当前位置:文档之家› 关于示波器的采样率-汪进进

关于示波器的采样率-汪进进

关于示波器的采样率-汪进进
关于示波器的采样率-汪进进

关于示波器的采样率汪进进

关于示波器的采样率

采样率(Sampling Rate),顾名思义就是“采样的速率”,就是单位时间内将模拟电平转换成离散的采样点的速率,譬如采样率为4GSa/s就表示每秒采样4G个点。Sa是Samples的缩写。有些示波器厂商写作4GS/s。当然,采用不同量纲的单位就是MSa/s、MS/s,KSa/s、KS/s,Sa/s,S/s。

1,采样过程反应了数字示波器的本质:将模拟信号离散为一个一个的采样点

数字示波器区别于模拟示波器的一个最大不同是将模拟信号进行离散化。我们常说的话是,“在数字世界里,永远只有0和1”。如何将那些各种不同形状的模拟信号转换成为0和1呢? 图1和图2表示了示波器将模拟信号离散化的过程。采样-保持电路根据采样时钟将连续的模拟信号“等时间间隔地”、“实时地”转换为离散的电平,离散的电平再经过模数转换器(ADC)转换为一系列的0和1。对于8位ADC来说,8个连续的0和1组成一个采样点,代表了一个电平值。示波器将这些离散的采样点直接显示或将点和点通过某种方式相连显示为示波器屏幕上的波形。示波器保存的离散的采样点的个数就是“存储深度(memory)”。

INPUT

WA VEFORM

SA MPLED

WA VEFORM

SA MPLING CLOCK

图1 采样-保持电路将模拟信号转换成一个一个离散的电平

汪进进

深圳市鼎阳科技有限公司

图2 ADC将模拟信号离散化为0和1组成的采样点

将图1和图2的离散化过程换个示意图来表达,如图3所示,离散的采样点之间的间隔就是采样周期,采样周期的倒数就是采样率。采样率4GSa/s就表示两个采样点之间的间隔为500ps。在“点显示”方式和“线性插值”模式下,将示波器屏幕上的波形展开,有些示波器能看出屏幕上等时间间隔的采样点,打开示波器光标可以测量出两个点之间的间隔即为采样周期。

图3 采样周期表示相邻两个采样点之间的间隔

2,最高采样率 VS当前采样率

在示波器的前面板上通常都会标识采样率,如图4所示是中国首款智能示波器SDS3000系列中的一款SDS3054,她的面板上标识了采样率为 4GS/s,该采样率就是指这台示波器可以工作到的最高采样率。

图4 中国首款智能示波器SDS3054的面板上标识了最高采样率4GS/s

但是,实际上示波器的“当前采样率”受到存储深度的限制,可能小于最高采样率。随着示波器采集时间的增加,采样率会被强迫地自动下降。在图5所示的设置下,当前的采样率只有100MS/s。也因此,

我们要特别强调高保真捕获的这个原则:时刻警惕采样率。就是时刻警惕当前的“实时采样率”。

图5 示波器实际工作中的当前采样率是受限于存储深度的

3,实时采样率 VS 等效采样率(随机采样模式,插值算法)

前面提到的最高采样率和当前采样率及采样率都默认为“实时采样率”(real-time sampling rate),最高采样采样率即为最高实时采样率,当前采样率即为当前实时采样率。和实时采样率相对应的一个名词是“等效采样率(effective sampling rate)"。等效采样率一般是指示波器工作在一种特别的采样模式(被称为随机采样模式或等效采样模式)下的术语。

如图6所示为随机采样模式的工作原理示意图。示波器在该模式下的实时采样率如图示上方的一组图形的第1次捕获,第2次捕获,……,第N次捕获,这些单次分别捕获的过程中,采样点之间的时间间隔的倒数符合我们前面所述的的采样率概念,是实时采样率。将这N次实时采样的采样点“合成”在一起的结果如图6的下图所示。这种随机采样模式要求被测信号是“周期的、重复的”信号,示波器要能识别出这种信号每一帧的“起始”和“结束”,在“起始”位置开始第1次采样,然后间隔进行第2次采样,再间隔进行第3次采样,……。那么这个就是等效采样周期,它的倒数就是等效采样率。这种模式下等效采样率可以达到几十GSa/s。这种采样模式也正是采样示波器的基本工作原理。采样示波器的实时采样率只有200KSa/s,但等效采样率可以做到很大。对于纯粹的正弦波信号的测量,使用等效采样模式是有效的。但是,实际被测信号往往并不是“周期的、重复的”的信号,该工作模式的使用场合并不多。

图6 随机采样模式工作原理示意图

另外一种等效采样率的说法和示波器的插值有关。在实时采样得到的离散的点和点之间插入若干个通过某种算法获得的“假点”的方法就叫插值。这里用“假点”这个说法是区别实时采样的点,便于理解。两个实时采样的点之间增加了9个点,等效采样率就相当于增加了10倍。

在实时采样率是足够的情况下,插值可以增加计算结果的精度; 但在实时采样率不够,而且被测信号是脉冲方波的情况下,插值会带来过冲和下冲的“假象”,让用户误以为被测信号并没有失真,但其实已经严重失真了。如图7所信号有过冲和下冲,这是否代表了信号的真实情况呢? 实际上该信号并不存在这些过冲和下冲,只是实时采样率不足,又采用了正弦型插值算法。提高实时采样率之后的信号如图8所示。

图7 带有过冲和下冲“假像”的信号

图8 实时采样率足够的情况下,信号的真实情况

正弦型(sin(x)/x)插值是示波器中最常用的一种插值算法。该算法就是根据已有的N个点来计算第N+1个点,算法的物理意义就是假设信号在按正弦规律变化。因此图7在采样率不够的情况下会出现局部正弦型的过冲和下冲。当被测信号是正弦型信号时,即使实时采样率不够,利用 sin(x)/x插值算法,获得的插值后的波形看起来就更接近真实的正弦型信号了。如图9所示就是这种插值算法的好处的体现。

图9 对于正弦型信号,采用sin(x)/x插值可以弥补实时采样率的不足

4,欠采样的影响

要确保过采样,而不要欠采样。欠采样就是指采样率不够,示波器不能真实地还原原始波形,表现为波形局部细节丢失、失真、混叠等现象。如图10所示采样率不够导致脉冲消失,因为这个脉冲很窄。如图11所示采样率不够导致波形失真,信号上本来存在的“震荡波形”不能真实地还原。如图12所示采样率严重不够导致混叠,信号本来是左图中黑线表示的正弦波,测量到的信号也仍然是正弦波,但频率发生了改变。

图10 采样率不够导致"脉冲消失"

图11 采样率不够导致"失真"

图12 采样率不够导致"混叠"

在采样率严重不足的情况下,示波器无法稳定触发。如图13所示为使用中国首款智能示波器SDS3000

测量一个普通的1KHz方波的效果,虽然触发方式为上升沿触发,触发的各项设置都正常,但触发电平并没有和触发点相交,信号有明显的过冲震荡。在欠采样的情况,测量到的参数存在误差,特别是峰峰值和上升时间、下降时间等参数误差很大,图中的上升时间测量项提示有黄色的感叹号,就表示当前采样率不够,显示的测量结果中有“<”的符号,表示当前信号实际上升时间应小于这个数值。对比图14是采样率足够的情况下的测量结果,上升时间只有68ns,峰峰值的测量结果误差也和图13的测量结果不一样。这个对比让我们深刻体会到采样率不足带来的影响。信号整体看起来仍然是方波,只是波形上有过冲震荡,但其实是严重失真了。

图13 利用鼎阳SDS3000,采样率不够时测量1KHz方波的结果

图14 利用鼎阳SDS3000,采样率足够时测量1KHz方波的结果

5,时刻警惕采样率

关于采样率的选择依据,人们自然会想到那伟大的“奈奎斯特采样定律”:采样率要达到被测信号最大频率的两倍以上,才能保证不失真地重构原来的波形。问题来了,在实际示波器的使用中,示波器输入一个干净的单一正弦波,我们用两倍采样率,但很明显采样到的波形是严重失真了。在实际应用中,要求采样率远大于最高频率。在参考文献[1]中笔者看到这样来解释这个现象:“如果采样率等于信号的最高频率,由于不太好的采样条件,不太可能从采样值中重建信号。而且,由于波段限制就需要无限裙边选择性的低通滤波器,所以在实际应用中要求采样率远大于信号最高频率的2倍”。(抱歉,笔者对这句看得似懂非懂。)在示波器的使用上到底该如何选择采样率呢? 笔者一直强调的一个原则是:感兴趣的信号上升沿能采样3-5个点。上升沿能采样最少有3个点,达到5个点就足够了,采样更多的样本点意义也并不大。如表1所示,对于上升时间为1ns的信号,如果上升沿采样5个点,也就是每隔0.2ns采样一个点,采样率需要5GS/s 以上,表中可以看出当采样率为5GS/s时和10GS/s时,测量上升时间的统计平均结果是一样的,方差值都

是0.02ns。

表1 使用不同采样率测量上升时间的比较

总之,判断采样率是否足够,首先还是要看您感兴趣的信号的细节的上升时间是多少。以感兴趣的上升时间除以5得到采样周期,采样周期的倒数就是采样率。或者说是“5除以上升时间”就得到要求的采样率。譬如对于开关电源中的MOS 管,虽然漏源极电压Vds 信号的上升时间整体可能是100ns ,但Vds 的局部细节上升时间可能只有2ns ,甚至更小,因此准确测量Vds 的采样率按2ns 来考虑就要2.5GS/s 的采样率。这只是举例,具体Vds 的采样率的选择,通常是先用最高的采样率进行采样,再逐渐降低采样率来进行比较,判断什么样的采样率是合适的。

但是,始终牢记“时刻警惕采样率”!

6,采样率和模拟带宽及数字带宽之间的关联

最高采样率和模拟带宽之间似乎存在着某种关联,但没有非常明确的说法。可以举例来理解这种关联性。譬如示波器的带宽100MHz ,意味着测量100MHz 的单一正弦波带来的信号幅度的偏差最大将近达到30%,但是如果在100MHz 时的最大采样率只有250MHS/s ,那么对正弦波的采样将严重失真,正弦波的幅度可能降低到不到70.7%。如果从上升时间的角度来理解,100MHz 带宽对应的示波器自身的上升时间大约3.5ns ,可以准确测量被测信号的上升时间大约10ns; 准确测量上升时间为10ns 的信号,则需要至少500Ms/s 的采样率。具体关于带宽的理解请参考阅读[2],[3]。因此,如果100MHz 带宽示波器只有250MHz 的采样率是不合适的。从这个数字化例子来理解,建议最高采样率是带宽的5倍是有一定道理的。

还有一个“生造”出来的概念叫数字带宽,定义为采样率的1/2。这个概念在实际中没多大意义,也提0.02 ns

1.15 ns 10.0 0.1 ns 10 GS/s 0.02 ns 1.16 ns 5.0 0.2 ns 5 GS/s

0.03 ns 1.27 ns 2.0 0.5 ns 2 GS/s

0.1 ns 1.6 ns 1.0 1 ns 1 GS/s

0.6ns 2.3 ns 0.5 2 ns 500 MS/s

1.3 ns 4.7 ns 0.2 5 ns 200 MS/s

方差 平均上 升时间 采样率 /带宽 时间/

采样点 采样率

得很少。当采样率不足的时候,测量出来的上升沿变缓,和带宽不足的效果一样。

参考文献:

[1]频谱分析原理,Christoph Rauscher

[2]关于示波器的幅频特性曲线,汪进进,鼎阳硬件设计与测试智库

[3]示波器的带宽越高越好吗,汪进进,鼎阳硬件设计与测试智库

『关于鼎阳』

鼎阳科技(SIGLENT)是一家专注于通用电子测试测量仪器及相关解决方案的公司。

从2005推出第一款数字示波器产品至今,10年来鼎阳科技一直是全球发展速度最快的数字示波器制造商。历经多年发展,鼎阳产品已扩展到数字示波器、手持示波表、函数/任意波形发生器、频谱分析仪、台式万用表、直流电源等通用测试测量仪器产品。2007年,鼎阳与高端示波器领导者美国力科建立了全球战略合作伙伴关系。2011年,鼎阳发展成为中国销量领先的数字示波器制造商。2014年,鼎阳发布了中国首款智能示波器SDS3000系列,引领“人手一台”型实验室使用示波器由功能示波器向智能示波器过渡的趋势。目前,鼎阳已经在美国克利夫兰和德国汉堡成立分公司,产品远销全球70多个国家,SIGLENT正逐步成为全球知名的测试测量仪器品牌。

『关于鼎阳硬件设计与测试智库』

鼎阳硬件设计与测试智库(简称鼎阳硬件智库)由深圳市鼎阳科技有限公司领衔创办,是中国第一家“智力众筹”模式的硬件智库。

鼎阳硬件智库顺时顺势,倡导“连接-分享-协作-创造”的理念,高举志愿者服务的大旗,相信互联网是“爱”的大本营,相信人们都有发自内心分享的愿望。

鼎阳硬件智库选择硬件领域最普遍的七类问题:电源,时钟,DDR,低速总线,高速总线,EMC,测试测量进行聚焦。寻找“最针尖”的问题进行研讨,针对“最针尖”的问题组织专家答疑,将硬件大师积累的宝贵知识和经验变成公众财富,惠及更多硬件人。

鼎阳硬件智库的运作载体包括“线上”的微信公众号分享,微信群,网站,网络社区论坛,博客,邮件群等多种互联网工具和“线下”的专家论坛和专家把脉。“线上”的分享坚持原创,坚持干货,保持专注和深耕。“线下”专家论坛邀请硬件相关的一线实战派专家分享“最干货”的硬件设计与测试知识与经验,面对面相互研讨;“线下”的专家把脉,通过大数据连接,促使具体问题和最熟悉这个具体问题的专家“精准匹配”,远程问诊和现场解决问题相结合。

鼎阳硬件智库,群策群力,连接所有硬件人。

有硬件问题,找鼎阳硬件智库。

关于示波器的带宽

关于示波器的带宽 汪进进 美国力科公司深圳代表处 带宽被称为示波器的第一指标,也是示波器最值钱的指标。 示波器市场的划分常以带宽作为首要依据,工程师在选择示波器的时候,首先要确定的也是带宽。在销售过程中,关于带宽的故事也特别多。 通常谈到的带宽没有特别说明是指示波器模拟前端放大器的带宽,也就是常说的-3dB截止频率点。 此外,还有数字带宽,触发带宽的概念。 我们常说数字示波器有五大功能,即捕获(Capture),观察(View),测量(Measurement),分析(Analyse)和归档(Document)。 这五大功能组成的原理框图如图1所示。 图1,数字示波器的原理框图 捕获部分主要是由三颗芯片和一个电路组成,即放大器芯片,A/D芯片,存储器芯片和触发器电路,原理框图如下图2所示。被测信号首先经过探头和放大器及归一化后转换成ADC可以接收的电压范围,采样和保持电路按固定采样率将信号分割成一个个独立的采样电平,ADC将这些电平转化成数字的采样点,这些数字采样点保存在采集存储器里送显示和测量分析处理。 图2,示波器捕获电路原理框图

示波器放大器的典型电路如图3所示。这个电路在模拟电路教科书中处处可见。这种放大器可以等效为RC低通滤波器如图4所示。 由此等效电路推导出输出电压和输入电压的关系,得出理想的幅频特性的波特图如图5所示。 图3,放大器的典型电路 图4,放大器的等效电路模型 图5,放大器的理想波特图

至此,我们知道带宽f2即输出电压降低到输入电压70.7%时的频率点。 根据放大器的等效模型,我们可进一步推导示波器的上升时间和带宽的关系式,即我们常提到的0.35的关系:上升时间=0.35/带宽,推导过程如下图6所示。 需要说明的是,0.35是基于高斯响应的理论值,实际测量系统中这个数值往往介于0.35-0.45之间。在示波器的datasheet上都会标明“上升时间”指标。 示波器测量出来的上升时间与真实的上升时间之间存在下面的关系式。 在对快沿信号测试中,需要通过该关系式来修正实际被测信号的上升时间。 Measured risetime(tr)2 = (tr signal)2+(tr scope)2+(tr probe)2 图6,示波器上升时间和带宽的关系 示波器前端放大器幅频特性的波特图是新示波器发布的“出生证”。 示波器每年需要进行校准,波特图是第一需要校准的数据。示波器波特图的测量方法如图7所示。 信号源从10MHz频率开始逐渐递增发送一定幅值的正弦波送到功分器,功分器将输入的信号能量等分为二后通过等长的线缆分别送到示波器和功率计。 功分器和线缆是无源器件,可以严格定标,信号源本身的幅频特性不可以作为定标仪器,需要通过功率计实测的能量来作为示波器的输入幅值的定标值。 有时候客户会对示波器的波特图很感兴趣,直接用信号源连接到示波器来评估示波器的波特图,在带宽超过1GHz时这种方法是很不严谨的。需要用功率计来作为定标工具! 2006年二月份的EDN杂志中有文章介绍。 https://www.doczj.com/doc/3317522909.html,/article/CA6305348.html#Calibrating 此外,在计量波特图时需要对示波器每个档位都进行计量,最终产生的波特图是所有档位的结果叠加在一起的。波特图的计量是需要半天时间完成的,并不是想象中那么轻松的工作。如图8所示是力科SDA9000的波特图,我特地将Excel中大量数据显示给大家以使大家对校准的严谨性有深刻认识。 其垂直轴是

示波器习题汇总

第三章电子示波器 一.选择题 1.如图1-13所示为双踪示波器测量两个同频率正弦信号的波形,若示波器的水平(X轴)偏转因数为10μs/div,则两信号的频率和相位差分别是()。 A、25kHz,0° B、25kHz,180° C、25MHz,0° D、25MHz,180° 2.某示波器扫描信号正程时间T s=120ms,逆程时间T b=40ms。则用它观测50Hz交流电波形时,显示的波形个数为() A. 2 B.6 C. 8 D.12 3、被测信号、触发脉冲、扫描电压和示波器上显示的波形如题3图所示。示波器的触发极性、触发电平应该为() A.正极性触发、零电平 B.负极性触发、正电平 C.负极性触发、负电平 D.正极性触发、正电平 题3图题4图 4、用示波器观测到的正弦电压波形如题4图所示,示波器探头衰减系数为10,扫描时间因数为1 μs/div,X 轴扩展倍率为5,Y轴偏转因数为0.2 V/div,则该电压的幅值与信号频率分别为() A.0.8 V和1.25 MHz B.8 V和1.25 MHz C.8 V和0.25 MHz D.0.8 V和0.25 MHz 5.如图所示为示波器测量的某正弦信号的波形,若示波器的垂直(Y轴)偏转因数为10V/div,该信号的电压峰值是:() A.46V B.32.5V C.23V D.16.25V 6.在电子示波器中,为了改变荧光屏亮点的辉度,主要改变:()A.第一阳极电压 B.第二阳极电压 C.第三阳极电压 D.栅阴极之间的电压 7.测量时通用示波器的Y偏转因数的“微调”旋钮应置于“校准”位置。 A.周期和频率 B.相位差 C.电压 D.时间间隔 8.示波器上显示的两个正弦信号的波形如图所示,已知时基因数“t/div”开关置于10ms/div档,水平扩展倍率k=10,Y轴偏转因数“V/div”开关置于 10mV/div档,则信号的周期及两者的相位差分别是:() A. 9ms,4° B.9ms,40° C.90ms,4° D.90ms,40° 9.测量脉冲电压(尖脉冲)的峰值应使用:() A.交流毫伏B.直流电压表C.示波器D.交流电压表 10.某双踪示波器的显示方式有五种:①YA②YB③YA±YB④交替⑤断续。其中能显示双波形的是:A.①② B.③ C.②④ D.④⑤ 11、如果扫描正程时间是回程时间的4倍,要观察1000Hz的正弦电压的4个周期,连续扫描的频率是() A、200 Hz B、250 Hz C、500 Hz D、400 Hz

示波器主要技术指标及选择资料

精品文档 一、数字示波器的主要性能指标在选择数字示波器时,我们主要考虑其是否能够真实地显示被测信号,即显示信号与被测信号的一致性。数字示波器的性能很大程度上影响到其实现信号完整性的能力,下面根据其主要性能指标进行详细分析。示波器最主要的技术指标是带宽、采样率和存储深度 1、带宽如图1所示,数字示波器带宽指输入不同频率的等幅正弦波信号,当输出波形的幅度随频率变化下降到实际幅度的70.7%时的频率值(即f-3dB)。带宽决定了数字示波器对信号的基本测量能力。随着信号频率的增加,数字示波器对信号的准确显示能力下降。实际测试中我们会发现,当被测信号的频率与数字示波器带宽相近时,数字示波器将无法分辨信号的高频变化,显示信号出现失真。例如:频率为100MHz、电压幅度为1V的信号用带宽为100MHz的数字示波器测试,其显示的电压只有0.7V左右。图2为同一阶跃信号用带宽分别为4GHz、1.5GHz和300MHz 的数字示波器测量所得的结果。从图中可以看出,数字示波器的带宽越高,信号的上升沿越陡,显示的高频分量成分越多,再现的信号越准确。实际应用中考虑到价

(数字示波格因素器带宽越高价格经过实践越贵),我们经验的积累,发现只要数字示波器带宽为被测信号最高频率的倍,即可获得3-5的精2%3%到±±满足一般的测度,示波器所试需求。能准确测量的频大家都遵率范围,循测量的五倍法示波器所需带则:被测信号的最宽=使,高信号频率*5用五倍准则选定的示波器的测量误差将不会超过,对大多-2%+/的操作来说已经足够。 、采样率,2指数字示波器对信号采样的频率,精品文档. 精品文档 表示为样点数每秒(S/s)。示波器的采样速率越快,所显示的波形的分辨率和清晰度就越高,重

示波器的使用实验报告

示波器的使用实验报告 示波器的使用实验报告1 在数字电路实验中,需要使用若干仪器、仪表观察实验现象和结果。常用的电子测量仪器有万用表、逻辑笔、普通示波器、存储示波器、逻辑分析仪等。万用表和逻辑笔使用方法比较简单,而逻辑分析仪和存储示波器目前在数字电路教学实验中应用还不十分普遍。示波器是一种使用非常广泛,且使用相对复杂的仪器。本章从使用的角度介绍一下示波器的原理和使用方法。 1 示波器工作原理 示波器是利用电子示波管的特性,将人眼无法直接观测的交变电信号转换成图像,显示在荧光屏上以便测量的电子测量仪器。它是观察数字电路实验现象、分析实验中的问题、测量实验结果必不可少的重要仪器。示波器由示波管和电源系统、同步系统、X轴偏转系统、Y轴偏转系统、延迟扫描系统、标准信号源组成。 1.1 示波管 阴极射线管(CRT)简称示波管,是示波器的核心。它将电信号转换为光信号。正如图1所示,电子枪、偏转系统和荧光屏三部分密封在一个真空玻璃壳内,构成了一个完整的示波管。 1.荧光屏

现在的示波管屏面通常是矩形平面,内表面沉积一层磷光材料构成荧光膜。在荧光膜上常又增加一层蒸发铝膜。高速电子穿过铝膜,撞击荧光粉而发光形成亮点。铝膜具有内反射作用,有利于提高亮点的辉度。铝膜还有散热等其他作用。 当电子停止轰击后,亮点不能立即消失而要保留一段时间。亮点辉度下降到原始值的10%所经过的时间叫做“余辉时间”。余辉时间短于10μs为极短余辉,10μs-1ms为短余辉,1ms-0.1s为中余辉,0.1s-1s为长余辉,大于1s为极长余辉。一般的示波器配备中余辉示波管,高频示波器选用短余辉,低频示波器选用长余辉。 由于所用磷光材料不同,荧光屏上能发出不同颜色的光。一般示波器多采用发绿光的示波管,以保护人的眼睛。 2.电子枪及聚焦 电子枪由灯丝(F)、阴极(K)、栅极(G1)、前加速极(G2)(或称第二栅极)、第一阳极(A1)和第二阳极(A2)组成。它的作用是发射电子并形成很细的高速电子束。灯丝通电加热阴极,阴极受热发射电子。栅极是一个顶部有小孔的金属园筒,套在阴极外面。由于栅极电位比阴极低,对阴极发射的电子起控制作用,一般只有运动初速度大的少量电子,在阳极电压的作用下能穿过栅极小孔,奔向荧光屏。初速度小的电子仍返回阴极。如果栅极电位过低,则全部电子返回阴极,即管子截止。调节电路中的W1电位器,可以改变栅极电位,控制射向荧光屏的电子流密度,从而达

大学物理示波器试题

示波器_01 出题:吴文军 示波器是常见的电学测量仪器之一,凡是能转化成(C )信号的电学量和非电学量都可以用示波器来观察。 A ,正弦; B ,余弦; C ,电压; D ,以上全部。 示波器_02 出题:吴文军 示波器面板上的旋钮开关根据其功能的不同大体上可划分成三大区域,它们是垂直Y 向调整功能,水平X 向(扫描)调整功能,辅助功能(B )。 A ,触发信号; B ,同步触发系统; C ,触发源; D ,触发扫描。 示波器_03 出题:吴文军 示波器里的电子束是电子枪中的(C )产生的。 A ,栅极; B ,灯丝; C ,阴极; D ,阳极。 示波器_04 出题:吴文军 示波器中光点在屏幕上的偏转位移与偏转板电压成正比,其比例系数定义为示波管的电偏转(B )。 A ,放大倍数; B ,灵敏度; C ,衰减倍数; D ,偏转因数。 示波器_05 出题:吴文军 示波器中示波管的电偏转灵敏度的物理意义是(B )。 A , 产生单位偏转位移量所需要的偏转电压; B , 单位偏转电压所产生的偏转位移量; C , 产生一个大格偏转位移量所需要的偏转电压; D , 产生一个小格偏转位移量所需要的偏转电压。 示波器_06 出题:吴文军 示波器中使波形稳定的同步条件为nfx fy =,其中fy 为加在垂直偏转板上待测信号频率,fx 为加在水平偏转板上(B )信号的频率,n 为正整数。 A ,正弦波; B ,锯齿波; C ,三角波; D ,方波。 示波器_07 出题:吴文军 示波器中使波形稳定的同步条件为(B ),其中Tx 为加在水平偏转板上锯齿波信号的周期,Ty 为加在竖直偏转板上待测信号的周期,n 为正整数。 A ,nTy Tx >; B ,nTy Tx =; C ,nTy Tx <; D ,nTx Ty =。 示波器_08 出题:吴文军 示波器中使波形稳定的同步条件为nTy Tx =,其中Tx 为加在水平偏转板上锯齿波信号的周期,Ty 为加在竖直偏转板上待测信号的周期,n 为正整数。若待测信号频率为2000Hz ,锯齿波信号频率为400Hz ,则我们能在屏幕上看到(C )个周期的稳定波形。 A ,1; B ,4; C ,5; D ,2。 示波器_09 出题:吴文军 示波器用“同步”或“触发扫描”的方法来稳定波形。其中“触发扫描”是使用 来控制 的产生。 答:(B )。 A ,扫描电压,被测信号; B ,被测信号,扫描电压; C ,正弦信号,扫描电压; E , 扫描电压,正弦信号。 示波器_10 出题:吴文军

数字示波器的简单使用

预备实验:数字示波器使用方法(简介) 内容提示:1、数字示波器功能简介 2、示波器面板照 3、示波器各按钮操作功能 4、示波显示状态的含义 5、常用功能按钮的操作 6、垂直控制按钮的操作 7、水平控制按钮的操作显示 8、触发电平控制按钮的操作 9、操作注意事项 10、显示、测量直流信号 11、显示、测量交流信号 一、数字示波器功能简介 数字示波器是一种小巧,轻型、便携式的可用来进行以接地电平为参考点测量的数字式实时示波器。它的屏幕既能显示被测信号的波形,还能显示被测信号的电压幅度、周期、频率等有关电参数。 ADS1000CA特点: ●全新的超薄外观设计、体积小巧、携带更方便 ●彩色TFT LCD 显示,波形显示更清晰、稳定 ●双通道,带宽: 25MHZ-100MHZ ●实时采样率:1GSa/s ●存储深度:2Mpts ●丰富的触发功能:边沿、脉冲、视频、斜率、交替、延迟 ●独特的数字滤波与波形录制功能 ●Pass/Fail 功能 ●32 种自动测量功能 ●2 组参考波形、20 组普通波形、20 组设置内部存储/调出;支持波形、设置、CSV 和位图文件U 盘外部存储及调出 ●手动、追踪、自动光标测量功能 ●通道波形与FFT 波形同时分屏显示功能 ●模拟通道的波形亮度及屏幕网格亮度可调 ●弹出式菜单显示模式,用户操作更灵活、自然 ●丰富的界面显示风格:经典、现代、传统、简洁 ●多种语言界面显示,中英文在线帮助系统 ●标准配置接口:USB Host:支持U 盘存储并能通过U 盘进行系统软件升级; USB Device:支持PictBridge 直接打印及与PC 连接远程控制;RS-232

fluke示波器的使用方法

示波器的使用方法 示波器虽然分成好几类,各类又有许多种型号,但是一般的示波器除频带宽度、输入灵敏度等不完全相同外,在使用方法的基本方面都是相同的。本章以SR-8型双踪示波器为例介绍。 (一)面板装置 SR-8型双踪示波器的面板图如图5-12所示。其面板装置按其位置和功能通常可划分为3大部分:显示、垂直(Y轴)、水平(X轴)。现分别介绍这3个部分控制装置的作用。 1.显示部分主要控制件为: (1)电源开关。 (2)电源指示灯。 (3)辉度调整光点亮度。 (4)聚焦调整光点或波形清晰度。 (5)辅助聚焦配合“聚焦”旋钮调节清晰度。 (6)标尺亮度调节坐标片上刻度线亮度。 (7)寻迹当按键向下按时,使偏离荧光屏的光点回到显示区域,而寻到光点位置。 (8)标准信号输出1kHz、1V方波校准信号由此引出。加到Y轴输入端,用以校准Y 轴输入灵敏度和X轴扫描速度。 2.Y轴插件部分 (1)显示方式选择开关用以转换两个Y轴前置放大器YA与YB 工作状态的控制件,具有五种不同作用的显示方式: “交替”:当显示方式开关置于“交替”时,电子开关受扫描信号控制转换,每次扫描都轮流接通YA或YB 信号。当被测信号的频率越高,扫描信号频率也越高。电

子开关转换速率也越快,不会有闪烁现象。这种工作状态适用于观察两个工作频率较高的信号。 “断续”:当显示方式开关置于“断续”时,电子开关不受扫描信号控制,产生频率固定为200kHz方波信号,使电子开关快速交替接通YA和YB。由于开关动作频率高于被测信号频率,因此屏幕上显示的两个通道信号波形是断续的。当被测信号频率较高时,断续现象十分明显,甚至无法观测;当被测信号频率较低时,断续现象被掩盖。因此,这种工作状态适合于观察两个工作频率较低的信号。 “YA”、“YB ”:显示方式开关置于“Y A ”或者“YB ”时,表示示波器处于单通道工作,此时示波器的工作方式相当于单踪示波器,即只能单独显示“Y A”或“YB ”通道的信号波形。 “YA + YB”:显示方式开关置于“Y A + YB ”时,电子开关不工作,YA与YB 两路信号均通过放大器和门电路,示波器将显示出两路信号叠加的波形。 (2)“DC-⊥-AC” Y轴输入选择开关,用以选择被测信号接至输入端的耦合方式。置于“DC”是直接耦合,能输入含有直流分量的交流信号;置于“AC”位置,实现交流耦合,只能输入交流分量;置于“⊥”位置时,Y轴输入端接地,这时显示的时基线一般用来作为测试直流电压零电平的参考基准线。 (3)“微调V/div” 灵敏度选择开关及微调装置。灵敏度选择开关系套轴结构,黑色旋钮是Y轴灵敏度粗调装置,自10mv/div~20v/div分11档。红色旋钮为细调装置,顺时针方向增加到满度时为校准位置,可按粗调旋钮所指示的数值,读取被测信号的幅度。当此旋钮反时针转到满度时,其变化范围应大于2.5倍,连续调节“微调”电位器,可实现各档级之间的灵敏度覆盖,在作定量测量时,此旋钮应置于顺时针满度的“校准”位置。 (4)“平衡” 当Y轴放大器输入电路出现不平衡时,显示的光点或波形就会随“V/div”开关的“微调”旋转而出现Y轴方向的位移,调节“平衡”电位器能将这种位移减至最小。 (5)“↑↓ ” Y轴位移电位器,用以调节波形的垂直位置。 (6)“极性、拉YA ” Y A 通道的极性转换按拉式开关。拉出时YA 通道信号倒相显示,即显示方式(YA+ YB )时,显示图像为YB - Y A 。 (7)“内触发、拉YB ” 触发源选择开关。在按的位置上(常态)扫描触发信号分别取自YA 及YB 通道的输入信号,适应于单踪或双踪显示,但不能够对双踪波形作时间比较。当把开关拉出时,扫描的触发信号只取自于YB 通道的输入信号,因而它适合于双踪显示时对比两个波形的时间和相位差。 (8)Y轴输入插座采用BNC型插座,被测信号由此直接或经探头输入。 3.X轴插件部分

示波器测量之带宽与采样率

在具体测试过程中,示波器到底选择多少带宽比较合适呢? 首先,看下面的实例。 从上图可以看出,带宽越大,所能显示的信号频率分量越丰富,也就能更加接近真实的信号波形。 1、示波器带宽的精确计算 可按照以下步骤来完成计算: a、判断被测信号的最快上升/下降时间 b、判断最高信号频率f f=0.5/RT(10%~90%) f=0.4/RT(20%~80%) c、判断所需的测量精确度 所需精确度高斯频响最大平坦频响 20%BW=1.0*fBW=1.0*f 10%BW=1.3*fBW=1.2*f 3%BW=1.9*fBW=1.4*f d、计算所需带宽。 举例说明: 判断一个高斯响应示波器在测量被测数字信号时所需的最小带宽,其中被测信号最快上升时间为1ns(10%~90%): f=0.5/1ns=500MHz 若要求3%的测量误差:所需示波器带宽=1.9*500MHz=950MHz 若要求20%的测量误差:所需示波器带宽=1.0*500MHz=500MHz 因此,决定示波器带宽的重要因素是:被测信号的最快上升时间。 示波器的系统带宽由示波器带宽和探头带宽共同决定: a、高斯频响:具备高斯频响的示波器,按照10%到90%的标准衡量,上升时间约为0.35/fBW 系统带宽2=示波器带宽2+探头带宽2

b、最大平坦频响:系统带宽=Min{示波器带宽,探头带宽} 例如:1GHz带宽的示波器,配置1GHz带宽的无源探头,若它们的频响为高斯频响,则系统带宽为:700MHz左右。 2、影响示波器带宽的因素 通常,这些因素有:采样率、频响曲线。 a、频率曲线 频响曲线如下图所示。 带宽 被测信号的频率→ b、采样率 根据Nyquist采样定律,采样频率必须2倍于信号最高频率,即: Fs>2*fmax 才能保证信号可以被无混叠的重构出来。 (1)对于理想砖墙频响来说,采样率=示波器带宽*2,即可重构出信号。但是该情况在真实世界中是不存在的,大多数示波器的频响都是介于理想砖墙频响和高斯频响之间。 (2)对于高斯频响,采样率=示波器带宽*4,可对被测信号中的大部分频率成分进行无混叠重构。通常实际示波器的频响大多比高斯频响陡一点。 (3)对于最大平坦频响,采样率=示波器带宽*2.5,即可对被测信号中的大部分频率成分进行恢复。目前一些高端示波器都可以做到利用2.5倍带宽的采样率来完成信号重构。 是不是采样率越高量测精度越高?

示波器的三大关键指标

带宽、采样率和存储深度是数字示波器的三大关键指标。相对于工程师们对示波器带宽的熟悉和重视,采样率和存储深度往往在示波器的选型、评估和测试中为大家所忽视。这篇文章的目的是通过简单介绍采样率和存储深度的相关理论结合常见的应用帮助工程师更好的理解采样率和存储深度这两个指针的重要特征及对实际测试的影响,同时有助于我们掌握选择示波器的权衡方法,树立正确的使用示波器的观念。 在开始了解采样和存储的相关概念前,我们先回顾一下数字存储示波器的工作原理。 图1 数字存储示波器的原理组成框图 输入的电压信号经耦合电路后送至前端放大器,前端放大器将信号放大,以提高示波器的灵敏度和动态范围。放大器输出的信号由取样/保持电路进行取样,并由A/D转换器数字化,经过A/D转换后,信号变成了数字形式存入内存中,微处理器对内存中的数字化信号波形进行相应的处理,并显示在显示屏上。这就是数字存储示波器的工作过程。 采样、采样速率 我们知道,计算机只能处理离散的数字信号。在模拟电压信号进入示波器后面临的首要问题就是连续信号的数字化(模/数转化)问题。一般把从连续信号到离散信号的过程叫采样(sampling)。连续信号必须经过采样和量化才能被计算机处理,因此,采样是数字示波器作波形运算和分析的基础。通过测量等时间间隔波形的电压幅值,并把该电压转化为用八位二进制代码表示的数字信息,这就是数字存储示波器的采样。采样电压之间的时间间隔越小,那么重建出来的波形就越接近原始信号。采样率(sampling rate)就是采样时间间隔。比如,如果示波器的采样率是每秒10G次(10GSa/s),则意味着每100ps进行一次采样。

示波器的使用入门教案

课题:示波器的使用教学目标:1. 了解示波器控制面板各功能区的功能; 2. 3. 教学重点: 掌握示波器对波形,幅度,周期,等基本参数的测量方法及读数;掌握带电测量的注意事项。 1. 掌握示波器的测量方法及读数; 2. 教学难点: 掌握带电测量的注意事项; 1. 掌握示波器的测量方法; 2. 教学用具: 带电测量的注意事项。 1. 单、双通道模拟示波器 2. 数字示波器电视机若干台 4. 教学方法: 螺丝刀等工具 讲述,操作示范,学生操作 教学过程 引入:随着电子技术的发展,家电产品的品种,档次,智能化水平越来越高,通信技术,计算机技术,集成电路,数字电路使用越来越多,对电子技术的测式提出了更高的挑战,而万用表只能适于电路简单的的场合,所以我们需要使用仪表进行检修,比如示波器,今天我们就一起来学习示波器的使用入门。 .示波器的分类跟椐输入通道分: 1.单通道示波器 2.双通道示波器跟椐示波器工作原理分1. 数字示波器2. 模拟示波器 .示波器控制面板介绍 1. 触发系统TRIGGER Level: 改变触发电平,可以在屏幕上看到触发标志来指示触发电平的数值相应变化。Trigmenu: 改变触发设置 F1 边沿触发 F2 触发源CH1,CH2 F3 边沿斜率上升 F4 触发方式自动 F5 触发耦合为交流 SETtozero: 居中 FORC:E 强制产生一触发信号,正常或者单次模式 2. 水平系统Horizontal

Position 控制信号的触发移位 Hori Menu 显示 Zoom 菜单, F3 扩展 F1 关闭还设置触发释抑时间( multl purpose). Scale 改变水平时基本档位设置 S/DIV 3. 垂直系统 VERTICAL Position 垂直移动 Math 标志 Scale Volts/Div 改变垂直挡位设置 , CH2 对应通道开关 屏幕拷贝功能键 多用途旋钮控制器 自动测量 设置采样方式 存储和调出 运行控制 , 暂停 光标测量 设置显示方式 辅助系统设置 使用执行按钮 USB-OT 徳口 使用自动设置 1. 调整好探头倍率 表笔1X , 10X CH1 , CH2可以调整 自动设置垂直偏转系数,扫描时基,以及触发方式 Measure 自动测量 F1 进入测量种类选择菜单 F2 选择通道 F3 选择电压种类 F4 时间 F5 显示所有参数 实验: 1. 测量示波器自带的信号源,使用自动模式进行操作并读出频率,周期,平均值,幅度,最 大值,最小值。 + 2.. 使用自动模式加手动模式进行操场作,测量市电的波型,频率等参数。在测式过程中注 意用电操作安全! !!! 3.. 测量电视机行管基极输出电压波形,周期,平均值,幅度,最大值,最小值。在测式过 程中注意用电操作安全! ! ! 5. 功能键 Prtsc Multi purpose Measure Acquire Storage Run/Stop Cursor Display Utility

关于示波器的采样率-汪进进

关于示波器的采样率汪进进

关于示波器的采样率 采样率(Sampling Rate),顾名思义就是“采样的速率”,就是单位时间内将模拟电平转换成离散的采样点的速率,譬如采样率为4GSa/s就表示每秒采样4G个点。Sa是Samples的缩写。有些示波器厂商写作4GS/s。当然,采用不同量纲的单位就是MSa/s、MS/s,KSa/s、KS/s,Sa/s,S/s。 1,采样过程反应了数字示波器的本质:将模拟信号离散为一个一个的采样点 数字示波器区别于模拟示波器的一个最大不同是将模拟信号进行离散化。我们常说的话是,“在数字世界里,永远只有0和1”。如何将那些各种不同形状的模拟信号转换成为0和1呢? 图1和图2表示了示波器将模拟信号离散化的过程。采样-保持电路根据采样时钟将连续的模拟信号“等时间间隔地”、“实时地”转换为离散的电平,离散的电平再经过模数转换器(ADC)转换为一系列的0和1。对于8位ADC来说,8个连续的0和1组成一个采样点,代表了一个电平值。示波器将这些离散的采样点直接显示或将点和点通过某种方式相连显示为示波器屏幕上的波形。示波器保存的离散的采样点的个数就是“存储深度(memory)”。 INPUT WA VEFORM SA MPLED WA VEFORM SA MPLING CLOCK 图1 采样-保持电路将模拟信号转换成一个一个离散的电平 汪进进 深圳市鼎阳科技有限公司

图2 ADC将模拟信号离散化为0和1组成的采样点 将图1和图2的离散化过程换个示意图来表达,如图3所示,离散的采样点之间的间隔就是采样周期,采样周期的倒数就是采样率。采样率4GSa/s就表示两个采样点之间的间隔为500ps。在“点显示”方式和“线性插值”模式下,将示波器屏幕上的波形展开,有些示波器能看出屏幕上等时间间隔的采样点,打开示波器光标可以测量出两个点之间的间隔即为采样周期。 图3 采样周期表示相邻两个采样点之间的间隔 2,最高采样率 VS当前采样率 在示波器的前面板上通常都会标识采样率,如图4所示是中国首款智能示波器SDS3000系列中的一款SDS3054,她的面板上标识了采样率为 4GS/s,该采样率就是指这台示波器可以工作到的最高采样率。

示波器习题

第三章 电子示波器 一.选择题 1.如图1-13所示为双踪示波器测量两个同频率正弦信号的波形,若示波器的水平(X 轴)偏转因数为10μs/div ,则两 信号的频率和相位差分别是( )。 A 、25kHz ,0° B 、25kHz ,180° C 、25MHz ,0° D 、25MHz ,180° 2.某示波器扫描信号正程时间T s =120ms ,逆程时间T b =40ms 。则用它观测50Hz 交流电波形时,显示的波形个数为( ) A . 2 B .6 C . 8 D .12 3、被测信号、触发脉冲、扫描电压和示波器上显示的波形如题3图所示。示波器的触发极性、触发电平应该为( ) A .正极性触发、零电平 B .负极性触发、正电平 C .负极性触发、负电平 D .正极性触发、正电平 题3图 题4图 4、用示波器观测到的正弦电压波形如题4图所示,示波器探头衰减系数为10,扫描时间因 数为1 μs/div,X 轴扩展倍率为5,Y 轴偏转因数为0.2 V/div ,则该电压的幅值与信号频率分别为( ) A .0.8 V 和1.25 MHz B .8 V 和1.25 MHz C .8 V 和0.25 MHz D .0.8 V 和0.25 MHz 5.如图所示为示波器测量的某正弦信号的波形,若示波器的垂直(Y 轴)偏转因数为10V/div , 该信号的电压峰值是:( ) A .46V B .32.5V C .23V D .16.25V

6.在电子示波器中,为了改变荧光屏亮点的辉度,主要改变:() A.第一阳极电压B.第二阳极电压 C.第三阳极电压D.栅阴极之间的电压 7.测量时通用示波器的Y偏转因数的“微调”旋钮应置于“校准”位置。 A.周期和频率B.相位差C.电压D.时间间隔 8.示波器上显示的两个正弦信号的波形如图所示,已知时基因数 “t/div”开关置于10ms/div档,水平扩展倍率k=10,Y轴偏转因 数“V/div”开关置于10mV/div档,则信号的周期及两者的相位差 分别是:() A. 9ms,4° B.9ms,40° C.90ms,4° D.90ms,40° 9.测量脉冲电压(尖脉冲)的峰值应使用:() A.交流毫伏B.直流电压表C.示波器D.交流电压表 10.某双踪示波器的显示方式有五种:①YA②YB③YA±YB④交替⑤断续。其中能显示双波形的是: A.①②B.③C.②④D.④⑤ 11、如果扫描正程时间是回程时间的4倍,要观察1000Hz的正弦电压的4个周期,连续扫 描的频率是() A、200 Hz B、250 Hz C、500 Hz D、400 Hz 12、若示波器发生故障而无扫描信号输出时,在Y轴加入正弦波信号,示波器将显示:() A、一条水平亮线 B、一条垂直亮线 C、光点 D、无任何显示 13、如图题-15所示为双踪示波器测量两个同频率正弦信号的波形,若示波器的水平(X轴) 偏转因数为10μs/div,则两信号的频率和相位差分别是()。 A、25kHz,0° B、25MHz,0° C、25kHz,180° D、25MHz,180° 14、增辉电路的作用是()。 A、正程逆程消隐 B、逆程增辉,正程消隐 C、正程逆程增辉 D、正程增辉,逆程消隐 15.调节示波器的“辉度”旋钮,是改变CRT的()电压。 A.栅极和阴极B.第一阳极和第二阳极 C.灯丝D.高压阳极 16.用示波器观测一个上升时间为0.018μs的脉冲信号,示波器的通频带应满足:。 A.50 MHz B.60MHz C.30 MHz D.20 MHz

如何选择合适的示波器带宽

如何选择合适的示波器带宽 来源:安捷伦科技作者:Johnnie Hancock 带宽是大多数工程师在选择一款示波器时首先考虑的参数。本文将为您提供一些有用的窍门,教您如何为您的数字和模拟应用选择合适的示波器带宽。但首先,我们先看看示波器带宽的定义。 示波器带宽的定义 所有示波器都表现出如图1所示的在较高频率处滚降的低通频率响应。大多数带宽参数在1 GHz及以下的示波器通常表现为高斯响应,即具备约从-3 dB频率的三分之一处开始缓慢滚降的特性。而那些带宽规格超过1 GHz的示波器通常则具备最大平坦频率响应,如图2所示。这种频响通常表现为带内响应较平缓,而在约-3 dB频率处滚降较陡。 图1:低通频率响应

图2:最大平坦频率响应 示波器的这两种频率响应各有各的优缺点。具备最大平坦频响的示波器比具备高斯频响的示波器对带内信号的衰减较小,也就是说前者对带内信号的测量更精确。但具备高斯频响的示波器比具备最大平坦频响的示波器对代外信号的衰减小,也就是说在同样的带宽规格下,具备高斯频响的示波器通常具备更快的上升时间。然而,有时对带外信号的衰减大有助于消除那些根据奈奎斯特标准(fMAX < fS)可能造成混迭的高频成分。关于奈奎斯特采样理论更深入的探讨,请参看安捷伦应用笔记1587(Agilent Application Note 1587) 。 不论您手头的示波器具备高斯频响、最大平坦频响还是介于二者之间,我们都将输入信号通过示波器后衰减3 dB时的最低频率视为该示波器的带宽。示波器的带宽和频响可以利用正弦波信号发生器扫频测量得到。信号在示波器-3dB频率处的衰减转换后可表示为约-30%的幅度误差。因此,我们不能奢望对那些主要的频率成分接近示波器带宽的信号进行精确测量。 与示波器带宽规格紧密相关的是其上升时间参数。具备高斯频响的示波器,按照10%到90%的标准衡量,上升时间约为0.35/fBW。具备最大平坦频响的示波器上升时间规格一般在0.4/fBW范围上,随示波器频率滚降特性的陡度不同而有所差异。但我们必须记住的是,示波器的上升时间并非示波器能精确测量的最快的边缘速度,而是当输入信号具备理论上无限快的上升时间(0 ps)时,示波器能够得到的最快边沿速度。尽管实际上这种理论参数不可能测得到,因为脉冲发生器不可能输出边沿无限快的脉冲,但我们可以通过输入一个边沿速度为示波器上升时间规格的3到5倍的脉冲来测量示波器的上升时间。 数字应用需要的示波器带宽 经验告诉我们,示波器的带宽至少应比被测系统最快的数字时钟速率高5倍。如果我们选择的示波器满足这一标准,那么该示波器就能以最小的信号衰减捕捉到被测信号的5次谐波。信号的5次谐波在确定数字信号的整体形状方面非常重要。但如果需要对高速边沿进行精确测量,那么这个简单的公式并未考虑到快速上升和下降沿中包含的实际高频成分。 公式:fBW ≥ 5 x fclk 确定示波器带宽的一个更准确的方法是根据数字信号中存在的最高频率,而不是最大时钟速率。数字信号的最高频率要看设计中最快的边沿速度是多少。因此,我们首先要确定设计中最快的信号的上升和下降时间。这一信息通常可从设计中所用器件的公开说明书中获取。 第一步:确定最快的边沿速度 然后就可以利用一个简单的公式计算信号的最大“实际”频率成分。Howard W. Johnson 博士就此题目写过一本书《高速数字设计》。在书中,他将这一频率成分称为“拐点”频率(fknee)。所有快速边沿的频谱中都包含无限多的频率成分,但其中有一个拐点(或称“knee”),高于该频率的频率成分对于确定信号的形状就无关紧要了。 第二步:计算fknee fknee = 0.5/RT (10% - 90%) fknee = 0.4/RT (20% - 80%) 对于上升时间特性按照10% 到90%阀值定义的信号而言,拐点频率fknee等于0.5除以信号的上升时间。对上升时间特性按照20% 到80%阀值定义的信号而言(如今的器件规范中通常采用这种定义方式),fknee等于0.4除以信号的上升时间。但注意不要把此处的信号上升时间与示波器的上升时间规格混淆了,我们这里所说的是实际的信号边沿速度。

示波器基本使用方法

示波器基本使用方法文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

示波器基本使用方法 荧光屏 荧光屏是示波管的显示部分。屏上水平方向和垂直方向各有多条刻度线,指示出信号波形的电压和时间之间的关系。水平方向指示时间,垂直方向指示电压。水平方向分为10格,垂直方向分为8格,每格又分为5份。垂直方向标有0%,10%,90%,100%等标志,水平方向标有10%,90%标志,供测直流电平、交流信号幅度、延迟时间等参数使用。根据被测信号在屏幕上占的格数乘以适当的比例常数(V/DIV,TIME/DIV)能得出电压值与时间值。 示波管和电源系统 1.电源(Power) 示波器主电源开关。当此开关按下时,电源指示灯亮,表示电源接通。 2.辉度(Intensity) 旋转此旋钮能改变光点和扫描线的亮度。观察低频信号时可小些,高频信号时大些。一般不应太亮,以保护荧光屏。 3.聚焦(Focus) 聚焦旋钮调节电子束截面大小,将扫描线聚焦成最清晰状态。 4.标尺亮度(Illuminance)

此旋钮调节荧光屏后面的照明灯亮度。正常室内光线下,照明灯暗一些好。室内光线不足的环境中,可适当调亮照明灯。 2.3 垂直偏转因数和水平偏转因数 1.垂直偏转因数选择(VOLTS/DIV)和微调 在单位输入信号作用下,光点在屏幕上偏移的距离称为偏移灵敏度,这一定义对X轴和Y轴都适用。灵敏度的倒数称为偏转因数。垂直灵敏度的单位是为cm/V,cm/mV或者DIV/mV,DIV/V,垂直偏转因数的单位是V/cm,mV/cm或者V/DIV,mV/DIV。实际上因习惯用法和测量电压读数的方便,有时也把偏转因数当灵敏度。 踪示波器中每个通道各有一个垂直偏转因数选择波段开关。一般按1,2,5方式从 5mV/DIV到5V/DIV分为10档。波段开关指示的值代表荧光屏上垂直方向一格的电压值。例如波段开关置于1V/DIV档时,如果屏幕上信号光点移动一格,则代表输入信号电压变化1V。 每个波段开关上往往还有一个小旋钮,微调每档垂直偏转因数。将它沿顺时针方向旋到底,处于“校准”位置,此时垂直偏转因数值与波段开关所指示的值一致。逆时针旋转此旋钮,能够微调垂直偏转因数。垂直偏转因数微调后,会造成与波段开关的指示值不一致,这点应引起注意。许多示波器具有垂直扩展功能,当微调旋钮被拉出时,垂直灵敏度扩大若干倍(偏转因数缩小若干倍)。例如,如果波段开关指示的偏转因数是1V/DIV,采用×5扩展状态时,垂直偏转因数是0.2V/DIV。 在做数字电路实验时,在屏幕上被测信号的垂直移动距离与+5V信号的垂直移动距离之比常被用于判断被测信号的电压值。

示波器专项练习题及答案

示波器练习题 1.示波器是一种常用的电学仪器,可以在荧光屏上显示出被检测的电压随时间的变化情况。它的工作原理如图1所示,真空室中阴极K 逸出电子(初速度可忽略不计),经过电压U l = 910V 的加速电场后,由小孔S 沿正对且相互靠近的水平金属极板A 、B 和竖直金属板C 、D 间的中心线依次通过两对平行金属板间。且已知A 、B 和C 、D 的长度均为l =,A 、B 和C 、D 两板间的距离均为d =,金属板的面积足够大。在A 、B 两板间加上如图11甲所示的正弦交变电u 2,当A 板电势高于B 板电势时,电压记为正值;在C 、D 两板间 加上如图11乙所示的交变电压u 3,当C 板电势高于D 板电 势时,电压记为正值。两对金属板间的电场可视为全部 集中在两板之间,且分布均匀。在C 、D 两极板右侧与极板右端相距s =处有一个与两对金属板中心线垂直的荧光屏,中心线正好经过屏的中点。若不计两对金属板之间的距离,且荧光屏足够大,并已知电子的质m =×10-30kg ,所带电荷量e =,不计电子之间的相互作用力。 ( 1 ) 要使所有的电子都能打在荧光屏上,两对偏转金属板间所加电压的最大值U 20、U 30 应满足什么条件 (2) 若U 20满足(1)中的条件,要使荧光屏上能显示出u 2 的若干个完整周期内的波形,C 、 D 两板间所加交变电压u 3 的周期应满足什么条件 (3) 若荧光屏上显示出一个u 2 完整的波形,计算这个波形的峰值高度和最大长度,并 在图2丙中画出这个波形。 2.用示波器观察频率为900Hz 的正弦电压信号。把电压信号接入示波器y 输入, ①当屏幕出现如图所示的波形时,应调节 钮,如果正弦波的正负半周均超 出了屏幕的范围,应调节 钮或 钮,或这两个钮配合使用,以使正弦波的整个波形出现在屏幕内。 ②如需要屏幕上正好出现一个完整的正弦波形,则将 钮置于___ 位置,然后调节 钮。 图 1 2 3 4 5 6 7 8 9 111111 图1 图2

理解示波器带宽

当示波器用户选择示波器进行关键的测量时,示波器的主要参数指标往往是选择哪一款示波器的唯一标准。示波器最主要的指标参数是: (1)带宽; (2)采样率; (3)记录长度。 带宽- 这个指标能告诉我们什么? 模拟带宽是一个测量指标,简单的定义是:示波器测得正弦波的幅度不低于真实正弦波信号3dB 的幅度时的最高频率(见的IEEE -1057)。如图1,是一个理想的示波器带宽和幅度测量误差的曲线图,从图1可以看出,当被测正弦波的频率等于示波器的带宽(示波器的放大器的响应是一阶高斯型)时,幅度测量误差大约30%。如果想测量正弦波的幅度误差只有3%,被测正弦波的频率要比示波器的带宽要低很多(大约是示波器的带宽的0.3倍)。由于大多数信号是比正弦波复杂的多,使用示波器测量信号的通用法则是:示波器的带宽是被测信号的频率的5 倍。 带宽- 不能告诉我们什么 最典型的用户选择示波器显示和测量复杂的电和光信号,观测信号在示波器上幅度对时间的显示。模拟带宽,一个示波器重要的指标,它应该定义在频域,而不是在时域。根据采样理论,复杂的信号在频域包含丰富的频谱成分(包含多次正弦波的谐波成分),见图2.利用频谱分析,可以看到被采样信号的频率成分,

然而,如果要充分描述这些频率成分的特点,就必须知道组成复杂信号的每个成分的准确幅度和相位信息。在这种情况下,带宽除了能够告诉将怎样捕获这些细节,其它什么也不能告诉我们。从带宽的测量角度,我们只知道,输入一个频率和带宽相同的正弦波,示波器的幅度测量误差为30%。 带宽和上升时间的关系是什么 除了对通用的信号分析,大多数的工程师也有对时间测量感兴趣,如方波的上升时间和下降时间。因此,从指定的带宽可以评估示波器系统的上升时间,我们可以使用下面公式:tr= 0.35/BW(或0.42/BW);即:BW = 0.35/tr(或0.42/tr)=5*Fclock(一般普通信号的tr=7%*T,其中:T=1/Fclock)。实际信号的带宽:信号谐波幅值将为0次波(基波)的70%(即下降3dB)时的谐波频率。 这里的0.35是示波器带宽和上升时间(一阶高斯模型时的10%-90 %上升时间)之间的比例系数,示波器的放大器大多数使用的是一阶高斯型RC低通滤波器的响应模型。使用这个公式很容易计算出tr 上升时间,但是,实际往往不是这样的。图3 的表格给出了不同信号标准所需要的测量系统带宽的建议,建议的系统带宽能够保证上升时间或其它测量得到合理的测试精度。注意,仪器系统很多因数都会影响在示波器测试上升时间结果的精度,这些因数包括信号源,探头,以及示波器。图3 表格是假设信号和示波器的测试系统都是一阶响应特性,但是在实际上,特别是今天的高速串行信号,这个假设与实际相差甚远。对于最大平坦包络延迟响应,示波器的带宽和上升时间的关系系数接近0.45.在图3中,可以看出上升时间和带宽比例系数的变化,20GHz 幅频响应模型也发生变化,从简单的一阶响应到32 阶响应。16 阶和32 阶响应类似现在的高性能示波器的响

相关主题
文本预览
相关文档 最新文档