当前位置:文档之家› 全强风化花岗岩围岩隧道修建技术(下)

全强风化花岗岩围岩隧道修建技术(下)

全强风化花岗岩围岩隧道修建技术

剧仲林

二O一三年七月

目录

1 全强风化花岗岩的工程地质及物理力学特性.................................. 错误!未定义书签。

1.1花岗岩........................................................................................ 错误!未定义书签。

1.2 花岗岩地区残积土、全风化和强风化花岗岩....................... 错误!未定义书签。

1.2.1 残积土............................................................................ 错误!未定义书签。

1.2.2 全风化花岗岩................................................................ 错误!未定义书签。

1.2.3 强风化花岗岩................................................................ 错误!未定义书签。

1.2.4花岗岩风化岩体的组构特征......................................... 错误!未定义书签。

1.2.5全强风化花岗岩的物质成分特征................................. 错误!未定义书签。

1.2.6花岗岩风化物的工程特性分析与评价......................... 错误!未定义书签。

1.3 全强风化花岗岩围岩对隧道施工的影响............................... 错误!未定义书签。

1.3.1全强风化花岗岩对隧道施工的影响............................. 错误!未定义书签。

1.3.2全强风化花岗岩围岩隧道施工的几个实例................. 错误!未定义书签。

2 全强风化花岗岩隧道治水技术.......................................................... 错误!未定义书签。

2.1 全强风化花岗岩隧道洞外井点降水技术............................... 错误!未定义书签。

2.1.1洞外井点降水方案的选择条件..................................... 错误!未定义书签。

2.1.2各种井点的适用范围..................................................... 错误!未定义书签。

2.1.3轻型井点......................................................................... 错误!未定义书签。

2.1.3喷射井点......................................................................... 错误!未定义书签。

2.2 全强风化花岗岩隧道洞内降水、排水技术........................... 错误!未定义书签。

2.2.1洞内井点降水方案的选择条件..................................... 错误!未定义书签。

2.2.2洞内井点降水技术......................................................... 错误!未定义书签。

3 全强风化花岗岩注浆加固技术.......................................................... 错误!未定义书签。

3.1注浆材料.................................................................................... 错误!未定义书签。

3.1.1 注浆材料的分类............................................................ 错误!未定义书签。

3.1.2 对理想浆液的要求........................................................ 错误!未定义书签。

3.1.3 注入能力与渗透性(可注性).................................... 错误!未定义书签。

3.2注浆材料的评价........................................................................ 错误!未定义书签。

3.2.1 各种注浆材料的基本性能、成分及适用范围............ 错误!未定义书签。

3.2.2 注浆材料的综合技术经济指标评分............................ 错误!未定义书签。

3.3注浆原理.................................................................................... 错误!未定义书签。

3.3.1 注浆材料的渗透理论.................................................... 错误!未定义书签。

3.3.2 注浆法的适用界限........................................................ 错误!未定义书签。

3.4全、强风化花岗岩地层注浆技术............................................ 错误!未定义书签。

3.4.1全、强风化花岗岩地层注浆机理................................. 错误!未定义书签。

3.4.2全、强风化花岗岩地层注浆可行性探讨..................... 错误!未定义书签。

3.4.3 全、强风化花岗岩地层注浆材料、工艺、参数要点错误!未定义书签。

3.5高压喷射注浆............................................................................ 错误!未定义书签。

3.5.1概述................................................................................. 错误!未定义书签。

3.5.2高压喷射注浆机理及加固作用..................................... 错误!未定义书签。

3.5.3高压喷射注浆浆液材料................................................. 错误!未定义书签。

4 隧道进洞方法...................................................................................... 错误!未定义书签。

4.1洞口仰坡受力分析.................................................................... 错误!未定义书签。

4.1.1 进洞的最大风险是仰坡的失稳.................................... 错误!未定义书签。

4.1.2 洞口仰坡受力分析........................................................ 错误!未定义书签。

4.2低仰坡进洞................................................................................ 错误!未定义书签。

4.2.1 低仰坡进洞设计............................................................ 错误!未定义书签。

4.2.2 低仰坡进洞施工............................................................ 错误!未定义书签。

4.3高仰坡进洞................................................................................ 错误!未定义书签。

4.3.1 高仰坡进洞条件............................................................ 错误!未定义书签。

4.3.2 高仰坡进洞方法............................................................ 错误!未定义书签。

5 隧道施工方法...................................................................................... 错误!未定义书签。

5.1 隧道施工方法选择条件........................................................... 错误!未定义书签。

5.1.1 隧道施工方法选择条件................................................ 错误!未定义书签。

5.1.2 隧道施工的难点分析.................................................... 错误!未定义书签。

5.2 隧道三台阶法施工方法........................................................... 错误!未定义书签。

5.2.1工法适用条件................................................................. 错误!未定义书签。

5.2.2 施工准备........................................................................ 错误!未定义书签。

5.2.3三台阶施工法................................................................. 错误!未定义书签。

5.3 隧道中隔壁(CD)法施工方法............................................... 错误!未定义书签。

5.3.1工法适用条件................................................................. 错误!未定义书签。

5.3.2中隔壁(CD)施工法..................................................... 错误!未定义书签。

6 隧道初期支护要点 (5)

6.1 隧道预支护 (5)

6.1.1 双层密排超前插管预支护 (5)

6.1.2 水平旋喷超前预支护 (5)

6.1.3 侧壁预支护 (8)

6.2 不对称单元、正反布置拱架 (9)

6.2.1 不对称单元、正反布置拱架 (9)

6.2.2 不对称单元拱架的布置 (11)

6.3 钢架单元节点连接 (13)

6.3.1 拱部、边墙单元钢架的节点 (13)

6.3.2 边墙与仰拱钢架单元的正面节点及仰拱焊接节点连接 (14)

6.4 钢架的纵向连接 (16)

6.4.1 U型筋插接式连接 (16)

6.4.2 U型筋梯形布置焊接式连接 (17)

6.4.3 矩形筋梯形布置焊接式连接 (18)

6.4.4 型钢螺栓连接 (18)

6.5 钢架托梁 (20)

6.5.1 钢筋混凝土托梁 (20)

6.5.2 型钢托梁 (23)

6.6 系统锚杆 (25)

6.6.1 系统锚杆的设计施工要点 (25)

6.6.2 锚杆(管)与钢架连接 (26)

6.6.3 锚杆的布置 (27)

6.6.4 锚杆作用机理 (29)

6.6.5 锚杆质量的检查 (31)

7 初期支护变形的处理方法 (32)

7.1 初期支护变形处理原则 (32)

7.2 初期支护变形处理方法 (32)

7.3 初期支护变形处理完成后恢复掘进的条件 (33)

8 监控量测 (34)

8.1 原则 (34)

8.2 监测项目 (35)

8.3 监控量测断面及测点布置原则 (36)

8.4 监控量测频率 (37)

8.5 位移、沉降控制及管理 (38)

8.6 围岩稳定判别及管理 (39)

8.7 监控量测方法 (41)

8.8 监控量测记录及数据分析 (41)

6 隧道初期支护要点

6.1 隧道预支护

6.1.1 双层密排超前插管预支护

1、适用条件

没有地下水或地下水对围岩的影响较小,可采用“双层密排超前插管”的方式进行预支护。所谓“双层密排”的含义是:在隧道任何一个横截面内都有不少与两层的预支护,且环向相错。这种预支护方式施工最便捷、成本最低,是隧道正常循环作业优先考虑的预支护方式。

2、设计

见图6-1-1“双层密排”超前小导管布置图。小导管超度=2进尺+50cm,环向间距20~40cm,相邻两循环钢架环向相错间距/ 2。与不对称单元正反布置拱架设计相配套。

图6-1-1“双层密排”超前小导管布置图(单位:mm)

3、施工要点

(1)小导管的施工优先采取直接插入的方式,管前端斜切45?呈注射针头样式,不注浆。如果采取钻孔→插管的工艺工序施工,则应插入花管,注入早强浆液,注浆以填塞管内、管壁与孔壁之间的空隙为主;

(2)钢架间距不宜太小,否则小导管外插角将增大,超挖就增大,一般情况下,以一次进尺为两榀钢架为宜,且先安装小导管定位钢架,施工完小导管后再安装另一榀钢架。

6.1.2 水平旋喷超前预支护

1、适用条件

地下水对围岩的影响较大时,可采用水平旋喷的方式进行预支护。

2、水平旋喷定义

水平旋喷是以高压泵为动力源,通过水平钻机、钻杆、钻头、喷嘴把配制好的浆液喷射到土体内。在喷嘴作缓慢旋转和进退的过程中喷射流以巨大的能量将一定范围内的土体切削、摧毁,强制土颗粒与浆液在原位充分混合,然后形成大致水平的柱状水泥土固结体即水平旋喷桩,当多个旋喷桩相互咬合后,在隧道拱部或周边形成封闭的帷幕,起到防渗透的拱壳保护作用。

3、施工参数

水平旋喷施工经验参数表6-1-1

图6-1-2 水平旋喷预支护布置图

5、水平旋喷施工步骤

(1)水平旋喷机定位:按设计要求,准确定位水平旋喷机,并将底盘垫牢固。要求定位偏差不大于5cm。

(2)钻进:在外套管的保护下,进行钻孔,直至设计位置。

(3)拔出钻杆:钻至设计位置后,拔出钻杆,并在孔内留置外套管。

(4)插入水平注浆管并进行注浆:在外套管内插入水平注浆管至设计位置,注浆时,注浆管及外套管同时向孔外拔出,直至预定位置。

(5)封堵孔口:注浆完毕后,进行补充注浆,并及时封堵孔口。

6、水平旋喷主要设备

水平旋喷的主要设备包括:专用水平旋喷机、高压水泵、高压泥浆泵及空压机,另有其他附属设备,具体见下表表6-1-2。

水平旋喷主要机具一览表表6-1-2

(1)钻孔

水平旋喷机本身具有成孔能力,一般采用回转钻进,并采用护套管同时跟管钻进。护套管跟管钻进的成孔质量及直线度较好,这对于较长水平旋喷桩的施工质量是一个有利因素。

水平旋喷也可以采用单管法,采用喷管直接钻进,喷管间采用丝扣连接,拆接方便,加上单管长度较长,施工速度较快,总体施工效率高。

(2)旋喷注浆

四管法钻孔至预定深度后,需首先将钻杆取出,再放入水平旋喷管。喷管放至预定深度后,开启高压泥浆泵,空压机,高压清水泵即可进行施工。

水平旋喷机分前后两个动力头,前动力头驱动钻杆钻进及喷管的摆动及提升,后动力头驱动护套管的钻进、旋转及提升。施工中,前后两个动力头以不同的转速旋转,并带动喷管及套管以一定的速度向外提升。

(3)排浆

四管法水平旋喷采用强制排浆工艺,即废浆通过高压水的真空吸力被强制排出孔外。该工艺可以大大减小施工对周围环境的影响,并可以通过调节高压水压力和流量控制废浆排出量,并进一步控制地表沉降或抬升。废浆排至储浆池后,通过泥浆泵二次排放至预定泥浆堆放区域(距离较近时也可以直接排至堆浆区)。由于排出的废浆含有部分水泥,凝固后可以以土方的形式外运出场。

6.1.3 侧壁预支护

1、适用条件

侧壁不稳定时,有可能产生“偏帮”和“掉拱”,应进行预支护。

2、侧壁预支护方法

侧壁预支护一般与拱脚托梁相配合使用。见图6-1-3 侧壁预支护布置图。

图6-1-3 侧壁预支护布置图

6.2 不对称单元、正反布置拱架

6.2.1 不对称单元、正反布置拱架

1、不对称单元、正反布置拱架的概念

实践证明,钢架节点尤其是拱部的节点是钢架强度最薄弱处,钢架的破坏多在此处,为了加强节点处强度,将拱架单元划分成中线不对称的型式,使节点的设置满足钢筋混凝土结构对钢筋骨架的接头的同一截面率的要求,即通过对拱架不对称单元的划分、安装时正、反布置,达到节点相错50cm以上、同一截面率由对称单元设计的100%,减小为50%的目标。

2、不对称单元、正反布置拱架的特征

(1)45?节点

拱腰部位存在较大的法向剪力,将此处的节点由传统的法向布置,改为与法向呈45?的方向布置(表现为水平状态),提高钢架的抗剪强度,也更方便拱架的安装;(见图6-2-1)

图6-2-1 45?节点

(2)系统锚杆(管)不对称

系统锚杆(管)与拱架通过锚杆垫板连接,以形成以钢架、喷射混凝土、锚杆、围岩组成的“组合拱”,实现“新奥法”支护与围岩共同承载的目标。锚杆(管)垫板呈左右不对称状态,是锚杆能够满足“梅花型”布置的要求;(见图6-2-2)

图6-2-2 不对称单元拱架(无超前小导管定位孔)

(3)超前小导管定位孔不对称

超前小导管按照“双层密排”的原则设计,即相邻两循环超前小导管的环向布置相错环向间距的一半,故超前小导管的定位孔呈左右不对称状态,且通过拱架的正、反布置,实现超前小导管“双层密排”的目标;(见图6-2-3)

图6-2-3 不对称单元拱架(有超前小导管定位孔)

6.2.2 不对称单元拱架的布置

不对称单元拱架有三种——有超前小导管定位孔A1型、A2型和无超前小导管定位孔B型,超前小导管按照“双层密排”的原则设计,A1型、A2型的差别在于起超前小导管定位孔相错间距/2;其长度一般为2倍拱架间距+50cm,所以其安装方法为:A1正+B反+A2正+ B反+ A1正+……。见图6-2-3、6-2-4、6-2-5。

图6-2-4 不对称单元拱架安装图(西南等轴侧)

图6-2-5 不对称单元拱架安装图(西北等轴侧)

图6-2-6 不对称单元拱架安装图(正俯视)6.3 钢架单元节点连接

6.3.1 拱部、边墙单元钢架的节点

1、与钢架轴线呈90?

图6-3-1 正面连接节点图

2、与钢架轴线呈45?

图6-3-2 45?连接节点图

6.3.2 边墙与仰拱钢架单元的正面节点及仰拱焊接节点连接

传统的边墙与仰拱钢架采取在钢架结构分界处的侧面连接,由于钢架安装从空间上来看,是有拱部开始,两侧分别向下接长,然后至仰拱汇拢;从时间上来看,左右两侧边墙的钢架安装不同步。以上客观因素,尤其围岩变形,是无法预料的,所以,最后合拢的仰拱钢架的准确尺寸无法预先确定,只有采取现场两侧边墙安装后测量的办法,现场切割,现场焊接。如果边墙与仰拱的节点位于结构分界处,采取侧面连接,这现场焊接的质量往往无法保证,成为质量隐患。针对上述问题,将边墙与仰拱的节点改移至仰拱结构部位,且采取与结构轴线成90?的正面连接节点,仰拱钢架分为三个单元,两侧的单元均为厂内加工,中间小单元为根据现场实测现场切割、焊接,且将焊接节点——焊接质量难以保证的节点至于仰拱中间——以轴向压力为主的应力状态,使其质量通病对结构的影响降至最低。详见图6-3-3、6-3-4、6-3-5。

图6-3-3 边墙与仰拱正面连接节点侧面结构图

图6-3-4 边墙与仰拱正面连接节点图

图6-3-5 边墙与仰拱正面连接及仰拱的连接节点图

6.4 钢架的纵向连接

6.4.1 U型筋插接式连接

将纵向连接钢筋加工成U型,钢架腹板上焊接钢套管,现场钢架安装时采取U型筋插入套管的连接方式连接。这种连接方式的优点是快捷、连接强度可靠,缺点是由于连接筋与套管存在空隙,使得这种连接的刚度减弱。当围岩比较稳定时,采取这种连接方式有利。见图6-4-1、6-4-2。

图6-4-1 钢架U型筋纵向插接式连接设计图

图6-4-2 钢架U型筋纵向插接式连接透视图

6.4.2 U型筋梯形布置焊接式连接

将纵向连接钢筋加工成U型,现场钢架安装时采取U型筋焊接于钢架腹板上的连接方式连接。这种连接方式的优点是连接强度、刚度均十分可靠,缺点是现场焊接作业量较大。当围岩稳定性较差时,采取这种连接方式有利。见图6-4-3、6-4-4。

图6-4-3 钢架U型筋纵向梯形布置焊接式连接设计图

图6-4-4 钢架U型筋纵向梯形布置焊接式连接透视图

6.4.3 矩形筋梯形布置焊接式连接

将纵向连接钢筋加工成矩型,现场钢架安装时采取矩型筋焊接于钢架腹板上的连接方式连接。这种连接方式的优点是连接强度、刚度均十分可靠,缺点是材料用量较大、现场焊接作业量较大。当围岩稳定性较差时,采取这种连接方式有利。见图6-4-5。

图6-4-5 钢架矩型筋纵向梯形布置焊接式连接设计图

6.4.4 型钢螺栓连接

隧道围岩分级及其主要力学参数

隧道围岩分级及其主要力学参数 一、一般规定 在公路勘察设计过程中,是根据周边岩体或土体的稳定特性进行围岩分级的。围岩分Ⅰ~Ⅵ级,由于每级间范围较大,施工阶段对Ⅲ、Ⅳ、Ⅴ基本级别,再进行亚级划分。在公路隧道按土质特性和工程特性分:岩质围岩分级——Ⅰ~Ⅴ级;土质围岩分级Ⅳ~Ⅵ级。对岩质围岩和土质围岩分别采用不同的指标体系进行评定:岩质围岩基本指标为岩质的坚硬程度和完整程度,修正指标为地下水状态,主要软弱结构面产状及初始地应力状态。 土质围岩分级指标体系宜根据土性差异而组成,粘土质围岩基本指标为潮湿程度。沙质土围岩基本指标为密实程度。修正指标潮湿程度。碎石土围岩基本指标为密实程度。至于膨胀土、冻土作为专门研究,这里暂不述。围岩分级指标体系中可用定性分析,也可用定量分析,但由于工地施工条件时间等因素,一般我们仅采用定性分析。下面我讲定性分析来确定围岩级别。 1、确定岩性及风化程度。 2、结构面发育,主要结构面结合程度,主要结构面类型,甚至产状倾角、走向结构面张开度,张裂隙。 3、水的状况涌水量等。 二、岩石坚硬程度的定性划分 1、坚硬岩:锤击声清脆、震手、难击碎,有回弹感,浸水后大多无吸水反应,如微风化的花岗岩——正长岩,闪长岩,辉绿岩,玄

武岩,安山岩,片麻岩,石英片麻岩,硅质板岩,石英岩,硅质胶结的砾岩,石英砂岩,硅质石灰岩等等。 2、较坚硬岩:锤击声较清脆,有轻微回弹,稍震手,较难击碎,浸水后有轻微吸水反应。如未风化~微风化的熔结凝灰岩、大理岩、板岩、白云岩、石灰岩、钙质胶结的砂岩等。 3、较软岩:锤击声不清脆,无回弹,较易击碎,浸水后指甲可刻击印痕。如未风化~微风化的凝灰岩,砂质泥岩,泥灰岩,泥质砂岩,粉砂岩,页岩等。 4、软岩:锤击声哑,无回弹,有凹痕,多击碎,手可掰开。如强风化的坚硬岩,弱风化~强风化的较坚硬岩,弱分化的较软岩,未风化的泥岩等。 5、极软岩:锤击声哑,无回弹,有较深凹痕,手可捏碎,浸水后可捏成团,如全风化的各种岩类,各种半成岩。Rc——岩石单轴饱和抗压强度、定性质与岩石的对应关系,一般Rc>60MPa——坚硬岩,Rc=60~30 MPa为较坚硬岩;Rc=3 0~15MPa为较软岩;Rc=15~5MPa 软岩;Rc<5Mpa极软岩。也可用Rc=22.82Is(50),Is(50)——岩石点荷载强度指数。这里不多说。 三、岩质围岩的完整度的定性划分 这是根据岩体的结构状况来定性划分 1、完整:节理裂隙,不发育,节理裂隙1-2组,平均间距>1.0m 层面结合好,一般。 2、较完整:节理裂隙,不发育,节理裂隙1-2组,平均间距1.0m

强风化花岗岩识别

强风化花岗岩识别 摘要:强风化花岗岩层往往是电力工程的目标层,本文在对花岗岩的风化过程、风化影响因素、风化地层分带特性进行分析的基础上,归纳了强风化花岗岩的识别方法。 关键词:花岗岩强风化识别方法 1 引言 在花岗岩地区修建电力工程,强风化层往往是目标层位。在上部土层无法满足天然地基条件的情况下,强风化层具有高承载力和低压缩性,对于电厂的重要建筑物和特高压输电线路而言,使其成为较好的桩端持力层。本文首先对花岗岩的风化特定进行了研究,在此基础上归纳总结了花岗岩强风化层识别方法 2花岗岩风化的特点 2.1 花岗岩风化过程 岩石风化首先经过崩解阶段(即物理风化),使矿物颗粒的比表面积逐步增大,加强了与水、氧、二氧化碳和生物的接触,经历溶解、水化、水解、碳酸化、氧化作用及生物风化等作用,由于不同深度风化条件的差异,使花岗岩不同深度的风化方式与程度有所不同,形成具有不同组分与结构特性的风化层,构成具有垂直分带性(即多层结构)的风化剖面,但这种风化剖面是在原地风化逐渐形成的,是一个有次序、连续的地质建造,在风化剖面上一般没有阶坎式的突变和跳跃式的风化,每层均具各自特性,层间是逐渐过渡的,故层间界面一般很难准确确定[1]。 2.2 花岗岩风化的影响因素: (1)矿物成分与结构 受地质构造条件、岩浆成分和围岩物质成分的控制和影响,不同时期的不同地区的花岗岩类在岩石矿物、成分、结构构造等方面存在着差异。总体而言,酸性矿物比碱性矿物抗风化能力强,细粒结构比粗粒结构抗风化能力强。对于花岗岩而言,石英稳定性最高,长石类风化稳定性由高到低的顺序是:钾长石、多钠的酸性斜长石、中性斜长石、多钙的基性斜长石,次之为黑云母、角闪石等。在花岗岩类岩石中最先发生水化作用的是黑色矿物及普通角闪石。偏中性的花岗闪长岩、二长花岗岩的黑色矿物大大超过酸性花岗岩,因此在同等条件下花岗闪长岩等偏中性岩的风化程度和风化土厚度大于酸性花岗岩,由于其

有关隧道围岩的分级

关于隧道围岩的分级 最近一段时间学习了关于隧道围岩分级的问题,逐渐的了解了隧道的施工工艺及工序,也在网上查找了一些关于围岩问题的文章,学习了,很深奥,有很多东西还是不能够理解,希望能交到良师益友向您学习,本文章来自于百度文库,我整理了下,其中有些内容是我通过查找规范所得。 《公路隧道设计规范JTGD70-2004》 《公路工程地质勘察规范JTJ064-98》 《岩土工程勘察规范GB50021-2001》 《水工隧洞设计规范》(SL279-2002) 《工程岩体分级标准》(GB50218-94) 《铁路隧道设计规范》(TB10003-2005) 《地铁设计规范》(GB50157-2003) 《锚杆喷射混凝土支护技术规范》(50086-2001) 《公路隧道施工技术规范》(JTJF60-2009) 《工程岩体分级标准》(GB50218-94) 名词解释: 围岩:围岩是隧道开挖后其周围产生的应力重分布范围内的岩体,或指隧道开挖后对其稳定性产生影响的那部分岩体,(这里所指的岩体是土体与岩体的总称)

在不同的岩体中开挖隧道后岩体所表现出的性态是不同的,可归纳为充分稳定、基本稳定、暂时稳定和不稳定四种。 岩爆:岩体中聚积的弹性变形能在地下工程开挖中突然猛烈释放,使岩石爆裂并弹射出来的现象。轻微的岩爆仅剥落岩片,无弹射现象。严重的可测到4.6级的震级,一般持续几天或几个月。发生岩爆的原因是岩体中有较高的地应力,并且超过了岩石本身的强度,同时岩石具有较高的脆性度和弹性。这时一旦地下工程破坏了岩体的平衡,强大的能量把岩石破坏,并将破碎岩石抛出。预防岩爆的方法是应力解除法、注水软化法和使用锚栓-钢丝网-混凝土支护。 在JTJD70-2004《公路隧道设计规范》中关于隧道围岩级别划分为六级,级别越大围岩越差,六级为土,但目前实施中不同,《岩土工程勘察规范GB50021-2001》中规定地下铁道围岩分类应按 GB50307-1999《地下铁道,轻轨交通岩土工程勘查规范》, GB50307-1999《地下铁道,轻轨交通岩土工程勘查规范》中的围岩分类方法引自原《铁路隧道设计规范》(TB10003-1999)围岩分级是根据《工程岩体分级标准》(GB50218-94)结合工程经验得来的,勘察是为设计服务的,所以在地铁工程勘察中,如果还利用地铁勘察规范进行围岩分类,易给设计带来不便。 公路隧道围岩分级将围岩分为6级,给出了主要围岩的工程地质特征、结构特征,和完整性等指标并预测了隧道开挖后可能出现的塌方、滑动、膨胀、挤出、岩爆、突然涌水、及瓦斯突出等失稳的部位和地段,给出了相应的工程措施,

几种常见岩石的辨别和描述

几种常见岩石的辨别和描述(野外编录) 三种常见的岩浆岩: 1.花岗岩是分布最广的深成侵入岩。主要矿物成分是石英、长石和黑云母,颜色较浅,以灰白色和肉红色最为常见,具有等粒状和块状构造。花岗岩既美观抗压强度又高,是优质建筑材料。 2.橄榄岩侵入岩的一种。主要矿物成分是橄榄石及辉石,深绿色或绿黑色,比重大,粒状结构。是铂及铬矿的惟一母岩,镍、金刚石、石棉、菱铁矿、滑石等也同这类岩石有关。 3.玄武岩一种分布最广的喷出岩。矿物成分以斜长石、辉石为主,黑色或灰黑色,具有气孔构造和杏仁状构造,玄武岩本身可用作优良耐磨的铸石原料。 (沉积岩) 又叫“水成岩”。是在常温常压条件下岩石遭受风化作用的破坏产物,或生物作用和火山作用的产物,经过长时间的日晒、雨淋、风吹、浪打,会逐渐破碎成为砂砾或泥土。在风、流水、冰川、海浪等外力作用下,这些破碎的物质又被搬运到湖泊、海洋等低洼地区堆积或沉积下来,形成沉积物。随着时间的推移,沉积物越来越厚,压力越来越大,于是空隙逐渐缩小,水分逐渐排出,再加上可溶物的胶结作用,沉积物便慢慢固结而成岩石,这就是沉积岩。沉积岩分布极广,占陆地面积的75%,是构成地壳表层的主要岩石。四种常见的沉积岩: 1.砾岩一种颗粒直径大于2毫米的卵石、砾石等岩石和矿物胶结而成的岩石,多呈厚层块状,层理不明显,其中砾石的排列有一定的规律性。 2.砂岩颗粒直径为0.1~2毫米的砂粒胶结而成的岩石。分布很广,主要成分是石英、长石等,颜色常为白色、灰色、淡红色和黄色。

3.页岩由各种黏土经压紧和胶结而成的岩石。是沉积岩分布最广的一种岩石,层理明显,可以分裂成薄片,有各种颜色,如黑色、红色、灰色、黄色等。 4.石灰岩俗称“青石”,是一种在海、湖盆地中生成灰色或灰白色沉积岩。主要由方解石的微粒组成,遇稀盐酸会发生化学反应,放出气泡。石灰岩的颜色多为白色、灰色及黑灰色,呈致密块状。 变质岩:地壳中的火成岩或沉积岩,由于地壳运动、岩浆活动等所造成的物理、化学条件的变化,使其成分、结构、构造发生一系列改变,这种促成岩石发生改变的作用称为变质作用。由变质作用形成的新岩石叫做变质岩,例如由石英砂岩变质而成的石英岩,由页岩变质而成的板岩,由石灰岩、白云岩变质而成的大理岩。变质岩常有片理构造。三种常见的变质岩: 1.大理岩由石灰岩或白云岩重结晶变质而成。颗粒比:石灰岩粗,矿物成分主要为方解石,遇酸剧烈反应,一般为白色,如含不同杂质,就有各种不同的颜色。大理岩硬度不大,容易雕刻,磨光后非常美观,常用来做工艺装饰品和建筑石材。 2.板岩由页岩和黏土变质而成。颗粒极细,矿物成分只有在显微镜下才能看到。敲击时发出清脆的响声,具有明显的板状构造。板面微具光泽,颜色多种多样,有灰、黑、灰绿、紫、红等,可用做屋瓦和写字石板。 3.片麻岩多由岩浆岩变质而成。晶粒较粗,主要矿物成分为石英、长石、黑云母、角闪石等。矿物颗粒黑白相间,呈连续条带状排列,形成片麻构造。岩性坚,但极易风化破碎。 C、(矿物) 是地壳内外各种岩石和矿石的组成部分,是具有一定的化学成分和物理性质的自然均一体。大部分矿物是固体,也有的是液体(如自然汞、石油)或气

岩石的分类和识别

岩石的分类和识别 高二地理 执教李永萍 教学目标 1.通过教学,让学生知道三大类岩石的成因和初步学会三大类岩石的识别技能。 2.联系实际,让学生初步认识岩石与生活、生产活动的关系,为突出“人地关系”主线作好准备。 3.通过参与教学过程,培养学生的观察能力,实事求是的科学精神,学会“比较”、“分析”这些学习方法。 教学重点和难点 三大类岩石的成因和主要特征;三大类岩石的识别技能 教学过程 (全班学生分成四个小组,学生以小组为单位围坐在桌旁,每个小组配有两套岩石标本) [教师] 岩石圈指的是地球内部圈层的哪个范围? [学生] 指的是地球内部软流层以上的岩石部分。 [教师] 岩石圈的物质组成有何特点? [学生] 岩石圈是由各种岩石组成的,岩石是由矿物组成,矿物则又由不同的化学元素组成。 [教师] 请同学们把桌上的岩石标本盒打开。这么多的岩石标本,仅是组成岩石圈各类岩石中的一部分。如何来区分和认识它们呢?今天,我们就一起来学习“岩石的分类和识别”。 (板书:岩石的分类和识别)

[教师] 请同学们找出1号和7号岩石标本(花岗岩和玄武岩),观察比较它们的不同点。 (学生活动:各小组进行观察、比较、讨论) [学生] 两块岩石标本颜色不同:1号岩石标本颜色浅,7号岩石标本颜色深。 [学生] 1号岩石标本看得出一粒粒矿物晶粒,7号岩石标本矿物晶粒看不清;7号岩石标本有孔,1号岩石标本则没有。 [教师] 这两块岩石标本为什么会不同? [学生] 我觉得可能是岩石的组成物质不同。 [学生] 我认为是和形成岩石的环境条件不同有关。 [教师] 两位同学的回答都有道理。要识别岩石的特点,就要了解岩石是怎样形成的,了解岩石的组成成分是什么。 岩石是怎样形成的呢?岩石的形成有多种途径,按照成因,岩石分为岩浆岩、沉积岩、变质岩三大类。下面我们就一起来学习岩浆岩。 (板书:岩浆岩) [教师] 岩浆岩是怎样形成的呢? (放映投影片,见图) [教师] 岩浆岩的形成与岩浆活动联系在一起,岩浆岩是由岩浆冷凝而形成的岩石。请大家看图,图中侵入岩和喷出岩是岩浆岩的两大类,两类岩

隧道围岩类别划分与判定

隧道围岩类别划分与判 定 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

隧道围岩级别划分与判定 隧道围岩分级就是评定围岩性质、判断隧道围岩稳定性,作为选择隧道位置、支护类型的依据和指导安全施工。 国内外现在的围岩分级方法有定性、定量、定性与定量相结合3种方法,且多以前两种方法为主。定性分级的做法是,在现场对影响岩体质量的诸因素进行定性描述、鉴别、判断,或对主要因素作出评判、打分,有的还引入分量化指标进行综合分级。以定性为主的分级方法,如现行的公路、铁路隧道围岩分级等方法经验的成分较大,有一定人为因素和不确定性,在使用中,往往存在不一致,随勘察人员的认识和经验的差别,对同一围岩作出级别不同的判断。采用定性分级的围岩级别,常常出现与实际差别1~ 影响围岩稳定的因素多种多样,主要是岩石的物理力学性质、构造发育情况、承受的荷载(工程荷载和初始应力)、应力变形状态、几何边界条件、水的赋存状态等。这些因素中,岩体的物理力学性质和构造发育情况是独立于各种工作类型的,反映出了岩体的基本特性,在岩体的各项物理力学性质中,对稳定性关系最大的是岩石坚硬程度,岩体的构造发育状态、岩体的不连续性、节理化程度所反映的岩体完整性是地质体的又一基本属性。国内外多数围岩分级都将岩石坚硬程度和岩体的完整程度作为岩体基本质量分级的两个基本因素。 1 国标《锚杆喷射混凝土支护技术规范》围岩分级 围岩分级 围岩级别的划分应根据岩石坚硬性岩体完整性结构面特征地下水和地应力状况等因素综合确定并应符合表规定。 表围岩分级

注1 围岩按定性分级与定量指标分级有差别时一般应以低者为准。 2 本表声波指标以孔测法测试值为准如果用其他方法测试时可通过对比试验进行换算。 3 层状岩体按单层厚度可划分为 厚层大于0 5m 中厚层0 1~0 5m 薄层小于0 1m 4 一般条件下确定围岩级别时应以岩石单轴湿饱和抗压强度为准当洞跨小于5m,服务年限小于10 年的工程确定围岩级别时可采用点荷 载强度指标代替岩块单轴饱和抗压强度指标可不做岩体声波指标测试 5 测定岩石强度做单轴抗压强度测定后可不做点荷载强度测定。 围岩分级的主要影响因素 用岩体完整性系数K表示,K可按下式计算: Kv=(V pm /V pr )2()

花岗岩描述

研究目的:研究花岗岩残积土的岩性特性,探讨花岗岩残积土及全风化土 实测标贯击数N的概率分布,并计算其服从概率分布的概率密度函数.研 究结论:目前国内外对标贯实测击数进行杆长修正没有一致意见,建议使 用实测击数,可使野外编录、判别的操作性更强.通过实测结果来看,锤击 数在15≤N<30范围内可定名为残积土,锤击数在30<N≤50范围内可定 名为全风化土.经统计分析认为,深圳地区花岗岩残积土及全风化土实测 标贯击数N的概型分布为正态分布. 普17:52:21 花岗岩的残积土我们叫残积砂(砾)质粘性土: 为中粗粒花岗岩原地风化残留产物,以褐黄色为主,湿~饱和,可塑状。成份主要由长石风化的粘、粉粒,石英颗粒、少量云母碎屑及少量黑色风化矿物等组成,原岩残余结构仍清晰可辨,>2.00mm的颗粒约占5.90%~15.70%。粘性一般,韧性中等,干强度中等,切面稍光滑,无摇震反应。该土层属特殊性土,具有遇水易软化、崩解的特点。该土层在纵向上有随深度增加,风化程度逐渐减弱,强度逐渐增高的趋势。 祥虎2008-09-26 17:32:19 散体状强风化花岗岩:灰黄色、褐黄色,呈散体状,组织结构大部分破坏,矿物成分显著变化,除石英外,长石、云母、角闪石等其他矿物大部分风化为土状。土层具有泡水易软化、崩解,强度降低的特点,岩石坚硬程度属极软岩,岩石完整程度为极破碎,岩体基本质量等级为V类,岩石质量指标(RQD)为0,属极差的。 祥虎2008-09-26 17:35:01 都有了,你慢慢看,我要买菜了。 祥虎2008-09-26 17:33:01 碎裂状强风化花岗岩:褐黄色,岩石风化强烈,矿物成分由长石、石英、云母组成,钻进时拔钻声大,岩芯呈碎块状,手折可断。该层做点荷载试验7组(共90块),换算后抗压强度范围值为10.80~15.20MPa,平均值为13.11MPa,标准值为11.97MPa,岩石坚硬程度为软~较软岩,岩石完整程度为破碎,岩体基本质量等级为V类,岩石质量指标(RQD)为0,属极差的。工程地质性能良好,强度由上而下逐渐增大。 祥虎2008-09-26 17:33:43 中风化花岗岩:灰白、浅灰色,由长石、石英、云母、角闪石组成。中粗粒花岗结构,块状构造,节理、裂隙较发育,岩体完整性一般,岩芯多呈短柱状,RQD= 60~75。该层做岩石单轴抗压强度试验6件,单轴饱和抗压强度范围值为36.90~54.30MPa,平均值为46.87MPa,标准值为41.43MPa。岩石按坚硬程度属较硬岩,岩体完整程度属较完整~较破碎,岩体基本质量等级属Ⅲ~Ⅳ类,力学强度高。 祥虎2008-09-26 17:34:05 微风化花岗岩:灰白、浅灰色,由长石、石英、云母、角闪石组成。中粗粒花岗结构,块状构造,节理、裂隙不发育,岩体完整性较好,RQD= 80~90。该层做岩石单轴抗压强度试验6件,单轴饱和抗压强度范围值为66.10~95.20MPa,平均值为78.50MPa,标准值为70.09MPa。岩石按坚硬程度属坚硬岩,岩体完整程度属较完整,岩体基本质量等级属Ⅱ类,力学强度高。

全风化花岗岩的结构性及压缩性试验研究

全风化花岗岩的结构性及压缩性试验研究 摘要:全风化花岗岩作为一种独特的花岗岩材质,已逐渐深入到现代化建设的各个领域。本文对全风化花岗岩受扰动的结构特性、取样的方法及扰动性进行细致的分析,并对取样试验及原位试验压缩性指标进行一系列深入的对比探究。 关键词:全风化花岗岩;结构性;压缩性 花岗岩类岩石是大陆上分布最广泛的岩石之一,是构成陆壳的基础。在陆壳形成过程中,花岗岩占十分重要的地位,花岗岩在我国东部沿海、东南部、海南省分布十分广泛,其地表出露面积约占这些地区总面积的五分之一。全风化花岗岩天然孔隙比差异性较大,此类土具有灰黄色、褐黄色、灰褐色夹灰白色物斑点,风化呈硬塑~坚硬土状、砂土状,有些呈硬塑偏软塑土状,结构松散,含水量较高,呈现黏土状,土样的粗细颗粒的差异比较大。地下孔隙水位埋藏较浅,在沟槽地段一般在0.5~3.0 m,主要受大气降水和地表水补给,水位随季节动态变化较明显。全风化岩“似土非岩”,其性质与原岩完全不同,但与一般沉积土体亦有很大差别。为能够准确把握其压缩特性及分析这些特性物理量间的关系,对深圳地铁5号线全风化花岗岩饱和地基土进行一维固结压缩试验,研究其应力与孔隙比减少量和应力—应变—时间之间关系。 1、全风化花岗岩研究现状 全风化花岗岩是花岗岩体在物理化学及生物等风化营力作用下,使其结构、成分性质等产生了不同程度变异的岩石。其矿物成分与原岩相比虽有本质的改变,但多保留在原位并具有它的原始性状,其原生矿物主要有石英、长石、云母等,原体矿物的晶体形状、硬度和力学强度不同,构成的砂粒形状有明显差别,不同大小、不同形状砂粒组成的砂土含有的孔隙大小和孔隙率显然也不相同。风化花岗岩的工程特性不仅与其母岩花岗岩而且与其受到的风化作用有关,因此,不同地区的风化花岗岩的工程性质存在较大差异,其土体的均一性差、结构性强(包括抗剪强度、压缩性、透水性、毛细性等的差异)。全风化花岗岩具有“似土非岩”的性质,其性质与原岩完全不同,但与一般沉积土体亦有很大差别。以往及当前对花岗岩全风化的研究主要集中在以下几个方面:全风化花岗岩的分类研究;全风化花岗岩的物理力学特性研究;作为建筑物持力层的研究;全风化花岗岩边坡治理方面的研究;全风化花岗岩作为填料的试验研究。 2、全风化花岗岩受扰动的结构特性 在静荷载作用下,全风化花岗岩石结构各层的应力、变形和基层底面的拉应变与荷载呈线性关系,且全风化花岗岩石和基层的回弹模量越小,应力和变形越大。在动荷载作用下,全风化花岗岩石结构各层的最大动应力、回弹变形以及基层底面的拉应变与荷载值呈线性关系,且全风化花岗岩石和基层的回弹模量越小,动应力越大。当静荷载与动荷载的峰值相同时,动荷载作用下全风化花岗岩石结构各层的应力、变形与底基层底面的拉应变均大于静荷载作用下的应力、变形和

隧道围岩级别划分与判定

隧道围岩级别划分与判定 隧道围岩分级就是评定围岩性质、判断隧道围岩稳定性,作为选择隧道位置、支护类型的依据和指导安全施工。 1 国标《锚杆喷射混凝土支护技术规范》围岩分级 1.1围岩分级 围岩级别的划分应根据岩石坚硬性岩体完整性结构面特征地下水和地应力状况等因素综合确定并应符合表1.1规定。 表1.1 围岩分级 注1 围岩按定性分级与定量指标分级有差别时一般应以低者为准。 2 本表声波指标以孔测法测试值为准如果用其他方法测试时可通过对比试验进行换算。 3 层状岩体按单层厚度可划分为 厚层大于0 .5m 中厚层0 .1~0 .5m 薄层小于0 .1m 4 一般条件下确定围岩级别时应以岩石单轴湿饱和抗压强度为准当洞跨小于5m,服务年限小于10 年的工程确定围岩级别时可采用点荷载强度指标代替岩块单轴饱和抗压强度指标可不做岩体声波指标测试 5 测定岩石强度做单轴抗压强度测定后可不做点荷载强度测定。 3公路隧道围岩分级 3.1公路隧道围岩分级 围岩级别可根据调查、勘探、试验等资料、岩石隧道的围岩定性特征、围岩基本质量指标(BQ)或修正的围岩质量指标[BQ]值、土体隧道中的土体类型、

密实状态等定性特征,按表3.1确定。当根据岩体基本质量定性划分与(BQ)值确定的级别不一致时,应重新审查定性特征和定量指标计算参数的可靠性,并对它们重新观察、测试。在工程可行性研究和初勘阶段,可采用定性划分的方法或工程类比方法进行围岩级别划分。 表3.1 公路隧道围岩分级 注:本表不适用于特殊条件的围岩分级,如膨胀性围岩、多年冻土等。 3.2围岩分级的主要因素 公路隧道围岩分级的综合评判方法采用两步分级,并按以下顺序进行:(1)根据岩石的坚硬程度和岩体完整程度两个基本因素的定性特征和定量的岩体基本质量指标(BQ),综合进行初步分级。(2)对围岩进行详细定级时,应在岩体基本质量分级基础上,考虑修正因素的影响修正岩体基本质量指标值。(3)按修正后的岩体基本质量指标[BQ],结合岩体的定性特征综合评判,确定围岩的详细分级。 3.2.1岩石坚硬程度 1 岩石坚硬程度可按表3.2.1-1定性划分。 表3.2.1-1 岩石坚硬程度的定性划分 2岩石坚硬程度定量指标用岩石单轴饱和抗压强度(Rc)表达。Rc一般采用实测值,若无实测值时,可采用实测的岩石点荷载强度指数Is(50)的换算值,即按式(3.2.1)计算: Rc= Is(50)0.75 (3.2.1) 3 Rc与岩石坚硬程度定性划分的关系,可按表3.2.1-2确定。 表3.2.1-2 Rc与岩石坚硬程度定性划分的关系 3.2.2岩体完整程度 1岩石完整程度可按表3.2.2-1定性划分。

深厚强风化花岗岩层中旁压试验的应用分析 裘良地

深厚强风化花岗岩层中旁压试验的应用分析裘良地 发表时间:2018-01-20T18:21:20.313Z 来源:《基层建设》2017年第30期作者:裘良地 [导读] 摘要:本文从不同角度入手客观阐述了旁压试验,探讨了其在深厚强风化花岗岩层中的应用,利于准确判断深厚风化花岗岩层土体力学性能,最大化提高深厚强风化花岗岩参数准确率。 浙江华东工程安全技术有限公司浙江省杭州市 311122 摘要:本文从不同角度入手客观阐述了旁压试验,探讨了其在深厚强风化花岗岩层中的应用,利于准确判断深厚风化花岗岩层土体力学性能,最大化提高深厚强风化花岗岩参数准确率。 关键词:深厚强风化花岗岩层旁压试验应用分析 深厚强风化花岗岩主要分布在广东地区,具有多样化特征,岩层较厚,刚度较大,埋深较深等。深厚强风化花岗岩极易破碎,岩土工程勘察中极易受到各种扰动,导致勘察人员无法准确把握地区深厚强风化花岗岩层力学性能。针对这种情况,旁压试验被应用到深厚强风化花岗岩层中,发挥着多样化作用,利于勘察人员更好地了解岩层力学性能,科学开展勘察工作。 一、旁压试验 就旁压试验而言,是指借助侧向膨胀的旁压器,不断向钻孔孔壁附近土体施加压力的一种原位测试,结合压力、变形二者关系,准确计算岩土模量、强度。在旁压试验之后,勘察人员需要根据具体要求,科学校正获取的一系列信息数据,以旁压曲线的形式呈现出来,以此为切入点,合理推算土体承载力以及模量。其中的旁压曲线包含初始、似弹性变形与塑性变形三个阶段,结合旁压试验结果,准确把握地区土体临塑压力、极限压力,明确地区地基已有的承载力。下面便是旁压试验作用下的曲线结构示意图(图1)。 图2 钻孔地层剖面结构图 二、深厚强风化花岗岩层中旁压试验的应用 1、具体案例 以某地区勘察场地为例,场地地层由多个层次组成,人工填土层、第四系残积层。在进行旁压试验之前,勘察单位已安排勘察人员深入场地,进行了全方位勘察,巧妙利用原位测试方法,获取了该地区场地深厚强风化花岗岩层强度、变形方面的具体参数。由于该类岩层

风化岩地层描述

花岗岩 2(3)): 全风化花岗岩(γ T 灰白、灰黄色,矿物结构已破坏,花岗结构较清晰,主要矿物成分为长石、石英,部分云母及少量暗色矿物。长石、云母等易风化矿物已完全风化成土,岩芯呈坚硬土状。该岩石为极软岩,岩体极破碎,岩体基本质量等级属Ⅴ级。该岩石遇水易软化崩解。 2(3)): 砂砾状强风化花岗岩(γ t 灰黄、褐黄色,主要成分为长石、石英,部分云母及少量暗色矿物,花岗结构清晰,原岩矿物已强烈风化,部分长石、云母已粘土化,残留少量长石硬核,矿物颗粒间联结力已基本丧失,网状裂隙极发育,岩芯呈砂砾状,手捏可散碎。该岩石为极软岩,岩体极破碎,岩体基本质量等级为V级。该岩层浸水扰动易软化 2(3)): 碎块状强风化花岗岩(γ T 灰白、褐黄色,花岗结构清晰,主要成分为长石、石英,部分云母及少量暗色矿物。原岩矿物强烈风化,矿物颗粒间具有一定的结构联结力,网状裂隙发育,岩芯呈碎块状、碎块夹砂砾状,手折或轻击可碎。该岩石为软岩,岩体极破碎,岩体基本质量等级为V级。 中风化花岗岩: 灰白、灰黄色,中粒~细粒花岗结构,块状构造,矿物成份以长石、石英为主,部分云母及少量暗色矿物。裂隙较不发育,沿裂隙面长石已风化变色,见铁锰质浸染。岩芯呈短柱状,少量长柱状、块状,锤击声较脆。该岩石为较硬岩、岩体较完整~较破碎,岩体质量等级为Ⅲ~Ⅳ级。其岩石质量指标RQD为50~78,平均为65,其等级属“较差的”。 微风化花岗岩: 灰白、灰黄色,中粒~细粒花岗结构,块状构造,矿物成份以长石、石英为主,部分云母及少量暗色矿物。裂隙不发育。岩芯呈长柱状,少量短柱状,锤击

声脆。该岩石为坚硬岩、岩体较完整,岩体质量等级为Ⅱ级。其岩石质量指标RQD为78~90,平均为85,其等级属“较好的”。 风化岩夹层、特性综合描述(选择一种方式即可) 1、场地基岩主要为花岗岩,属于硅酸盐类火成岩,不存在岩溶现象,勘察时孤石或硬夹层揭露情况见下表2-1,此外在全~强风化花岗岩岩体内钻探未发空洞、临空面,以及相对软(硬)夹层。 2、场地基岩主要为花岗岩,属于硅酸盐类火成岩,不存在岩溶现象,勘察时部分孔段揭露孤石或硬夹层,不排除在钻孔间的残积土~砂砾状强风化岩层中,存在中微风化花岗岩孤石的可能性。此外在全~强风化花岗岩岩体内钻探未发空洞、临空面,以及相对软(硬)夹层。钻探中仅在个别钻孔(yk5)有揭露辉绿岩岩脉,未揭穿,揭露风化带厚度 2.3m。其力学性质接近花岗岩,且不存在岩溶现象。 凝灰熔岩 全风化流纹质晶屑凝灰熔岩: 该风化岩呈灰白、褐黄、青灰色,晶屑凝灰结构较清晰,已完全风化,主要成分为晶屑、熔岩物质,晶屑含量约30~35%,主要成分为石英、碱性长石、斜长石及黑云母,长石等矿物已粘土化,岩芯呈坚硬土状,该岩石为极软岩,岩体极破碎,岩体基本质量等级为Ⅴ级。该岩具浸水软化,力学强度降低的工程特性。 土状强风化流纹质晶屑凝灰熔岩: 该岩石呈浅灰、灰黄色,晶屑凝灰结构清晰,但岩石矿物组织结构已基本破坏。主要成分为晶屑、熔岩物质,晶屑含量约30~35%,主要成分为石英、碱性长石、斜长石及黑云母,长石晶屑等易风化矿物已大部分粘土化,仅残留少量长石小硬核及石英晶屑。岩芯呈坚硬土状,偶见小碎块,碎块手折可断,该岩石为极软岩,岩体极破碎,岩体基本质量等级为Ⅴ级。该岩具浸水软化、强度降低的工程特性。 碎块状强风化流纹质晶屑凝灰熔岩:

隧道围岩分级及其应用

第三节隧道围岩分级及其应用 隧道围岩分级是正确进行隧道设计与施工的基础。一个合理的、符合地下工程实际情况的围岩分级,对于改善地下结构设计、发展新的隧道施工工艺、降低工程造价、多快好省地修建隧道有着十分重要的意义。 近年来,由于各种类型地下工程的大量修建,隧道围岩分级的研究也得到了很大的发展,出现了各种各样不同的围岩分类;但都是为一定的工程目的服务的。如提供选择施工方法的根据和开挖的难易程度,确定结构上的荷载或给出隧道临时支撑与衬砌结构的类型和参考尺寸等。 人们对围岩及其自然规律的认识是不断深化的,因此,对围岩分类也有一个发展过程。在早期,从国外情况来看,如日本,最初主要借用适合于土石方工程的“国铁土石分类”来进行隧道的设计与施工,主要是根据开挖岩(土)体的难易程度(强度)来划分的。前苏联在很长的时期内采用以岩石的坚固性来分类,采用一个综合注的指标f值,称为岩石坚固性系数。理论上坚固性是岩体抵抗任何外力作用及其造成破坏的能力,不同于强度和硬度,而实际上只反映岩石抗压强度的性能,很少考虏岩体的构造特征。在英、美等国,主要沿用泰沙基(K,Terzaghi)提出的分级法,其中考虑到一些岩体的构造和岩性等影响,比较好地反映隧道围岩的稳定状况。目前美国也有用岩石质量指标(RQD)或隧道围岩在不支护条件下,暂时稳定的时间作为分级依据。 我国五十年代初期,铁路隧道围岩分级,基本上是沿用解放前的以岩石极限抗压强度与岩石天然容重为基础,这种分级仅运用上石方工程的土石分级法,没有适合隧道围岩的专门分类,只是把隧道围岩分为坚石、次坚石、松石及土质四类。以后,借用苏联的岩石坚固系数进行分类,即通常所谓的普氏系数(f值)。在长期大量的地下工程实践中发现:这种单纯以岩石坚固性(主要是强度)指标为基础的分类方法,不能全面反映隧道围岩的实际状态。逐渐认识到:隧道的破坏,主要取决于围岩的稳定性,而影响围岩稳定性的因素是多方面的,其中隧道围岩结构特征和完整状态,是影响围岩稳定性的主要因素。隧道围岩体的强度,对隧道的稳定性有着重要的影响,地下水、风化程度也是隧道围岩丧失稳定性的重要原因。 从围岩的稳定性出发,1975年编制了我国“铁路隧道围岩分类”,这个分类由稳定到不稳定共分六类,代替了多年沿用的从岩石坚固性系数来分级的方法。 我国公路隧道围岩分级起步较晚,随着我国经济的发展,公路交通得到较大的发展,大量的公路隧道修建,需要有一个适合我国工期的公路隧道围岩分级,于1990年,根据我国铁路隧道的围岩分级为基础,编制了我国“公路隧道围岩分级”。 从国外围岩分级的发展趋势看,围岩分级主要以隧道稳定性分级为主,且从对岩石的分级逐渐演变到对岩体的分级;从按单参数分级转变到按多参数分级,并逐渐向多参数组成的综合指标法演变;从经验性很强的分级逐步过渡到半经验、半定量分级和定量化分级,并将围岩分级与岩体力学的发展相联系,随着岩体力学的发展,这一趋势更为明显。在多参数综合分级法中,基本采用和差法或积商法。围岩分级方法是随着地质勘查方法的进步而快速发展的。围岩分级方法与隧道结构设计标准化、施工方法规范化的联系越来越密切。土质围岩分级方法逐步与岩质围岩分级方法分离,将会形成专门土质围岩分级方法。 从国内围岩分级的发展趋势看,从1975年以后,我国隧道围岩分级方法的发展基本与国际同步,主要以隧道稳定性进行分级,并在已颁布的国标和部标中体现了这一成果。此外,我国隧道围岩分级中更加重视施工阶段围岩级别的修正,即根据施工阶段获得的围岩分级信息对设计阶段的预分级进行修正。我国隧道围岩分级方法主要采用两个步骤:第一步以基本指标进行基本分级;第二步用修正指标对基本级别进行修正,最终获得修正后的围岩级别。

风化花岗岩边坡稳定性分析

风化花岗岩边坡稳定性分析 摘要:风化花岗岩边坡具有不同于岩体边坡和均匀土体边坡的工程地质特征,风化花岗岩边坡由于保持了原岩中节理面,顺层边坡在开挖时比均匀土体边坡稳定性更差,事实表明这类边坡在开挖时应注意观测,及时采取支护措施。 关键词:风化花岗岩、边坡 花岗岩在我国分布广泛, 未风化的花岗岩具有良好的工程地质特性,但在风化后物理力学指标急剧下降。全风化花岗岩主要介质是未风化的石英矿物颗粒和长石云母的风化产物,但原岩中的地质构造和矿物颗粒分布特征在边坡中仍得以保留,从而与其他一般均质土边坡的稳定特性有所不同。近几年国内土建工程大量开工,形成越来越多的人工边坡,不了解这种边坡的工程特性而盲目施工,在一定条件下容易发生失稳,对工程进展和边坡稳定都会造成严重危害。国内专家学者已经对全风化的花岗岩边坡进行了大量研究,并把这种边坡划分为类土质边坡,在理论上对其工程特性进行了研究[1-2] ,这些研究往往以理论研究为主,并主要针对南方全风化厚度较大的边坡进行研究,北方的花岗岩由于风化作用相对较弱,导致全风化层较薄,边坡开挖后多是全-强风化混合型,在工程性质上比普通全风化花岗岩边坡更具代表性,因此对北方的全-强风化花岗岩边坡的研究具有特殊意义,下面以北方某铁路边坡为例进行研究。 1、环境地质特征 边坡处于低山丘陵区,地势开阔,地形起伏较小,表覆第四系全新统冲洪积层(Q 4 al pl +)粉质黏土,黄褐色,硬塑,含少量粗砂和碎石,厚度1.2~2.0m,下伏为元古代晋宁期片麻状细粒黑云二长花岗岩(3 2ηγ),全风化厚 度8~10m ,受构造及风化等作用影响,基岩节理裂隙较发育,浅层风化成砂砾碎石状,元古代晋宁期片麻状细粒 黑云二长花岗岩(3 2ηγ)强风化厚度 15~20m ,黄褐色,块状结构,层状构造,节理裂隙较发育,岩体呈碎块状~大块状,锤击声闷,可轻松击碎,长石部分风化,矿物颗粒间粘结破坏,击碎后呈沙砾状。地下水主要靠大气降水及地表水补给,以蒸发及地下径流为主要的排泄方式。 2、边坡基本情况 边坡位于某铁路K10+578.00~ K11+253.00里程范围内,铁路线路走向298°,研究边坡位于线路右侧,一级边坡高度8.0m ,二级边坡高度1.6~4.5m ;设计边坡坡率0~8m 为1:1.25,以上为1:1.50;一二级护坡间设两米 宽平台,边坡均采用六边形空心块内种紫穗槐撒草籽防护,其中二级边坡深度范围内为强风化层, 3、滑坡变性特征 该边坡于5月20日开挖,5月28日开挖至边坡坡脚,6月3日K11+100~K11+117处边坡发生滑塌(如图一所示),现场查看发现滑动带从二级边坡全风化层开始,滑坡后缘出现约0.5m 裂缝,坡脚下强风化层局 部地面略微隆起,滑坡后缘揭露出全风化花岗岩残存节理,表面光滑,走向与线路大致平行,节理面较光滑,有 泥质充填。 滑坡两翼暴露两条产状为330∠ 53°和95∠50°的风化残余节理,节理面有约2mm 厚的粘土,粘土已失水 皲裂,滑坡体由于移动破坏,土体均由风化节理处断裂,破坏成块状,节 理面为褐色,部分有充填物。边坡除滑坡处未发现发育的裂隙。

隧道围岩分类

隧道围岩分类 类别 围岩主要工程地质条件 开挖后的稳定状态(坑道跨度5m时) 主要工程地质特征结构特征及完整状态 Ⅵ 硬质岩石[饱和抗压极限强度R b>60MP]:受地质结构影响轻微,节理不发育,无软弱面或夹层;层状岩层为厚层,层间结合良好 呈巨快状 整体结构 围岩稳定,无坍塌,可能产生岩暴 Ⅴ 硬质岩石[饱和抗压极限强度R b>30MP]:受地质结构影响较重,节理较发育,有少量软弱面或夹层和贯通微张节理,但其产状及组合关系不至产生滑动;层状岩层为中层或厚层,层间结合一般,很少有分离现象;或为硬质岩石偶夹软质岩石 呈大快状 整体结构 暴露时间长,可能会出现局部小坍塌,侧壁稳定,层间结合差的平缓岩层,顶板易塌落 软质岩石[饱和抗压极限强度R b≈30MP] 受地质结构影响轻微,节理不发育;层状岩层为厚层,层间结合良好 呈巨快状 整体结构 Ⅳ 硬质岩石[饱和抗压极限强度R b>30MP]:受地质结构影响严重,节理发育,有层状软弱面或夹层,但其产状及组合关系尚不至产生滑动;层状岩层为薄层或中层,层间结合差,多有分离现象;或为硬、软质岩石互层 呈块(石)碎(石) 状镶嵌结构 拱部无支护时可产生小坍塌,侧壁基本稳定,爆破震动过大易塌 软质岩石[饱和抗压极限强度R b=5-30MP]:受地质结构影响较重,节理较发育;层状岩层为薄层、中层或厚层,层间结合一般 呈大快状 砌体结构 Ⅲ 硬质岩石[饱和抗压极限强度R b>30MP]:受地质结构影响严重,节理很发育,层状软弱面或夹层以基本被破坏 呈碎石状 压碎结构

拱部无支护时可产生较大的坍塌,侧壁有时失去稳定 软质岩石[饱和抗压极限强度R b=5-30MP]:受地质结构影响严重,节理发育呈快(石) 碎(石)状 镶嵌结构 土:1、略具压密或成岩作用的粘性土及砂性土 2、一般钙质、铁质胶结的碎、卵石土、大快石上 3、黄土 1.呈大快状压密结构 2.3.呈巨快状整体结构 Ⅱ 石质围岩位于积压强烈的断裂带内,裂隙杂乱,呈石夹土或土夹石状 呈角(砾)碎(石)状松散结构 围岩易坍塌,处理不当会出现大坍塌,侧壁经常小坍塌,浅埋时易出现地表下沉或塌至地表 一般第四纪的半干硬—硬塑的粘性土及稍湿或潮湿的一般碎、卵石土圆砾、角砾土及黄土 非粘性土呈松散结构粘性土及黄土呈松软结构 Ⅰ 石质围岩位于挤压极强烈的断裂带内,呈角砾、砂、泥松软体 围岩极易坍塌变形、有水时土砂常与水一起涌出,浅埋时易坍至地表 软塑状粘性土及潮湿的粉细砂等 粘性土呈易蠕动的松软结构,砂性土呈潮湿松软结构 岩石等级分类 岩石等级饱和抗压极限强度R b MP a(kgf/㎝2) 耐风化能力程度(现象)代表性岩石硬质岩石 极硬岩> 60 (600) 强暴露后一、二年尚不易风化1.花岗岩、闪长岩、玄武岩等岩浆岩 硬质岩> 30 (300) 2.硅质、铁质胶结的砾岩及砂岩、石灰 岩、白云岩类沉积岩 3.片麻岩、石英岩、大理岩、板岩、片 岩等变质岩类 软质岩石 软质岩5~30 (50~300) 弱暴露后数月即出现风化壳1.凝灰岩等喷出岩类 极软岩≤ 5 (50) 2.泥砾岩、泥质砂岩、泥质页岩、灰质、 页岩、泥灰岩、泥岩、略煤等沉积岩 3.云母片岩或千枚岩等变质岩类 围岩受地质构造影响程度等级划分 等级构造作用特征 轻微围岩地质构造变动小,无断裂层;层状岩一般呈单斜构造,节理不发育

对隧道全强风化花岗岩围岩的认识

对隧道全强风化花岗岩围岩的认识 一、全强风化花岗岩的特性 花岗岩是地球上分布最广的结晶粒状深成岩,由石英、长石和云母组成。石英通常呈圆形粒状、无色透明。长石有肉红色的钾长石和灰白色的斜长石,可见到发育良好的解理。云母为片状的黑云母,有时也有白云母,以及少量黑色长柱状普通角闪石。花岗岩具有多种颜色,如灰白色、灰色、肉红色等,主要由长石的种类和颜色而定。根据组成花岗岩矿物粒径的大小分成粗粒、中粒、细粒花岗岩,长石与石英晶体特别粗大的称为伟晶岩。花岗岩常呈规模巨大的岩基或岩株产出。花岗岩形成时,岩浆往往以强注入形式侵入围岩地层中,这一过程使围岩块体进入岩体形成捕虏体。由于侵入的岩浆高温炽热,可能引起围岩热变质。花岗岩密度2.7g/cm3 ,致密坚硬、孔隙度小、强度大。 而全强风化花岗岩的密度为2.06g/cm3,渗透系数为6×10-7cm/s,岩土渗透性等级划分当K <1.16×10-6cm/s时为不透水。 二、全强风化花岗岩对隧道施工的影响 全强风化花岗岩在开挖出来后表现为砂(即石英)土(长石),类似于第四纪沉积物,但是在未开挖时却与砂土有本质区别,这种区别按照天然含水量不同,表现形式不同。当含水量<8%时,即干燥状态,开挖时极易滑塌;当含水量>13%时,表现为蠕变;介于二者之间,可表现为较好的稳定性。其中最难的是含水量较大时的围岩,而围岩中水的形式为裂隙水(非孔隙水,与第四纪沉积物区别),当埋深较大时,又表现为承压水,这样,水除了软化作用之外,尚有因流动而造成的突泥、突水危害。 全强风化花岗岩表现为“松散的砂土”,所以,处理方法很容易想到注浆固结。而事实证明,全强风化花岗岩围岩的施工难度远比第四纪沉积物甚至人工堆积物围岩难,其原因就在于全强风化花岗岩其实并不松散,渗透系数为6×10-7cm/s,注浆、尤其注固体浆是无效的。很多资料总结全强风化花岗岩围岩注浆成功,据我个人经验,与事实有相当大的差距,主要表现为两个方方面。 一是完全按照设计(通常为大管棚或小管棚、环向间距300mm~400mm)施工,然后坍塌(规模不等),再作管棚、注浆,如此反复,取得成功。 试想,花岗岩无论风化与否,均非常致密,如果没有强有力的止浆措施,浆液如何能注入围岩?现场有没有施作止浆措施? 而实质上,全强风化花岗岩坍塌后,其物理力学指标就与第四纪沉积物接近了,孔隙率增大了,一般注浆就可以实现了;此外,注浆坍塌后留下的空腔亦可以容易回填了。 二是不完全按照设计施工,主要措施是“密排管棚”,仅进行回填注浆。这在低水压情况下是一个有效的方法。 对全强风化花岗岩中注浆的难度,大多数人有了认识,为了改进注浆效果,采取了很多办法,如有资料讲,先用超细水泥进行劈裂注浆,然后改为普通水泥进行渗透注浆。在厦门海底隧道曾做过用超细水泥的注浆试验,试验结果只是形成一个10cm~15cm的柱体,没有任何渗透扩散,也没有人们的最低期望——树根状浆脉。见下图。 这种注浆的作用应为挤压和加筋。 三、全强风化花岗岩围岩隧道施工的几个实例 1、广西平钟高速公路水冲口隧道 该隧由武警水电总队施工,围岩为全强风化花岗岩,且干燥,采用二台阶(长台阶)开挖,掌子面稳定,但后方支护变形较大,未有效开展围岩监控量测,不知围岩变形情况,就作出

隧道围岩类别划分与判定

隧道围岩类别划分与判 定 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

隧道围岩级别划分与判定隧道围岩分级就是评定围岩性质、判断隧道围岩稳定性,作为选择隧道位置、支护类型的依据和指导安全施工。 国内外现在的围岩分级方法有定性、定量、定性与定量相结合3种方法,且多以前两种方法为主。定性分级的做法是,在现场对影响岩体质量的诸因素进行定性描述、鉴别、判断,或对主要因素作出评判、打分,有的还引入分量化指标进行综合分级。以定性为主的分级方法,如现行的公路、铁路隧道围岩分级等方法经验的成分较大,有一定人为因素和不确定性,在使用中,往往存在不一致,随勘察人员的认识和经验的差别,对同一围岩作出级别不同的判断。采用定性分级的围岩级别,常常出现与实际差别1~影响围岩稳定的因素多种多样,主要是岩石的物理力学性质、构造发育情况、承受的荷载(工程荷载和初始应力)、应力变形状态、几何边界条件、水的赋存状态等。这些因素中,岩体的物理力学性质和构造发育情况是独立于各种工作类型的,反映出了岩体的基本特性,在岩体的各项物理力学性质中,对稳定性关系最大的是岩石坚硬程度,岩体的构造发育状态、岩体的不连续性、节理化程度所反映的岩体完整性是地质体的又一基本属性。国内外多数围岩分级都将岩石坚硬程度和岩体的完整程度作为岩体基本质量分级的两个基本因素。 1 国标《锚杆喷射混凝土支护技术规范》围岩分级 围岩分级 围岩级别的划分应根据岩石坚硬性岩体完整性结构面特征地下水和地应力状况等因素综合确定并应符合表规定。 表围岩分级

注1 围岩按定性分级与定量指标分级有差别时一般应以低者为准。 2 本表声波指标以孔测法测试值为准如果用其他方法测试时可通过对比试验进行换算。 3 层状岩体按单层厚度可划分为 厚层大于0 5m 中厚层0 1~0 5m 薄层小于0 1m 4 一般条件下确定围岩级别时应以岩石单轴湿饱和抗压强度为准当洞跨小于5m,服务年限小于10 年的工程确定围岩级别时可采用点荷载 强度指标代替岩块单轴饱和抗压强度指标可不做岩体声波指标测试 5 测定岩石强度做单轴抗压强度测定后可不做点荷载强度测定。 围岩分级的主要影响因素 用岩体完整性系数K表示,K可按下式计算: Kv=(V pm /V pr )2()

相关主题
文本预览
相关文档 最新文档