当前位置:文档之家› 三维超声成像的方法学Point-演示文稿

三维超声成像的方法学Point-演示文稿

三维超声成像的方法学Point-演示文稿
三维超声成像的方法学Point-演示文稿

三维超声成像的方法学

徐辉雄吕明德

?徐辉雄先生,中山大学附属第一医院超声科副教授、硕士研究生导师;吕明德先生,教授、博士研究生导师。2005年8月

?三维超声成像是超声医学发展的重要方向之一,其方法学一般包括三维图像数据的采集、数据的处理、容积数据库的建立、三维图像的显示等步骤。其中三维图像数据的采集是最基本的步骤,而三维图像的显示则是最终步骤。

三维图像数据的采集

?三维图像数据的采集,就是要获得所感兴趣结构整个容积范围内的全部回声信息,即要获得感兴趣区一系列断面的信息。

?图像采集过程中最重要的两点是:

?超声图像定位的易行性及数据采集的速度。焦点问题则是如何将探头的方位信息与二维图像的灰阶或血流信息有机地整合在一起。

?因此,三维图像数据采集方法的特点是:一是采集一系列距离和角度相等的二维图像;

?

?二是采集到的系列二维图像要包括整个感兴趣区,而不能有图像的缺失或遗漏。不同的图像采集方法,实际上是利用了不同的方法来定位某一帧断面图像在容积数据库中的具体位置。

?维超声实际上是由一系列的二维图像经过处理形成的,而图像的采集又可以从任意角度进行,那么图像间的相对位置及角度就需要被精确地记录下来以避免产生伪像。此外,为避免由于呼吸、心跳、患者的移动等因素造成的伪像,图像采集过程应非常迅速并有合适的门控手段。

?目前大多数图像采集方法类似于常规二维超声,即采集一系列相互分立的二维图像,形成一个三维数据库,通过某种计算方法来得到三维图像。这就需要一个定位系统能准确地反映每一帧二维图像在三维容积中的准确位置,一般要求其距离分辨力达到0.5c m,角度分辨力达到0.5度。常用的定位装置有步进马达(可为平行、旋转或扇形扫查的方式)或为某种传感装置(感受电磁场、声或光信号)。随着高频超声的应用,对定位系统的精度要求也越来越高,这样才能获得高质量的三维图像。此外,也有一些学者采用其它方法获取图像。

?图像采集过程中,已采集到的超声图像及

其位置信号即刻存贮于计算机中,经处理后形成容积数据库。根据采集方式的不同,采集到的二维图像可排列为扇形、平行、或围绕某一轴心排列,也可为任意形状( 如自由臂扫查时)。尽管最终都可形成容积数据库,但为减少后处理时间和避免伪像,一般仍要求图像间的距离和角度有规律可循。

常用的图像采集方法有4种? 1.一体化的位置感受器及探头阵列

(In tegrated Pos i t i on Sensor and Transducer

Arrays)

?即我们常说的一体化三维容积探头

(In tegrated Volum e Transducer),或简称为容积探头。这种采集方法是将位置感受装置与二维探头整合在一起并密封形成三维容积探头,如Voluson 530D、Voluson 730等的探头(图1)

?这类探头通常体积较大,稍显笨重。探头前端为一较软的透声材料,其内包裹一个二维探头在步进马达或特殊的伺服系统的作用下做扇形或旋转扫查。在密封的腔内还充填以透声的类似耦合剂的物质。这种探头的好处在于可以避免用其它外设位置感受器时需要的复杂的系统校正过程,同时每帧图像间的位置和角度比较确定,不易出现变形,因此消除了定位不准所致的伪像

?此外,这种采集装置通常与整个超声仪整合在一起,因此图像数据采集完后即刻可形成容积数据库,中间无需复杂的投射和处理过程,而直接过渡到三维图像的重建和显示,因此成像时间较短。

?基于以上优点,此类采集装置目前应用最为广泛。但该方法也存在缺点,主要是观察的视角较小,对一些较大的器官如肝脏的成像需从不同的角度采集多个容积数据库后方能获得完整印象。另外,容积探头扫查方法须配备专门的三维超声成像仪。

2.机械驱动扫查(Mechanical ly

Dr iven Scanning)

?将传统的二维探头固定于一外设的机械臂装置上,由计算机控制步进马达,驱动探头以特定的形式有规律地运动。常见形式有3种(图2):

a.平行扫查法(Para l l el

Scanning)

?或称为线性扫查(L inear Scan-n ing)。探头由电动步进马达驱动以预定的速度和预定的间隔运动采集图像,获得一系列相互平行等距的二维断面图像。这种方法多用于颈部、小器官的扫查,也可应用于心脏的检查,如经食管扫查时,采用探头后退的方式也可得到系列平行的二维图像。

b.旋转扫查法

(Rotat i onal Scanning )

?将探头固定于某一透声窗,探头围绕某一轴心旋转获取图像,获得一系列相互均匀成角且中心轴相互重合的二维断面图像。它多用于心脏、前列腺、子宫等扫查。在中心轴的近端,图像间的间距较小,因此分辨率较高,而在离轴较远的地方则分辨率较低。此外,应用该方法扫查时,应保证良好的中心轴重合性,以避免产生伪像。如在扫查过程中患者移动或探头移动,中心轴不重合,则将不可避免地产生伪像。

三维超声成像设备的制作技术

本技术新型公开了一种三维超声成像装置,包括:图像采集模块、信号和影像处理模块、处理主机、控制装置和显示设备。所述图像采集模块用于对扫查区域进行扫查,采集超声波数据;所述信号和影像处理模块用于对接收到的超声波数据进行处理,发送到处理主机;所述控制装置用于控制图像采集模块进行扫查和运动;所述处理主机用于生成三维影像,输出图像至显示设备,发送控制指令至控制装置和图像采集模块。采用三维超声成像装置实时扫查,精度高,稳定性好;使用实时三维超声,可对疑似病灶空间分布扫查,利用扫查数据建立器官及疑似病灶的三维图像,并通过显示设备显示,降低医生手术操作的出错率,提高初次手术的成功率,减轻医生的手术疲劳度。 技术要求 1.一种三维超声成像装置,其特征在于,包括:图像采集模块、信号和影像处理模块、处理主机、控制装置和显示设备;所述处理主机通过信号和影像处理模块与图像采集模块 相连接,所述显示设备与处理主机相连接,所述控制装置分别与图像采集模块以及处理 主机相连接; 所述图像采集模块用于对扫查区域进行扫查,采集超声波数据,将所述超声波数据传输 至信号和影像处理模块; 所述信号和影像处理模块用于对接收到的超声波数据进行处理,发送到处理主机;

所述控制装置用于控制图像采集模块进行扫查和运动; 所述处理主机用于生成超声波图像和/或三维图像,向显示设备输出所述超声波图像和/或三维图像,发送控制指令至控制装置和图像采集模块; 所述显示设备用于显示超声波图像和三维图像。 2.如权利要求1所述的一种三维超声成像装置,其特征在于,所述图像采集模块包括第一超声探头、第二超声探头、第一位置传感器、第二位置传感器和超声支架; 所述第一超声探头和第一位置传感器相连接,所述第二超声探头和第二位置传感器相连接,所述第一超声探头和第二超声探头分别安装在超声支架上。 3.如权利要求2所述的一种三维超声成像装置,其特征在于,所述超声支架包括第一扫查通道杆和第二扫查通道杆,所述第一超声探头安装在第一扫查通道杆上,可沿第一扫查通道杆运动,以对扫查区域进行扫查,所述第二超声探头安装在第二扫查通道杆上,可沿第二扫查通道杆运动,以对扫查区域进行扫查,第一扫查通道杆和第二扫查通道杆之间的夹角角度可以调整。 4.如权利要求2所述的一种三维超声成像装置,其特征在于,所述超声支架的形状包括但不限于:平直支架和弧形支架。 5.如权利要求1所述的一种三维超声成像装置,其特征在于,所述信号和影像处理模块包括前置放大器,A/D转换器,时间增益补偿电路,动态滤波电路,D/A转换器。 6.如权利要求1所述的一种三维超声成像装置,其特征在于,所述显示设备包括多显示器屏结构。 7.如权利要求1所述的一种三维超声成像装置,其特征在于,所述控制装置包括但不限于高精密微型电机、电路板和线缆。 8.如权利要求1所述的一种三维超声成像装置,其特征在于,所述处理主机包括电脑主机和输入设备。

三维超声成像的发展现状及若干关键技术分析

生物医学工程学杂志 J Biomed Eng  1998∶15(3)∶311~316 三维超声成像的发展现状及若干关键技术分析 郝晓辉 高上凯 高小榕 综述 杨福生 审校 (清华大学电机系,北京100084) 内容提要 介绍三维超声成像的意义,不同的实现方案,并详细剖析了三维超声成像中遇到的图像定位、三维准确重构、不规则采样平面处理以及三维超声图像的分割问题。讨论了现有的发展水平及未来的发展方向。 关键词 三维超声成像 分割 准确重构 Development Condition of Three Dimensional Ultrasonic Imaging and Analysis of Some Key Technologies Hao Xiaohui Gao Shangkai Gao Xiaorong Yang Fusheng (Depar tment of Electr ical Engine ering,Ts inghua Uni ver sity,Beij ing 100084) Abstract This paper introduces the value of three-dimensional ultrasonic imaging and it′s different realizing ap-proaches.It deliberately analyzes the key techniques used in three-dimensional ultrasonic imaging.These techniques include registration of two-dimensional i mages,accurate reconstruction of three-dimens ional volume,projection of ir-regularly sampled plane and segmentation of three-dimensional image.The development status and future trend are al-so given in this paper. Key words Three dimensional ultrasonic imaging Segmentation Accurate reconstruction 1 三维超声成像概述 1.1 回顾 三维超声成像的概念最初由Baun和Gree-wood[1]在1961年提出。他们在采集一系列平行的人体器官二维超声截面的基础上,用叠加的方式得到了器官的三维图像。在这之后,很多人进行了这方面的研究工作,试验了各种方法。诸如Dekker[2]在1974年采用的机械臂方法,1976年Moritz提出的回声定位方法,1979年首次被Raab应用的电磁定位方法[2],以及Duke大学Vonn Ra mm[7]等人研制的二维面阵探头体积射束方法等等。这些方法都着眼于获取进行三维重建的超声体积数据。成像方面, Dekker在1974年完成了首例心脏三维重建。1986年,Martin利用经食道超声探头(IEE)获得了静态的三维图像。1990年,Wollschlge用回拉式IEE探头重建了动态心脏三维超声图像。胎儿三维形体的重构[3]与血管的三维超声成也有许多人在研究,并取得了不少成果。 1.2 临床价值和意义 传统的B型超声成像系统所提供的是人体某一断面的二维图像,医生必须根据自己的经验对多幅二维图像在大脑中进行合成以理解其三维解剖结构。这一过程需要长时间的训练和相当的熟练程度,对医生提出了很高的要求,

三维超声成像的新技术及其临床应用

【摘要】随着医学影像技术的发展,超声成像已经成为临床上应用最广泛的医学成像模式之一。近年来,随着电子技术、计算机技术的发展,超声成像设备在成像方法和技术等层面上不断得到改进,临床诊断能力也得到进一步提高。本文主要介绍三维超声成像的新技术及其临床应用。 【关键词】超声成像;临床应用 【中图分类号】r 445.1 【文献标识码】a 【文章编号】1004-7484(2012)12-0440-02 随着社会科学技术的进步与人们生活水平的提高,医学影像学作为医生诊断和治疗重要手段已成为医学技术中发展最快的领域之一,它使得临床医生对人体内部病变部位的观察更直接、更清晰,确诊率更高。而超声成像技术在医学成像领域中以其特有的优势发挥了巨大的作用,在临床上得到了广泛的应用。20世纪40年代初就已探索利用超声检查人体,50年代已研究、使用超声使器官构成超声层面图像,70年代初又发展了实时超声技术,可观察心脏及胎儿活动。三维超声成像技术与传统二维超声成像相比,具有明显的优势:首先三维超声成像技术能直接显示脏器的三维解剖结构;其次还可对三维成像的结果进行重新断层分层,能从传统成像方式无法实现的角度进行观察;再有还可对生理参数进行精确测量,对病变位置精确定位。因此,近几年来三维超声成像已经成为医学成像领域备受关注的方面。 1 三维超声的成像技术 可靠的数据提取是得到精确三维超声图像的前提。采用二维面阵超声探头,使超声束在三维扫查空间中进行摆动,即可直接得到三维体数据。但二维面阵换能器的制作工艺限制了阵元数,使得三维图像的分辨率受到了一定的限制。目前已有使用二维阵列的超声成像系统面世。目前三维超声数据的提取仍广泛采用一维阵列探头。用一维阵列探头提取三维超声数据,需要外加定位装置,如目前临床广泛采用的一体化探头。该探头是将一个一维超声探头和摆动机构封装在一起,操作者只要将该探头放在被探查部位,系统就能自动采集三维数据。还有一种新型探头专门用于解决定位问题。该探头有三个阵列,中间的主阵列用于超声成像,与主阵列垂直的两个侧阵列用于提取定位图像。由于探头移动的连续性,所以定位图像两两重叠部分很大,可以通过两侧的定位图像确定两次采样间的位移、旋转,从而确定图像的空间位置。此外,还有一些文献提供了通过相邻图像的相关和图像的斑点噪声统计规律来确定探头侧向位移的方法。 2 三维超声的临床应用 2.1 三维超声在空腔脏器中的应用 2.1.1 胃、肠道疾病嘱受检者适量饮水或灌肠后可建立良好的透声窗。清楚显示胃肠道隆起性病变与溃疡的大小、深度、边缘形态,观察恶性肿瘤的浸润深度、范围及与邻近组织、血管的立体位置关系,进行术前tnm分期,对协助临床制定相应的治疗方案,具有重要意义。3d-cde对溃疡出血和胃底静脉曲张的诊断,也可提供较大的帮助。 2.1.2 膀胱疾病膀胱充盈后可形成极佳的透声窗,三维超声与二维超声一样清晰显示病变的形态、大小、数目、内部回声,同时三维超声还能显示病变的整体、表面形态及肿瘤对膀胱壁的浸润情况,从而提高了其诊断的准确性,并有助于肿瘤术前方案的抉择。对慢性膀胱炎症、憩室、结石、凝血块等膀胱疾病的诊断,也显示出优越性。 2.2 在实质性脏器中的应用 肝脏疾病肝囊肿与肝脓肿二维超声诊断准确性较高,而肝癌与肝内其它性质占位性病变相互间的鉴别有时较为困难。三维超声可从不同方位观察肝表面和边缘轮廓,肿三维超声成像在临床上有广泛的应用前景。可用于精确测量和定位在产科临床上,三维超声成像可用于鉴别早期胎儿是否存在畸形以及检查各个孕期胎儿的生长发育情况;在心血管疾病诊断中,可用于多种心脏疾病以及血管内疾病的检查。随着实时三维超声成像(一般要求帧频必须大

三维超声图像的获取方法研究

三维超声图像的获取方法研究 发表时间:2013-01-17T10:59:13.343Z 来源:《医药前沿》2012年第26期供稿作者:陆屹 [导读] 近年来三维超声图像获取的途径集中在以下四种方法:机械扫描、自由臂扫查法、三维探头法、三维电子相控阵方法。 陆屹(无锡市第八人民医院江苏无锡 214000) 【摘要】近年来三维超声图像获取的途径集中在以下四种方法:机械扫描、自由臂扫查法、三维探头法、三维电子相控阵方法。其中,前两种方法是由传统二维超声改进而形成的。 【关键词】三维超声成像虚拟仪器图像处理 【中图分类号】R445.1 【文献标识码】A 【文章编号】2095-1752(2012)26-0115-01 1、机械驱动扫查将探头固定在机械装置上由计算机控制电动马达带动探头做某种拟定形式的运动,常见的形式有三种,如图1所示: 图1机械驱动扫查方法 (a)线性扫查法;(b)扇形扫查法;(c)旋转扫查法 ①线性扫查法(Linear scanning)即探头装在一机械支架的平移机构上,通过电机带动其沿平行于病人皮肤表面并与图像垂直的直线轨迹移动,获得一系列该器官相互平行等间距的二维切平面图像。已进入商品化的三维超声成像系统如Kretz公司的COMBISON 530即采用此种扫描方式。该产品在一个特制的3D探头内安装有机械扇扫装置,可在两个垂直的方向上做扫描。工作时超声换能器沿x,y两个方向做均匀扫描,各采集一系列二维图像。而后根据两个主向的图像重组三维数据。该系统所得到的三维图像分率较低。线性扫描的方法在母体胎儿三维超声成像系统和经食道后拉式超声CT系统中得到了较为成功的应用。 ②扇形扫查法(Fan scanning)探头固定于某一位置,由机械驱动呈扇形运动获取图像,其扫查间隔角度可调。扫描平面的近场基本固定,远场作扇形移动,将采集的二维图像作数字存储,建立金字塔形数据库(Pyram data bank),再根据需要任意切割,显示所欲观察的三维图像。这种扫描方式会产生近端过采样和远端欠采样现象,可以通过插补三维像素(voxel)或减少摆动角度间隔来弥补。此方法主要用于检查静态脏器,有的生产厂家将换能器封闭于特点的盒套内,操作比较方便。 ③旋转扫查法(Rotation scanning)目前被广泛接受,能较理想地进行三维成像采集。将探头固定于某一透声窗,以切平面图像中声束方向的中心平分线为轴,使探头作180°旋转,获得围绕轴线360°范围内一系列旋转角间隔相等,且中心平分线互相重叠的二维切面图像,适用于心脏、前列腺、膀胱等。由于机械驱动扫查中,探头具有规定的逻辑运动轨迹。因此,计算机对所获得的每一图像进行空间定位、数据处理及三维成像时速度快,图像重建准确可靠。缺点是采样过程繁琐、机械驱动支架体积大且沉重、与各类探头不易配接、扫查时有机械噪音、扫查方式固定、取样角度不易确定、扫查范围和时间受限制等。 2、自由臂扫查法(Free hand scanning)虽然机械定位系统具有较高的定位精度和重建速度,但是一个不容回避的问题是复杂的机械装置,特别是在大器官检查的时候,就显得不方便。为了克服这一不足,研究人员设计了多种位置跟踪系统,即在医生手持B超探头做检查时,系统能够随时跟踪探头的位置和方向。这样的系统可以让医生根据需要自由地选择扫查的方向,并能在移动探头的过程中自动适应体表形状的变化。这就是所谓的“Free-hand系统”。该系统要求位置探测器有足够高的精度和足够快的数据采集速度,以便记录探头每一时刻的空间姿态。 曾经开发以及正在研究的Free-hand系统包括,声传感器系统、多关节机械定位系统和电磁式定位系统,如图2所示。 图2 自由臂扫查法中的三种定位方法示意图 (a)声学定位;(b)机械定位;(c)电磁定位 ①声学定位,即声音控制探头的方法,把3个发声器件固定在探头上[40, 41],一组微音器固定在病人的上方。操作人员使探头在探测部位不断移动,同时让发声器件工作,通过测量声传播过程中不同的时间延迟就可以推算出探头的空间位置。此类装置的传感器体积较大,声束易被遮挡,不具备实用价值。 ②机械定位,即自由活动机械臂定位器,是把超声探头装在一个有多个活动关节的机械臂上,它使操作者可以完成许多复杂的操作动作,从而选择一个需要的角度和方位。具体方法是把电位器装在活动机械臂的关节处[42],关节的任何运动将引起电位器的运动,只要记录了电位器的运动情况,超声探头的运动也就完全得到检测和控制[43]。然而,探头定位精度与其活动范围大小成反比,限制了扫查体积。且机械臂制造复杂,价格高昂。 ③电磁定位,即电磁式位置传感器定位系统,是近年来成功开发的Free-hand系统。它是基于6个自由度的。电磁式位置传感器由发射器、接收器及相应的电子装置构成。发射器产生空间变化的电磁场,接收器内有3个正交的线圈用于感受所在位置的电磁场的强度。只要将接收器固定在超声探头上,就可以实现对探头位置和方向的跟踪。由于这套系统具有体积小、使用方便等突出优点,成为近几年来超声三维成像研究的热点。电磁式定位系统的缺点是对噪声和误差比较敏感。电磁干扰(如CRT监视器等)、使用环境中的铁磁材料都可以使测量的

三维超声成像技术的基本原理及操作步骤

三维超声成像技术的基本原理及操作步骤230031 安徽合肥 解放军105医院 罗福成 1 基本原理 三维超声成像分为静态三维成像(static three2 dimensional imaging)和动态三维成像(dynamic three2dimensional imaging),动态三维成像由于参考时间因素(心动周期),用整体显像法重建感兴趣区域准实时活动的三维图像,则又称之为四维超声心动图。静态与动态三维超声成像重建的原理基本相同。 111 立体几何构成法 该法将人体脏器假设为多个不同形态的几何体组合,需要大量的几何原型,因而对于描述人体复杂结构的三维形态并不完全适合,现已很少应用。 112 表面轮廓提取法 是将三维超声空间中一系列坐标点相互连接,形成若干简单直线来描述脏器的轮廓的方法,曾用于心脏表面的三维重建。该技术所需计算机内存少,运动速度较快。缺点是:(1)需人工对脏器的组织结构勾边,既费时又受操作者主观因素的影响;(2)只能重建比较大的心脏结构(如左、右心腔),不能对心瓣膜和腱索等细小结构进行三维重建;(3)不具灰阶特征,难以显示解剖细节,故未被临床采用。 113 体元模型法(votel mode) 是目前最为理想的动态三维超声成像技术,可对结构的所有组织信息进行重建。在体元模型法中,三维物体被划分成依次排列的小立方体,一个小立方体就是一个体元。任一体元(v)可用中心坐标(x,y,z)确定,这里x,y, z分别被假定为区间中的整数。二维图像中最小单元为像素,三维图像中则为体素或体元,体元素可以认为是像素在三维空间的延伸。与平面概念不同,体元素空间模型表示的是容积概念,与每个体元相对应的数V(v)叫做“体元值”或“体元容积”,一定数目的体元按相应的空间位置排列即可构成三维立体图像。描述一个复杂的人体结构所需体元数目很大,而体元数目的多少(即体元素空间分辨率)决定模型的复杂程度。目前,国内外大多数使用Tom Tec Eeno view computer-work station来进行体元模型三维成像。 此外,随着高档超声仪器软件的不断开发,静态三维成像不经过工作站可直接启动设备软件包三维重建或三维电影回放来完成。 2 操作步骤 任何三维成像的研究均需通过原始图像采集、图像数据后处理、三维图像重建、三维图像显示和定量测量。扫描途径包括经食管、经胸和剑突下及腹壁等,每种方法各有利弊。 211 图像的采集 21111 机械驱动扫查 将探头固定在机械装置上,由计算机控制电动马达,带动探头做某种拟定形式的运动,常见的形式有三种:(1)平行扫查法(Parallel scanning):即探头沿直线做均匀连续的平行位移,获得一系列相互平行等距的二维切面图像。经食管或血管内的超声三维重建所采用的逐步后拉式采样亦属平行扫查。此方法图像易失真,目前已基本废弃。 (2)扇形扫描法(fan-like scanning):扫描平面的近场基本固定,远场沿z轴方向扇形移动,将采集的二维图像做数字存储,建立金字塔形数据库(Pyramid data-bank),而后插补三维像素(voxel),再根据需要任意切割,显示所欲观察的三维图像。此发现主要用于检查静态脏器,有的厂家将换能器封闭于特制的盒套内,操作比较方便。(3)旋转扫描法(rotat2 ing scanning):目前被广泛接受,能较理想地进行三维成像采集。以二维切面图像中声束方向的中心平分线为轴,使探头做180°旋转,获得围绕轴线360°范围内一系列相互均匀成角,且中心平分线相互重叠的二维切面图像,适用于心脏、前列腺、膀胱等。经食管的多平面探头或环形相控阵探头三维成像采样过程亦属此类。 由于机械驱动扫查中,探头具有规定的逻辑运动轨迹,因此,计算机对所获得的每一图像进行空间定位、数据处理及三维成像时速度快,图像重建准确可靠。缺点是采样过程繁琐、机械驱动支架体积大且沉重、与各类探头不易配接、扫查时有机械噪音、

三维超声的成像原理

第一章三维超声的成像原理 宇宙空间包含有三个互相垂直的方向,即X、Y和Z方向。单一方向只能描述一条直线,而任何两个垂直的方向都可以描述一个平面,三个互相垂直的方向则可以描述一个立体,它们相应提供空间的一维、二维和三维信息。 超声成像(U l t r a s o n i c I m a g i n g)是使用超声波的声成像。在超声诊断仪中,有传递人体组织一维空间信息的A型、M型和D型;有传递人体组织二维空间信息的B型、C型、F型和C F M型(彩色血流图);有传递人体组织三维空间信息的组织三维成像、血流三维成像和融合三维成像。目前,所有三维成像都是以平面显示的方法显现成具有立体感的显示方式,这种方式被称为三维显示(3D-s c o p e)。

第一节三维成像的原理及基本方 法 一.三维成像的原理 三维成像按成像的原理可分为三大类:1.利用光学原理与系统进行三维成像; 2.利用光学系统和图像迭加原理的三维成像; 3.利用计算机辅助进行三维重建成像。 二.声全息(A c o u s t i c a l H o l o g r a p h y)声全息技术是通过探测波与参考波之间的相互干涉,而把探测波振幅和相位携带的有关探测物结构的全部信息提取与再现的技术。声全息技术由于获取和记录全息数据的方式不同,可分为三类:①液面全息;②扫描全息;③布阵全息。不管哪一类,都是透射成像,并

沿用了激光全息的方法,利用超声波相干的特性,不仅把超声波振幅信息记录下来,也反映出相位信息。因此,在把超声全息图重现时。能逼真地显示出人体的内部结构,并具有实时动态、分辨率高和灰阶丰富等特点。 图1-1是液面法声全息成像系统结构原理图。它表明声成像的过程。在工作时由换能器1发射的声束经人体受检部位,透过人体的声束由组合透镜2收集,经反射器3反射在小油槽5的液面上聚焦成像。同时由换能器4发射的参考声束也射到液面,与透过受检部位的物波相干形成声全息图。由激光器6发射的激光经扩散透镜7和光学部件产生平行激光照射液面的声全息图,受声全息图调制的反射激光发生衍射,各级衍射光经光学聚焦透镜8后在聚焦平面9上分离,并通过空间滤波器获取图像,由电视摄像机10摄像,并在显示器上显示三

三维超声成像技术的发展及临床应用

三维超声成像技术的发展及临床应用(1) 自超声技术应用于临床诊断60多年来,随着临床需求和现代电子技术尤其是计算机技术的发展,使超声影像技术,从应用初期的一维A型和M型超声成像 发展到了实时灰阶二维B型超声成像,到目前的全数字能实时回放的三维超声影像系统。超声影像具有无创性,高灵敏度,应用面广,低成本和操作方便等优点,发展速度和普及程度近年已成为医学影像之首。可以预计实时三维(四维)超声成像必将成为二十一世纪医学影像系统临床应用中一项最为有效的诊断工具而造福于人类。 正是由于这种市场需求,世界上许多知名的有远见的厂商竟相投入高科技开发全数字技术的实时三维(四维)超声影像系统。东软数字医疗股份有限公司以独特的视角推出了具有世界领先实时三维(四维)技术和软件技术的NAS-2000a,使超声医学影像与当代计算机尖端技术完美结合,在软件上采用了目前临床要求的最新专业软件,实现了动态三维实时回放、实时三维(四维)成像,简化了本来十分复杂的处理过程,提高了效率。 原理与方法 成像原理: 三维超声成像分为静态三维成像和动态三维成像, 动态三维成像由于把时间的因素加进去, 用整体显像法重建感兴趣区域准确实时活动的三维图像(又称四维)。 1、立体几何构成法:将人体脏器假设为多个不同形态的几何组合,需要大量的几何原型,因而对于描述人体复杂结构的三维形态并不完全适合,现已很少应用。 2、表面轮廓提取法:将三维超声空间中一系列坐标点相互连接,形成若干简单直线来描述脏器的轮廓,曾用于心脏表面的三维重建。该技术所用计算机内存少,运动速度较快。缺点是: (1)需人工对脏器的组织结构勾边,既费时又受操作者主观因素的影响; (2)只能重建左、右心腔结构,不能对心瓣膜和腱索等细小结构进行三维重建; (3)不具灰阶特征,难以显示解剖细节,故未被临床采用。 3、体元模型法:是目前最为理想的动态三维超声成像技术,可对结构的所有组织信息进行重建。 在体元模型法中,三维物体被划分成依次排列的小立方体,一个小立方体就是一个体元。 一定数目的体元按相应的空间位置排列即可构成三维立体图像。 4、随着高档超声仪器软件的不断开发, 三维成像不经过工作站可直接启动设备软件包进行三维重建或三维电影回放来完成。 成像方式:动态三维超声成像原理与静态基本相同。

三维超声成像技术的基本原理及操作步骤

三维超声成像技术的基本原理及操作步骤 230031安徽合肥解放军 105医院罗福成 1基本原理 三维超声成像分为静态三维成像 (static three 2 dimensional imaging 和动态三维成像 (dynamic three 2dimensional imaging , 动态三维成像由于参考时间因素 (心动周期 , 用整体显像法重建感兴趣区域准实时活动的三维图像 , 则又称之为四维超声心动图。静态与动态三维超声成像重建的原理基本相同。 111立体几何构成法该法将人体脏器假设为多个不同形态的几何体组合 , 需要大量的几何原型 , 因而对于描述人体复杂结构的三维形态并不完全适合 , 现已很少应用。 112表面轮廓提取法是将三维超声空间中一系列坐标点相互连接 , 形成若干简单直线来描述脏器的轮廓的方法 , 曾用于心脏表面的三维重建。该技术所需计算机内存少 , 运动速度较快。缺点是 :(1 需人工对脏器的组织结构勾边 , 既费时又受操作者主观因素的影响 ; (2 只能重建比较大的心脏结构 (如左、右心腔 , 不能对心瓣膜和腱索等细小结构进行三维重建 ; (3 不具灰阶特征 , 难以显示解剖细 节 , 故未被临床采用。 113体元模型法 (votel mode 是目前最为理想的动态三维超声成像技术 , 可对结构的所有组织信息进行重建。在体元模型法中 , 三维物体被划分成依次排列的小立方体 , 一个小立方体就是一个体元。任一体元 (v 可用中心坐标 (x ,y ,z 确定 , 这里 x ,y , z 分别被假定为区间中的整数。二维图像中最小单元为像素 , 三维图像中则为体素或体元 , 体元素可以认为是像素在三维空间的延伸。与平面概念不同 , 体元素空间模型表示的是容积概念 , 与每个体元相对应的数 V (v 叫做“ 体元值” 或“ 体元容积” , 一定数目的体元按相应的空间位置排列即可构成三维立体图像。描述一个复杂的人体结构所需体元数目很大 , 而体元数目的多少 (即体元素 空间分辨率决定模型的复杂程度。目前 , 国内外大多数使用 Tom Tec Eeno view computer -work station 来进行体元模型三维成像。

超声成像原理简介

生物医学超声三维成像简介 姓名:黄金盆学号:MG1423074 超声(简称US)医学是声学、医学、光学及电子学相结合的学科。凡研究高于可听声频率的声学技术在医学领域中的应用即超声医学。包括超声诊断学、超声治疗学和生物医学超声工程,所以超声医学具有医、理、工三结合的特点,涉及的内容广泛,在预防、诊断、治疗疾病中有很高的价值。 超声医学影像技术作为医学影像学的一门新兴学科,经历了从A超、M超、B超、彩色多普勒超声几个阶段。三维超声成像技术(three-dimensional ultrasono-graphy)的研究始于20世纪70年代,由于成像过程慢,使用复杂限制了其在临床上的使用。最近随着计算机技术的飞速发展,三维超声成像取得长足进步,已经进入临床应用阶段。 三维超声成像分为静态三维成像和动态三维成像[1],动态三维成像由于参考时间因素,用整体显像法重建感兴趣区域准实时活动的三维图像,则又称之为四维超声心动图。静态与动态三维超声成像重建的原理基本相同[2]。 1、1立体几何构成法该法将人体脏器假设为多个不同形态的几何体组合,需要大量的几何原型,因而对于描述人体复杂结构的三维形态并不完全适合,现已很少应用。 1、2表面轮廓提取法是将三维超声空间中一系列坐标点相互连接,形成若干简单直线来描述脏器的轮廓的方法,曾用于心脏表面的三维重建。该技术所需计算机内存少,运动速度较快。缺点是:(1)需人工对脏器的组织结构勾边,既费时又受操作者主观因素的影响;(2)只能重建比较大的心脏结构(如左、右心腔),不能对心瓣膜和腱索等细小结构进行三维重建;(3)不具灰阶特征,难以显示解剖细节,故未被临床采用。 1、3体元模型法(votel mode)是目前最为理想的动态三维超声成像技术,可对结构的所有组织信息进行重建。在体元模型法中,三维物体被划分成依次排列的小立方体,一个小立方体就是一个体元。任一体元(v)可用中心坐标(x,y,z)确定,这里x,y,z分别被假定为区间中的整数。二维图像中最小单元为像素,三维图像中则为体素或体元,体元素可以认为是像素在三维空间的延伸。与平面概念不同,体元素空间模型表示的是容积概念,与每个体元相对应的数V

实验四 超声波成像基本原理

实验四超声波成像基本原理 一、超声波简介及应用 超声波指的是频率超过2×104 Hz,人耳不能听到的声波。超声广泛存在于自然界和日常生活中,如老鼠、海豚的叫声中含有超声成分,蝙蝠利用超声导航和觅食;金属片撞击和小孔漏气也能发出超声。在实验和工业生产中,人们利用压电效应(piezoelectric effect)产生超声波。压电效应是指对于某些不导电的固体物质(称为压电材料),当它们在压力(或拉力)的作用下产生变形时,在物体相对的表面会出现正、负束缚电荷,从而得产生电势差的现象。利用压电效应的逆效应,即在压电材料相对的两个表面施加电压信号,使得材料发生机械变形,就可以得到超声波。 作为一种探测方法,超声波技术在军事、工业和医疗上有非常广泛的应用(探测对象包括潜水艇、固体材料内部的缺陷、体内脏器的病变以及胎儿的发育状况等。)超声检测的具有以下突出的优点: 1. 高穿透性,可以探测到材料深处的缺陷。 2. 灵敏度高, 可以探测到非常小的缺陷。 3. 非破坏性,只需要在材料的表面工作。 4. 对操作者以及周围的设备和材料没有伤害和干扰。 二、超声波C扫描成像基本原理 通过探头在试块顶部的X-Y扫描记录,得到来自试块内部缺陷的平面分布、埋藏深度Z 方向的信息,利用测量到的三维数据进行计算机图象重建,得到试块内部缺陷的立体图象。 超声成像是通过测量反射波来获得物体内部的信息。在进行缺陷定位时,测量缺陷反射回波对应的时间,根据被测材料的声速可以计算出缺陷到探头入射点的垂直深度或水平距离。在超声成像时,探头在试块顶部二维扫描,得到来自试块内部缺陷深度的分布,再利用计算机进行图像重建,就可以得到试块内部缺陷的立体图像。 由于衍射的存在,实际的超声波总有一定的发散性。通常我们用偏离中心轴线后振幅减小一半的位置表示声束的边界。如图1所示,在同一深度位置,中心轴线上的能量最大,当偏离中线到位置A、A’时,能量减小到最大值的一半。其中θ角定义为探头的扩散角。θ越小,探头方向性越好,定位精度越高。与光学仪器的成像一样,波长越短(频率越高),探头越大(相当于透镜的孔径越大),超声探头发射能量的指向性就越好。

四维超声成像技术与方法

四维超声成像技术与方法 作者:魏晓光来源:安太医院 近年来计算机技术革命化的进步被融入超声诊断系统,使得三维容积成像的速度在短短的几年时间里得到了极大提高,目前已经发展到能够进行动态的四维成像。 高分辨的二维超声和彩色多普勒超声的技术进步是超声诊断学发展的重要里程碑,尤其是在妇产科的应用,成为无可替代的非侵入性的诊断工具。近年来四维超声技术的发展和进步,为非侵入性的诊断技术又开辟了一个新的领域。 四维超声技术能够克服二维超声空间显像的不足,成为二维超声技术的重要辅助手段。四维超声的进步体现在能够迅速地对容积图像数据进行储存、处理和动态显示其三维立体图像,并且能够得到多平面的图像,而这一功能以往只有CT和MRI技术才具备。目前四维超声尚不可能完全替代二维超声,但它的确为一些复杂声像结构的判断提供了大量辅助信息,并对某些病变的诊断起到二维超声无法替代的作用。它的应用潜能正随着经验的积累被逐步开发出来。 一、四维超声技术简介 三维超声是将连续不同平面的二维图像进行计算机处理,得到一个重建的有立体感的图形。早期的三维重建一次必须采集大量的二维图像(10~50幅),并将其存在计算机内,进行脱机重建和联机显示,单次三维检查的图像数据所需的存储空间达数十兆字节,成像需要数小时甚至数天时间。近年来三维超声与高速的计算机技术的联合使其具备了临床实用性。三维表面成像在80年代首次应用于胎儿;90年代初期开始了切面重建和_一个互交平面成像;容积成像则开始干1991年;1994发展了散焦成像;1996年开始了实时超声束跟踪技术,而最新发展的真正的实时三维超声可以称作四维超声(four—dimensional ultrasound),数据采集和显示的速率与标准的二维超声系统相接近,即每秒15~30帧,被称作高速容积显像(high speed ultrasotlnd v01umetri clmaging,HSUVI)。真正实现实时动态三维成像,将超声技术又提高一个台阶。新景安太医院拥有4台四维彩超,专业的四维彩超检查医生,此技术已经在我院临床使用4年多,有非常丰富的经验。 四维超声成像方法有散焦镜法、计算机辅助成像和实时超声束跟踪技术。 (一)散焦镜方法(defoctJsi rlg lens metriod)也称厚层三维图像,方法简单,费用低。装置仅需在凸阵或线阵探头上套上一个散焦镜。用此方法可以对胎儿进行实时观察,然而胎体紧贴宫壁时图像就会重叠,使胎儿图像辨别困难。 (二)计算机辅助成像是目前首选的三维成像方法,成像处理过程包括:获取三维扫查数据;建立三维容积数据库;应用三维数据进行三维图像重建。 (三)实时超声束跟踪技术是三维超声的最新技术,其过程类似于三维计算机技术但可以立即成像。仅仅需要定下感兴趣部位的容积范围就可以住扫查过程中实时显示出三维图像,可以提供连续的宫内胎儿的实时三维图像,例如可以看到胎儿哈欠样张口动作等。 二、四维超声成像方法 四维超声的临床实用性很大程度上取决于操作人员对此技术掌握的熟练程度。只有了解四维超声的基本原理和概念,熟练掌握四维超声诊断仪的操作方法和步骤,才能充分发挥三维超声的最大作用。 (一)四维成像的主要步骤与成像模式常规四维成像包括以下步骤:

相关主题
文本预览
相关文档 最新文档