶剂,这是由于分子中的活性基团与这类溶剂中氧原子相互作用的结果。有的纤维素衍生物在纯溶剂中不溶,但可溶于混合溶剂。例如硝化纤维素能溶于醇、醚混合溶剂;三乙酸纤维素溶于二氯乙烷、甲醇混合溶剂。这可能是由于在溶剂之间,溶质与溶剂之间生成分子复合物,或者发生溶剂化作用的结果。总之,溶解过程能够发生,其物质分子间的内聚力应低于物质分子与溶剂分子之间的吸引力才有可能实现。 溶液浓度的表示方法 溶质在溶剂中溶解的多少,彼此间存在着相对量的关系,通常用以下几种方法表示:⑴质量分数 即混合物中某一物质的质量与混合物的质量之比,符号为ω。 物质B的质量分数(ωB)=物质B的质量(mB)/溶液的质量(m) 例如:氯化钠的质量分数ω(NaCl)=15%,即表示100g该溶液中含有NaCl 15g。 ⑵体积分数 通常用于表示溶质为液体的溶液浓度(略) ⑶物质的量的浓度

常用溶剂的性质

常用溶剂的性质 常用溶剂的性质 常用溶剂的极性顺序:水(最大) >甲酰胺>乙腈>甲醇>乙醇>丙醇>丙酮>二氧六环>四氢呋喃>甲乙酮>正丁醇>乙酸乙酯>乙醚>异丙醚>二氯甲烷>氯仿>溴乙烷>苯>四氯化碳>二硫化碳>环己烷>己烷>煤油(最小)。 甲酰胺 分子式HCONH 2 ,透明油状液体,略有氨臭,具有吸湿性,可燃。能与水和乙醇混溶,微溶于苯、三氯甲烷和乙醚。相对密度1.133(20/4℃)。沸点210℃。熔点2.55℃。闪点175℃。折射率nD(25℃)1.4468。燃点>500℃。粘度(20℃)2.926mPa?s。 毒性本品低毒。对皮肤和粘膜有暂时刺激性。小鼠经口LD50大于1000mg/kg。 乙腈;甲基氰 结构式CH 3 CN。分子量41.05。无色透明液体,有醚的气味。相对密度(20℃/4℃)1. 7822,凝固点-43.8℃,沸点81.6℃、闪点5.6℃。折射率1.3441.粘度(20℃)0.35mPa?s,表面张力(20℃)19.10×10-3N/m,临界温度274.7℃,临界压力4.83MPa。能与水、甲醇、醋酸甲酯、醋酸乙酯、丙酮、乙醚、氯仿、四氯化碳、氯乙烯以及各种不饱和烃相混溶。与水形成共沸混合物。易燃,爆炸极限3.0%-16%(vol)。有毒人LD503800mg/kg。空气中最高容许浓度3mg/m3。贮存阴凉、通风、干燥的库房内,远离火种、热源,防止日光直射。 甲醇 结构式为CH 3 OH,分子量32.04。无色澄清易挥发液体,相对密度(20℃ /4℃)0.7914,凝固点-97.49℃,沸点64.5℃.闪点(开口)16℃,燃点470℃,折射率1.3285,表面张力22.55×10-3N/m,蒸气压(20 ℃)12.265kPa,蒸气相对密度1.11,粘度(20℃)0.5945mP a?s,溶解度参数δ=14.8,能与水、乙醇、乙醚、丙酮、苯、氯仿等有机溶剂混溶,甲醇对金属特别是黄铜有轻微的腐蚀性。易燃,燃烧时有无光的谈蓝色火焰。蒸气能与空气形成爆炸混合物.爆炸极限6.0%-36.5%(vol)。纯品略带乙醇味,粗品刺鼻难闻。有毒。饮用7-8g可导致失明,饮用30-100g就会死亡。空气中甲酵蒸气最高容许浓度5mg/m3。 乙醇 结构式为C 2H 5 OH,分子量46.07。无色透明液体,有酒的醉香气味,也有刺激性 的辛辣昧。工业乙醇含量为95%,相对密度(20℃/4℃)0.793。凝固点-114℃,沸点78.32℃,闪点(开口)16℃,燃点390-430 ℃.折射率1.3614,粘度(20℃)1.41mPa?s,表面张力(20℃)22.27×10-3N/m,比热容 (20 ℃)2.42kJ/(kgK),蒸气压(20 ℃)5.732kPa,溶解度参数δ=12.7。溶于苯、甲苯。与水、甲醇、乙醚、醋酸、氯仿任意比例混溶。能溶解许多有机化合物和若干无机化合物。与铬酸、次氯酸钙、过氧化氢、硝酸、硝酸铂、过氮酸盐及氧化剂反应剧烈,爆炸极限4.3%-19.0%(vol)。具有吸湿性,与水形成共沸混合物。微毒,有麻醉性,饮入乙醇中毒剂量75-80g。致死剂量为250-500g。空气中最高容许浓度1880mg/m3。

常见有机溶剂极性表

有机溶剂是能溶解一些不溶于水的物质的一类有机化合物,其特点是在常温常压下呈液态,具有较大的挥发性,在溶解过程中,溶质与溶剂的性质均无改变。 有机溶剂的种类较多,按其化学结构可分为10大类:①芳香烃类:苯、甲苯、二甲苯等; ②脂肪烃类:戊烷、己烷、辛烷等;③脂环烃类:环己烷、环己酮、甲苯环己酮等;④卤化烃类:氯苯、二氯苯、二氯甲烷等;⑤醇类:甲醇、乙醇、异丙醇等;⑥醚类:乙醚、环氧丙烷等;⑦酯类:醋酸甲酯、醋酸乙酯、醋酸丙酯等;⑧酮类:丙酮、甲基丁酮、甲基异丁酮等;⑨二醇衍生物:乙二醇单甲醚、乙二醇单乙醚、乙二醇单丁醚等;⑩其他:乙腈、吡啶、苯酚等。 有机溶剂具有脂溶性,因此除经呼吸道和消化道进入机体内外,尚可经完整的皮肤迅速吸收,有机溶剂吸收入人体后,将作用于富含脂类物质的神经、血液系统,以及肝肾等实质脏器,同时对皮肤和粘膜也有一定的刺激性。不同有机溶剂其作用的主要靶器官和作用的强弱也不同,这决定于每一种有机溶剂的化学结构、溶解度、接触浓度和时间,以及机体的敏感性。 常用溶剂的极性顺序: 水(极性最大) > 甲酰胺 > 乙腈 > 甲醇 > 乙醇 > 丙醇 > 丙酮 > 二氧六环 > 四氢呋喃 > 甲乙酮 > 正丁醇 > 醋酸乙酯 > 乙醚 > 异丙醚 > 二氯甲烷 > 氯仿 > 溴乙烷 > 苯 > 氯丙烷 > 甲苯 > 四氯化碳 > 二硫化碳 > 环己烷 > 己烷 > 庚 烷 > 煤油(极性最小) 有机溶剂的极性根据官能团和对称性可初步判断,具体的需参照极性参数,如下

表示有机溶剂的极性,关系到其物理化学性质、如介电常数、偶极矩或折射率。这种表示方法把所有的溶剂看作是连续作用的介质,而不是看作由各个分子组成的非连续统一体,并且未考虑到溶剂和溶质之间的特殊的相互作用。

最新常用有机溶剂的物化性质

常用有机溶剂的物化 性质

推荐答案 2006-3-4 00:20 【中文名称】甲苯;甲基苯;苯基甲烷 【英文名称】toluene;toluol;methylbenzene 【结构或分子式】 【相对分子量或原子量】92.14 【密度】0.866 【熔点(℃)】-95 【沸点(℃)】110.8 【闪点(℃)】4.4(闭式) 【蒸气压(Pa)】907(0℃);2920(20℃);74194(100℃)【折射率】1.4967 【性状】 无色易挥发的液体,有芳香气味。 【溶解情况】

不溶于水,溶于乙醇、乙醚和丙酮。 【用途】 用于制造糖精、染料、药物和炸药等,并用作溶剂。 【制备或来源】 由分馏煤焦油的轻油部分或由催化重整轻汽油馏分而制得。 【其他】 化学性质与苯相像。蒸气与空气形成爆炸性混合物,爆炸极限为1.2~7.0%(体积)。 二甲苯分子量106.16。无色透明液体,芳香气味。有三种异构体:邻二甲苯(o-Xylene),相对密度(25℃/4℃)0.87599,凝固点-25.3℃,沸点144.4℃,折射率1.50295,闪点(闭口)17.4℃,燃点500℃,粘度(25℃)0.75mPa·s;间二甲苯(m-xy1ene),相对密度(25℃/4℃)0.8599,凝固点-47.87℃,沸点139.1℃,闪点(开口)25℃,燃点527.8℃。折射率1. 4946;对二甲苯(p=xy1ene),相对密度(25℃/4℃)0.8567,凝固点13.26℃,沸点138.35℃,闪点(闭口)25℃.折射率1.49325。 一般的二甲苯是混合二甲苯.为邻二甲苯(10%一15%)、间二甲苯(45%-70%)、对二甲苯(15%-25%)及少量乙苯的混合物,相对密度(20 ℃/4℃)约为0.86,溶解度参数δ=8.8-9.0。溶于乙醇、乙醚,不溶于水。易燃,蒸气与空气形成爆炸性混合物,爆炸极限1. 09%-6.6%(vol)。有毒,毒性比苯和甲苯为小,空气中最高容许浓度为100mg/m3。 二甲苯可用作溶剂和稀释剂。贮存于阴凉、通风的库房内,远离火种、热源。 二甲苯根据来源和制法分为石油二甲苯和焦化二甲苯。石油二甲苯是石油轻馏分经予加氢精制,催化重整和分离所得;焦化二甲苯是粗苯经过洗涤、分馏所得。

溶剂溶解参数

涂料工业常用有机溶剂的溶解度参数及氢键值 依靠溶解度参数相同或相近的原则,并不能准确预测高聚物在某溶剂内是否溶解。这是因为没有考虑到氢键力的作用,在下表列出的溶解度参数仅适用于外极性混合体系,而对于强极性分子体系,就会产生误差。 美国涂料化学家Burrell认为对第一液体有两个因素与液体溶解能力有关。 第一个因素是液体的氢键力。根据氢键力的强弱,Burrell将溶剂定量地分成3组: 1.第一组:弱氢键(烃类,酯类,氯化烃类,硝基化烷烃); 2.第三组:中氢键(酮类,酯类,醚类和醇醚类); 3.第三组:强氢键类(醇类与水) 第二因素是溶解度参数,溶剂的溶解度参数可按溶剂氢键力大小分成3个等级。 1.强氢键溶解度参数δs 2.中氢键溶解度参数δm 3.弱氢键溶解度参数δp 判断是否溶解时,首先确认树脂和溶剂的氢键力大小的等级,然后依据树脂和溶剂在相同氢键等级,由溶解度参数大小是否相同或相近的原则,来判断树脂是否溶解。 Lieberman设想以氢键程度的表征平均值(相对值)来定量氢键力,设定,弱氢键力平均值为。中氢键力平均值为,强氢键力平均值为。且混合溶剂的氢键力的表征平均值,可以用下式计算 混合溶剂的氢键力的表征平均值=φ1A+φ2B+…… 其中φ1,φ2——为溶剂A、B在混合溶剂中的体积分数。 A,B——溶剂A,B的氢键力表征平均值。 如E-20的环氧树脂为中等氢健溶解度参数,δm为8~13,因此可以溶解在中等氢键溶解度参数。即第二组和其相近的溶解度参数相近溶剂内,如醋酸正丁酯,丙酮,乙二醇单丁醚。也可以将70%(体积计算)的二甲苯和30%正丁醇配成混合溶剂。混合溶剂的氢键力的表征平均值=*+*=,而混合溶剂的溶解度参数=*+*=,所以E-20环氧树脂可以溶解在此溶剂中。 常用溶剂的极性顺序: 水(最大) > 甲酰胺> 乙腈> 甲醇> 乙醇> 丙醇> 丙酮> 二氧六环> 四氢呋喃> 甲乙酮> 正丁醇> 乙酸 乙酯> 乙醚> 异丙醚> 二氯甲烷>氯仿>溴乙烷>苯>四氯化碳>二硫化碳>环己烷>己烷>煤油(最小)

可溶性有机碳的测定

可溶性有机碳测定: 1. 取10 g 新鲜土样,按照土:水为1∶5的比例混匀,在25℃条件下,以250 r/min 的速度振荡1 h,接着在转速为15 000 r/min 离心10min,上部悬浮液过0·45μm 薄滤膜[1],以后的步骤采取测有机碳的方。 2. 取过0·45μm 薄滤膜的溶液放入消煮管中,加5ml 0.8000mol/L 的1/6K 2Cr 2O 7标准溶液, 然后用注射器注人5ml 浓硫酸,旋转摇匀,在消煮管上加一小漏斗。 3. 将盛土样的消煮放人铁丝笼架中,放入已预热至185 -190oC 的油浴锅中(豆油)加热。 此时应控制锅内温度在170-180oC ,沸腾开始,准确加热5min ,取出冷却,如溶液呈绿色,表示重铬酸钾用量不足,应再取较少的样品(或适当增加重铬酸钾的量)重做。 4. 冷却后的溶液呈橙黄色或黄绿色,用洗瓶将消煮管中的溶液洗人250ml 三角瓶中,使三 角瓶内溶液体积在60-80ml 左右,加邻啡啰啉指示剂3—4滴,用0.2mol /L FeSO 4滴定,溶液的颜色变化为:橙黄—→蓝绿—→棕红色,记录硫酸亚铁用量(V )。 每批分析样,应做2—3个空白;空白标定用0.1-0.5g 石英砂代替土样,其它步骤与测定土样时完全相同,记录硫酸亚铁用量(V 0)。 5. 计算方法 有机碳(g/kg )=10001.1003.0)(0.58000.02100????-??K m V V V 有机质(g/kg )=有机碳(g/kg )×1.724 式中:0.8000——1/6 K 2Cr 2O 7标准溶液的浓度(mol/L ); 5.0——1/6 K 2Cr 2O 7标准溶液的体积(ml ); V 0——空白标定用去硫酸亚铁溶液体积(ml ); V ——滴定土样用去硫酸亚铁溶液体积(ml ); 0.003——1/4碳原子的摩尔质量(g/m mol); 1.1——氧化校正系数; 1.724——将有机碳换算成有机质的系数; m 1——风干土样质量(g ); K 2——将风干土换算成烘干土系数。土壤碳氮比的计算: )/() /(kg g kg g 全氮有机碳碳氮比= 1.耕作措施对土壤有机碳和活性有机碳的影响.严昌荣,刘恩科,何文清,刘爽,刘勤.

常用有机溶剂按毒性大小分类表

常用有机溶剂按毒性大小分类表 一、第一类有机溶剂: 1、三氯甲烷 2、1,1,2,2,-四氯乙烷 3、四氯化碳 4、1,2二氯乙烯 5、1,2二氯乙烷 6、二硫化碳 7、三氯乙烯 8、苯 9、由以上溶剂组成的混合物 二、第二类有机溶剂: 1、丙酮 2、异戊醇 3、异丁醇 4、异丙醇 5、乙醚 6、乙二醇乙醚 7、乙二醇乙醚乙酸酯 8、乙二醇丁醚 9、乙二醇甲醚 10、邻—二氯苯 11、二甲苯 12、甲酚 13、氯苯 14、乙酸戊酯 15、乙酸异戊酯

16、乙酸异丁酯 17、乙酸异丙酯 18、乙酸乙酯 19、乙酸丙酯 20、乙酸丁酯 21、乙酸甲酯 22、苯乙烯 23、1,4—二氧杂环己烷 24、四氯乙烯 25、环己醇 26、环己酮 27、1—丁醇 28、2—丁醇 29、甲苯 30、二氯甲烷 31、甲醇 32、甲基异丁基甲酮 33、甲基环己醇 34、甲基环己酮 35、甲丁酮 36、1,1,1—三氯乙烷 37、1,1,2—三氯乙烷 38、丁酮 39、二甲基甲酰胺 40、四氢呋喃 41、正己烷 42、由以上溶剂组成的混合物

三、第三类有机溶剂 1、汽油 2、煤焦油精 3、石油醚 4、石油精 5、轻油精 6、松节油 7、矿油精 8、由以上溶剂组成的混合物 四、有机溶剂按其化学结构可分为10大类: 1、芳香烃类:苯、甲苯、二甲苯等; 2、脂肪烃类:戊烷、己烷、辛烷等; 3、脂环烃类:环己烷、环己酮、甲苯环己酮等; 4、卤化烃类:氯苯、二氯苯、二氯甲烷等; 5、醇类:甲醇、乙醇、异丙醇等; 6、醚类:乙醚、环氧丙烷等; 7、酯类:醋酸甲酯、醋酸乙酯、醋酸丙酯等; 8、酮类:丙酮、甲基丁酮、甲基异丁酮等; 9、二醇衍生物:乙二醇单甲醚、乙二醇单乙醚、乙二醇单丁醚等; 10、其他:乙腈、吡啶、苯酚等。 经常使用有机溶剂,如,乙醇、苯乙烯、全氯乙烯、三氯乙烯、乙烯乙二醇醚和三乙醇胺。 五、常用有机溶剂对人体的危害 1、液氨:剧毒性、腐蚀性 2、液态二氧化硫:剧毒

淡水水体溶解有机氮对有毒藻种的生物有效性(2)

生态环境学报 2010, 19(1): 45-50 https://www.doczj.com/doc/3412047452.html, Ecology and Environmental Sciences E-mail: editor@https://www.doczj.com/doc/3412047452.html, 基金项目:福建省自然科学基金青年基金项目(2009J05033);国家自然科学基金青年基金项目(20807033) 作者简介:罗专溪(1979年生),男,博士,主要从事污染物在水环境介质中的行为过程研究。E-mail: zxluo@https://www.doczj.com/doc/3412047452.html, *通讯作者:颜昌宙,研究员,博士。E-mail: czyan@https://www.doczj.com/doc/3412047452.html, 收稿日期:2009-10-30 淡水水体溶解有机氮对有毒藻种的生物有效性 罗专溪1 ,魏群山1 ,王振红2 ,颜昌宙 1* 1. 中国科学院城市环境研究所城市环境与健康重点实验室, 福建 厦门 361021; 2. 漳州师范学院化学与环境科学系, 福建 漳州 363000 摘要:溶解有机氮(Dissolved organic nitrogen, DON )是多数天然水体中溶解氮的主要组成部分。天然水体DON 是许多微生命体包括有毒藻种的氮营养源,在供水安全以及水体富营养化等方面的生态环境效应不容忽视。文章系统地介绍了淡水水体DON 含量与来源、生物有效性与估算方法,以及对有毒藻种生长的影响。DON 的来源是影响水体中DON 含量动态特征的关键因素。DON 来源包括陆地径流,植物碎屑,土壤淋溶液,沉积物释放,大气沉降,藻类、大型植物、细菌与细胞死亡或自我分解,微型及大型浮游动物捕食和排泄、分泌物释放等。研究表明约有12%~72%的DON 可迅速被生物所利用,具显著差异,究其原因可能是其来源组成、化学本质(分子质量与极性)、测试生物组成、是否有细菌作用等因素造成的。不同藻种具有不同氮源利用能力,DON 对藻类生长具有直接或间接的作用,并可能影响藻类群落结构(有毒藻类成为优势种)。考虑到水环境保护与饮用水安全供水的重要性,未来研究应重视淡水水体DON 生物有效性与其化学本质的揭示,尤其是对有毒藻种。 关键词:溶解有机氮;生物有效性;有毒藻种 中图分类号:X17 文献标识码:A 文章编号:1674-5906(2010)01-0045-06 全世界河流中的总氮有14%~90%由有机氮组成[1]。而作为有机氮的主要成分,溶解有机氮(Dissolved organic nitrogen, DON )是多数天然水体中溶解氮的主要组成部分,所占百分比约达60%~69%[2]。传统观点认为DON 是一类难以被利用、生物有效性(bioavailability )低的有机氮库,不会促进水体水质富营养化[3][4],因而不重视DON 的管理和控制[5],甚至在水体氮负荷估算时忽略不计DON 含量[6][4]。DON 是天然水体有机质的重要组成成分,其含量、生物有效性及其生态环境效应逐渐受到关注[6]-[8]。目前世界上DON 的研究报道主要关注河口、近海和海洋生态系统,而淡水生态系统中的DON 研究相对较为缺乏。 能利用DON 的浮游植物,特别是一些有毒藻种(如水华束丝藻Aphanizomenon flosaquate 、铜绿微囊藻 Microcystis aeruginosa )具有其他藻种所没有的强大竞争力,可在无机氮缺乏而有机氮浓度相对较高的环境中很好的生长[9]-[10]。有毒藻种可以产生肝毒素、神经毒素等藻毒素[11],不利于作为饮用水源的淡水水体的安全保障。 当前我国微污染原水普遍存在有机物含量超标、含氮化合物浓度高、藻类大量繁殖等问题。另外,DON 绝大部分物质本身对人体具有直接或间接的毒害作用。因而本文综合分析淡水水体DON 对有毒藻种的生物有效性,希望有助于揭示淡水水体DON 的潜在生态风险与环境效应。 1 淡水水体DON 含量与来源 1.1 淡水水体的DON 含量 多数自然水体中的TDN 含量与其中的DON 密切相关。开阔海洋表面DON 约占TDN 的83%,河口DON 约占13%;近海约占18%[2]。在淡水生态系统中,其DON 浓度要比DIN 浓度高0[13]。如美国乔治亚州Satilla 河水的DON 浓度 (以N 计,下同) 为59.0 μmol/L ,而其TDN 浓度 (以N 计,下同) 仅 为62.6 μmol/L [14]。 又如日本琵琶湖的DON 浓度为4.0~7.2 μmol/L ,而其TDN 浓度仅为7.0~8.0 μmol/L [15]。以色列 Kinneret 湖为中富营养化湖泊,其水中DON 含量(1975—1974年均值)呈现季节差异性,9月份DON 占TDN 的65%,而三月份DON 占TDN 比例变小,仅为39%[2]。分析报道的文献,目前世界上DON 的研究报道主要关注河口、近海和海洋生态系统,而淡水生态系统中的DON 研究(包括DON 动态特征的量化描述及其影响因素等)较为缺乏。 当前,测定DON 含量的所有方法都是采用差减法,需依赖于测定总溶解性氮(TDN, Total dissolved nitrogen )浓度的测定,然后再减去溶解性无机氮(DIN, dissolved inorganic nitrogen )浓 度(分别测定的NH 4+,NO 3-和NO 2-浓度的加和) ,这使得测定结果具有3方面的分析误差,即测定TDN 、NH 4+和(NO 3-、NO 2-)的分析误差,因此DON 含量测定时,为了提高其测定精度,应尽可

天然水体中的溶解性有机氮

全世界河流中的总氮有14%~90%由有机氮组成。而作为有机氮的主要成分,溶解有机氮(Dissolved organic nitrogen, DON)是多数天然水体中溶解氮的主要组成部分,所占百分比约达60%~69%。传统观点认为DON是一类难以被利用、生物有效性(bioavailability)低的有机氮库,不会促进水体水质富营养化,因而不重视DON的管理和控制,甚至在水体氮负荷估算时忽略不计DON含量。DON 是天然水体有机质的重要组成成分,其含量、生物有效性及其生态环境效应逐渐受到关注。目前世界上DON的研究报道主要关注河口、近海和海洋生态系统,而淡水生态系统中的DON研究相对较为缺乏。 能利用DON的浮游植物,特别是一些有毒藻种(如水华束丝藻Aphanizomenon flosaquate、铜绿微囊藻Microcystis aeruginosa)具有其他藻种所没有的强大竞争力,可在无机氮缺乏而有机氮浓度相对较高的环境中很好的生长。有毒藻种可以产生肝毒素、神经毒素等藻毒素,不利于作为饮用水源的淡水水体的安全保障。当前我国微污染原水普遍存在有机物含量超标、含氮化合物浓度高、藻类大量繁殖等问题。另外,DON绝大部分物质本身对人体具有直接或间接的毒害作用。研究发现,水中DON 大部分组成物质本身对人体具有直接或间接致毒作用,可生成更多的消毒副产物、产生较为严重的膜污染等,因此DON 相关研究已成为国际饮用水处理领域新的研究方向。尤其是近年来,研究人员发现DON 易和消毒剂发生反应生成含氮消毒副产物( N-DBPs) ,如卤化腈、二甲基亚硝胺、卤代硝基甲烷、卤代酰胺等,这些N-DBPs 的浓度远低于三卤甲烷、卤乙酸等常规消毒副产物,但其“三致”特性却远超过后者。DON 是N-DBPs 的前体物,有效削减DON 是控制消毒过程中N-DBPs 生成的重要手段,而了解微污染原水中DON 的组成规律是关键。 1.淡水水体DON 含量与来源 (1)含量 多数自然水体中的TDN含量与其中的DON密切相关。开阔海洋表面DON 约占TDN的83%,河口DON约占13%;近海约占18%。在淡水生态系统中,其DON浓度要比DIN浓度高。 当前,测定DON含量的所有方法都是采用差减法,需依赖于测定总溶解性氮(TDN, Totaldissolved nitrogen)浓度的测定,然后再减去溶解性无机氮(DIN,

常用用有机溶剂的相对极性

常用用有机溶剂的相对极性 常用用有机溶剂的相对极性 solvent polarity Viscosity(cp20℃) Boiling point(℃) UV cutoff(nm) i-pentane戊烷 0.00 -- 30 -- n-pentane 0.00 0.23 36 210 Petroleum ether石油醚0.01 0.30 30-60 210 Hexane己烷0.06 0.33 69 210 Cyclohexane环己烷 0.10 1.00 81 210 Isooctane异辛烷 0.10 0.53 99 210 Trifluoroacetic acid三氟乙酸 0.10 -- 72 -- Trimethylpentane三甲基戊烷0.10 0.47 99 215 Cyclopentane(环戊烷) 0.20 0.47 49 210 n-heptane(庚烷) 0.20 0.41 98 200 Butyl chloride (丁基氯; 丁酰氯) 1.00 0.46 78 220 Trichloroethylene (三氯乙烯; 乙炔化三氯) 1.00 0.57 87 273 Carbon tetrachloride (四氯化碳) 1.60 0.97 77 265 Trichlorotrifluoroethane (三氯三氟代乙烷) 1.90 0.71 48 231 i-propyl ether (丙基醚; 丙醚) 2.40 0.37 68 220 T oluene(甲苯) 2.40 0.59 111 285 p-xylene(对二甲苯) 2.50 0.65 138 290 Chlorobenzene(氯苯) 2.70 0.80 132 -- o-dichlorobenzene (领二氯苯) 2.70 1.33 180 295 Ethyl ether(二乙醚; 醚) 2.90 0.23 35 220 Benzene(苯) 3.00 0.65 80 280 Isobutyl alcohol(异丁醇) 3.00 4.70 108 220 Methylene chloride(二氯甲烷) 3.40 0.44 40 245 Ethylene dichloride(二氯化乙烯)3.50 0.79 84 228 n-butanol(丁醇) 3.90 2.95 117 210 n-butyl acetate(醋酸丁酯; 乙酸丁酯)4.00 --- 126 254 n-propanol(丙醇) 4.00 2.27 98 210 Methyl isobutyl ketone 4.20 -- 119 330 T etrahydrofuran( 四氢呋喃)4.20 0.55 66 220 ethanol 4.30 1.20 79 210 Ethyl acetate 4.30 0.45 77 260 i-propanol(丙醇) 4.30 2.37 82 210 Chloroform(氯仿) 4.40 0.57 61 245 Methyl ethyl ketone(甲基乙基酮)4.50 0.43 80 330

相关主题
文本预览
相关文档 最新文档