当前位置:文档之家› 滑块结构设计大全.

滑块结构设计大全.

滑块结构设计大全.
滑块结构设计大全.

倒勾处理(滑块)

一?斜撑销块的动作原理及设计要点

是利用成型的开模动作用,使斜撑梢与滑块产生相对运动趋势,使滑块沿开模方向及水平方向的两种运动形式,使之脱离倒勾。如下图所示:

上图中:

β=α+2°~3°(防止合模产生干涉以及开模减少磨擦)

α≦25°(α为斜撑销倾斜角度)

L=1.5D (L为配合长度)

S=T+2~3mm(S为滑块需要水平运动距离;T为成品倒勾)

S=(L1xsina-δ)/cosα(δ为斜撑梢与滑块间的间隙,一般为0.5MM;

L1为斜撑梢在滑块内的垂直距离)

二?斜撑梢锁紧方式及使用场合

三?拔块动作原理及设计要点

是利用成型机的开模动作,使拔块与滑块产生相对运动趋势,拨动面B拨动滑块使滑块沿开模方向及水平方向的两种运动形式,使之脱离倒勾。

如下图所示:

上图中:

β=α≦25°(α为拔块倾斜角度)

H1≧1.5W (H1为配合长度)

S=T+2~3mm(S为滑块需要水平运动距离;T为成品倒勾)

S=H*sinα-δ/cosα

(δ为斜撑梢与滑块间的间隙,一般为0.5MM;

H为拔块在滑块内的垂直距离)

C为止动面,所以拨块形式一般不须装止动块。(不能有间隙)

四?滑块的锁紧及定位方式

由于制品在成型机注射时产生很大的压力,为防止滑块与活动芯在受到压力

而位移,从而会影响成品的尺寸及外观(如跑毛边),因此滑块应采用锁紧定位,通常称此机构为止动块或后跟块。

常见的锁紧方式如下图:

五.滑块的定位方式

滑块在开模过程中要运动一定距离,因此,要使滑块能够安全回位,必须给滑块安装定位装置,且定位装置必须灵活可靠,保证滑块在原位不动,但特殊情况下可不采用定位装置,如左右侧跑滑块,但为了安全起见,仍然要装定位装置.常见

六?滑块入子的连接方式

滑块头部入子的连接方式由成品决定,不同的成品对滑块入子的连接方式可能不同,具体入子的连接方式大致如下:

简图说明简图说明

滑块采用整体式结构,一般适用于型芯较大,强度较好的场合. 采用螺钉固定,一般型芯或圆形,且型芯较小场合.

采用螺钉的固定形式,一般型芯成方形结构且型芯不大的场合下. 采用压板固定适用固定多型芯.

七?滑块的导滑形式

块在导滑中,活动必须顺利、平稳,才能保证滑块在模具生产中不发生卡滞或跳动现象,否则会影响成品质品,模具寿命等。(压板规格超级链接)

常用的导滑形式如下图所示。

采用整体式加工困

强度

板规格可查标准零

强度

八?倾斜滑块参数计算

由于成品的倒勾面是斜方向,因此滑块的运动方向要与成品倒勾斜面方向一致,否侧会拉伤成品。

1.滑块抽芯方向与分型面成交角的关系为滑块抽向动模.

如下图所示:

α°=d°-b°

d°+b°≦25°

c°=α°+(2°-3°)

H=H1-S*sinb°

S=H1*tgd°/cosb°

L4=H1/cosd°

2.滑块抽芯方向与分型面成交角的关系为滑块抽向定模.

如下图所示:

α1°=d°-b°

d-b°≦25°

c°=a°+(2°+3°)

H=H1+S*sinb°

S=H1+tgd°/cosb°

L4=H/cosd °

九?母模遂道滑块

1.应用特点

a.制品倒勾成型在母模侧

b.制品外观有允许有痕迹

c.滑块成型面积不大 如下图所示:

2.母模遂道块简图如下:(超级链接2183动画)

合模状态

第一次开模

(3).设计注意事项

a.上固定板的厚度H2≧1.5D (D为大拉杆直径;大拉杆直径计算超级链接三板

模大拉杆计算;H2上固定板的厚度)

b.拨块镶入上固定板深度H≧2/3H2

c.注口衬套头部要做一段锥度,以便合模。且要装在上固定板上,以防止成型机

上的喷嘴脱离注口衬套,产生拉丝现象不便取出,影响下一次注射。

d.拨块在母模板内要逃料。

e.耐磨板要高出母模板0.5mm,保护母模板。以及支撑拨块防止拨块受力变形。

f.小拉杆限位行程S≦2/3H1,以利合模。(H1为滑块高度)

g.拨杆前端最好装固定块,易调整,易加工,构成三点支撑,增加拨块强度。

h.要使耐磨块装配顺利,要求点E在点D右侧。如下图所示:

i.滑块座与拨块装配时,要特别注意尺寸B与B1的关系,应为B>B1,但为了

装配的顺畅,也可将其滑块座后模板部分全部挖通。

接触面积大

(4)双”T”槽的计算公式及注意事项:

如上图中

S3=H*tg γ;

(H 为滑块下降的高度即小拉杆行程; γ为拨块角度) S2=δ2*cos γ;

(δ2为拨块与滑块间隙,一般为0.5mm) S=S3-S2=H*tg γ-δ2*cos γ=(H*sin γ-δ2)/cos γ; (S 为滑块水平运动距离) S4=δ1/cos α;

(δ1滑块入子与滑块间隙隙;α为滑块入子倾斜角度)

S1=(H*sin β-δ1)/sin(α+β);

(β为勾槽间隙,一般为0.5mm ;S1为滑块入子脱离倒勾距离) 注意事项:

a.装配要求:滑块入子与倾斜的入子孔装配,要特别注意尺寸A 与A1的关系,

应为

A>A1 。

b.双T 槽公差:如下图

装配注意事项范例

上图中

滑块入子能顺利装入公模仁内,要求S1>S 或将公模板开通。(见右图) β=α+2°~3° (便于开模及减小摩擦)

H ≧1.5D (H 为斜撑销配合长度;D 为斜撑销直径)双T 槽机构范例

开通

双”T”槽结构范例

2?母模爆炸式滑块

(1).爆炸式滑块适用场合

一般成型在母模侧且对滑块成型面积较大,尤其是滑块在母模侧很深的情况下使用。(下图为爆炸式滑块典型实例:)

(2).炸式滑块简图如下:

(3).行程计算:

如下图中 S=L*sin β

(β为T 槽角度;L 为沿T 槽方向行程;S 为滑块水平运动距离) H=L*cos β

(H 为滑块纯垂直运动距离)

(4).爆炸式滑块设计要求及注意事项: 如右图中所示:

a.底部耐磨板要做斜面,减少滑块与 公模板间磨损,一般取1.5?~3?,装 配位置须在滑块重心3/4处。

b.S1>S (S 为滑块水平运动距离)

c.滑块背部耐磨板要高出滑块背部0.5mnm e.挡块与抓勾间角度γ>耐磨板倾斜角度 f.β=α (β为“T ”槽角度;

α为限位拉杆角度)

g.T 型块长度尽量取长,高出母模板10mm

即可。

h .滑块头部要装合模螺钉,便于组模,

试模要取下。

i. 锁T 形块螺钉要垂直于T 形块 j.头部弹簧须求滑块重量 k.滑块背部要做对刀平面 l.滑块两侧面要做限位槽

m.滑块头部一定要做基准面,便于组模

及加工基准,一般取8mm 以上 n.爆炸式滑块一定要做凸肩(定位翅膀),

以利合模且要有一个基准,不可逃料。

基准

对刀面

(5).特深爆炸式滑块注意事项: a.导向杆要从母模板装置

a. 母模板要凸出公模板内,防止 母模板外掀,增加模具强度

b. 在母模板凸出外侧要做耐磨板, 防止磨损,易调整 d.

(3)?滑块打顶针

一般对于成品璧厚薄而深,壁侧面抽芯孔位较多,抽芯力较大,在跑滑块时,成品可能被滑块拉变形或拉伤。为防止成品被滑块拉变形或拉伤,

需在滑块内打顶针,以阻止成品被滑块拉变形或拉伤。

a.滑块内部打顶针(范例1)

2.常见滑块内打顶针有两种方式。如下图所示:

模具中滑块的设计技巧

倒勾處理(滑塊)OK 一?斜撐銷塊的動作原理及設計要點 是利用成型的開模動作用,使斜撐梢與滑塊產生相對運動趨勢,使滑塊沿開模方向及水平方向的兩種運動形式,使之脫離倒勾。如下圖所示: 上圖中: β=α+2°~3°(防止合模產生干涉以及開模減少磨擦) α≦25°(α為斜撐銷傾斜角度) L=1.5D (L為配合長度) S=T+2~3mm(S為滑塊需要水平運動距離;T為成品倒勾) S=(L1xsina-δ)/cosα(δ為斜撐梢與滑塊間的間隙,一般為0.5MM; L1為斜撐梢在滑塊內的垂直距離)

二?斜撐梢鎖緊方式及使用場合

三?拔塊動作原理及設計要點 是利用成型機的開模動作,使拔塊與滑塊產生相對運動趨勢,撥動面B撥動滑塊使滑塊沿開模方向及水平方向的兩種運動形式,使之脫離倒勾。 如下圖所示: 上圖中: β=α≦25°(α為拔塊傾斜角度)

H1≧1.5W (H1為配合長度) S=T+2~3mm (S為滑塊需要水平運動距離;T為成品倒勾) S=H*sinα-δ/cosα (δ為斜撐梢與滑塊間的間隙,一般為0.5MM; H為拔塊在滑塊內的垂直距離) C為止動面,所以撥塊形式一般不須裝止動塊。(不能有間隙) 四?滑塊的鎖緊及定位方式 由于制品在成型機注射時產生很大的壓力,為防止滑塊與活動芯在受到壓力 而位移,從而會影響成品的尺寸及外觀(如跑毛邊),因此滑塊應采用鎖緊定位,通常稱此機構為止動塊或后跟塊。 常見的鎖緊方式如下圖:

五.滑塊的定位方式 滑塊在開模過程中要運動一定距離,因此,要使滑塊能夠安全回位,必須給滑塊安裝定位裝置,且定位裝置必須靈活可靠,保證滑塊在原位不動,但特殊情況下可不采用定位裝置,如左右側跑滑塊,但為了安全起見,仍然要裝定位裝置.常見

2015结构设计入门知识

结构设计入门知识 一.结构设计师必须掌握的基本功 二.工程设计的程序及基本内容 三.如何做好结构概念设计 疑问:还是学理论?我在学校几年还未学够吗?我想的是尽快能画图、赚钱。 我是新人,整体方案、概念设计不用我想。 一.结构设计师必须掌握的基本功(法律法规、规范、图集、基础知识、结构概念、设计及施工经验) 1.对规范内容(特别是其中强制条文)的熟记及正确理解。 违反强制条文要重罚(每200元/处),有法律后果。 2.对有关结构图集的熟练应用。 3.对有关法律法规及管理条例的了解,对设计责任的牢记。 4.对院网站发布的学习文章内容的学习了解。 院管理信息网为(http://192.168.0.2/) 5.所学过的基础知识。 6.建立正确的结构概念。 7.工作中设计及施工经验的积累。 8.饱满的工作热情,细致认真负责的工作态度。 9.主动自觉利用各种方式(书、网络等)学习,积累知识。

1.对规范内容(特别是其中强制条文)的熟记及正确理解。 结构专业主要规范规程如下:(加*号为较常用的) *建筑结构可靠度设计统一标准GB50068-2001 *凝土结构设计规范GB50010-2002 *建筑结构荷载规范GB50009-2001(2006年版) *砌体结构设计规范GB50003-2001 *建筑地基基础设计规范GB50007-2002 钢结构设计规范GB50017-2003 建筑桩基技术规范JGJ94-2008 *建筑工程抗震设防分类标准GB50223-2008 *建筑抗震设计规范GB50011-2001(2008年版) *高层建筑混凝土结构技术规程JGJ3-2002 混凝土异形柱结构技术规程JGJ149-2006 建筑地基处理技术规范JGJ79-2002 地下工程防水技术规范GB50108-2008 工业建筑防腐蚀设计规范GB50046-2008 建筑工程施工质量验收统一标准GB50300-2001 混凝土小型空心砌块建筑技术规程JGJ/T14-2004 混凝土结构加固设计规范GB50367-2006 人民防空地下室设计规范GB50038-2005 混凝土外加剂应用技术规范GB50019-2003 *住宅建筑规范GB50368-2005(全本均为强制条文) *建筑结构制图标准GB/T50105-2001 *总图制图标准GB/T50103-2001 *全国民用建筑工程设计技术措施—结构2009年版 *建筑工程设计文件编制深度规定2009年版 2.对有关结构图集的熟练应用。 结构专业主要图集如下:(加*号为较常用的) *民用建筑工程结构初步设计深度图样05G104 *民用建筑工程建筑施工图设计深度图样04J801 *混凝土结构施工图平面整体表示方法制图规则和构造详图03G101-1修正版-(现浇混凝土框架、剪力墙、框支剪力墙结构) *建筑结构设计常用数据06G112 砌体填充墙结构构造06SG614-1 *民用建筑工程设计常见问题分析及图示——结构专业SG109-1~4 混凝土结构施工图平面整体表示方法制图规则和构造详图06G101-6-(独立基础、条形基础、桩基承台)混凝土结构剪力墙边缘构件和框架柱构造钢筋选用04SG330 混凝土结构施工图平面整体表示方法制图规则和构造详图(筏形基础)04G101-3 混凝土结构施工图平面整体表示方法制图规则和构造详图04G101-4-(现浇混凝土楼面与屋面板)混凝土小型空心砌块墙体建筑构造05J102-1 预应力混凝土管桩03SG409 预制钢筋混凝土方桩04G361 混凝土砌块系列块型05SG616 3.对有关法律法规及管理条例的了解,对设计责任的牢记。

常用结构分析设计软件之比较

常用结构软件比较 目前的结构计算程序主要有:PKPM系列(TAT、SATWE)、TBSA系列(TBSA、TBWE、TBSAP)、BSCW、GSCAD、 SAP系列。其他一些结构计算程序如ETABS等,虽然功能强大,且在国外也相当流行,但国内实际上使用的不多,故不做详细讨论。 一、结构计算程序的分析与比较 1、结构主体计算程序的模型与优缺点 从主体计算程序所采用的模型单元来说 TAT和TBSA属于结构空间分析的第一代程序,其构件均采用空间杆系单元,其中梁、柱均采用简化的空间杆单元,剪力墙则采用空间薄壁杆单元。在形成单刚后再加入刚性楼板的位移协调矩阵,引入了楼板无限刚性假设,大大减少了结构自由度。 SATWE、TBWE和TBSAP 在此基础上加入了墙元,SATWE和TBSAP还加入了楼板分块刚性假设与弹性楼板假设,更能适应复杂的结构。SATWE提供了梁元、等截面圆弧形曲梁单元、柱元、杆元、墙元、弹性楼板单元(包括三角形和矩形薄壳单元、四节点等参薄壳单元)和厚板单元(包括三角形厚板单元和四节点等参厚板单元)。另外,通过与JCCAD的联合,还能实现基础-上部结构的整体协同计算。TBSAP提供的单元除了常用的杆单元、梁柱单元外,还提供了用以计算板的四边形或三角形壳元、墙元、用以计算厚板转换层的八节点四十八自由度三维元、广义单元(包括罚单元与集中单元),以及进行基础计算用的弹性地基梁单元、弹性地基柱单元(桩元)、三角形或四边形弹性地基板单元和地基土元。TBSAP可以对结构进行基础-上部结构-楼板的整体联算。 从计算准确性的角度来说 SAP84是最为精确的,其单元类型非常丰富,而且能够对结构进行静力、动力等多种计算。最为关键的是,使用SAP84时能根据结构的实际情况进行单元划分,其计算模型是最为接近实际结构。 BSCW和GSCAD的情况比较特殊,严格说来这两个程序均是前后处理工具,其开发者并没有进行结构计算程序的开发。但BSCW与其计算程序一起出售,因此有必要提一下。BSCW一直是使用广东省建筑设计研究院的一个框剪结构计算软件,这个程序应属于空间协同分析程序,即结构计算的第二代程序(第一代为平面分析,第二代为空间协同,第三代为空间分析)。GSCAD则可以选择生成SS、TBSA、TAT或是SSW的计算数据。SS和SSW均是广东省建筑设计研究院开发的,其中SS采用空间杆系模型,与TBSA、TAT属于同一类软件;而SSW根据其软件说明来看也具有墙元,但不清楚其墙元的类型,而且此程序目前尚未通过鉴定。 薄壁杆件模型的缺点是: 1、没有考虑剪力墙的剪切变形。 2、变形不协调。

曲柄滑块机构的设计页完整版

曲柄滑块机构的设计页 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

本篇再考察一道曲柄滑块机构的设计。同样是给定行程速比系数来确定杆长。 设计一偏置曲柄滑块机构,已知滑块的行程速比系数为,滑块的行程50 ,导路的偏距20 ,求曲柄和连杆长度,并求其最大压力角。 问题分析 首先设计机构,然后再求最大压力角。 机构的设计。先计算出行程速比系数如下 那么根据题意,最后的结果应当如下图。滑块的两个极位之间距离是50mm,而固定铰链A在与CD平行20mm的直线上,而且A点到C,D的夹角是36度。 图解总是从已知条件开始,然后逐步确定未知因素。本问题中知道三个数字:50mm,20mm,36度。而这个36度时与DC的距离相关的,所以图解时先画出滑块的两个极限位置,然后确定铰链A 所在的水平线,接着就是根据36度这个条件最终确定A的位置。 (1)确定滑块的极位及固定铰链A所在的直线 先绘制水平线段C2C1,使得其距离为50mm. 然后在其上方20mm的地方绘制一条水平直线I.那么铰链A就应该在这条直线上。 (2)根据极位夹角确定铰链A所在的圆 下面要根据极位夹角来确定A所在的曲线,这样,该曲线与上述曲线相交就可以唯一确定A点的位置。 A点到C1,C2形成的夹角是36度。那么所有与C1,C2形成夹角为36度的点有什么特征呢?---圆周角具有这种特征。

从几何知道,在一个圆上面,对应于同一个圆弧的圆周角都相等。基于这一点,过C2做直线垂直于C2C1,而作射线C1E与C2C1夹角为90-36=54度,二者交于点E,则C2EC1这个角度就是36度。 现在以C1E为直径做一个圆,则在该圆上任意取一点,该点与C2C1连线的夹角就都是36度,从而A点必然在该圆上面。 根据上述规则做出的上图发现,该圆与水平线I并不相交。这意味着作图有问题。实际上,刚才作的C1E在C2C1之下,所以导致不相交。因此改变策略,在C2C1之上作C1E,使得它与C2C1的夹角为54度。 然后以C1E为直径作出一个圆。该圆与直线I有两个交点:A1和A2。这样,该问题有两组解。但是观察下图可以发现,取A1或者A2,实际上结果是一样的,只是关于C2C1的中垂线对称而已。所以这里只取A1这个点,它就是固定铰支座A。 (3)测量曲柄和连杆的尺寸 量取A1C1,A1C2如下图。 则可以推知曲柄和连杆的长度 到此为止,连杆机构设计完毕。 (4)得到最大的压力角 从图中可以发现,当滑块在最左边时,有最大的压力角(滑块受到的推力与滑块速度方向的夹角),测量得到角度为53度。 至此,该曲柄滑块机构的设计和分析结束。

结构设计常识及规范

第一章材料 SPCC 一般用钢板,表面需电镀或涂装处理 SECC 镀锌钢板,表面已做烙酸盐处理及防指纹处理 SUS 301 弹性不锈钢 SUS304 不锈钢 镀锌钢板表面的化学组成------基材(钢铁),镀锌层或镀镍锌合金层,烙酸盐层和有机化学薄膜层. 有机化学薄膜层能表面抗指纹和白锈,抗腐蚀及有较佳的烤漆性. SECC的镀锌方法 热浸镀锌法: 连续镀锌法(成卷的钢板连续浸在溶解有锌的镀槽中 板片镀锌法(剪切好的钢板浸在镀槽中,镀好后会有锌花. 电镀法: 电化学电镀,镀槽中有硫酸锌溶液,以锌为阳极,原材质钢板为阴极. 1-2产品种类介绍 1.品名介绍 材料规格后处理镀层厚度 S A B C*D*E S for Steel A: EG (Electro Galvanized Steel)电气镀锌钢板---电镀锌 一般通称JIS 镀纯锌EG SECC (1) 铅和镍合金合金EG SECC (2) GI (Galvanized Steel) 溶融镀锌钢板------热浸镀锌 非合金化GI,LG SGCC (3) 铅和镍合金GA,ALLOY SGCC (4) 裸露处耐蚀性2>3>4>1 熔接性2>4>1>3 涂漆性4>2>1>3 加工性1>2>3>4

B: 所使用的底材 C (Cold rolled) : 冷轧 H (Hot rolled): 热轧 C: 底材的种类 C: 一般用 D: 抽模用 E: 深抽用 H: 一般硬质用 D: 后处理 M: 无处理 C: 普通烙酸处理---耐蚀性良好,颜色白色化 D: 厚烙酸处理---耐蚀性更好,颜色黄色化 P: 磷酸处理---涂装性良好 U: 有机耐指纹树脂处理(普通烙酸处理)--- ---耐蚀性良好,颜色白色化,耐指纹性很好A: 有机耐指纹树脂处理(厚烙酸处理)---颜色黄色化,耐蚀性更好 FX: 无机耐指纹树脂处理---导电性 FS: 润滑性树脂处理---免用冲床油 E: 镀层厚 1-4物理特性 膜厚---含镀锌层,烙酸盐层及有机化学薄膜层,最小之膜厚需0.00356mm以上. 测试方法有磁性测试(ASTM B499), 电量分析(ASTM B504), 显微镜观察(ASTM B487) 表面抗电阻---一般应该小于0.1欧姆/平方公分. 1- 5 盐雾试验----试片尺寸100mmX150mmX1.2mm, 试片需冲整捆或整叠铁材中取下,必须在镀烙酸盐后24小时,但不可超过72小时才可以用于测试,使用5%的盐水,用含盐的水汽充满箱子,试片垂直倒挂在箱子中48小时。 测试后试片的镀锌层不可全部流失,也不能看到底材或底材生锈,但是离切断层面6mm范围有生锈情况可以忽略。

钢结构设计基本知识课后知识题目解析(张耀春版)

**
《钢结构设计原理》
三. 连接
3.8 试设计如图所示的对接连接(直缝或斜缝)。轴力拉力设计值 N=1500kN,钢材
Q345-A,焊条 E50 型,手工焊,焊缝质量三级。 N
N
500
解:
10
三级焊缝
查附表 1.3:
f tw
265 N/mm 2 ,
f
w v
180 N/mm 2
不采用引弧板: lw b 2t 500 2 10 480 mm
N lwt
1500103 480 10
312.5N/mm2
ftw
265N/mm2 ,不可。
改用斜对接焊缝:
方法一:按规范取θ=56°,斜缝长度:
lw (b / sin ) 2t (500 / sin 56) 20 (500 / 0.829 ) 20 583mm
N sin lw t
1500103 0.829 58310
213N/mm2
ftw
265N/mm2
N cos lw t
1500103 0.559 58310
144N/mm2
fvw
180N/mm2
设计满足要求。
方法二:以θ作为未知数求解所需的最小斜缝长度。此时设置引弧板求解方便些。
3.9 条件同习题 3.8,受静力荷载,试设计加盖板的对接连接。 解:依题意设计加盖板的对接连接,采用角焊缝连接。

**
查附表
1.3:
f
w f
200 N/mm 2
试选盖板钢材 Q345-A,E50 型焊条,手工焊。设盖板宽 b=460mm,为保证盖板
与连接件等强,两块盖板截面面积之和应不小于构件截面面积。所需盖板厚度:
t2
A1 2b
500 10 2 460
5.4mm
,取
t2=6mm
由于被连接板件较薄 t=10mm,仅用两侧缝连接,盖板宽 b 不宜大于 190,要保证
与母材等强,则盖板厚则不小于 14mm。所以此盖板连接不宜仅用两侧缝连接,先采
用三面围焊。
1) 确定焊脚尺寸
最大焊脚尺寸: t 6mm,hf max t mm 最小焊脚尺寸: hf min 1.5 t 1.5 10 4.7 mm 取焊脚尺寸 hf=6mm
2)焊接设计:
正面角焊缝承担的轴心拉力设计值:
N3 2 0.7hf bf ffw 2 0.7 6 460 1.22 200 942816 N
侧面角焊缝承担的轴心拉力设计值:
N1 N N3 1500 10 3 942816 557184 N
所需每条侧面角焊缝的实际长度(受力的一侧有 4 条侧缝):
l lw
hf
N1 4 0.7hf
f
w f
hf
557184 4 0.7 6 200
6 172 mm
取侧面焊缝实际长度 175mm,则所需盖板长度:
175 10 175
L=175×2+10(盖板距离)=360mm。
N
N
∴此加盖板的对接连接,盖板尺寸取-360×460×6mm,
6 6 500 10

塑胶模具滑块设计大全

倒勾处理(滑块) 一?斜撑销块的动作原理及设计要点 是利用成型的开模动作用,使斜撑梢与滑块产生相对运动趋势,使滑块沿开模方向及水平方向的两种运动形式,使之脱离倒勾。如下图所示: 上图中: β=α+2°~3°(防止合模产生干涉以及开模减少磨擦) α≦25°(α为斜撑销倾斜角度) L=1.5D (L为配合长度) S=T+2~3mm(S为滑块需要水平运动距离;T为成品倒勾) S=(L1xsina-δ)/cosα(δ为斜撑梢与滑块间的间隙,一般为0.5MM; L1为斜撑梢在滑块的垂直距离)

二?斜撑梢锁紧方式及使用场合 简图说明 适宜用在模板较薄且上固定 板与母模板不分开的情况下配 合面较长,稳定较好 适宜用在模板厚、模具空间大 的情况下且两板模、三板板均 可使用 配合面L≧1.5D(D为斜撑销直径) 稳定性较好

适宜用在模板较厚的情况下 且两板模、三板板均可使用, 配合面L≧1.5D(D为斜撑销直径) 稳定性不好,加工困难. 适宜用在模板较薄且上固定板 与母模板可分开的情况下 配合面较长,稳定较好 三?拔块动作原理及设计要点 是利用成型机的开模动作,使拔块与滑块产生相对运动趋势,拨动面B拨动滑块使滑块沿开模方向及水平方向的两种运动形式,使之脱离倒勾。 如下图所示:

上图中: β=α≦25°(α为拔块倾斜角度) H1≧1.5W (H1为配合长度) S=T+2~3mm (S为滑块需要水平运动距离;T为成品倒勾) S=H*sinα-δ/cosα (δ为斜撑梢与滑块间的间隙,一般为0.5MM; H为拔块在滑块的垂直距离) C为止动面,所以拨块形式一般不须装止动块。(不能有间隙) 四?滑块的锁紧及定位方式 由于制品在成型机注射时产生很大的压力,为防止滑块与活动芯在受到压力 而位移,从而会影响成品的尺寸及外观(如跑毛边),因此滑块应采用锁紧定位,通常称此机构为止动块或后跟块。 常见的锁紧方式如下图:

机械设计 1 机械与结构设计基础知识(简化)

1机械与结构设计基础知识 第一节机械与结构设计(基础)概述 一、机械与结构设计(基础)在工业设计中的地位 工业设计的核心是产品设计,而产品设计离不开机械设计。 随着专业分工的细化,团队工作(team work)已成为产品开发设计的主要工作方式。工业设计师作为团队的一员,需要与其他成员进行交流,特别是要与机械与结构设计工程师就工业产品的原理、结构、材料、工艺及加工设备等方面进行交流与讨论。 一定的工程技术知识,包括机械设计与结构设计知识是团队合作交流的基础,特别是与工程技术人员的交流。 另外,为了使设计具有工程技术、生产加工的可能性、合理性、经济性,工业设计师需要具备一定的工程技术知识,包括机械设计与结构设计知识。 如,设计某种洗衣机时,工业设计师就要首先了解洗衣机的工作原理、结构、材料工艺与加工设备等,并在设计过程中就这方面的问题频繁地与各种工程师,包括机械与结构设计工程师进行切磋与沟通。 本课程(专业基础课)学习目的: 学习机械与结构设计基本知识,帮助同学提高工程技术素养,提高相关能力,力求实现以下目标: 1、初步具备机械与结构基本常识,有能力与机械或结构工程师就相关问题进行一般的交流沟通; 2、使产品设计方案具有更多的工程技术尤其是结构、机构方面的合理性; 3、为进一步深入学习机械与结构设计与其它工程技术知识打下初步的基础。

二、机械与结构设计(基础)研究对象和任务 (一)、机械、机器、机构、构件、零件的概念 机械--- 机器与机构的总称,如工程机械、包装机械、农业机械、矿山机械、化工机械等。机器--- 一种用来转换或传递能量、物料和信息的、能执行机械运动的装置,具有以下特征: 1、人为的实物(机件)的组合体。 2、各个部分间具有确定的相对运动。 3、能够用来转换能量,完成有用功或处理信息等。如电动工具、车辆、计算机等 机构--- 能实现预期的机械运动的各实物的组合体。常用机构:连杆机构、凸轮机构、齿轮机构等。具有以下特征: 1、人为的实物(机件)的组和体。 2、各个部分间具有确定的相对运动。 构件--- 机构中的运动单元或构造单元,由一个或几个零件组成的刚性结构。 零件--- 制造的基本单元。零件又分:通用零件、标准件,专用零件、非标准件等,可以是各种材料制成的。 因此,机械产品(机器)由三个层面构成: 机构、构件、零件 1、内燃机分析示例

机械结构设计实用

5.1.1机械结构设计的任务 机械结构设计的任务是在总体设计的基础上,根据所确定的原理方案,确定并绘出具体的结构图,以体现所要求的功能。是将抽象的工作原理具体化为某类构件或零部件,具体内容为在确定结构件的材料、形状、尺寸、公差、热处理方式和表面状况的同时,还须考虑其加工工艺、强度、刚度、精度以及与其它零件相互之间关系等问题。所以,结构设计的直接产物虽是技术图纸,但结构设计工作不是简单的机械制图,图纸只是表达设计方案的语言,综合技术的具体化是结构设计的基本内容。 5.1.2机械结构设计特点 机械结构设计的主要特点有:(1)它是集思考、绘图、计算(有时进行必要的实验)于一体的设计过程,是机械设计中涉及的问题最多、最具体、工作量最大的工作阶段,在整个机械设计过程中,平均约80%的时间用于结构设计,对机械设计的成败起着举足轻重的作用。(2)机械结构设计问题的多解性,即满足同一设计要求的机械结构并不是唯一的。(3)机械结构设计阶段是一个很活跃的设计环节,常常需反复交叉的进行。为此,在进行机械结构设计时,必须了解从机器的整体出发对机械结构的基本要求 5.2机械结构件的结构要素和设计方法 5.2.1结构件的几何要素 机械结构的功能主要是靠机械零部件的几何形状及各个零部件之间的相对位置关系实现的。零部件的几何形状由它的表面所构成,一个零件通常有多个表面,在这些表面中有的与其它零部件表面直接接触,把这一部分表面称为功能表面。在功能表面之间的联结部分称为联接表面。 零件的功能表面是决定机械功能的重要因素,功能表面的设计是零部件结

构设计的核心问题。描述功能表面的主要几何参数有表面的几何形状、尺寸大小、表面数量、位置、顺序等。通过对功能表面的变异设计,可以得到为实现同一技术功能的多种结构方案。 5.2.2结构件之间的联接 在机器或机械中,任何零件都不是孤立存在的。因此在结构设计中除了研究零件本身的功能和其它特征外,还必须研究零件之间的相互关系。 零件的相关分为直接相关和间接相关两类。凡两零件有直接装配关系的,成为直接相关。没有直接装配关系的相关成为间接相关。间接相关又分为位置相关和运动相关两类。位置相关是指两零件在相互位置上有要求,如减速器中两相邻的传动轴,其中心距必须保证一定的精度,两轴线必须平行,以保证齿轮的正常啮合。运动相关是指一零件的运动轨迹与另一零件有关,如车床刀架的运动轨迹必须平行于于主轴的中心线,这是靠床身导轨和主轴轴线相平行来保证的,所以,主轴与导轨之间位置相关;而刀架与主轴之间为运动相关。 多数零件都有两个或更多的直接相关零件,故每个零件大都具有两个或多个部位在结构上与其它零件有关。在进行结构设计时,两零件直接相关部位必须同时考虑,以便合理地选择材料的热处理方式、形状、尺寸、精度及表面质量等。同时还必须考虑满足间接相关条件,如进行尺寸链和精度计算等。一般来说,若某零件直接相关零件愈多,其结构就愈复杂;零件的间接相关零件愈多,其精度要求愈高。例如,轴毂联接见图5.1。 5.2.3结构设计据结构件的材料及热处理不同应注意的问题 机械设计中可以选择的材料众多,不同的材料具有不同的性质,不同的材料对应不同的加工工艺,结构设计中既要根据功能要求合理地选择适当的材料,又要根据材料的种类确定适当的加工工艺,并根据加工工艺的要求确定适当的

结构设计原理知识点

第一章 钢筋混凝土结构基本概念及材料的物理力学性能 1.混凝土立方体抗压强度cu f :(基本强度指标)以边长150mm 立方体试件,按标准方法制作养护28d ,标准试验方法(不涂润滑剂,全截面受压,加载速度0.15~0.25MPa/s )测得的抗压强度作为混凝土立方体抗压强度 cu f 。 影响立方体强度主要因素为试件尺寸和试验方法。尺寸效应关系: cu f (150)=0.95cu f (100) cu f (150)=1.05cu f (200) 2.混凝土弹性模量和变形模量。 ①原点弹性模量:在混凝土受压应力—应变曲线图的原点作切线,该切线曲率即为原点弹性模量。表示为:E '=σ/ε=tan α0 ②变形模量:连接混凝土应力应变—曲线的原点及曲线上某一点K 作割线,K 点混凝土应力为σc (=0.5c f ),该割线(OK )的斜率即为变形模量,也称割线模量或弹塑性模量。 E c '''=tan α1=σc /εc 混凝土受拉弹性模量与受压弹性模量相等。 ③切线模量:混凝土应力应变—上某应力σc 处作一切线,该切线斜率即为相应于应力σc 时的切线模量''c E =d σ/d ε 3 . 徐变变形:在应力长期不变的作用下,混凝土的应变随时间增长的现象称为徐变。 影响徐变的因素:a. 内在因素,包括混凝土组成、龄期,龄期越早,徐变越大;b. 环境条件,指养护和使用时的温度、湿度,温度越高,湿度越低,徐变越大;c. 应力条件,压应力σ﹤0.5 c f ,徐变与应力呈线性关系;当压应力σ介于(0.5~0.8)c f 之间,徐变增长比应力快;当压应力σ﹥0.8 c f 时,混凝土的非线性徐变不收敛。 徐变对结构的影响:a.使结构变形增加;b.静定结构会使截面中产生应力重分布;c.超静定结构引起赘余力;d.在预应力混凝土结构中产生预 应力损失。 4.收缩变形:在混凝土中凝结和硬化的物理化学过程中体积随时间推移而减少的现象称为收缩。 混凝土收缩原因:a.硬化初期,化学性收缩,本身的体积收缩;b.后期,物理收缩,失水干燥。 影响混凝土收缩的主要因素:a.混凝土组成和配比;b.构件的养护条件、使用环境的温度和湿度,以及凡是影响混凝土中水分保持的因素;c.构件的体表比,比值越小收缩越大。 混凝土收缩对结构的影响:a.构件未受荷前可能产生裂缝;b.预应力构件中引起预应力损失;c.超静定结构产生次内力。 5.钢筋的基本概念 1.钢筋按化学成分分类,可分为碳素钢和普通低合金钢。 2钢筋按加工方法分类,可分为a.热轧钢筋;b.热处理钢筋;c.冷加工钢筋(冷拉钢筋、冷轧钢筋、冷轧带肋钢筋和冷轧扭钢筋。) 6.钢筋的力学性能 物理力学指标:(1)两个强度指标:屈服强度,结构设计计算中强度取值主要依据;极限抗拉强度,材料实际破坏强度,衡量钢筋屈服后的抗拉能力,不能作为计算依据。(2)两个塑性指标:伸长率和冷弯性能:钢材在冷加工过程和使用时不开裂、弯断或脆断的性能。 7.钢筋和混凝土共同工作的的原因:(1)混凝土和钢筋之间有着良好的黏结力;(2)二者具有相近的温度线膨胀系数;(3)在保护层足够的前提下,呈碱性的混凝土可以保护钢筋不易锈蚀,保证了钢筋与混凝土的共同作用。 第二章 结构按极限状态法设计计算的原则 1.结构概率设计的方法按发展进程划分为三个水准:a.水准Ⅰ,半概率设计法,只对影响结构可靠度的某些参数,用数理统计分析,并与经验结合,对结构的可靠度不能做出定量的估计;b.水准Ⅱ,近似概率设计法,用概率论和数理统计理论,对结构、构件、或截面设计的可靠概率做出近似估计,忽略了变量随时间的关系,非线性极限状态方程线性化;c.水准Ⅲ,全概略设计法,我国《公桥规》采用水准Ⅱ。 2.结构的可靠性:指结构在规定时间(设计基准期)、规定的条件下,完成预定功能的能力。 可靠性组成:安全性、适用性、耐久性。 可靠度:对结构的可靠性进行概率描述称为结构可靠度。 3.结构的极限状态:当整个结构或构件的一部分超过某一特定状态而不能满足设计规定的某一功能要求时,则此特定状态称为该功能的极限状态。 极限状态分为承载能力极限状态、正常使用极限状态和破坏—安全状态。 承载能力极限状态对应于结构或构件达到最大承载力或不适于继续承载的变形,具体表现:a.整个构件或结构的一部分作为刚体失去平衡;b.结构构件或连接处因超过材料强度而破坏;c.结构转变成机动体系;d.结构或构件丧失稳定;e.变形过大,不能继续承载和使用。 正常使用极限状态对应于结构或构件达到正常使用或耐久性能的某项规定限值,具体表现:a.由于外观变形影响正常使用;b.由于耐久性能的局部损坏影响正常使用;c.由于震动影响正常使用;d.由于其他特定状态影响正常使用。 破坏—安全状态是指偶然事件造成局部损坏后,其余部分不至于发生连续倒塌的状态。(破坏—安全极限状态归到承载能力极限状态中) 4.作用:使结构产生内力、变形、应力、应变的所有原因。 作用分为:永久作用、可变作用和偶然作用。 永久作用:在结构使用期内,其量值不随时间变化,或其变化与平均值相比可忽略不计的作用 可变作用:在结构试用期内,其量值随时间变化,且其变化值与平均值相比较不可忽略的作用。

常用建筑结构设计软件比较

常用结构软件比较 本人在设计院工作,有机会接触多个结构计算软件,加上自己也喜欢研究软件,故对各种软件的优缺点有一定的了解。现在根据自己的使用体会,从设计人员的角度对各个软件作一个评价,请各位同行指正。本文仅限于混凝土结构计算程序。 目前的结构计算程序主要有:PKPM系列(TAT、SATWE)、TBSA系列(TBSA、TBWE、TBSAP)、BSCW、GSCAD、 SAP系列。其他一些结构计算程序如ETABS等,虽然功能强大,且在国外也相当流行,但国内实际上使用的不多,故不做详细讨论。 一、结构计算程序的分析与比较 1、结构主体计算程序的模型与优缺点 从主体计算程序所采用的模型单元来说 TAT和TBSA属于结构空间分析的第一代程序,其构件均采用空间杆系单元,其中梁、柱均采用简化的空间杆单元,剪力墙则采用空间薄壁杆单元。在形成单刚后再加入刚性楼板的位移协调矩阵,引入了楼板无限刚性假设,大大减少了结构自由度。 SATWE、TBWE和TBSAP在此基础上加入了墙元,SATWE和TBSAP还加入了楼板分块刚性假设与弹性楼板假设,更能适应复杂的结构。SATWE提供了梁元、等截面圆弧形曲梁单元、柱元、杆元、墙元、弹性楼板单元(包括三角形和矩形薄壳单元、四节点等参薄壳单元)和厚板单元(包括三角形厚板单元和四节点等参厚板单元)。另外,通过与JCCAD的联合,还能实现基础-上部结构的整体协同计算。TBSAP提供的单元除了常用的杆单元、梁柱单元外,还提供了用以计算板的四边形或三角形壳元、墙元、用以计算厚板转换层的八节点四十八自由度三维元、广义单元(包括罚单元与集中单元),以及进行基础计算用的弹性地基梁单元、弹性地基柱单元(桩元)、三角形或四边形弹性地基板单元和地基土元。TBSAP可以对结构进行基础-上部结构-楼板的整体联算。 从计算准确性的角度来说 SAP84是最为精确的,其单元类型非常丰富,而且能够对结构进行静力、动力等多种计算。最为关键的是,使用SAP84时能根据结构的实际情况进行单元划分,其计算模型是最为接近实际结构。 BSCW和GSCAD的情况比较特殊,严格说来这两个程序均是前后处理工具,其开发者并没有进行结构计算程序的开发。但BSCW与其计算程序一起出售,因此有必要提一下。BSCW一直是使用广东省建筑设计研究院的一个框剪结构计算软件,这个程序应属于空间协同分析程序,即结构计算的第二代程序(第一代为平面分析,第二代为空间协同,第三代为空间分析)。GSCAD则可以选择生成SS、TBSA、TAT或是SSW的计算数据。SS和SSW均是广东省建筑设计研究院开发的,其中SS采用空间杆系模型,与TBSA、TAT属于同一类软件;而SSW根据其软件说明来看也具有墙元,但不清楚其墙元的类型,而且此程序目前尚未通过鉴定。 薄壁杆件模型的缺点是: 1、没有考虑剪力墙的剪切变形。 2、变形不协调。 当结构模型中出现拐角刚域时,截面的翘曲自由度(对应的杆端力为双力矩)不连续,造成误差。另外由于此模型假定薄壁杆件的断面保持平截面,实际上忽略了各墙肢的次要变形,增大了结构刚度。同一薄壁杆墙肢数越多,刚度增加越大;薄壁杆越多,刚度增加越大。但另一方面,对于剪力墙上的洞口,空间杆系程序只能作为梁进行分析,将实际结构中连梁对墙肢的一段连续约束简化为点约束,削弱了结构刚度。连梁越高,则削弱越大;连梁越多,则削弱越大。所以计算时对实际结构的刚度是增大还是削弱要看墙肢与连梁的比例。 杆单元点接触传力与变形的特点使TBSA、TAT等计算结构转换层时误差较大。因为从实

曲柄滑块机构设计

本篇再考察一道曲柄滑块机构的设计。同样是给定行程速比系数来确定杆长。 设计一偏置曲柄滑块机构,已知滑块的行程速比系数为1.5,滑块的行程50 ,导路的偏距20 ,求曲柄和连杆长度,并求其最大压力角。 问题分析 首先设计机构,然后再求最大压力角。 机构的设计。先计算出行程速比系数如下 那么根据题意,最后的结果应当如下图。滑块的两个极位之间距离是50mm,而固定铰链A 在与CD平行20mm的直线上,而且A点到C,D的夹角是36度。 图解总是从已知条件开始,然后逐步确定未知因素。本问题中知道三个数字:50mm,20mm,36度。而这个36度时与DC的距离相关的,所以图解时先画出滑块的两个极限位置,然后确定铰链A所在的水平线,接着就是根据36度这个条件最终确定A的位置。 (1)确定滑块的极位及固定铰链A所在的直线

先绘制水平线段C2C1,使得其距离为50mm. 然后在其上方20mm的地方绘制一条水平直线I.那么铰链A就应该在这条直线上。(2)根据极位夹角确定铰链A所在的圆 下面要根据极位夹角来确定A所在的曲线,这样,该曲线与上述曲线相交就可以唯一确定A点的位置。 A点到C1,C2形成的夹角是36度。那么所有与C1,C2形成夹角为36度的点有什么特征呢?---圆周角具有这种特征。 从几何知道,在一个圆上面,对应于同一个圆弧的圆周角都相等。基于这一点,过C2做直线垂直于C2C1,而作射线C1E与C2C1夹角为90-36=54度,二者交于点E,则C2EC1这个角度就是36度。 现在以C1E为直径做一个圆,则在该圆上任意取一点,该点与C2C1连线的夹角就都是36度,从而A点必然在该圆上面。 根据上述规则做出的上图发现,该圆与水平线I并不相交。这意味着作图有问题。实际上,刚才作的C1E在C2C1之下,所以导致不相交。因此改变策略,在C2C1之上作C1E,使得它与C2C1的夹角为54度。 然后以C1E为直径作出一个圆。该圆与直线I有两个交点:A1和A2。这样,该问题有两组解。但是观察下图可以发现,取A1或者A2,实际上结果是一样的,只是关于C2C1的中垂线对称而已。所以这里只取A1这个点,它就是固定铰支座A。 (3)测量曲柄和连杆的尺寸 量取A1C1,A1C2如下图。 则可以推知曲柄和连杆的长度 到此为止,连杆机构设计完毕。 (4)得到最大的压力角 从图中可以发现,当滑块在最左边时,有最大的压力角(滑块受到的推力与滑块速度方向的夹角),测量得到角度为53度。 至此,该曲柄滑块机构的设计和分析结束。

最新整理机械结构设计基础知识复习过程

机械结构设计基础知识 1前言 1.1机械结构设计的任务 机械结构设计的任务是在总体设计的基础上,根据所确定的原理方案,确定并绘出具体的结构图,以体现所要求的功能。是将抽象的工作原理具体化为某类构件或零部件,具体内容为在确定结构件的材料、形状、尺寸、公差、热处理方式和表面状况的同时,还须考虑其加工工艺、强度、刚度、精度以及与其它零件相互之间关系等问题。所以,结构设计的直接产物虽是技术图纸,但结构设计工作不是简单的机械制图,图纸只是表达设计方案的语言,综合技术的具体化是结构设计的基本内容。 1.2机械结构设计特点 机械结构设计的主要特点有:(1)它是集思考、绘图、计算(有时进行必要的实验)于一体的设计过程,是机械设计中涉及的问题最多、最具体、工作量最大的工作阶段,在整个机械设计过程中,平均约80%的时间用于结构设计,对机械设计的成败起着举足轻重的作用。(2)机械结构设计问题的多解性,即满足同一设计要求的机械结构并不是唯一的。(3)机械结构设计阶段是一个很活跃的设计环节,常常需反复交叉的进行。为此,在进行机械结构设计时,必须了解从机器的整体出发对机械结构的基本要求 2机械结构件的结构要素和设计方法 2.1结构件的几何要素 机械结构的功能主要是靠机械零部件的几何形状及各个零部件之间的相对位置关系实现的。零部件的几何形状由它的表面所构成,一个零件通常有多个表面,在这些表面中有的与其它零部件表面直接接触,把这一部分表面称为功能表面。在功能表面之间的联结部分称为联接表面。 零件的功能表面是决定机械功能的重要因素,功能表面的设计是零部件结构设计的核心问题。描述功能表面的主要几何参数有表面的几何形状、尺寸大小、表面数量、位置、顺序等。通过对功能表面的变异设计,可以得到为实现同一技术功能的多种结构方案。 2.2结构件之间的联接 在机器或机械中,任何零件都不是孤立存在的。因此在结构设计中除了研究零件本身的功能和其它特征外,还必须研究零件之间的相互关系。 零件的相关分为直接相关和间接相关两类。凡两零件有直接装配关系的,成为直接相关。没有直接装配关系的相关成为间接相关。间接相关又分为位置相关和运动相关两类。位置相关是指两零件在相互位置上有要求,如减速器中两相邻的传动轴,其中心距必须保证一定的精度,两轴线必须平行,以保证齿轮的正常啮合。运动相关是指一零件的运动轨迹与另一零件有关,如车床刀架的运动轨迹必须平行于于主轴的中心线,这是靠床身导轨和主轴轴线相平行来保证的,所以,主轴与导轨之间位置相关;而刀架与主轴之间为运动相关。 多数零件都有两个或更多的直接相关零件,故每个零件大都具有两个或多个部位在结构上与其它零件有关。在进行结构设计时,两零件直接相关部位必须同时考虑,以便合理地选择材料的热处理方式、形状、尺寸、精度及表面质量等。同时还必须考虑满足间接相关条件,如进行尺寸链和精度计算等。一般来说,若某零件直接相关零件愈多,其结构就愈复杂;零件的间接相关零件愈多,其精度要求愈高。例如,轴毂联接见图1。 2.3结构设计据结构件的材料及热处理不同应注意的问题 机械设计中可以选择的材料众多,不同的材料具有不同的性质,不同的材料对应不同的加工工艺,结构设计中既要根据功能要求合理地选择适当的材料,又要根据材料的种类确定适当的加工工艺,并根据加工工艺的要求确定适当的结构,只有通过适当的结构设计才能使所选择的材料最充分的发挥优势。 设计者要做到正确地选择材料就必须充分地了解所选材料的力学性能、加工性能、使用成本等信息。结构设计中应根据所选材料的特性及其所对应的加工工艺而遵循不同的设计原则。

高难度注塑模具滑块的设计(含图)讲解

高难度注塑模具滑塊的設計(含图解) 一?斜撑销块的动作原理及设计要点 是利用成型的开模动作用,使斜撑梢与滑块产生相对运动趋势,使滑块沿开模方向及水平方向的两种运动形式,使之脱离倒勾。如下图所示: 上图中: β=α+2°~3°(防止合模产生干涉以及开模减少磨擦) α≦25°(α为斜撑销倾斜角度) L=1.5D (L为配合长度) S=T+2~3mm(S为滑块需要水平运动距离;T为成品倒勾) S=(L1xsina-δ)/cosα(δ为斜撑梢与滑块间的间隙,一般为0.5MM; L1为斜撑梢在滑块内的垂直距离)

二?斜撑梢锁紧方式及使用场合

三?拔块动作原理及设计要点 是利用成型机的开模动作,使拔块与滑块产生相对运动趋势,拨动面B拨动滑块使滑块沿开模方向及水平方向的两种运动形式,使之脱离倒勾。 如下图所示: 上图中: β=α≦25°(α为拔块倾斜角度) H1≧1.5W (H1为配合长度) S=T+2~3mm(S为滑块需要水平运动距离;T为成品倒勾) S=H*sinα-δ/cosα (δ为斜撑梢与滑块间的间隙,一般为0.5MM; H为拔块在滑块内的垂直距离) C为止动面,所以拨块形式一般不须装止动块。(不能有间隙)

四?滑块的锁紧及定位方式 由于制品在成型机注射时产生很大的压力,为防止滑块与活动芯在受到压力而位移,从而会影响成品的尺寸及外观(如跑毛边),因此滑块应采用锁紧定位,通常称此机构为止动块或后跟块。 常见的锁紧方式如下图:

五.滑块的定位方式 滑块在开模过程中要运动一定距离,因此,要使滑块能够安全回位,必须给滑块安装定位装置,且定位装置必须灵活可靠,保证滑块在原位不动,但特殊情况下可不采用定位装置,如左右侧跑滑块,但为了安全起见,仍然要装定位装置.常见

结构设计 实用

机械结构设计的任务是在总体设计的基础上,根据所确定的原理方案,确定并绘出具体的结构图,以体现所要求的功能。是将抽象的工作原理具体化为某类构件或零部件,具体内容为在确定结构件的材料、形状、尺寸、公差、热处理方式和表面状况的同时,还须考虑其加工工艺、强度、刚度、精度以及与其它零件相互之间关系等问题。所以,结构设计的直接产物虽是技术图纸,但结构设计工作不是简单的机械制图,图纸只是表达设计方案的语言,综合技术的具体化是结构设计的基本内容。 机械结构设计的主要特点有:(1)它是集思考、绘图、计算(有时进行必要的实验)于一体的设计过程,是机械设计中涉及的问题最多、最具体、工作量最大的工作阶段,在整个机械设计过程中,平均约80%的时间用于结构设计,对机械设计的成败起着举足轻重的作用。(2)机械结构设计问题的多解性,即满足同一设计要求的机械结构并不是唯一的。(3)机械结构设计阶段是一个很活跃的设计环节,常常需反复交叉的进行。为此,在进行机械结构设计时,必须了解从机器的整体出发对机械结构的基本要求 5.2机械结构件的结构要素和设计方法 机械结构的功能主要是靠机械零部件的几何形状及各个零部件之间的相对位置关系实现的。零部件的几何形状由它的表面所构成,一个零件通常有多个表面,在这些表面中有的与其它零部件表面直接接触,把这一部分表面称为功能表面。在功能表面之间的联结部分称为联接表面。 零件的功能表面是决定机械功能的重要因素,功能表面的设计是零部件结构设计的核心问题。描述功能表面的主要几何参数有表面的几何形状、尺寸大小、表面数量、位置、顺序等。通过对功能表面的变异设计,可以得到

为实现同一技术功能的多种结构方案。 在机器或机械中,任何零件都不是孤立存在的。因此在结构设计中除了研究零件本身的功能和其它特征外,还必须研究零件之间的相互关系。 零件的相关分为直接相关和间接相关两类。凡两零件有直接装配关系的,成为直接相关。没有直接装配关系的相关成为间接相关。间接相关又分为位置相关和运动相关两类。位置相关是指两零件在相互位置上有要求,如减速器中两相邻的传动轴,其中心距必须保证一定的精度,两轴线必须平行,以保证齿轮的正常啮合。运动相关是指一零件的运动轨迹与另一零件有关,如车床刀架的运动轨迹必须平行于于主轴的中心线,这是靠床身导轨和主轴轴线相平行来保证的,所以,主轴与导轨之间位置相关;而刀架与主轴之间为运动相关。 多数零件都有两个或更多的直接相关零件,故每个零件大都具有两个或多个部位在结构上与其它零件有关。在进行结构设计时,两零件直接相关部位必须同时考虑,以便合理地选择材料的热处理方式、形状、尺寸、精度及表面质量等。同时还必须考虑满足间接相关条件,如进行尺寸链和精度计算等。一般来说,若某零件直接相关零件愈多,其结构就愈复杂;零件的间接相关零件愈多,其精度要求愈高。例如,轴毂联接见图5.1。 5.2.3结构设计据结构件的材料及热处理不同应注意的问题 机械设计中可以选择的材料众多,不同的材料具有不同的性质,不同的材料对应不同的加工工艺,结构设计中既要根据功能要求合理地选择适当的材料,又要根据材料的种类确定适当的加工工艺,并根据加工工艺的要求确定适当的结构,只有通过适当的结构设计才能使所选择的材料最充分的发挥优

相关主题
文本预览
相关文档 最新文档