当前位置:文档之家› 超高锰钢热处理工艺优化及力学性能的提高

超高锰钢热处理工艺优化及力学性能的提高

超高锰钢热处理工艺优化及力学性能的提高
超高锰钢热处理工艺优化及力学性能的提高

?

?基金项目:河南省杰出人才创新基金资助项目(项目编号:0621000600)。收稿日期:2006-03-27收到初稿,2006-07-03收到修订稿。作者简介:闫华(1982-),男,河南罗山人,硕士研究生,主要从事高强韧耐磨铸钢的研究。E-mail:yanhua19820915@sina.com

华1,谢敬佩1,王文焱1,李继文1,王爱琴1,张东海2,王

伟2

(1.河南科技大学材料科学与工程学院,河南洛阳471003;2.鞍钢集团鞍山矿山机械制造厂,辽宁鞍山114042)

!!!!!"

!"

!!!!!"

!"

摘要:优化了含Cr、Mo及RE-Si-Fe变质处理超高锰钢的热处理工艺,研究了超高锰钢不同温度回火处理后的组织和力

学性能。结果表明,沉淀(弥散)强化使奥氏体晶内析出了弥散颗粒状M23C6型碳化物,强化了奥氏体基体。优化出超高锰钢的最佳热处理工艺为,加热至1100℃保温4h,水淬,再经250℃保温4h,空冷。该热处理工艺条件下奥氏体晶粒细小,晶内颗粒状碳化物均匀、弥散分布,力学性能得到显著提高,即σb=994.51MPa,σs=430.98MPa,αk=260

J/cm2

,HB227,δ=55.03%。与常规水韧处理相比σb提高了18.2%,σs提高了7%,αk提高了22%,δ

提高了30.3%,硬度提高了9.7%。

关键词:热处理工艺;力学性能;超高锰钢

中图分类号:TG142.72;TG142.1文献标识码:A文章编号:1001-4977(2006)10-1067-04

YANHua1,XIEJing-pei1,WANGWen-yan1,LIJi-wen1,WANGAi-qin1,ZHANGDong-hai2,WANGWei2

(1.CollegeofMaterialsScienceandEngineering,HenanUniversityofScienceandTechnology,Luoyang471003,Henan,China;2.AngangGroupAnshanMining-machineryandManufacturing

Plant,Anshan114042,Liaoning,China)Abstract:Theheattreatmentprocessofsuper-highmanganesesteelwithRE-Si-FemodificationwhichcontainsalloyingelementsCrandMoisoptimizedandthestructureandmechanicalpropertiesofthesteelbydifferenttemperingtemperaturetreatmentprocessarealsostudied.Theexperimentresultsshowthatafterprecipitation(dispersion)strengtheningtreatment,thesecond-phase,carbideparticlesM23C6aredistributinginausteniticgrains,whichintensifytheausteniticmatrixofthesteel.Theoptimalheattreatmentistreatedbywatertougheningat1100℃andtemperingat250℃for4hours.Themicrostructureofthesuper-highmanganesesteelisfinecarbideparticlesrelativelyevenprecipitatinginausteniticmatrix,anditsmechanicalpropertiesis

enhanceddramatically:σb=994.51MPa,σs=430.98MPa,αk=260J/cm2

,HB227,δ=55.03%.Comparedwiththatoftheconventionaltreatment,theσb,σs,αk,δandhardnessareincreasedby18.2%,7%,22%,30.3%,and9.7%respectively.

Keywords:heattreatmentprocess;mechanicalproperties;super-highmanganesesteel应用技术

超高锰钢热处理工艺优化及力学性能的提高

OptimizationofHeatTreatmentProcessandMechanical

PropertiesEnhancementofSuper-highManganeseSteel

由英国的R.A.Hadfield于1882年发明的高锰钢是历史最悠久的耐磨材料。高锰钢作为耐磨材料,在抵抗强冲击、大压力作用下的磨料磨损或凿削磨损方面,其优异的耐磨性是其他材料所无法比拟的。在较大的冲击载荷或接触应力作用下,其表层迅速产生加工硬化,并有高密度位错和形变孪晶相继生成,从而产生高耐磨的表面层,而此时内层奥氏体仍保持着良好的韧性。高锰钢的这种加工硬化特性使其长期以来广泛应用于冶金、矿山、建材、铁路、电力、煤炭等机械装备中[1-5]。

随着现代工业的发展,在冶金、矿山等行业不断出现大型设备,如采矿、破碎、挖掘设备等,其抗磨

配件重达几吨到几十吨,有效厚度均在100mm以上,传统高锰钢(ZGMn13)的热处理工艺、力学性能和耐磨性已不能满足这些大型厚壁耐磨件的要求[4]。经本课题组长期以来对耐磨材料的研究并跟踪厂家使用情况,超高锰钢代替传统的高锰钢能满足抗磨件大型化的需要,在高应力、强冲击工况条件下具备优异抗磨性能、高韧性、高水韧化能力,使用过程中使厂家获得了良好的工程效果和经济效益。

试验内容和方法

1.1

超高锰钢的化学成分

向奥氏体锰钢中加入Cr、Mo等合金元素,改进热

Oct.2006Vol.55

No.10

铸造

FOUNDRY

1067

??

处理工艺,可以提高材料的强韧性、耐磨性和加工硬化能力。考虑Cr含量超过2.5%会使韧性下降,将Cr含量选择在1%~2%之间。钼的加入能提高大截面铸件的抗裂纹能力和水淬质量,但钼铁较昂贵,因此控制在1%以下。碳量高可提高硬度和耐磨性,但钢的强度、塑性和韧性降低,碳含量定为0.9%~1.6%,且控制其含量在中下限。锰含量为18%时,可使钢达到最好的耐磨性[5],因此,锰含量选择在17%~19%之间。硅含量高,铸态碳化物多,热处理后晶粒易变得粗大,破坏钢的韧性,所以硅含量选为0.3%~1.0%。为了细化晶粒,加0.2%的RE-Si-Fe合金进行变质处理。表1列出了超高锰钢的化学成分。

1.2熔炼与试样制备

试验材料在150kg中频感应电炉中熔炼,采用不氧化法熔炼工艺。先加入废钢和生铁,全部熔清后,加入锰铁,此后加入配备好的石灰、萤石、铝粉混合料,造还原薄渣,待其反应平稳后进行插铝脱氧,并进行变质处理。出钢温度为1550~1580℃,浇注温度在1450~1480℃,铸成标准的楔形试块,所有力学性能、金相和微观分析试样都从楔形块上切取,试样毛坯在高温箱式电炉中进行热处理。

1.3力学性能测试及组织观察

在SHIMAD(岛津)ZUAG-I250KN精密万能电子拉伸试验机上进行拉伸试验,改传统圆形拉伸试样为板条状,利用线切割加工,避免车削加工困难及引起加工硬化等问题,性能测试前用砂纸打磨。金属拉伸试验试样尺寸按GB2975切取。冲击试验在JB-300A摆锤式冲击试验机上进行,采用标准夏比U型缺口的冲击试样[7]。硬度测试采用HB-3000布氏硬度试验机。用配备了EDAX能谱仪的JSM-5610LV型扫描电子显微镜观察超高锰钢的显微组织及冲击断口形貌。透射样品经Gaton691PIPS离子减薄仪减薄后在日立H-800透射电镜上观察强化相的形态。

2试验结果与分析

2.1超高锰钢热处理工艺方案及力学性能

高锰钢的水韧处理大致有两种类型,即常规水韧处理和沉淀强化[3-4]。本试验中,超高锰钢加了合金元素Cr和Mo,水淬温度较一般高锰钢提高30~50℃,所以将水韧温度定为1100℃。分别进行常规水韧处理和沉淀(弥散)强化处理。沉淀强化热处理的原则是先进行固溶处理,消除铸态网状碳化物,使铸态组织中的各种碳化物及共析组织全部溶解,形成单一奥氏体固溶体;随后在奥氏体从高温冷却的过程中,碳脱溶而析出含合金元素的碳化物,或者奥氏体冷却过程中分解产生的共析组织中含合金元素的碳化物。目的是通过热处理使奥氏体基体中析出弥散分布的第二相,强化基体,提高材料抗磨料磨损的能力。试验的具体热处理方案和对应的力学性能如表2所示。

2.2热处理工艺对超高锰钢组织和力学性能的影响比较表2中工艺1和工艺2可知,经回火弥散强化的超高锰钢的强度、冲击韧性、硬度以及伸长率均比常规水韧处理(工艺1)的高。与不回火相比,经250℃回火后σb提高了18.2%,σs提高了7%,αk提高了22%,δ提高了30.3%,硬度提高了9.7%。比较工艺1和工艺3可以看出,1100℃水韧处理后经350℃保温4h回火处理,与不回火相比超高锰钢的强度、冲击韧性和硬度均得到提高;但与250℃回火相比,综合性能有所下降。比较工艺1、工艺4可知,1100℃水韧450℃保温4h回火处理后超高锰钢抗拉强度、伸长率及冲击韧性与不回火相比有所下降,屈服强度基本不变,硬度有所提高。综合分析可知,超高锰钢在250℃回火条件下,综合性能最好;σb=994.51MPa,σs=430.98MPa,αk=260J/cm2,HB227,δ=55.03%。

超高锰钢铸态组织及不同回火温度处理后的金相组织如图1所示。图1a是铸态组织,奥氏体晶界存在大量网状碳化物。1100℃保温4h后水韧处理,超高锰钢晶粒均匀,晶内基本没有碳化物,奥氏体晶界上存在少量未溶的碳化物,见图1b。由图1b、图1c可知,经过回火处理后,超高锰钢奥氏体晶内弥散析出了大量细小颗粒状碳化物。图1c中析出了颗粒状碳化物,细小而弥散分布,碳化物形态的改善有利于力学性能提高[11],符合第二相强化的原则,提高了钢的力学性能。因为奥氏体固溶体中合金元素随温度的降低溶解度减少,其脱溶产物形成第二相。第二相的质点在金属中构成位错运动的阻力,脱溶析出的细小碳化物和运动中的位错交互作用提高了临界切应力,位错和第表2不同热处理工艺条件超高锰钢的力学性能Table2Mechanicalpropertiesofsuper-highmanganesesteelbythedifferentwatertougheningtreatment

工艺

序号

热处理工艺参数

1100℃×4h,水淬

1100℃×4h,水淬

+250℃×4h,空冷

1100℃×4h,水淬

+350℃×4h,空冷

1100℃×4h,水淬

+450℃×4h,空冷

σb/MPa

841.05

994.51

885.40

801.82

σs/MPa

402.87

430.98

418.34

402.66

δ

(%)

42.24

55.03

47.43

33.28

αk/(J?cm-2)

213

260

230

201

HB

207

227

225

229

表1超高锰钢的化学成分

Table1Chemicalcompositionsofsuper-highmanganesesteel

wB(%)

C0.9~1.6

Si

0.3~1.0

Mn

17~19

Mo

0.3~1.0

Cr

1~2

≤0.07

≤0.05

FOUNDRY

Oct.2006

Vol.55No.10

1068

?

?二质点的交互作用可使材料得到强化[3,7]。图1d是350℃回火后组织,可以看出,碳化物颗粒有明显的长大趋势。因此强度和冲击韧性降低。450℃回火后,碳

化物颗粒长大更加明显,晶界上大颗粒碳化物突出,且奥氏体晶粒明显长大(图1e),抗拉强度和冲击韧性降低较为明显,力学性能降低幅度较大。

(a)铸态组织(b)1100℃×4h,水淬

(c)1100℃×4h,水淬+250℃×4h,空冷(d)1100℃×4h,水

淬+350℃×4h,空冷

(e)1100℃×4h,水淬+450℃×4h,空冷

图1超高锰钢铸态组织及不同热处理工艺的组织

Fig.1As-caststructureofsuper-highmanganesesteelanditsstructurebydifferentheattreatment

图2是超高锰钢晶内析出弥散碳化物的高倍形态及经EDAX能谱仪分析的结果。经能谱分析弥散颗粒是Mo、Cr、Mn、Fe的复合碳化物。图3是常规水韧处理及250℃回火处理后超高锰钢的冲击断口形貌,断口为韧窝状。250℃回火后超高锰钢的韧窝细小均匀,呈纤维状,该工艺条件下超高锰钢的冲击韧性最好。图4是超高锰钢薄膜的透射明场像和电子衍射花样及标定结果。通过对薄膜试样进行透射电镜相标定,确定超高锰钢组织为奥氏体+碳化物M23C6,这种碳化物弥散在基体上能增加材料的耐磨性[10-13]。

3结论

(1)优化出含合金元素Cr、Mo及稀土变质超高锰

钢的最佳热处理工艺:加热至1100℃×4h,水淬,再经250℃×4h,空冷回火处理。该工艺条件下奥氏体晶粒细小,晶内颗粒状碳化物均匀、弥散分布,力学性

能得到显著提高。与常规水韧处理相比,σb提高了18.2%,σs提高了7%,αk提高了22%,δ提高了30.3%,硬度提高了9.7%。

(2)回火温度对超高锰钢的微观组织和力学性能有明显的影响。低温回火弥散强化的热处理方法使超高锰钢均匀的奥氏体固溶体中出现弥散分布的颗粒状第二相质点M23C6,第二相质点起到强化基体作用,提高了超高锰钢的力学性能。

参考文献:

[1]

吕宇鹏,朱瑞富,朝志强,等.超高锰耐磨钢的组织与性能研究[J].矿山机械,1998,25(6):69-71.

[2]袁子洲,匡毅,陈彦,等.时效处理对超高锰钢组织及力学性能

的影响[J].铸造,2004,52(8):602-605.

[3]张增志.耐磨高锰钢[M].北京:冶金工业出版社,2002.

[4]谢敬佩,李卫,宋延沛,等.耐磨铸钢及熔炼[M].北京:机械工

业出版社,2003.

图2

晶内复合碳化物的SEM及能谱分析

1000×

Fig.2AnalysisresultsofcompositecompoundbyenergyspectraandSEM

(a)1100℃×4h,水淬(b)1100℃×4h,水淬+250℃×4h,空冷

图3不同热处理工艺后试样的冲击断口形貌Fig3Shapeofthefractureofimpactingtestsamplebydifferentheat

treatment

图4

碳化物M23C6透射明场像、电子衍射图样及标定结果Fig.4BrightfieldimageofelectrondiffractionforM23C6,diffraction

patternandcalibrationofelectrondiffraction

铸造

闫华等:超高锰钢热处理工艺优化及力学性能的提高

1069

?

?[5]

朴东学,齐笑冰,李慧玉,等.改进材质提高高锰钢高铬铸铁件的使用性能[J].铸造,1998,46(6):43-45.

[6]束德林.金属力学性能[M].北京:机械工业出版社,1999.[7]哈宽富.金属力学性质的微观理论[M].北京:科学出版社,1983.[8]吕宇鹏,李士同,朱瑞富,等.变质处理对超高锰钢铸态和热处理组织的影响[J].钢铁,1998,18(12):48-51.

[9]

刘俊友,伍燕生,魏力,等.高锰钢中碳化物的形成特征及其高温固溶行为研究[J].材料工程,2003,47(3):24-27.

[10]蒙肇斌,胡光力,陈彦.热处理工艺和预爆炸硬化对高锰钢

ZGMn13VTiRE组织和耐磨性的影响[J].钢铁,1997,17(9):45-47.

[11]施忠良,顾明元,吴仁洁,等.高碳高锰钢碳化物团球化及其强

化[J].钢铁研究学报,1996,8(3):38-41.

[12]TakahashiH,ShindoY,KinoshitaH,etal.Mechanicalproperties

anddamagebehaviorofnon-magnetichighmanganeseausteniticsteels[J].JournalofNuclearMaterials,1998(258~263):1644-1650.

[13]BayraktarE,LevaillantC,AltintasS.Formabilitycharacterization

ofHadfieldsteel[J].JournalofMaterialsProcessingTechnology,1994(49):13-31.

(编辑:田世江,tsj@foundryworld.com)

FOUNDRYOct.2006

Vol.55

No.10

1070

热处理工艺规范(最新)

华尔泰经贸有限公司铸钢件产品热处理艺规范 随着铸造件产品种类增多,对外业务增大,方便更好的管理铸造件产品,特制定本规定,要求各部门严格按照规定执行。 1目的: 为确保铸钢产品的热处理质量,使其达到国家标准规定的力学性能指标,以满足顾客的使用要求,特制定本热处理工艺规范。 2范围 3术语 经保温一段时间后, 经保温一段时间后, 3.3淬火:指将铸钢产品加热到规定的温度范围,经保温一段时间后, 快速冷却的操作工艺。 3.4回火:指将淬火后的铸钢产品加热到规定的温度范围,经保温一 段时间后出炉,冷却到室温的操作工艺。 3.5调质:淬火+回火 4 职责

4.1热处理操作工艺由公司技术部门负责制订。 4.2热处理操作工艺由生产部门负责实施。 4.3热处理操作者负责教填写热处理记录,并将自动记录曲线转换到 热处理记录上。 4.4检验员负责热处理试样的力学性能检测工作,负责力学性能检测 结论的记录以及其它待检试样的管理。 5 工作程序 5.1 错位炉底板应将其复位后再装, 5.2 对特别 淬铸件应控制入水时间,水池应有足够水量,以保证淬火质量。 5.5作业计划应填写同炉热处理铸件产品的材质、名称、规格、数量、 时间等要素,热处理园盘记录纸可多次使用,但每处理一次都必须与热处理工艺卡上的记录曲线保持一致。 6 不合格品的处置 6.1热处理试样检验不合格,应及时通知相关部门。

6.2技术部门负责对不合格品的处置。 7 附表 7.1碳钢及低合金钢铸件正火、退火加热温度表7.2碳钢及低合金钢铸件退火工艺 7.3铸钢件直接调质工艺 7.4铸钢件经预备热处理后的调质工艺 7.5低合金铸钢件正火、回火工艺

金属材料热处理及其应用

金属材料热处理及其应用(一)---基本常识 金属材料热处理是机械制造中的重要工艺之一,与其它加工工艺相比,热处理一般不改变工件的形状和整体的化学成分,而是通过改变工件内部的显微组织,或改变工件表面的化学成分,赋予或改善工件的使用性能。其特点是改善工件的内在质量,而这一般不是肉眼所能看到的。为使金属工件具有所需要的力学性能、物理性能和化学性能,除合理选用材料和各种成形工艺外,热处理工艺往往是必不可少的。钢铁是机械工业中应用最广的材料,钢铁显微组织复杂,可以通过热处理予以控制,所以钢铁的热处理是金属热处理的主要内容。另外,铝、铜、镁、钛等及其合金也都可以通过热处理改变其力学、物理和化学性能,以获得不同的使用性能。 金属热处理是将金属工件放在一定的介质中加热到适宜的温度,并在此温度中保持一定时间后,又以不同速度冷却的一种工艺。 在从石器时代进展到铜器时代和铁器时代的过程中,热处理的作用逐渐为人们所认识。早在公元前770~前222年,中国人在生产实践中就已发现,铜铁的性能会因温度和加压变形的影响而变化。白口铸铁的柔化处理就是制造农具的重要工艺。 公元前六世纪,钢铁兵器逐渐被采用,为了提高钢的硬度,淬火工艺遂得到迅速发展。中国河北省易县燕下都出土的两把剑和一把戟,其显微组织中都有马氏体存在,说明是经过淬火的。随着淬火技术的发展,人们逐渐发现淬冷剂对淬火质量的影响。三国蜀人蒲元曾在今陕西斜谷为诸葛亮打制3000把刀,相传是派人到成都取水淬火的。这说明中国在古代就注意到不同水质的冷却能力了,同时也注意了油和尿的冷却能力。中国出土的西汉(公元前206~公元24)中山靖王墓中的宝剑,心部含碳量为0.15~0.4%,而表面含碳量却达0.6%以上,说明已应用了渗碳工艺。但当时作为个人“手艺”的秘密,不肯外传,因而发展很慢。1863年,英国金相学家和地质学家展示了钢铁在显微镜下的六种不同的金相组织,证明了钢在加热和冷却时,内部会发生组织改变,钢中高温时的相在急冷时转变为一种较硬的相。法国人奥斯蒙德确立的铁的同素异构理论,以及英国人奥斯汀最早制定的铁碳相图,为现代热处理工艺初步奠定了理论基础。与此同时,人们还研究了在金属热处理的加热过程中对金属的保护方法,以避免加热过程中金属的氧化和脱碳等。1850~1880年,对于应用各种气体(诸如氢气、煤气、一氧化碳等)进行保护加热曾有一系列专利。1889~1890年英国人莱克获得多种金属光亮热处理的专利。 二十世纪以来,金属物理的发展和其它新技术的移植应用,使金属热处理工艺得到更大发展。一个显着的进展是1901~1925年,在工业生产中应用转筒炉进行气体渗碳;30年代出现露点电位差计,使炉内气氛的碳势达到可控,以后又研究出用二氧化碳红外仪、氧探头等进一步控制炉内气氛碳势的方法;60年代,热处理技术运用了等离子场的作用,发展了离子渗氮、渗碳工艺;激光、电子束技术的应用,又使金属获得了新的表面热处理和化学热处理方法。 金属材料热处理的工艺 热处理工艺一般包括加热、保温、冷却三个过程,有时只有加热和冷却两个过程。这些过程互相衔接,不可间断。 加热是热处理的重要工序之一。金属热处理的加热方法很多,最早是采用木炭和煤作为热源,进而应用液体和气体燃料。电的应用使加热易于控制,且无环境污染。利用这些热源可以直接加热,也可以通过熔融的盐或金属,以至浮动粒子进行间接加热。 金属加热时,工件暴露在空气中,常常发生氧化、脱碳(即钢铁零件表面碳含量降低),这对于热处理后零件的表面性能有很不利的影响。因而金属通常应在可控气氛或保护气氛中、熔融盐中和真空中加热,也可用涂料或包装方法进行保护加热。 加热温度是热处理工艺的重要工艺参数之一,选择和控制加热温度,是保证热处理质量的主要问题。加热温度随被处理的金属材料和热处理的目的不同而异,但一般都是加热到相变温度以上,以获得高温组织。另外转变需要一定的时间,因此当金属工件表面达到要求的加热温度时,还须在此温度保持一定时间,使内外温度一致,使显微组织转变完全,这段时间称为保温时间。采用高能密度加热和表面热处理时,加热速度极快,一般就没有保温时间,而化学热处理的保温时间往往较长。

热处理工艺

热处理工艺 摘要:现代机器制造对金属材料的性能不断提出更高的要求,如果完全依赖原材料的原始性能来满足这些要求,常常是不经济的,甚至是不可能的。热处理可提高零件的强度、硬度、韧性、弹性,同时,还可改善毛胚或原材料切削性能,使之易于加工。可见,热处理是改善原材料或毛胚的工艺性能、保证产品质量、延长使用寿命、挖掘材料潜力不可缺少的工艺方法。热处理在机械制造业中的应用极其广泛。钢铁是机械工业中应用最广的材料,钢铁显微组织复杂,可以通过热处理予以控制,所以钢铁的热处理是金属热处理的主要内容。 Modern machine manufacturing of metal material performance continuously put forward higher requirements, if totally dependent on the raw performance of the raw materials to meet these requirements, often not economical, even is impossible. Heat treatment can improve the strength, hardness, toughness and elasticity of the parts, and it also can improve the cutting performance of hair germ or raw material, so it is easy to be processed. Heat treatment is an essential method to improve the processing performance of raw materials or hair germ, guarantee the product quality, extend the service life and excavate the potential of material. Heat treatment in the mechanical manufacturing industry is very extensive. Iron and steel is the most widely used material in mechanical industry. The microstructure of steel is controlled by heat treatment, so the heat treatment is the main content of metal heat treatment. 关键词:热处理退火正火淬火回火温度 Heat treatment ,Annealing ,Normalizing ,Quenching ,Tempering ,Temperature 正火是将工件加热到适宜的温度后在空气中冷却,正火的效果同退火相似,只是得到的组织更细,常用于改善材料的切削性能,也有时用于对一些要求不高的零件作为最终热处理。 淬火是将工件加热保温后,在水、油或其它无机盐、有机水溶液等淬冷介质中快速冷却。淬火后钢件变硬,但同时变脆。 为了降低钢件的脆性,将淬火后的钢件在高于室温而低于650℃的某一适当温度进行长时间的保温,再进行冷却,这种工艺称为回火。 退火、正火、淬火、回火是整体热处理中的“四把火”,其中的淬火与回火关系密切,常常配合使用,缺一不可。 “四把火”随着加热温度和冷却方式的不同,又演变出不同的热处理工艺。为了获得一定的强度和韧性,把淬火和高温回火结合起来的工艺,称为调制。某些合金淬火形成过饱和固溶体后,将其置于室温或稍高的适当温度下保持较长时间,

高铬铸铁热处理工艺

高铬铸铁热处理工艺 化学成分:C2.05,Si1.40,Mn0.78,Cr26.03,Ni0.81,Mo0.35 1、常用的高铬铸铁的热处理工艺是加热到950~1000℃,经保温空冷淬火后再进行 200~260℃的低温回火。 2、2、高温团球化处理1140~1180℃保温16h空冷却,可以明显提高冲击韧度和耐磨性能。 高温团球化处理可使碳化物全部呈团球状,可消除或减少大块状和连续网状碳化物对基体的隔裂作用,经团球化的碳化物受到更加均匀的基体支撑,特别受到一定数量的奥氏体的支撑。如果适当减少保温时间,对薄截面零件也可以取得效果。该工艺的不足是工艺消耗热能较多。 加热到1050℃,经保温空淬火后再进行550℃的回火,效果会怎么样? 要控制加热速度,最好在650? ?? ?750? ?? ?? ? 850? ?? ? 时保温一定时间。我以前做过,正火就可以了。硬度能做到61----65HRC 成熟工艺是:铸造后软化退火,便于加工,加工后空冷淬火加低温去应力回火。使用硬度一般要求为HRC58-62,多用于比如渣浆泵零部件等耐磨易损件。 我们这里是高铬生产基地,一般提供Cr24,Cr26,Cr28,Cr15Mo3等,价格是不便宜的。价格要包括中间的软化退火和精加后的淬火及回火。楼主的材料应该叫Cr26 做高铬磨球的,Cr%=10.2~10.5%,C%=2.2~2.7%,Si、S双零以下,要求硬度HRC>58 我们现在用的是淬火液淬火,淬火工艺参数是:650度保温2小时,升温到960度保温3.5小时淬火;回火温度380~400,保温4~6小时。磨球规格φ40-φ80。 工艺是1050淬火+250~350回火 金属耐磨材料在水泥企业的研究和应用 [摘要] 本文从金属耐磨材料的概述、水泥企业常用的耐磨材料以及根据磨损原理具体的选用金属耐磨材料,对金属耐磨材料进行了研究、分析,对其他选用金属耐磨材料给予一定的参考和借鉴。 [关键词] 金属耐磨材料水泥企业研究应用 一、金属耐磨材料的概述 材料的耐磨性不仅决定于材料的硬度Hm,而且更主要的是决定于材料硬度Hm和磨料硬度Ha的比值。当Hm/Ha比值超过一定值后,磨损量便会迅速降低。 当Hm/Ha≤0.5-0.8时为硬磨料磨损,此时增加材料的硬度对材料的耐磨性增加不大。 当Hm/Ha>0.5-0.8时为软磨料磨损,此时增加材料的硬度,便会迅速地提高材料的耐磨性。 金属耐磨材料一般都指的是耐磨钢,能抵抗磨料磨损的钢。这类钢还没有成为一个完全独立的钢种,其中公认的耐磨钢是高锰钢。 二、水泥企业主要使用的耐磨钢

化学热处理工艺及应用

一.化学热处理工艺及应用 除渗碳、渗氮外,渗金属主要有渗Al、Cr、V、Si、B、S等金属和非金属。下面简单介绍。 1.渗铬 适用于各种钢制件的耐磨性、耐蚀性和抗高温氧化能力。 渗后硬度:低碳钢为200~250HV;高碳钢为1250~1300HV。 渗层深度:一般为0.10~0.30mm。 渗层金相组织:低碳钢50%左右铬在铁素体中的固溶体;高碳钢由铬的碳化物(Cr7C3)、(CrFe)7C3组成。 渗铬方法:固、液、气体渗,还有真空渗等。 固体法:将以下配方研成粒度小于50目(约0.297mm)粉末,然后装箱进行。 配方1:50%~55%铬铁粉末+40~50%氧化铝+2~3%氯化铵。 配方2:60%~65%铬铁粉末+30~35%耐火土+3~4%氯化铵。 装炉温度为800~850℃,保温1~1.5h后升温到1000~1050℃.。保温12~15h(视层深要求而定)。然后随炉冷却600~700℃出炉空冷即可。 液体法:采用70%氯化钡+30%氯化钠为基盐。将金属铬或铬铁粉末经盐酸处理后放入基盐中,加热到1000~1050℃保温1.0~1.5h即开始渗,同时应不间断地用惰 性气体或还原气体保盐浴表面不被氧化。 气体法:利用干净铬块+氯化铵+氢气,在950~1100℃通入氯化铜蒸汽进行。渗铬后的处理:在一定载荷下工作并要求一定的强度的零件,渗铬后正火处理可细化晶 粒,提高基体强度和韧性,淬火和回火处理可根据需要调整基体的性能。 2、渗B 渗硼是指将工件放在一定比例的含硼介质中加热。 适用范围:提高各种钢、铸铁和粉末冶金等材料制作的工件耐磨性。 渗后硬度:900~1200H V0.1以上。 金相组织:为致密的单相Fe2B。

常用材料热处理工艺

常用材料热处理工艺 Prepared on 22 November 2020

常用材料热处理工艺二、ASTM A182 F22 1.退火(A)≥90±10℃炉冷; 2.回火(T)≥675℃ 3.HB≤170(一级)156~207(三级) 三、ASTM A694 F60,F52 1.N+T或Q+T N(Q):920±10℃保温,空冷(水淬) T:≥540±10℃保温,空冷 2.HB实测 四、16MnJB4726-2000 或N+T N:930±10℃保温,空冷 T:≥600±10℃保温空冷 2.HB:121~178 五、16MnDJB4727-2000 1.Q+T Q:930±10℃保温,水冷 T:≥600±10℃保温空冷 2.HB实测 六、A105ASTM A105-2002 1.正火(N):900±10℃保温,空冷

2:HB:137~187 七、20# JB4726-2000 1.正火(N):910±10℃保温,空冷 2.HB:106~159 八、LF2ASTM A350 LF2 1.淬火+回火(Q+T) Q:870~940℃保温,水冷 T:540~665℃保温,空冷 2.HB≤197 九、LF3ASTM A350-2002b 1.淬火+回火(Q+T) Q:870~940℃保温,水冷 T:540~665℃保温,空冷 2.HB≤197 十、15CrMo JB4726-2000 1.淬火+回火(Q+T) Q:900±10℃保温,水冷 T:≥620℃保温,空冷 2.HB:118~180 十一、1Cr5Mo JB4726-2000 1.淬火+回火: Q:880~900℃,保温,水冷

17-4 热处理工艺

标准:GB/T 1220-1992 ●特性及应用: 0Cr17Ni4Cu4Nb是由铜、铌/钶构成的沉淀、硬化、马氏体不锈钢。0Cr17Ni4Cu4Nb有较高的强度、耐蚀性、抗氧化性,0Cr17Ni4Cu4Nb这个等级具有高强度、硬度(高达300℃/572℉)和抗腐蚀等特性。经过热处理后,产品的机械性能更加完善,可以达到高达1100-1300MPa(160-190 ksi) 的耐压强度。这个等级不能用于高于300℃(572℉) 或非常低的温度下,它对大气及稀释酸或盐都具有良好的抗腐蚀能力,它的抗腐蚀能力与304和430一样。 ●应用领域: 1.海上平台、直升机甲板、其他平台 2.食品工业 3.纸浆及造纸业 4.航天(涡轮机叶片) 5.机械部件 6.核废物桶 ●化学成分: 0Cr17Ni4Cu4Nb化学成分: C Si Mn P S Ni Cr Mo Cu Nb 其他 ≤0.07 ≤1.00 ≤1.00 ≤0.035 ≤0.030 3.00-5.00 15.5-17.5 - 3.00-5.00 0.15-0.45 - 美国ASTMS17400,AISI630,UNS630化学成分 C Si Mn P S Ni Cr Mo Cu Nb 其他 ≤0.07 ≤1.00 ≤1.00 ≤0.040 ≤0.030 3.00-5.00 15.5-17.5 - 3.00-5.00 0.15-0.45 - 日本SUS630化学成分 C Si Mn P S Ni Cr Mo Cu Nb+Tao 其他 ≤0.07 ≤1.00 ≤1.00 ≤0.040 ≤0.030 3.00-5.00 15.5-17.5 - 3.00-5.00 0.15-0.45 - 欧洲X5CrNiCuNb16-4化学成分 C Si Mn P S Ni Cr Mo Cu Nb+Tao 其他 ≤0.07 ≤1.00 ≤1.00 ≤0.040 ≤0.030 3.00-5.00 15.5-17.5 - 3.00-5.00 0.15-0.45 - ●力学性能: 抗拉强度σb (MPa):480℃时效,≥1310; 550℃时效,≥1060; 580℃时效,≥1000; 620℃时效,≥930 条件屈服强度σ0.2 (MPa):480℃时效,≥1180;550℃时效,≥1000;580℃时效,≥865;620℃时效,≥725 伸长率δ5 (%):480℃时效,≥10;550℃时效,≥12;580℃时效,≥13;620℃时效,≥16 断面收缩率ψ (%):480℃时效,≥40;550℃时效,≥45;580℃时效,≥45;620℃时效,≥50 硬度:固溶,≤363HB和≤38HRC;480℃时效,≥375HB和≥40HRC; 550℃时效,≥331HB和≥35HRC;580℃时效,≥302HB和≥31HRC;620℃时效,≥277HB和 ≥28HRC ●热处理规范及金相组织: 热处理规范:1)固溶1020~1060℃快冷;2)480℃时效,经固溶处理后,470~490℃空冷; 3)550℃时效,经固溶处理后,540~560℃空冷; 4)580℃时效,经固溶处理 后,570~590℃空冷;5)620℃时效,经固溶处理后,610~630℃空冷。 金相组织:组织特征为沉淀硬化型。 ●交货状态:一般以热处理状态交货,其热处理种类在合同中注明;未注明者,按不热处理状态交货。

耐磨高锰钢铸件的各类热处理

.耐磨高锰钢铸件的铸态余热热处理 为缩短热处理周期,可利用铸态余热进行高锰钢水韧处理。其工艺为:铸件于ll00~1180。C时自铸型中取出,经除芯清砂后,铸件温度允许冷却到900~1000。C,然后装入加热到l050。1080。C的炉内保温3~5h后水冷。该处理工艺简化了热处理工艺,减少了铸件在型内的冷N啪3,但ue产操作上有一定难度。表11—18为不同热处理工艺的高锰钢试样的力学性能。 2.耐磨高锰钢铸件的沉淀强化热处理 耐瞎高锰钢沉淀强化热处理的目的,是在加入适量碳化物形成元素(如钼、钨、钒、钛、铌和铬)的基础上,通过热处理方法在高锰钢中得到一定数量和大小的弥散分布的碳化物第二相质点,强化奥氏体基体,提高高锰钢的抗磨性能。但这种热处理工艺较复杂,并使生产成本增加。 3.耐磨高锰钢铸件的固溶热处理——水韧处理耐磨高锰钢的铸态组织中有大量析出的碳化物,因而其韧度较低,使用中易断裂。 高锰钢铸件固溶热处理的主要目的,是消除铸态组织中晶内和晶界上的碳化物,得到单相奥氏体组织,提高高锰钢的强度和韧度,扩大其应用范围。 要消除其铸态组织的碳化物,须将钢加热至1040。C以上,并保温适当时间,使其碳化物完全固溶于单相奥氏体中,随后快速冷却得到奥氏体固溶体组织。这种固溶热处理又称为水韧处理。 (1)水韧处理的温度:水韧温度取决于高锰钢成分,通常为1050~1100。含碳量高或者合金含量高的高锰钢应取水韧温度的上限,如ZGMnl3钢和GXl20Mnl7钢。但过高的水韧温度会导致铸件表面严重脱碳,并促使高锰钢的晶粒迅速长大,影响高锰钢的使用性能。图ll-25为高锰钢在1100保温2h后铸件表面碳和锰元素的变化。 (2)加热速率:高锰钢比一般碳钢的导热性差,高锰钢铸件在加热时应力较大而易开裂,因此其加热速率应根据铸件的壁厚和形状而定。一般薄壁简单铸件可采用较快速率加热;厚壁铸件则宜缓慢加热。为减少铸件在加热过程中变形或开裂,生产上常采用预先在650左右保温,使厚壁铸件内外温差减小,炉内温度均匀,之后再快速升到水韧温度的处理工艺。图ll—26为典型高锰钢件的热处理工艺规范。 (3)保温时间:保温时间主要取决于铸件壁厚,以确保铸态组织中的碳化物完全溶解和奥氏体的均匀化。通常保温时间可按铸件壁厚25mm保温lh计算。图ll—27为保温时间对高锰钢表面脱碳层深度的影响。 (4)冷却:冷却过程对铸件的性能指标及组织状态有很大的影响。 水韧处理时铸件入水前的温度在950必上,以免碳化物重新析出。为此,铸件从出炉到A水时间不应超过30s;水温保持在30度以下.淬火后最高水温不超过60度。水温较高时高锰钢的力学性能显著下降。水韧处理时水量须达到铸件和吊栏重量的8倍以上,若用非循环水需定期增加水量.暑好使用水质干净的循环水或采用压缩空气搅动池水。用吊篮吊淬时,可采用摆动吊篮的方式加速铸件的冷却。 高锰钢水韧处理多用台车式.热处理炉。铸件人水常用自动倾翻或吊篮吊淬方式。前者对大件及形状复杂的薄壁件易引起变形,淬火后铸件从水池中取出也较为困难;后者淬火后取出铸件方便,但吊篮消耗大。 4.耐磨中铬钢铸件的热处理耐磨中铬钢铸件热处理的目的,是得到高强韧性和高硬度的马氏体基体组织,以提高钢的强度、韧度及耐磨性。

热处理工艺的特点

热处理工艺的特点 金属热处理是机械制造中的重要工艺之一,与其他加工工艺相比,热处理一般不改变工件的形状和整体的化学成分,而是通过改变工件内部的显微组织,或改变工件表面的化学成分,赋予或改善工件的使用性能。其特点是改善工件的内在质量,而这一般不是肉眼所能看到的。 为使金属工件具有所需要的力学性能、物理性能和化学性能,除合理选用材料和各种成形工艺外,热处理工艺往往是必不可少的。钢铁是机械工业中应用最广的材料,钢铁显微组织复杂,可以通过热处理予以控制,所以钢铁的热处理是金属热处理的主要内容。另外,铝、铜、镁、钛等及其合金也都可以通过热处理改变其力学、物理和化学性能,以获得不同的使用性能。 热处理的发展史 在从石器时代进展到铜器时代和铁器时代的过程中,热处理的作用逐渐为人们所认识。早在公元前770至前222年,中国人在生产实践中就已发现,铜铁的性能会因温度和加压变形的影响而变化。白口铸铁的柔化处理就是制造农具的重要工艺。 公元前六世纪,钢铁兵器逐渐被采用,为了提高钢的硬度,淬火工艺遂得到迅速发展。中国河北省易县燕下都出土的两把剑和一把戟,其显微组织中都有马氏体存在,说明是经过淬火的。 随着淬火技术的发展,人们逐渐发现淬冷剂对淬火质量的影响。三国蜀人蒲元曾在今陕西斜谷为诸葛亮打制3000把刀,相传是派人到成都取水淬火的。这说明中国在古代就注意到不同水质的冷却能力了,同时也注意了油和尿的冷却能力。中国出土的西汉(公元前206~公元24)中山靖王墓中的宝剑,心部含碳量为0.15~0.4%,而表面含碳量却达0.6%以上,说明已应用了渗碳工艺。但当时作为个人“手艺”的秘密,不肯外传,因而发展很慢。 1863年,英国金相学家和地质学家展示了钢铁在显微镜下的六种不同的金相组织,证明了钢在加热和冷却时,内部会发生组织改变,钢中高温时的相在急冷时转变为一种较硬的相。法国人奥斯蒙德确立的铁的同素异构理论,以及英国人奥斯汀最早制定的铁碳相图,为现代热处理工艺初步奠定了理论基础。与此同时,人们还研究了在金属热处理的加热过程中对金属的保护方法,以避免加热过程中金属的氧化和脱碳等。 1850~1880年,对于应用各种气体(诸如氢气、煤气、一氧化碳等)进行保护加热曾有一系列专利。1889~1890年英国人莱克获得多种金属光亮热处理的专利。 二十世纪以来,金属物理的发展和其他新技术的移植应用,使金属热处理工艺得到更大发展。一个显著的进展是1901~1925年,在工业生产中应用转筒炉进行气体渗碳;30年代出现露点电位差计,使炉内气氛的碳势达到可控,以后又研究出用二氧化碳红外仪、氧探头等进一步控制炉内气氛碳势的方法;60年代,热处理技术运用了等离子场的作用,发展了离子渗氮、渗碳工艺;激光、电子束技术的应用,又使金属获得了新的表面热处理和化学热处理方法。

高锰钢与超高锰钢铸件生产技术要点

高锰钢与超高锰钢铸件生产技术要点在高能量冲击的工作条件下,高锰钢与超高锰钢铸件的应用范围是广阔的。许多铸造厂,对生产此类钢种铸件缺乏必要的认识。现对具体操作做简要的说明,供生产者参考。 1化学成分 高锰钢按照国家标准分为5个牌号,主要区别是碳的含量,其范围是%-%。受冲击大,碳含量低。锰含量在%-%之间,一般不应低于13%。超高锰钢尚无国标,但锰含量应大于18%。硅含量的高低,对冲击韧度影响较大,故应取下限,以不大于%为宜。低磷低硫是最基本的要求,由于高的锰含量自然起到脱硫作用,故降磷是最要紧的,设法使磷低于%。铬是提高抗磨性的,一般在%左右。 2炉料 入炉材料是由化学成分决定的。主要炉料是优质碳素钢(或钢锭)、高碳锰铁、中碳锰铁、高碳铬铁及高锰钢回炉料。这里特别提醒的是有人认为只要化学成分合适,就可以多用回炉料。这个认识是有害的。某些厂之所以产品质量不佳,皆出于此。不仅高锰钢、超高锰钢,凡是金属铸件,绝不可以过多的使用回炉料,回炉料不应超过25%。那么,回炉料过剩该如何只要把废品降到最低,回炉料就不会过剩。3熔炼 这里着重讲加料顺序,无论用中频炉,还是电弧炉熔炼,总是先熔炼碳素钢,而各类锰铁和其他贵重合金材料,要分多次,每次少量入炉,贵重元素在最后加入,以减少烧损。料块应尽量小些,以50-80mm

为宜。熔清后,炉温达到1580-1600℃时,要脱氧、脱氢、脱氮,可用铝丝,也可用Si-Ca合金或SiC等材料。将脱氧剂一定压到炉内深处。金属液面此时用覆盖剂盖严,隔断外界空气。还要镇静一段时间,使氧化物、夹杂物有充足时间上浮。然而,不少企业,只将铝丝甚至铝屑,撒在金属液面上,又不加覆盖,岂不白白浪费!在此期间,及时用中碳锰铁来调整锰与碳的含量。 钢液出炉前,将浇包烘烤到400℃以上是十分必要的。在出炉期间用V-Fe、Ti-Fe、稀土等多种微量元素做变质处理,是使一次结晶细化的必要手段,它对产品性能影响是至关重要的。 4炉料与造型材料 要延长炉龄,当分清钢种与炉衬的属性。锰钢属碱性,炉衬当然选用镁质材料。捣打炉衬要轮番周而复始换位操作。添加炉衬材料不可过厚,每次80毫米左右为宜,捣毕要低温长时间烘烤。如提高生产效率,笔者建议采用成型坩埚(沈阳力得厂和恒丰厂均有成品出售),从拆炉到装成,不用1小时,即可投入生产,同时成型坩埚对防穿炉大有裨益。当然,炉龄的长短与操作者大有关系。不少操作者像掷铅球的运动员一样,把炉料从三四米之外投入炉内,既不安全又伤炉龄,应将炉料置于炉口旁预热,然后用夹子慢慢地将炉料顺炉壁放入。 造型材料和涂料也应与金属液属性相一致,或者用中性材料(如铬铁矿砂、棕刚玉等)。若想获得一次结晶细化的基体,采用蓄热量大的铬铁矿砂是正确的,尤其是消失模生产厂,用它将克服散热慢的缺点。5铸造工艺设计

2021版热处理工艺在模具制造过程中的应用

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 2021版热处理工艺在模具制造 过程中的应用 Safety management is an important part of production management. Safety and production are in the implementation process

2021版热处理工艺在模具制造过程中的应 用 现代工业的快速发展离不开模具,模具被广泛用于航空航天、船舶等各个行业,对制造业影响巨大,特别是对生产金属制品行业,工厂需要采用热处理技术,利用模具制造出高质量产品。 模具是一种制造用的模型,模具的制造程序可以分为多种类型的机械制造和热制造两道程序,众多类型程序中都用到了热处理技术,可以说热处理被应用在模具制作的整个过程,对模具进行加热处理可以增强模具的性能。采用同种结构的模具材料和结构及相同的客观条件,运用了热处理就能使模具的材料得到充分利用,且能够增加模具的使用时间。如果应用不正确的热处理方式,不仅不能弥补原有的材料缺陷,还会使缺陷加大,进而导致整个模具的变形,所以,热处理技术对模具的制造起着重要的作用。本文将讲述热处

理技术的含义,热处理技术对模具的制造的重要意义及热处理技术在模具的制造中的应用进行论述。 热处理技术的含义 热处理是通过把某些金属在特定环境下进行加热、保持恒温,然后冷却等一系列方法,从而是金属表面或内在结构发生变化,进而达到改变性能的技术。模具热处理大致分为模具制作前的热处理、最后热处理和表面修整处理。前期热处理为后期成品热处理打下基础,为提高模具产品的加工性能做准备;最后热处理是对模具进行回火处理来加大模具的强度、硬度和韧度;对模具的表面修整处理是通过对模具施加某些化学和物理作用改善模具性能,进而达到模具表面更加完好。热处理的手段包括退火、正火和淬火。退火依据不同材料应用不等的时间,慢慢冷却产品,使其接近金属的内部组织,取得良好的性能。正火是加热工件后使其在空中冷却,通过正火达到的内部组织更细腻,因此,正火经常用来改善工料削割性能。淬火是把工件在油、水等某些物质介质力冷却,冷却耗时短,淬火和回火经常结合一起使用。

高锰钢工艺(学术参考)

高锰钢工艺 1.高锰钢有哪几种?其性能如何? 锰含量约为11%~18%的钢称高锰钢。常用的铸造高锰钢ZMn13的化学成分为:Mn含量11%~14%,c含量1.0%~1.4%,Si含量0.3%~1.0%,P 含量<0.03%,S含量<0.05%。 高锰钢是一种耐磨钢,经过水韧处理的高锰钢可以得到较高的塑性和冲击韧性。所谓水韧处理,就是把钢加热到1000℃~1100℃,保温一段时间,使钢中的碳化物全部溶入奥氏体中,然后迅速冷却,使碳化物来不及从奥氏体中析出,从而保持了单一的均匀的奥氏体组织。经过水韧处理的高锰钢称为高锰奥氏 体钢。其力学性能为:σ b =980 MPa,σs=392 MPa,HB210,δ=80%,α k =2.94 MJ /m2。 高锰钢具有很高的耐磨性,虽然它的硬度只有HB210,但它的屈服点σs 较低,只有σb的40%,因此具有较高的塑性和韧性。高锰钢在受到外来压力和冲击载荷时,会产生很大的塑性变形或严重的加工硬化现象,钢被剧烈强化,硬度显著提高,可达HB450~550,因此有了较高的耐磨性。 高锰钢可分为高碳高锰耐磨钢、中碳高锰无磁钢、低碳高锰不锈钢和高锰耐热钢。几种高锰钢的牌号和性能见表5-1。

2.高锰钢有哪些切削加工特点? 高锰钢锰含量高达11%~18%,具有较高的塑性和韧性,在切削加工中有以下特点: (1)加工硬化严重:高锰钢在切削过程中,由于塑性变形大,奥氏体组织转变为细晶粒的马氏体组织,从而产生严重的硬化现象。加工前硬度一般为 HB200~220,加工后表面硬度可达HB450~550,硬化层深度0.1~0.3 mm,其硬化程度和深度要比45号钢高几倍。严重的加工硬化使切削力增大,加剧了刀具磨损,也容易造成刀具崩刃而损坏。 (2)切削温度高:由于切削功率大,产生的热量多,而高锰钢的导热系数比不锈钢还低,只有中碳钢的1/4,所以切削区温度很高。当切削速度Vc<50 m/min 时,高锰钢的切削温度比45号钢高200℃~250 ℃,因此,刀具磨损严重,耐用度降低。 (3)断屑困难:高锰钢的韧性是45号钢的8倍,切削时切屑不易拳曲和折断。 (4)尺寸精度不易控制:高锰钢的线膨胀系数与黄铜差不多,在高的切削温度下,局部产生热变形,尺寸精度不易控制。切削高锰钢时,应先进行粗加工,工件冷却后再进行精加工,以保证工件的尺寸精度。 3.怎样通过热处理改善高锰钢的切削性能? 金属材料的切削性能主要取决于材料的力学、物理性能,如:强度、硬度、塑性、韧性、耐磨性及线膨胀系数等。通过热处理可以改变金属材料的力学、物理性能,从而改善其切削性能。改善高锰钢的切削性能可以通过高温回火来实现。将高锰钢加热至600℃~650℃,保温两小时后冷却,使高锰钢的奥氏体组织转变为索氏体组织,其加工硬化程度显著降低,加工性能明显改善。加工完成的零件在使用前应进行淬火处理,使其内部组织重新转变为单一的奥氏体组织。 4.切削高锰钢时怎样选择刀具材料?

常用材料热处理工艺完整版

常用材料热处理工艺 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

常用材料热处理工艺二、ASTM A182 F22 1.退火(A)≥90±10℃炉冷; 2.回火(T)≥675℃ 3.HB≤170(一级)156~207(三级)三、ASTM A694 F60,F52 1.N+T或Q+T N(Q):920±10℃保温,空冷(水淬) T:≥540±10℃?保温,空冷 2.HB实测 四、16MnJB4726-2000 或N+T N:930±10℃保温,空冷 T:≥600±10℃保温空冷 2.HB:121~178 五、16MnDJB4727-2000 1.Q+T Q:930±10℃?保温,水冷 T:≥600±10℃保温空冷 2.HB实测 六、A105ASTM A105-2002

1.正火(N):900±10℃保温,空冷 2:HB:137~187 七、20# JB4726-2000 1.正火(N):910±10℃保温,空冷 2.HB:106~159 八、LF2ASTM A350 LF2 1.淬火+回火(Q+T) Q:870~940℃?保温,水冷 T:540~665℃?保温,空冷 2.HB≤197 九、LF3ASTM A350-2002b 1.淬火+回火(Q+T) Q:870~940℃?保温,水冷 T:540~665℃?保温,空冷 2.HB≤197 十、15CrMo JB4726-2000 1.淬火+回火(Q+T) Q:900±10℃?保温,水冷 T:≥620℃?保温,空冷 2.HB:118~180 十一、1Cr5Mo JB4726-2000 1.淬火+回火:

简述常用热处理工艺的原理与特点

简述常用热处理工艺的原理与特点。 热处理是指材料在固态下,通过加热、保温和冷却的手段,以获得预期组织和性能的一种金属热加工工艺。 热处理工艺原理 1、正火:将钢材或钢件加热到临界点AC3或ACM以上的适当温度保持一定时间后在空气中冷却,得到珠光体类组织的热处理工艺。 2、退火:将亚共析钢工件加热至AC3以上20—40度,保温一段时间后,随炉缓慢冷却(或埋在砂中或石灰中冷却)至500度以下在空气中冷却的热处理工艺。 3、淬火:将钢奥氏体化后以适当的冷却速度冷却,使工件在横截面内全部或一定的范围内发生马氏体等不稳定组织结构转变的热处理工艺。 4、回火:将经过淬火的工件加热到临界点AC1以下的适当温度保持一定时间,随后用符合要求的方法冷却,以获得所需要的组织和性能的热处理工艺。 5、调质处理:一般习惯将淬火加高温回火相结合的热处理称为调质处理。调质处理广泛应用于各种重要的结构零件,特别是那些在交变负荷下工作的连杆、螺栓、齿轮及轴类等。调质处理后得到回火索氏体组织,它的机械性能均比相同硬度的正火索氏体组织更优。它的硬度取决于高温回火温度并与钢的回火稳定性和工件截面尺寸有关,一般在HB200—350之间。 特点:金属热处理是机械制造中的重要工艺之一,金球的热处理工艺与其他加工工艺相比,热处理一般不改变工件的形状和整体的化学成分,而是通过改变工件内部的显微组织,或改变工件表面的化学成分,赋予或改善工件的使用性能。 比较钢材与非金属材料热处理的异同点。 热处理有金属材料热处理和非金属材料热处理 相同点:热处理的原理基本一样,都是一般不改变工件的形状和整体的化学成分,而是通过改变工件内部的显微组织,或改变工件表面的化学成分,赋予或改善工件的使用性能。 不同点: 1.钢的表面热处理有两大类:一类是表面加热淬火热处理,另一类是化学热处理。 非金属材料的表面热处理:喷漆、着(染)色、抛光、化学镀后再电镀(如ABS)等。 2.金属材料热处理包括:退火、正火、淬火和回火。 非金属材料热处理包括碳纤维预氧化、碳化、石墨化设备,石墨化烧结等;复合材料成形以及空间环境模拟,包括热压罐,热压机,KM系列模拟罐,用户分布于汽车、模具、工具、碳纤维加工和其他高端应用领域。

热处理种类应用

1.热处理工艺的分类 金属热处理工艺大体可分为整体热处理、表面热处理和化学热处理三大类。 整体热处理是对工件整体加热,然后以适当的速度冷却,获得需要的金相组织,以改变其整体力学性能的金属热处理工艺。钢铁整体热处理大致有退火、正火、淬火和回火四种基本工艺。

渗入碳、氮、硼和铬等元素。渗入元素后,有时还要进行其它热处理工艺如淬火及回火。化学热处理的主要方法有渗碳、渗氮、渗金属。 8.5补充手段之二 1.退火:指金属材料加热到适当的温度,保持一定的时间,然后缓慢冷却的热处理工艺。常见的退火工艺有:再结晶退火、去应力退火、球化退火、完全退火等。退火的目的:主要是降低金属材料的硬度,提高塑性,以利切削加工或压力加工,减少残余应力,提高组织和成分的均匀化,或为后道热处理作好组织准备等。 2.正火:指将钢材或钢件加热到或(钢的上临界点温度)以上,30~50℃保持适当时间后,在静止的空气中冷却的热处理的工艺。正火的目的:主要是提高低碳钢的力学性能,改善切削加工性,细化晶粒,消除组织缺陷,为后道热处理作好组织准备等。 3.淬火:指将钢件加热到Ac3 或Ac1(钢的下临界点温度)以上某一温度,保持一定的时间,然后以适当的冷却速度,获得马氏体(或贝氏体)组织的热处理工艺。常见的淬火工艺有盐浴淬火,马氏体分级淬火,贝氏体等温淬火,表面淬火和局部淬火等。淬火的目的:使钢件获得所需的马氏体组织,提高工件的硬度,强度和耐磨性,为后道热处理作好组织准备等。 4.回火:指钢件经淬硬后,再加热到Ac1 以下的某一温度,保温一定时间,然后冷却到室温的热处理工艺。常见的回火工艺有:低温回火,中温回火,高温回火和多次回火等。回火的目的:主要是消除钢件在淬火时所产生的应力,使钢件具有高的硬度和耐磨性外,并具有所需要的塑性和韧性等。 5.调质:指将钢材或钢件进行淬火及高温回火的复合热处理工艺。使用于调质处理的钢称调质钢。它一般是指中碳结构钢和中碳合金结构钢。 6.渗碳:渗碳是指使碳原子渗入到钢表面层的过程。也是使低碳钢的工件具有高碳钢的表面层,再经过淬火和低温回火,使工件的表面层具有高硬度和耐磨性,而工件的中心部分仍然保持着低碳钢的韧性和塑性。

常用材料热处理工艺

常用材料热处理工艺二、ASTM A182 F22 1.退火(A)≥90±10℃炉冷; 2.回火(T)≥675℃ 3.HB≤170(一级)156~207(三级) 三、ASTM A694 F60,F52 1.N+T或Q+T N(Q):920±10℃保温,空冷(水淬) T:≥540±10℃保温,空冷 2.HB实测 四、16MnJB4726-2000 或N+T N:930±10℃保温,空冷 T:≥600±10℃保温空冷 2.HB:121~178 五、16MnDJB4727-2000 1.Q+T Q:930±10℃保温,水冷 T:≥600±10℃保温空冷 2.HB实测 六、A105ASTM A105-2002 1.正火(N):900±10℃保温,空冷

2:HB:137~187 七、20# JB4726-2000 1.正火(N):910±10℃保温,空冷 2.HB:106~159 八、LF2ASTM A350 LF2 1.淬火+回火(Q+T) Q:870~940℃保温,水冷 T:540~665℃保温,空冷 2.HB≤197 九、LF3ASTM A350-2002b 1.淬火+回火(Q+T) Q:870~940℃保温,水冷 T:540~665℃保温,空冷 2.HB≤197 十、15CrMo JB4726-2000 1.淬火+回火(Q+T) Q:900±10℃保温,水冷 T:≥620℃保温,空冷 2.HB:118~180 十一、1Cr5Mo JB4726-2000 1.淬火+回火: Q:880~900℃,保温,水冷

T:≥680℃保温,空冷 2.HB:174~229 十二、不锈钢:304、304L、321 ASTM A182 1.固溶处理(S):1040±10℃保温,水冷 2.HB:实测 十三、0Cr18Ni9JB4728-2000 1.固溶处理(S):1010~1150℃保温,水冷 2.HB:131~187

超高锰钢热处理工艺优化及力学性能的提高

? ?基金项目:河南省杰出人才创新基金资助项目(项目编号:0621000600)。收稿日期:2006-03-27收到初稿,2006-07-03收到修订稿。作者简介:闫华(1982-),男,河南罗山人,硕士研究生,主要从事高强韧耐磨铸钢的研究。E-mail:yanhua19820915@sina.com 闫 华1,谢敬佩1,王文焱1,李继文1,王爱琴1,张东海2,王 伟2 (1.河南科技大学材料科学与工程学院,河南洛阳471003;2.鞍钢集团鞍山矿山机械制造厂,辽宁鞍山114042) !!!!!" !" !!!!!" !" 摘要:优化了含Cr、Mo及RE-Si-Fe变质处理超高锰钢的热处理工艺,研究了超高锰钢不同温度回火处理后的组织和力 学性能。结果表明,沉淀(弥散)强化使奥氏体晶内析出了弥散颗粒状M23C6型碳化物,强化了奥氏体基体。优化出超高锰钢的最佳热处理工艺为,加热至1100℃保温4h,水淬,再经250℃保温4h,空冷。该热处理工艺条件下奥氏体晶粒细小,晶内颗粒状碳化物均匀、弥散分布,力学性能得到显著提高,即σb=994.51MPa,σs=430.98MPa,αk=260 J/cm2 ,HB227,δ=55.03%。与常规水韧处理相比σb提高了18.2%,σs提高了7%,αk提高了22%,δ 提高了30.3%,硬度提高了9.7%。 关键词:热处理工艺;力学性能;超高锰钢 中图分类号:TG142.72;TG142.1文献标识码:A文章编号:1001-4977(2006)10-1067-04 YANHua1,XIEJing-pei1,WANGWen-yan1,LIJi-wen1,WANGAi-qin1,ZHANGDong-hai2,WANGWei2 (1.CollegeofMaterialsScienceandEngineering,HenanUniversityofScienceandTechnology,Luoyang471003,Henan,China;2.AngangGroupAnshanMining-machineryandManufacturing Plant,Anshan114042,Liaoning,China)Abstract:Theheattreatmentprocessofsuper-highmanganesesteelwithRE-Si-FemodificationwhichcontainsalloyingelementsCrandMoisoptimizedandthestructureandmechanicalpropertiesofthesteelbydifferenttemperingtemperaturetreatmentprocessarealsostudied.Theexperimentresultsshowthatafterprecipitation(dispersion)strengtheningtreatment,thesecond-phase,carbideparticlesM23C6aredistributinginausteniticgrains,whichintensifytheausteniticmatrixofthesteel.Theoptimalheattreatmentistreatedbywatertougheningat1100℃andtemperingat250℃for4hours.Themicrostructureofthesuper-highmanganesesteelisfinecarbideparticlesrelativelyevenprecipitatinginausteniticmatrix,anditsmechanicalpropertiesis enhanceddramatically:σb=994.51MPa,σs=430.98MPa,αk=260J/cm2 ,HB227,δ=55.03%.Comparedwiththatoftheconventionaltreatment,theσb,σs,αk,δandhardnessareincreasedby18.2%,7%,22%,30.3%,and9.7%respectively. Keywords:heattreatmentprocess;mechanicalproperties;super-highmanganesesteel应用技术 超高锰钢热处理工艺优化及力学性能的提高 OptimizationofHeatTreatmentProcessandMechanical PropertiesEnhancementofSuper-highManganeseSteel 由英国的R.A.Hadfield于1882年发明的高锰钢是历史最悠久的耐磨材料。高锰钢作为耐磨材料,在抵抗强冲击、大压力作用下的磨料磨损或凿削磨损方面,其优异的耐磨性是其他材料所无法比拟的。在较大的冲击载荷或接触应力作用下,其表层迅速产生加工硬化,并有高密度位错和形变孪晶相继生成,从而产生高耐磨的表面层,而此时内层奥氏体仍保持着良好的韧性。高锰钢的这种加工硬化特性使其长期以来广泛应用于冶金、矿山、建材、铁路、电力、煤炭等机械装备中[1-5]。 随着现代工业的发展,在冶金、矿山等行业不断出现大型设备,如采矿、破碎、挖掘设备等,其抗磨 配件重达几吨到几十吨,有效厚度均在100mm以上,传统高锰钢(ZGMn13)的热处理工艺、力学性能和耐磨性已不能满足这些大型厚壁耐磨件的要求[4]。经本课题组长期以来对耐磨材料的研究并跟踪厂家使用情况,超高锰钢代替传统的高锰钢能满足抗磨件大型化的需要,在高应力、强冲击工况条件下具备优异抗磨性能、高韧性、高水韧化能力,使用过程中使厂家获得了良好的工程效果和经济效益。 1 试验内容和方法 1.1 超高锰钢的化学成分 向奥氏体锰钢中加入Cr、Mo等合金元素,改进热 Oct.2006Vol.55 No.10 铸造 FOUNDRY 1067

相关主题
文本预览
相关文档 最新文档