当前位置:文档之家› 城市轨道交通规划设计—地铁篇讲解

城市轨道交通规划设计—地铁篇讲解

城市轨道交通规划设计—地铁篇讲解
城市轨道交通规划设计—地铁篇讲解

城市轨道交通规划设计—地铁篇

目录

第一章综述 (3)

第二章地铁线路网规划 (3)

2.1 线网合理规模论证问题研究 (3)

2.2 线网空间形态与构架问题研究 (5)

2.3 关于地铁线网与城市其它交通方式的衔接 (8)

第三章地铁站站址规划 (9)

3.1车站开挖对地标建筑物的影响 (9)

3.2车站开挖对地下建筑物的影响 (10)

3.3车站开挖对地下管线的影响 (11)

3.4车站开挖对地面交通和周围环境的影响 (12)

3.5地铁车站开挖方法受多因素影响时的选择 (13)

3.6小结 (13)

第四章发展与展望 (13)

第一章综述

近年来, 我国城市地铁建设又出现了一个新的勃发之机,不仅北京、上海、广州等特大城市加速地铁建设, 一些百万以上人口规模的大城市如西安等也在积极筹划和兴建地铁, 无疑,这是我国城市交通加速现代化进程的一个好兆头。

地铁是城市综合交通体系中的一个子系统,其内在组成结构及外部运行环境都是决定系统整体效能的关键因素。地铁网络总体布局规划的任务一方面是要研究其内在结构,另一方面是要研究它与城市综合交通体系中其它子系统(如道路及地面常规公共客运等)的协调关系,乃至与城市形态和土地使用布局的协调关系。不言而喻,如果没有地铁线网的总体布局规划作为线路建设的依据,将来形成的地铁系统很难保证有较理想的运行效能。在地铁线网规划中如何确定线网合理规模、线网空间构架形态以及与其它交通方式的衔接关系是线网规划理论中尚待探讨的问题, 同时也是涉及规划方法的问题。

第二章地铁线路网规划

2.1 线网合理规模论证问题研究

线网规模(线网营运总里程)取决于城市规模、城市形态以及社会经济发展水平等诸多因素,换言之,一个城市地铁线网的总体规模无疑应当与上述客观条件相匹配,否则无法保证线网运营的整体社会经济效益。编制线网总体布局规划时,往往只注意线网覆盖面及线网的具体构架,而不作合理规模的论证,这是当前我国城市地铁网规划中普遍存在的一个问题。从国外的情况看,伦敦、巴黎、东京以及莫斯科等

城市,由于修建地铁的年代十分久远,

限于当时的认识水平和技术水平,没有

条件进行合理规模的论证,这是可以理

解的。然而也正是这些先行者的历史经

验告诉我们,线网规模和布局论证是十

分必要的。伦敦和巴黎最初的地铁网覆

盖范围较小,线网密度偏大,站间距过密, 运行效益低下。尽管随着城市的发展,都采取了一些补救措施(巴黎和伦敦后期扩展的线路既照顾了必要的覆盖面,又适当调整了线网密度,使线网总体规模与城市规模的匹配合宜程度有了改善。巴黎为了适应城市规模扩展,在不过分扩大线网规模的前提下,选当增开地区快轨交通线,即RER)。

诚然, 线网规模大小与城市空间形态及与此相关的地铁覆盖范围和线网密度要求不无关系,但笔者认为,线网合理规模在很大程度上取决于由城市土地使用所决定的出行总量、出行距离分布以及出行方式结构。与前者相比,后者对线网规模的确定更为关键。“线网密度”和“吸引(服务)半径”不应该成为决定线网规模的主要指标。在按上述研究路线确定了线网合理规模取值范围之后“, 线网密度”和“吸引(服务)半径”是可以在布置线网构架时, 因地制宜地予以解决的。实际上,线网密度和服务半径主要体现在车站的密度上。为了保证有较高的运营速度, 同时又不过分增加线网总里程,可以采取图1的布置方式。此外, 许多城市为了争取更大的线网覆盖范围,而又不过多地增大线网规模,采取了开辟支线和敷设局部小网络的方法。这种布置

方式加上合理的交路设计,还可以使线路负荷均衡性得到改善。地铁线网合理规模的确定应当满足以下几条要求。

(1)线网要有与城市土地使用布局相适配的覆盖面。

(2)线网客流负荷有较好的均衡性。各线的单向最大断面负荷水平差异不宜超过一倍,且最低不少于3万人次/小时;对每条线路来说,末端最小负荷断面与最大负荷断面的负荷差异不宜超过70%。

(3)每公里线路负荷强度不宜小于3万人次/日。上述条件是基于线网运营经济合理性要求提出来的,可视作线网规模研究的基本制约条件。在满足上述条件下,依据城市出行总量的预测值及城市客运系统结构(出行方式分担比例)的要求,计算出地铁(轨道)交通系统的总体负荷量,尔后便可确定线网运营总里程(即线网规模)的合理取值范围。

随着轻轨(Light Rail)客运方式的出现,使得中低运量的公共客运系统更为充实,也更具吸引力。就建设成本而言,地面快速公交系统更具优越性,同等运量的快速公交走廊(公交专用道系统)建设费用只相当于轨道交通线的10%~20%左右。

此外, 就城市交通方式与城市布局形态之间的互动作用关系而言,无疑地面常规公交方式会更有利于城市紧凑发展。追求良好可达性目标的“紧凑城市”(CompactCity)布局观念已经成为现代发展中国家愈来愈普遍接受的新观念,也非常符合我国的国情。

2.2 线网空间形态与构架问题研究

在研究制订地铁线网规划时, 我们总是首先试图寻求一种通用的“合理”的线网形态模式( 例如: 方格网、环线加放射线??) ,而且

往往以目前已经形成一定规模的伦敦、巴黎、莫斯科及东京等发达国家的大城市地铁线网为样板。不可否认,这些城市经过几十年,甚至百年以上的地铁建设与运营,有十分宝贵的经验可资借鉴。问题在于学习和借鉴不是简单地照搬,而是要从这些城市的规模、布局形态、社会经济特征以及发展地铁的历史背景去研究其线网形成的过程,对照分析其实际运营状况以及对城市土地利用的影响,从中找出规律性的东西。

从上述几个城市的情况来看, 最初建造地铁时,并没有一个完整的总体布局构想,现在形成的线网格局是在地铁发展与城市土地使用布局演变的互动过程中逐步形成的,是共生共存的。最初的网络都是为满足中心区的公共客运需求而修建的, 尔后, 随着城市的扩展, 逐渐向外延展, 形成放射状格局。为了解决各放射线之间的联系(换乘),多采用修建环线的办法。伦敦、巴黎和莫斯科是这种发展格局的典型代表。东京由于市区东南部临海, 因此地铁线网向西部和北部放射,除藉助于市郊铁路沟通各条放射线之外,也加了一条U字型半环线。北京的地铁是采用浅埋形式,敷设于城市道路下方, 因此其线网格局与地面道路网毫无二致,均为标准的方格网。

如上所述, 这些城市的地铁线网不论是方格网形式,还是环线加放射线形式,都未必是可以普遍推广的最佳形式。实际上这些城市当初没有条件以城市出行的源流强度定量分析为依据,事先对地铁线网整个布局与运营状况作出全面评价分析, 尔后一次完成最终布局的。实践证明,在线网格局相似,密度相近的情况下,它们的实际运行效果

却有很大的差异。

由现有的各种线网布局实例对比分析,应该对线网形态及构架格局有如下的认识。

(1)地铁或其它形式的快速轨道交通线网空间形态与城市形态有密切相关性, 二者之间相互制约, 相互依存, 最终形成吻合。

(2)线网的构架要与城市高强度客运走廊的空间分布形成良好的吻合关系。

(3)线网构架形式的差异一定会造成线网运行质量(效率与服务水平)的差异。线网的布置方案。

要充分考虑各线路自身以及整个线网负荷的均衡性以及换乘的方便性,还要考虑乘客的一次直达率(即最大限度地降低换乘率)及与其它交通方式的合理衔接关系。香港的快速轨道交通线网形态与构架格局对上述三点是满足得较好的实例。

就网络系统上的换乘点布置方式而言, 方格网或者三角形网络布局的方式可能要比环线加放射线方式更好些。东京和莫斯科同样都意识到环线位置与放射扩展扇区的大小不成比例, 原有的环线已经无法满足换乘需要。这一点, 莫斯科的线网表现得尤为突出,除了既有环线以内的30余km2范围换乘还算方便,其余近800km2的范围内线路之间换乘十分不便。因此,后来又规划了一条约65km的外环线。即便如此, 也难以彻底改善线网的整体服务水平。此外, 这种线网布置方式还导致向心负荷的增强。

2.3 关于地铁线网与城市其它交通方式的衔接

在编制地铁线网规划时, 应当充分考虑与地面其它客运交通方式的衔接关系,尤其是主要的人流集散点。这就要求根据城市土地使用布局及出行源流分布规律,制订出城市客运枢纽系统布局规划。地铁线网规划中, 不仅线路布置要与地面其它交通网络协调配合,而且主要换乘站的安排也要与城市客运枢纽的布局相吻合。这当中要特别注意的几个衔接因素。

(1)地铁线路及车站的布置要满足城市综合交通枢纽的功能性质要求。对于城市对外交通的出入口枢纽(火车站、航空港、水运港、公路客运主枢纽等) , 其主要功能是对外交通与市内交通的接驳, 因此, 要根据接驳量及可能安排的接驳方式来确定是否需要有地铁站,地铁站可承担的接驳换乘量,以及接驳通道的布置等。对于市区公交换乘枢纽则要视区位条件及集散量确定是否要由地铁线路(一条或数条)接入。

(2)客流换乘条件及集散方式。地铁与其它地面交通方式在客运枢纽的衔接仅仅是一种方式, 并非所有的换乘衔接点都要集中在几个点上。根据客流及其它公交客运方式运营状况的调查,可以掌握市区内不同地区的客流集散状况, 在此基础上运用网络运行模拟手段(例如TRIPS模型)可以作出不同的地铁线网布置方案与地面交通衔接的效果分析,以全方式总体出行时间最短为优化目标,寻求最佳配置方案,同时获得每条线路沿途换乘量,作为日后地铁站或地面换乘设施(如公交站、社会停车场等)的设计依据。不仅如此,这些数据也将成为

地铁线网布局优化的依据(地面换乘条件及集散方式往往受土地使用等客观因素制约)。

第三章地铁站站址规划

地铁站站址的选择,出了受上文中的因素影响外,还受施工方法及施工工艺因素的限制。地铁车站按开挖方法分类,主要分明挖车站、全暗挖车站和局部暗挖(明暗结合)车站两种方法。

在各国地下铁道工程的发展初期,因明挖法具有简单快速、经济、安全的特点,而成为众多国家修建地铁车站的首选方法。但随着城市的发展,市区中的商贸经济繁华区、政治和文化中心越来越多,这些地区的建筑物高大密集、人口拥挤、车流量大、公交线路多,因而在繁华市区内设置明挖车站所受到的限制日益增多,加之明挖法对周围环境干扰大、影响地面正常交通,其应用表现出一定的局限性。于是,浅埋暗挖法应运而生,并且越来越多的应用于城市地铁建设中,不断体现出对于现代城市环境的较强适应性。

3.1车站开挖对地标建筑物的影响

地下隧道在施工时会对一定范围内的地层造成扰动,使该范围内的地层出现应力重分布并产生变形。关于车站开挖引起的地表变形规律,往往根据所选用的开挖工法的不同而有较大差异。采用明挖法时,地层变形规律通常与两个因素有关:基坑开挖引起的地表变形曲线、基坑周边土体的最大沉降;而采用暗挖法时,地层变形规律通常也与两个因素有关:地表沉降槽曲线、地表最大沉降值。由于地表变形必然会对处在该影响范围内的建筑物产生不利影响,因而对于临近城市

高层建筑物修建的地下隧道,除了需要关注基坑或隧道自身的强度和稳定外,还需要保证地表变形在可控范围内及周边地面建筑物的安全稳定,尤其对于地面高大建筑物和居住、医疗、文教、科研等敏感建筑物更应重视。而地面建筑物的稳定性判别又与地表的变形规律以及建筑物的类型密切相关。

3.2车站开挖对地下建筑物的影响

本节讨论的地下构筑物暂不包括地下管线。由于部分市区的发展先于地下轨道交通,地铁线路途径的地区多是繁华商业和居住区、交通枢纽区、工业区以及重要政治中心等发展成熟的区域,这些区域地上密布有各种高大建筑物,地下存在大量构筑物,地下空间十分局促。因而在这些区域修建地铁车站,不可避免的会遇到各种地下构筑物。地铁车站附近常见的地下构筑物有:地面建筑物基础、桥梁基础、既有地铁隧道、盖板河、防爆层等。设计地铁车站时,一般会避让既有地下构筑物,但当无法避让(即车站主体结构与地下构筑物近接)时,则需要考虑车站开挖对地下构筑物的影响,进而确的开挖方法。地铁车站与地下构筑物的位置关系包括并列(地铁车站在地下构筑物左侧或右侧)和立交(地铁车站在地下构筑物上方或下方),这两种位置关系统称为近接。为了更加详细的描述地铁车站与地下构筑物之间的位置关系,将地下空间做如下划分:从地下构筑物横断面的中央水平线向上、下方各引一条450线,于是以地下构筑物为参照,空间被分为上、下、左、右四个区域。当车站位于地下构筑物左方或右方区域时,两者关系为并列;车站位于地下构筑物上方或下方区域时,两者关系为

立交。

明挖法开挖车站时,会使得近接地下构筑物周围的荷载产生局部松弛或解除,进而产生变形(多为向车站主体结构开挖方向的变形)。明挖法仅当车站与地下构筑物为并列关系、或车站位于地下构筑物上方(间距有限制)时可以使用。

暗挖法可适用于车站与地下构筑物的位置关系为并列关系或立交关系,适用范围广于明挖法。

3.3车站开挖对地下管线的影响

根据地下管线的不同刚度及接头是否允许转动,可将管线分为刚性管线与柔性管线两种。

采用焊接接头连接的煤气管道、给排水管道、燃气以及由预制钢筋混凝土管道保护的重要通讯电缆、光缆等,均具备一定刚度,因而一般可以被认为是刚性管线,刚性管线的直径通常较大。这类管线在土体位移不大的情况下,可以正常使用,但如若土体的位移幅度超过一定极限值,则会发生断裂破坏。柔性管线包括普通通讯电缆、普通光缆等,一般来说直径较小,其刚度也远小于刚性管线;对于设有接头管道的柔性管道,一般情况下其接头构造中均设有可以适应一定接缝张开度的接缝填料。所以柔性管线对地表变形的适应性强于刚性管线。

地下管线会影响地铁车站的设置,具体表现在地下管线在一定程度上会控制车站的站位、埋深及施工方法。设计地铁车站时,若能有其他合适的设置空间,则对与地下管线一般采取避让措施。但在有些

情况下,地下管线通常存在改移量大、改移路由困难、改移费用较高的实际问题,因而这些管线往往会成为控制车站站位、埋深和施工方法的重要因素。同时,地铁车站的不同开挖方法又会对管线带来不同影响。

当车站采用明挖法开挖时,通常对车站主体正上方的管线采取悬吊保护、临时改易、永久改易、临时拆除和永久拆除等处理措施。而对于位于基坑两侧的管线,明挖施工也会使其发生沉降和水平位移。基坑开挖施工对基坑两侧地下管线的影响是通过管线周围的土体发生的传递,最终以法向土压力与切向摩阻力等荷载形式作用在地下管线上,地下管线反过来又阻碍了土体变形的进一步发展,这就构成了基坑周围地下管线与土体之间的相互作用问题。基坑开挖施工中引起地下管线产生了附加变形与附加应力,这将影响到管线的正常运行。

当地铁车站的设置方式为暗挖车站,即采用浅埋暗挖法开挖地铁车站主体结构时,地层扰动会直接影响到管线,地下管线的沉降变化规律与车站隧道周围土体的沉降变化规律相近,大致可分为三个主要变化阶段:(l)初期缓慢变化期;(2)车站隧道掌子面通过管道正下方时的急剧变化期;(3)车站隧道掌子面通过后的稳定期。在车站隧道掌子面逐步接近的阶段,管道的沉降缓慢增加。但是通常管线沉降小于地表沉降,这是由于管线的刚度大,抗变形能力强。

3.4车站开挖对地面交通和周围环境的影响

一般而言,地铁车站多位于城市的大中型商贸中心、大中型交通枢纽、大中影地铁车站开挖方法选择的因素及暗挖地铁车站设置原则

分析型集会场、大中型工业区及位置重要的政治中心地区,且多布设于交叉路口或城市主干道下方,地面人流、车流密度大,交通十分繁忙。地面交通直接影响明、暗挖地铁车站主体结构的设置。

3.5地铁车站开挖方法受多因素影响时的选择

当存在多种因素影响地铁车站的开挖方法选择时,对于地铁车站来说,这些因素之间的比较很难用完全定量的方式描述,因而需要采用合理的方法,将这些半定性、半定量的影响因素转化为定量计算问题,在此基础上进行比较分析。本文选用层次权重决策分析法对影响暗挖地铁车站的设置因素进行综合分析。

3.6小结

综上所述,在地铁车站开挖时,要综合考虑开挖方法对周围环境造成的影响,以及地质环境对开挖方法的限制。尽量做到,少扰动,易稳定,少冲突,安全合理的开挖方法。这也是在地铁站点设置时需要综合考虑的问题之一。

第四章发展与展望

随着城市经济和社会的发展,以及城市集约化程度的不断提高,传统单一功能的单体公共建筑,己不能完全适应城市生活的日益丰富和变化,因而逐渐向综合化、人性化发展。

本文从地铁选线、站台选择、出入口设置等几个方面系统分析了地铁在规划设计时需要考虑的多个因素。上述因素对地铁的规划设计分别起着不同的作用和影响。同时,各因素之间又存在着相互影响。所以,在地铁规划时需要对上述因素综合考虑,详细分析。

地铁线路设计常识

1、地铁线路的类别按其在运营中的地位和作用可分为哪几类? 地铁线路按其在运营中的作用,应分为正线、辅助线和车场线。其中辅助线又包括折返线、渡线、联络线、停车线、出入线、安全线等。(正线为载客运营的线路,行车速度高、密度大,且要保证行车安全和舒适,因此线路标准较高;辅助线是为保证正线运营而配置的线路,一般不行使载客车辆,速度要求较低,故线路标准也较低;车场线是场区作业的线路,行车速度低,故线路标准只要能满足场区作业即可。) 2、地铁的线路平面位置和高程应根据哪些因素确定? 地铁的线路平面位置和高程应根据城市现状与规划的道路、地面建筑物、管线和其他构筑物、文物古迹保护要求、环境与景观、地形与地貌、工程地质与水文地质条件、采用的结构类型与施工方法,以及运营要求等因素,经技术经济综合比较后确定。 3、正线及辅助线的圆曲线最小长度怎样确定? 正线及辅助线的圆曲线最小长度,A型车不宜小于25m,B型车不宜小于20m,在困难情况下不得小于一个车辆的全轴距。 4、地铁线路平面最小曲线半径如何确定? 区间正线:350m 困难地段:300m 辅助线: 200m 困难地段:150m 车场线: 150m 车站: 1200m 困难时:800m 5、地铁线路坡度如何确定? 区间正线:最大坡度不宜大于30‰,困难35‰。 联络线、出入线:最大坡度不宜大于35‰。 车站:地下站站台计算长度段线路坡度宜采用2‰,困难条件下可设在不大于3‰的坡道上;地面和高架车站一般设在平坡段上,困难时可设在不大于3‰的坡道上。 车场线:宜设在平坡道上,条件困难时库外线可设在不大于1.5‰的坡道上。 折返线和停车线应布置在面向车挡或区间的下坡道上,隧道内的坡度宜为2‰,地面和高架桥上的折返线、停车线,其坡度不宜大于2‰。 6、地铁线路竖曲线半径如何确定?

城市轨道交通工程设计常识

城市轨道交通工程设计常识周心培 2004.12 前言 轨道交通和隧道工程是城建院的两大支柱专业。近年来,宜万、甬温、温福铁路和武广客运专线隧道设计任务繁重,北京、苏州、广州地铁设计也是忙得不可开交。大批新生力量投入到隧道和地铁的设计工作中来,形势大好。为使新参加工作的年轻同志们对隧道和地铁有所了解,特把平时所见所闻的资料罗列出来给大家作个参考。 隧道专业方面以“铁路隧道史”为蓝本,回顾我国铁路隧道技术的发展历程;以大瑶山隧道和秦岭隧道为例,介绍我国当代铁路隧道技术的最高水平;最后简要地展望一下隧道及地下工程发展的前景。文中内容只是个人阅读的笔录,有兴趣者可进一步找原文研究。 轨道交通工程确是一项庞大复杂的系统工程。个人的学识有限,简单介绍不能解决如何设计的问题,只希望使大家建立个基本概念。介绍包括基础篇、车站区间篇、设备篇和工程实例篇,目的是为使读者知道什么是轨道交通,其设计包括哪些内容,曾经有过哪些经验教训。实例篇只列了个提纲,有的已有专文可作参考,如果有兴趣可另作专题交流。 今借院网城建院网页一角,把“我国铁路隧道技术的发展与展望”和“城市轨道交通工程设计概论”发表出来,希望能省却读者一些翻阅资料的时间。许多专业性的问题远非、四、五万字能解决的,具体问题可以另作专题讨论。因本人水平有限,文中谬误之处在所难免,真诚欢迎各位同仁批评指正。

城市快速轨道交通工程设计概论 基础篇 1、轨道交通分类 城市轨道交通顾名思义就是车辆在轨道上行驶的公共交通系统。火车,有轨电车等等都属于轨道交通,前者属于较长距离的城际间的交通,后者是低速行驶于街市的公共交通,但两者都不属于通常所说的城市快速轨道交通系统。粗略地可以将城市快速轨道交通分为地铁和轻轨两大类,其中轻轨又可分为普通轮轨式、独轨跨座式和独轨悬挂式三种。武汉市轨道交通1号线即属普通轮轨式的轨道交道。广州地铁4号线的车辆采用线性电动机和特殊的轨道,但本质上仍属轮轨式的交通方式。台北捷运的木栅线,采用的是胶轮车,在特别的砼轨槽内行驶,也属于轮轨式交道。上海龙东路至浦东机场的磁悬浮线,没有通常意义上的车轮和钢轨,不属于城市快速轨道交通之例。目前重庆正在修建的就是独轨跨座式轨道交通工程。独轨悬挂式类似于悬挂的索道缆车,只是车辆不是挂在缆索上,而是挂在专门的钢梁上,跨距可以做得比较大,用在一些公园和旅游区比较合适。在我国独轨悬挂式作为正规的城市轨道交通还没有建设实例。 地铁普通轮轨式 轻轨普通轮轨式 独轨跨座式 独轨悬挂式 2、地铁与轻轨 有人认为在地下跑的叫地铁,在地面上、在高架桥上跑的叫轻轨,这样区分对不对呢?最早的地铁确实是在地下跑的,要不怎么会叫地铁呢,而轻轨也确实大多数是在地面上跑,特别是在高架桥上跑,但严格讲这样区分是偏面的。国际上对地铁和轻轨

地铁车站建筑设计原则精品文档18页

地铁车站建筑设计原则 地铁车站是地铁线路中的交通枢纽,起到客流地上、地下的相互转换及快捷运送客流的作用。车站应根据线路走向合理布点,站间距考虑要适当,(市区内)宜在1.1km左右,郊区可略长些。站址的确定应符合线路设计要求,设在能够最大吸引客流的地方,如:商业中心、居住区,以便乘客在地铁和其它公共交通之间的换乘。同时注意与地面建筑规划相协调,并注意对该地区的地下管网、工程地质、水文地质、地面建筑的拆迁改造进行调查研究,力求掌握基础资料的准确性,减少工程的潜在矛盾。 2.2.1地铁车站建筑设计: 由于地铁车站建于地下, 在建筑设计上必须注意以下的设计原则:(1)地铁车站是人流比较集中的公共交通建筑,在设计中首先要满足其使用功能的要求,地铁车站的站位应该为乘客提供最大可能的方便,使多数乘客步行的距离最短。车站布局还须考虑与其它公共交通有方便的换乘条件,将旅游景点、游乐中心、住宅密集区、办公密集区等与车站相通,为乘客提供无太阳晒、无雨淋的乘车条件,使车站建筑具有合理的、完善的、流畅的使用功能。 (2)车站布设应与旧城改造和新区土地的开发相结合,车站分布应方便施工,减少拆迁,降低造价,并注重城市轨道交通建设与周边经济发展的互动效应,为可持续发展创造条件。 (3)地铁车站是建于地下的公共交通建筑除了结构应有的安全可靠性外车站建筑的设计中也应考虑所有的安全因素如楼梯和自动梯数量、位置及

宽度的考虑必须满足在灾害情况下的紧急疏散要求,有足够明亮的照明设施,以降低人在地下的恐惧心理,有清晰详尽的导向标志,安全出口通道有完善的消防设施及有足够的新风和排风排烟设施。 2.2.2地铁车站建筑平面设计: 地铁车站根据地下建筑的设计原则及车站功能,其平面基本上是最简单规整的形状。对建筑设计来说,更重要的是在简单的形体内合理的安排设备管理用房及组织人流。设计者须充分了解地铁的运营管理模式,地铁内工作人员的工作流程,站内客流的组织,各工种提出的设备、管理用房规模要求及设备、管道的流程要求,这样才能较好的完成建筑设计。 这其中要注意以下几点: (1)地铁行车线路对建筑边界的影响,即要了解渡线,折返线,缓和曲线进站对车站限界的要求,确保地铁行车安全及限界对其他设备用房造成的影响。 (2)车站建筑平面根据不同的车站型式、客流量、变电所组合、车站坡度方向、相邻区间工法、车站股道布置有无道岔等因素,采用不同的布置。如地下单层侧式站台车站,结合所处站位的城市规划等因素,有时做地下集散厅,有时做地面集散厅,主要的设备管理用房往往布置在地下,结合具体情况,变电所也可布置在地面。 (3)要重视地铁站内人流组织的问题,注重进出闸机,售票机等AFC 设备的布置方式,防止人流交叉。注重进出闸机与站内楼梯的位置关系,尽量压缩付费区的规模,减小车站的长度。

地铁设计基本知识

地铁设计 1基本概念 1.1城市轨道交通:在不同型式轨道上运行的大、中运量城市共公交通工具,是当代城市中地铁、轻轨、单轨、自动导向、磁浮等轨道交通的总称。 1.2地铁:在城市中修建的快速、大运量用电力牵引的轨道交通。线路通常设在地下隧道内,也有的在城市中心以外地区从地下转到地面或高架桥上。 1.3 单轨铁路(Monorail),简称单轨,是铁路的一种,特点是使用的轨道只有一条,而非传统铁路的两条平衡路轨。单轨铁路的路轨一般以混凝土制造,比普通钢轨寛很多。而单轨铁路的车辆比路轨更寛。和城市轨道交通系统相似,单轨铁路主要应用在城市人口密集的地方,用来运载乘客。亦有在游乐场内建筑的单轨铁路,专门运载游人。 1.3.1单轨铁路主要分成两类。悬挂式单轨铁路的列车悬挂在轨道之下。另一种较为常见的是跨座式单轨铁路,列车跨座在路轨之上,两旁盖过路轨。跨座式单轨最先由瑞士ALWEG发明,而最先提出悬挂式单轨的是SAFEGE。 1.3.2现代的单轨铁路由电动机推进,一般使用轮胎而不使用钢制的车轮。轮胎会在路轨的上面及两旁转动,推动列车及维持平衡。早期单轨系统的设计是不能使用转辙器的,使到运作上出现很多不便。现代的单轨系统多数已经可以使用转辙器,让车辆可以驶进不同的线路,而同一线路亦可作双程行驶。 单轨铁路 1.4轻轨 "地铁"、“轻轨”莫混淆轨道交通中采用中等载客量车厢,能适应远期单向最大高峰小时客流量1.5——3.0万人次的成为轻轨铁路。若采用大载客两车厢,能适应远期单向高峰小时客流量为3.0——6.0万人次的统称为地铁。当然,地铁有建于地下、地面、高架的(如建于地面上的高架地铁也可称之为轨道交通);而轻轨铁路同样有建于地下的、地面的、高架的。两者区分主要视其单向最大高峰小时客流量。中等载客两的轻轨铁路车厢,一般额定载客量是202

地铁常识问答

地铁常识问答 问:为什么区间停车时不能擅自拉下紧急拉手? 答:乘客乘坐地铁时可能会遇到列车在区间临时停车,列车在区间的短暂停留,并不代表列车运营出现问题,而是为了确保列车运营的安全间隔,是地铁系统默认的一种调整措施。当列车在区间临时停车时,乘客应听取车厢广播,切不可擅自使用紧急拉手,那会导致列车迫停,需要工作人员花更加多的时间进行恢复操作,这样反而会耽误您的时间。 问:为什么不能扒车门强行上车? 答:上海地铁高峰时段客流量大,部分车站上车拥挤,为了您的安全,请您退后一步,静心稍等片刻,后续列车马上就会到达。如果您仍坚持扒车门甚至吊门强行上车,这样不仅对您安全产生威胁,还易造成列车车门故障,导致全线列车拥堵,既延误了您自己的时间,更延误了全线乘客的时间。所以请配合车站工作人员的引导,乘坐后续列车,不需要花您多少时间来等待,也不影响线路正常运营。在此我们呼吁地铁的运营需要您的理解和支持。 问:为什么列车不能正常运行时要进行清客? 答:一旦在线运营的列车发生某些故障就需要退离正线运营,如继续承担载客运营将可能发生一定的安全风险,此时必须要采取清客措施。因此,当列车无法承担运行任务,需要清空列车退离正线时,请乘客自觉配合地铁工作管理方的工作,及时下车,确保后续列车的进站。这才能最大限度降低故障对运营的影响,保障乘客搭载后续列车顺利到达目的地。 问:上海城市轨道交通能实现24小时运营吗? 答:不能。为保证轨道交通正常运营,必须每天对列车以及接触网、道岔等机电设备进行日常维修,而这些维修工作通常在夜间进行。上海轨道交通的运营时间一般为上午5时—晚上24时,也就是说,目前的日常维修时间主要集中在晚上24时—凌晨4时这个时段,时间十分紧张,延长运营时间就意味着减少日常维修时间,将会直接影响运营安全。 问:今后上海城市轨道交通列车运营高峰时段最短发车间隔时间是多少? 答:轨道交通列车运营高峰时最短间隔时间,通常由各条线路客流、列车编组、信号技术水平及列车折返能力等因素决定。由于各线路之间线路条件、信号制式、列车型号均存在一定差异,上海轨道交通各线路列车高峰时最短发车间隔时间有所不同。通常规划中远期高峰时信号能力最短间隔为2分钟左右,随着轨道交通信号技术水平的不断提升,个别大客流线路最短发车间隔将达到100秒。

地铁小常识

一、概述 地铁是地下铁道的简称。它是一种独立的有轨交通系统,不受地面道路情况的影响,能够按照设计的能力正常运行,从而快速、安全、舒适地运送乘客。地铁效率高,无污染,能够实现大运量的要求,具有良好的社会效益。 地铁是有轨交通,其运输组织、功能实现、安全保证均应遵循有轨交通的客观规律。在运输组织上要实行集中调度、统一指挥、按运行图组织行车;在功能实现方面,各有关专业如隧道、线路、供电、车辆、通信、信号、车站机电设备及消防系统均应保证状态良好,运行正常;在安全保证方面,主要依靠行车组织和设备正常运行来保证必要的行车间隔和正确的行车经路。 为了保证地铁列车运行安全、正点,在集中调度、统一指挥的原则下,行车组织、设备、车辆检修、设备运行管理、安全保证等均由一系列规章制度来规范。地铁是一个多专业多工种配合工作、围绕安全行车这一中心而组成的有序联动、时效性极强的系统。 地铁中采用了以电子计算机处理技术为核心的各种自动化设备,从而代替人工的、机械的、电气的行车组织、设备运行和安全保证系统。如ATC(列车自动控制)系统可以实现列车自动驾驶、自动跟踪、自动调度;SCADA(供电系统管理自动化)系统可以实现主变电所、牵引变电所、降压变电所设备系统的遥控、遥信、遥测;BAS(环境监控系统)和FAS(火灾报警系统)可以实现车站环境控制的自动化和消防、报警系统的自动化;AFC(自动售检票系统)可以实现自动售票、检票、分类等功能。这些系统全线各自形成网络,均在OCC (控制中心)设中心计算机,实行统一指挥,分级控制。 地铁路网基本型式有:单线式、单环线式、多线式、蛛网式。每一条地铁线路都是由区间隧道(地面上为地面线路或高架线路)、车站及附属建筑物组成。车站按其功能分为四种: 1、中间站:只供乘客乘降用,此类车站数量最多。 2、折返站:在中间站设有折返线路设备即称为折返站,一般在市区客流量大的区段设立,可以满足乘客需要,同时节省运营开支。 3、换乘站:既用于乘客乘降又为乘客提供换乘的车站。 4、终点站:地铁线路两端的车站,除了供乘客上下或换乘外,通常还供列车停留、折返、临修及检修使用。 二、地铁车辆 地铁车辆是城市轨道交通系统的重要组成部分,也是技术含量较高的机电设备。地铁车辆应具有先进性、可靠性和实用性,应满足容量大、安全、快速、美观和节能的要求。地铁车辆有动车(M,Motor)和拖车(T,Trailer)、带司机室车和不带司机室车等多种形式。动车本身带有动力牵引装置,拖车本身无动力牵引装置;动车又分为带有受电弓的动车和不带受电弓的动车。 地铁车辆在运营时一般采用动拖结合、固定编组,形成电动列车组。由于它本身带有动力牵引装置,兼有牵引和载客两大功能,因此和铁路列车不同,不需要再连挂单独的机车。 一般地铁车辆由以下七部分组成: (1)车体 车体是容纳乘客和司机驾驶(对于有司机室的车辆)的地方,又是安装与连接其他设备和部件的基础。一般有底架、端墙、侧墙及车顶等。 (2)动力转向架和非动力转向架 动力转向架和非动力转向架装置位于车体和轨道之间,用来牵引和引导车辆沿着轨道行驶,承受与传递来自车体及线路的各种载荷并缓冲其动力作用,是保证车辆运行品质的关键部位。一般由构架、弹簧悬挂装置、轮对轴箱装置和制动装置等组成。 (3)牵引缓冲连接装置

地铁线路设计规划模型数学建模知识讲解

地铁线路设计规划模型 一、摘要 二、问题重述 某城市中心城区(如图1所示)规划修建地铁,要求从该中心城区任意一点出发,到最近的地铁站的直线距离不超过800米,试通过建立模型解决下列问题:(1)最少要建多少个地铁站?(2)按最少数量的地铁站分布,设计出最佳 图1:某城市中心城区的简化图,其中AGCB为梯形,DEFG为矩形,坐标A(0.5, 4.8), B(0, 2), BC=7.5, AG=3.5, DE=2.8, EF=7.3。图中每单位长度表示实际距离3km。

三、名词和符号说明 四、模型假设 五、问题分析 本题中规划的中心城区是一个不规则的图形,所以地铁分布时不能简单的按规律建立。我们设想的是先建造一种拥有最佳有效面积的地铁站点。首先,我们利用微分的思想,以地铁站为圆心,800m 为半径画圆再在圆内画内接多边形,希望最后能将两个圆内内接多边形重叠之后重叠的面积尽量少。之后,我们又从化学原子排列规律中得到了另一种模型,从中我们再比较选出最佳的模型。之后,我们利用CAD 按比例画出题目的图与地铁站点阵进行比较,为了获取地铁站间的距离,我们用C 语言编了一个程序计算出每个地铁站的距离矩阵,最后再利用Matlab 画出地铁站点图的最小生成树,从中得出最佳路线。 思路一:我们抛开这个城市的图形,以地铁站为圆心,800m 为半径画圆, 如图5-1。 图 5-1 然后,为了使所有两个地铁站能无缝地接在一起,我们把这个图尽可能多地划分成内接多边形。如图(b )~(e )。 .... 图 5- 2 图5- 3 图 5- 4 图 5-5 这里,我们又出现一个新的问题,要使内接多边形能接在一起,内接多边形的角度必须能整除360,n 边形内角和为(2)180n -?,每个内角为(2)180n n -?÷。满足整除360,只有n=3,4,6。 现在,我们先假设

地铁基本知识

地铁基本知识 地铁是地下铁道(subway)的简称。它是一种独立的有轨交通系统,不受地面道路情况的影响,能够按照设计的能力正常运行,从而快速、安全、舒适地运送乘客。地铁效率高、无污染,能够实现大运量的要求,具有良好的社会效益。 地铁是有轨交通,其运输组织、功能实现、安全保证均应遵循有轨交通的客观规律。在运输组织上要实行集中调度、统一指挥、按运行图组织行车;在功能实现方面,各有关专业如隧道、线路、供电、车辆、通信、信号、车站机电设备及消防系统均应保证状态良好,运行正常;在安全保证方面,主要依靠行车组织和设备正常运行来保证必要的行车间隔和正确的行车经路。 为了保证地铁列车运行安全、正点,在集中调度、统一指挥的原则下,行车组织、设备、车辆检修、设备运行管理、安全保证等均由一系列规章制度来规范。地铁是一个多专业多工种配合工作、围绕安全行车这一中心而组成的有序联动、时效性极强的系统。 地铁中采用了以电子计算机处理技术为核心的各种自动化设备,从而代替人工的、机械的、电气的行车组织、设备运行和安全保证系统。如ATC(列车自动控制)系统可以实现列车自动驾驶、自动跟踪、自动调度;SCADA(供电系统管理自动化)系统可以实现主变电所、牵引变电所、降压变电所设备系统的遥控、遥信、遥测;BAS(环境监控系统)和FAS(火灾报警系统)可以实现车站环境控制的自动化和消防、报警系统的自动化;AFC(自动售检票系统)可以实现自动售票、检票、分类等功能。这些系统全线各自形成网络,均在OCC(控制中心)设中心计算机,实行统一指挥,分级控制。 一、地铁的基本形式 地铁路网的基本型式有:单线式、单环线式、多线式、蛛网式。每一条地铁线路都是由区间隧道(地面上为地面线路或高架线路)、车站及附属建筑物组成。车站按其功能分为四种: 1、中间站:只供乘客乘降用,此类车站数量最多。 2、折返站:在中间站设有折返线路设备即称为折返站,一般在市区客流量大的区段设立,可以满足乘客需要,同时节省运营开支。 3、换乘站:既用于乘客乘降又为乘客提供换乘的车站。 4、终点站:地铁线路两端的车站,除了供乘客上下或换乘外,通常还供列车停留、折返、临修及检修使用。 二、地铁车辆 地铁车辆是城市轨道交通系统的重要组成部分,也是技术含量较高的机电设备。地铁车辆应具有先进性、可靠性和实用性,应满足容量大、安全、快速、美观和节能的要求。地铁车辆有动车(M,Motor)和拖车(T,Trailer)、带司机室车和不带司机室车等多种形式。动车本身带有动力牵引装置,拖车本身无动力牵引装置;动车又分为带有受电弓的动车和不带受电弓的动车。 地铁车辆在运营时一般采用动拖结合、固定编组,形成电动列车组。由于它本身带有动力牵引装置,兼有牵引和载客两大功能,因此和铁路列车不同,不需要再连挂单独的机车。 一般地铁车辆由以下七部分组成:

地铁线路设计常识

地铁线路设计常识-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

1、地铁线路的类别按其在运营中的地位和作用可分为哪几类 地铁线路按其在运营中的作用,应分为正线、辅助线和车场线。其中辅助线又包括折返线、渡线、联络线、停车线、出入线、安全线等。(正线为载客运营的线路,行车速度高、密度大,且要保证行车安全和舒适,因此线路标准较高;辅助线是为保证正线运营而配置的线路,一般不行使载客车辆,速度要求较低,故线路标准也较低;车场线是场区作业的线路,行车速度低,故线路标准只要能满足场区作业即可。) 2、地铁的线路平面位置和高程应根据哪些因素确定 地铁的线路平面位置和高程应根据城市现状与规划的道路、地面建筑物、管线和其他构筑物、文物古迹保护要求、环境与景观、地形与地貌、工程地质与水文地质条件、采用的结构类型与施工方法,以及运营要求等因素,经技术经济综合比较后确定。 3、正线及辅助线的圆曲线最小长度怎样确定 正线及辅助线的圆曲线最小长度,A型车不宜小于25m,B型车不宜小于20m,在困难情况下不得小于一个车辆的全轴距。 4、地铁线路平面最小曲线半径如何确定 区间正线:350m 困难地段:300m 辅助线: 200m 困难地段:150m 车场线: 150m 车站: 1200m 困难时:800m 5、地铁线路坡度如何确定 区间正线:最大坡度不宜大于30‰,困难35‰。 联络线、出入线:最大坡度不宜大于35‰。 车站:地下站站台计算长度段线路坡度宜采用2‰,困难条件下可设在不大于3‰的坡道上;地面和高架车站一般设在平坡段上,困难时可设在不大于3‰的坡道上。 车场线:宜设在平坡道上,条件困难时库外线可设在不大于‰的坡道上。

相关主题
文本预览
相关文档 最新文档