当前位置:文档之家› 沉积-沉淀法及纳米材料的制备方法

沉积-沉淀法及纳米材料的制备方法

沉积-沉淀法及纳米材料的制备方法
沉积-沉淀法及纳米材料的制备方法

沉淀法的种类很多包括单组分沉淀法、共沉淀、均匀沉淀、浸渍沉淀法、导晶沉淀法、水热合成法。好像没听过沉积沉淀法。

你说的沉积沉淀法可能和浸渍沉淀法很像,即在浸渍液中预先配入沉淀剂母体,待浸渍操作完成之后,加热升温使待沉积组分沉积在载体表面上。deposition-precipitation DP方法

均相沉积法

控制溶液中沉淀剂的浓度,使之缓慢地增加,控制过饱和度在适当范围内,则可使溶液中的沉淀处于平衡状态,避免浓度不均匀现象,沉淀能在整个溶液中均匀地出现,从而获得纯度高、粒度均匀的纳米颗粒。通常,通过溶液中的化学反应式沉淀剂满满的生成,可克服由外界向溶液中加沉淀剂而造成沉淀剂的局部不均匀,而不能在整个溶液中均匀反应的缺点。

纳米材料是指在三维空间中至少有一维处于纳米尺度范围(1-100nm)或由它们

作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。“

纳米材料制备方法如下:

(1)惰性气体下蒸发凝聚法。通常由具有清洁表面的、粒度为1-100nm的微粒经高压成形而成,纳米陶瓷还需要烧结。国外用上述惰性气体蒸发和真空原位加压方法已研制成功多种纳米固体材料,包括金属和合金,陶瓷、离子晶体、非晶态和半导体等纳米固体材料。我国也成功的利用此方法制成金属、半导体、陶瓷等纳米材料。

(2)化学方法:1水热法,包括水热沉淀、合成、分解和结晶法,适宜制备纳

米氧化物;2水解法,包括溶胶-凝胶法、溶剂挥发分解法、乳胶法和蒸发分离

法等。

(3)综合方法。结合物理气相法和化学沉积法所形成的制备方法。其他一般还有球磨粉加工、喷射加工等方法。

实验7--沉淀法制备纳米氧化锌粉体

实验七 沉淀法制备纳米氧化锌粉体 一、实验目的 1、了解沉淀法制备纳米粉体的实验原理。 2、掌握沉淀法制备纳米氧化锌的制备过程和化学反应原理。 3、了解反应条件对实验产物形貌的影响,并对实验产物会表征分析。 二、实验原理 氧化锌是一种重要的宽带隙(3.37 eV)半导体氧化物,常温下激发键能为60 meV 。近年来,低维(0维、1维、2维)纳米材料由于具有新颖的性质已经引起了人们广泛的兴趣。氧化锌纳米材料已经应用在纳米发电机、紫外激光器、传感器和燃料电池等方面。通常的制备方法有蒸发法、液相法。我们在这里主要讨论沉淀法。 沉淀法是指包含一种或多种离子的可溶性盐溶液,当加入沉淀剂(如OH --,CO 32-等)后,或在一定温度下使溶液发生水解,形成不溶性的氢氧化物、氧化物或盐类从溶液中析出,并将溶剂和溶液中原有的阴离子洗去,得到所需的化合物粉料。 均匀沉淀法是利用化学反应使溶液中的构晶离子由溶液中缓慢均匀地释放出来。而加入的沉淀剂不是立即在溶液中发生沉淀反应,而是通过沉淀剂在加热的情况下缓慢水解,在溶液中均匀地反应。 纳米颗粒在液相中的形成和析出分为两个过程,一个是核的形成过程,称为成核过程;另一个是核的长大,称为生长过程。这两个过程的控制对于产物的晶相、尺寸和形貌是非常重要的。 制备氧化锌常用的原料是可溶性的锌盐,如硝酸锌Zn(NO 3)2、氯化锌ZnCl 2、醋酸锌。常用的沉淀剂有氢氧化钠(NaOH )、氨水(NH 3. H 2O )、尿素(CO(NH 2)2)。一般情况下,锌盐在碱性条件下只能生产Zn(OH)2沉淀,不能得到氧化锌晶体,要得到氧化锌晶体通常需要进行煅烧高温。均匀沉淀法通常使用尿素作为沉淀剂,通过尿素分解反应在反应过程中产生NH 3 H 2O 与锌离子反应产生沉淀。反应如下: O H NH CO O H NH CO 23222223)(?+→+ (1) OH -的生成: -+ +→?OH NH O H NH 423 (2) CO 32-的生成: O H CO NH CO O H NH 223422322++→+?-+ (3)

电化学法制备纳米铜粉

文章编号:167325196(2008)0320009203 电化学法制备纳米铜粉 徐建林1,2,陈纪东1,2,张定军1,2,马应霞1,2,冉 奋1,2,龙大伟1,2 (1.兰州理工大学甘肃省有色金属新材料重点实验室,甘肃兰州 730050;2.兰州理工大学有色金属合金及加工教育部重点实验室,甘肃 兰州 730050) 摘要:在十二烷基硫酸钠、吐温80、苯、正丁醇、十二烷基硫醇和硫酸铜混合而成的乳液中,采用电化学合成的方法制备稳定的、粒径均匀的Cu 纳米颗粒.采用XRD 、TEM 及FT -IR 对所制备的Cu 纳米颗粒的结构、形貌、粒径大小及表面键合性质进行表征.结果表明,制备的纳米铜粉为球型颗粒,分散较好,尺寸较为均匀,约为60~80nm ,并且具有立方晶型结构;得到的纳米铜颗粒表面含有一层有机物质,形成了包覆层较薄的核壳结构,这种包覆层阻止了纳米铜粉在空气中或水中的团聚和氧化,起到提高纳米铜颗粒的分散性和稳定性的作用.关键词:纳米颗粒;Cu ;乳液;电化学中图分类号:TB383 文献标识码:A Preparation of copper nano 2powder by using electrochemical method XU Jian 2lin 1,2,C H EN Ji 2dong 1,2,ZHAN G Ding 2jun 1,2 MA Y ing 2xia 1,2,RAN Fen 1,2,LON G Da 2wei 1,2 (1.State Key Lab.of Gansu Advanced Non 2ferrous Metal Materials ,Lanzhou Univ.of Tech.,Lanzhou 730050,China ;2.Key Lab.of Non 2ferrous Metal Alloys ,The Ministry of Education ,Lanzhou Univ.of Tech.,Lanzhou 730050,China ) Abstract :Stable and uniform Cu nanoparticles was p repared wit h electrochemical met hod in emulsio ns containing of sodium dodecyl sulfate ,tween 80,benzene ,12butanol ,dodecyl mercaptan and CuSO4?5H 2O.The morp hology and struct ure of t he resulting copper nanoparticles were investigated wit h XRD ,TEM and F T 2IR.It was found t hat t he copper nano 2powder was of sp herical st ruct ure wit h a better dis 2persity ,uniform particlesize.t he average size being 60~80nm and cubic crystalline.A layer of organic compound was absorbed on t he surface of copper nanoparticles ,forming a shell 2core st ruct ure wit h t hin surface coating film ,which could be p revent t he Cu nano 2powder f rom aggregation and oxidation in t he at 2mo sp here or water ,and increase t he dispersibility and stability of t he Cu nanoparticles as well. K ey w ords :nanoparticles ;Cu ;emulsions ;elect rochemist ry 纳米铜颗粒的比表面积大,表面活性中心数多,在石油化工和冶金中是良好的润滑剂;此外,纳米铜颗粒具有极高的活性和选择性,可以用作高分子聚合物的氢化和脱氢化反应的催化剂[1,2].1995年,Pekka [3]等指出纳米铜由于其低电阻而可用于电子 连接,引起电子界的很大兴趣.纳米铜粉也可用于制 造导电浆料(导电胶、导磁胶等),广泛应用于微电子工业中的布、封装、连接等,对微电子器件的小型化生产起重要作用. 目前,常用的制备纳米铜粉的方法有:机械化学 收稿日期:2007201207 作者简介:徐建林(19702),男,陕西岐山人,博士,副教授. 法、气相蒸汽法、化学还原法、辐照还原法等.此外,Gedanken 等人报道了一种用自还原前驱体制备纳米铜的方法[4],Pileni 等人用表面活性剂囊泡技术制备了各种形状的铜纳米颗粒[5].机械化学法制备的粉体组成不易均匀,粉末易团聚,粒径分布宽,所以缺乏现实意义;气相蒸汽法所需原料气体价格昂贵,设备复杂,成本高.目前研究最多的是液相还原法,但是液相还原又需要用到一些剧毒的还原剂,这对研究者本身或者是环境都会造成危害.电化学合成方法具有反应条件温和、仪器设备简单、无毒无污染的优点,是合成纳米材料的有效手段之一[6,7]. 本文采用电化学电解法,在十二烷基硫酸钠、吐 第34卷第3期2008年6月兰 州 理 工 大 学 学 报 Journal of Lanzhou University of Technology Vol.34No.3 J un.2008

沉淀法制备纳米ZnO

设计性实验2 沉淀法制备纳米ZnO 摘要:本实验以Zn(NO 3) 2 ·6H 2 O和NH 4 HCO 3 为原料,聚乙二醇(PEG600)为模板,采用 直接沉淀法制备纳米氧化锌,并计算产率和晶粒尺寸,讨论影响纳米ZnO晶粒大小的影响因素。 关键词:纳米氧化锌;直接沉淀法;产率;晶粒尺寸 1.直接沉淀发制备纳米ZnO的理论基础 氧化锌俗称锌白,常作白色颜料,是一种重要的工业原料,它广泛应用于涂料、橡胶、陶瓷、玻璃等多种工业。纳米氧化锌与普通氧化锌相比显示出诸多特殊性能,如:压电性、荧光性、非迁移性、吸收和散射紫外线能力等,因而其用途大大扩展,如可用于压敏材料、压电材料、荧光体、化妆品、气体传感器、吸湿离子传导温度计、图象记录材料、磁性材料、紫外线屏蔽材料、高效催化剂和光催化剂。国内外专家学者一致认为,纳米氧化锌必将逐步取代传统的氧化锌系列。 纳米材料是指晶粒(或组成相)在任一维的尺寸小于100nm的材料,是由粒径尺寸介于1 ~ 100nm之间的超细微粒组成的固体材料,按空间形态可分为一维纳米丝、二维纳米膜和三维纳米粒。 纳米材料的制备方法分类如下表:

本实验采用化学沉淀法里的直接沉淀法制备纳米ZnO ,直接沉淀法的原理是在可溶性锌盐溶液中加入沉淀剂后,于一定条件下生成沉淀从溶液中析出,将阴离子洗去,经分离、干燥、热处理后,得到纳米氧化锌。该方法操作简单,对设备和技术要求不太苛刻,产品纯度高,不易引入杂质,成本低。 X-射线衍射仪可以利用衍射原理,精确测定物质的晶体结构,织构及应力,精确的进行物相分析,定性分析,定量分析.利用谢乐公式:Dc = 0.89λ /(B cos θ) (λ为X 射线波长, B 为衍射峰半高宽, θ 为衍射角) ,根据粉体X-射线衍射图可以得到相关数据,计算得到粒子的尺寸。 2.实验 2.1实验药品及仪器 Zn(NO 3)2·6H 2O 、 NH 4HCO 3、聚乙二醇(PEG600)、无水乙醇、去离子水 烘箱、500ml 烧杯、250ml 烧杯两个、玻璃棒、PH 计、马弗炉、X 射线衍射仪,胶头滴管。 2.2制备原理及实验步骤 配制0.8mol/l 的聚乙二醇(PEG600)溶液,称取23.8g 的 Zn(NO 3)2·6H 2O 溶于100ml 去离子水,并加入1g 上述配制的聚乙二醇(PEG600)溶液。称取31.6g NH 4HCO 3定容至200ml 配制成2.0mol/l 的溶液。然后将NH 4HCO 3溶液缓慢滴加到锌盐溶液中。调节反应体系的终点PH 值为7.5.将所得的沉淀物减压抽滤,用1mol/L 的NH 4HCO 3溶液无水乙醇分别洗涤3次,60-80℃烘干后放于马弗炉400℃煅烧2h ,即得纳米ZnO 粉体。 主要反应历程如下: Zn 2++2CO 3→ZnCO 3(↓)+CO 2↑+H 2O ZnCO 3→ZnO+CO 2(↑)

电化学在制备纳米材料方面的应用

电化学在制备纳米材料方面的应用 摘要:应用电化学方法制备纳米材料是近年来发展起来的一项新技术。本文对应用电化学技术制备纳米材料的方法进行分类,着重介绍了电化学沉积法、电弧法、超声电化学法和电化学腐蚀法,并对其应用前景做了展望。 关键词:电化学纳米材料电沉积 1 前言 纳米材料和纳米技术被广泛认为是二十一世纪最重要的新型材料和科技领域之一。纳米材料是指任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。当材料的粒子尺寸小至纳米级时,材料就具有普通材料所不具备的三大效应:(1)小尺寸效应,指当纳米粒子的尺寸与传统电子的德布罗意波长以及超导体的相干波长等物理尺寸相当或更小时,其周期性的边界条件将被破坏,光吸收、电磁、化学活性、催化等性质发生很大变化的效应;(2)表面效应,指纳米微粒表面原子与总原子数之比。纳米微粒尺寸小,表面能高,位于表面的原子占相当大的比例。随着粒径减小,表面原子数迅速增加。由于表面原子数增加,原子配位不足及高的表面能,使得这些表面原子具有高的活性,极不稳定,使其在催化、吸附等方面具有常规材料无法比拟的优越性;(3)宏观量子隧道效应。微观粒子具有贯穿势垒的能力称为隧道效应。研究发现,一些宏观量,如纳米粒子的磁化强度、量子相干器件中的磁通量也具有隧道效应,称为宏观量子隧道效应。正是由于纳米材料具有上面的三大效应,才使它表现出:(1)高强度和高韧性;(2)高热膨胀系数、高比热容和低熔点;(3)异常的导电率和磁化率;(4)极强的吸波性;(5)高扩散性等令人难以置信的奇特的宏观物理特性。 自1991年Iijima首次制备了碳纳米管以来,一维纳米材料由于具有许多独特的性质和广阔的应用前景而引起了人们的广泛关注。纳米结构无机材料因具有特殊的电、光、机械和热性质而受到人们越来越多的重视。美国自1991年开始把纳米技术列入“政府关键技术”,我国的自然科学基金等各种项目和研究机构都把纳米材料和纳米技术列为重点研究项目。 由于纳米材料的形貌和尺寸对其性能有着重要的影响,因此,纳米材料形貌和尺寸的控制在纳米材料合成中是非常重要的。 目前制备纳米材料主要采用机械法、气相法、磁控溅射法等物理方法和溶胶—凝胶法、离子液法、溶剂热法、微乳法化学方法。但在这些方法中,机械法、气相法、磁控溅射法的生产设备及条件要求很高,生产成本高;化学方法中的离子液法和微乳法是近几年发展起来的新兴的研究领域,同时离子液离子液作为一种特殊的有机溶剂,具有粘度较大、离子传导性较高、热稳定性高、低毒、流动性好等独特的物理化学性质,但是离子液体用于纳米材料制备的技术还未成熟。 应用电化学技术制备纳米材料由于简单易行、成本低廉等特点被广泛研究与采用。与其他方法相比,电化学制备方法主要具有以下优点:1、适合用于制备的纳米晶金属、合金及复合材料的种类较多;2、电化学制备纳米材料过程中的电位可以人为控制。整个过程容易实现计算机监控,在技术上困难较小、工艺灵活,易于实验室向工业现场转变;3、常温常压操作,避免了高温在材料内部引入的热应力;4、电沉积易使沉积原子在单晶基底上外延生长,可在大面积和复杂形状的零件上获得较好的外延生长层。 电化学方法已在纳米材料的制备研究领域取得了一系列具有开拓性的研究成果。本文综述了应用电化学技术制备纳米材料的主要的几种方法及其制备原理,并对其优劣进行了比较。 2 应用电化学技术制备纳米材料的种类 2.1 电化学沉积法 与传统的纳米晶体材料制备相比,电沉积法具有以下优点:(1)晶粒尺寸在1~100 nm内;(2)

液相沉淀法在材料合成中应用进展

液相沉淀法合成纳米粉体的应用进展 材料科学与工程赵小龙2011201307 摘要:液相沉淀法是一种合成纳米粉体最为普遍的方法。本文将介绍液相沉淀法的三种方法:直接沉淀法、共沉淀法和均匀沉淀法。对液相沉淀法合成纳米粉体的沉淀反应过程、洗涤过程、干燥过程以及煅烧过程等环节的控制方法及原理作了详述。由于纳米TiO2粉体具有是优良的光催化活性,且具有极大的商业价值,本文还将介绍一下纳米TiO2粉体制备工艺。 关键词:液相沉淀;控制;洗涤;干燥;煅烧;制备工艺 纳米粉体是指线度处于1 nm~100 nm的粒子聚合体,包括金属、金属氧化物、非金属氧化物和其他各种各类的化合物。与普通粉体相比,纳米粉体的特异结构使其具有小尺寸效应、量子尺寸效应、表面效应及宏观量子隧道效应[1],因而在催化、磁性材料、医学、生物工程、精细陶瓷和化妆品等众多领域显示出广泛的应用前景,成为各国竞相开发的热点。纳米粉体的制备方法很多,可归纳为固相法、气相法和液相法三大类。其中液相化学法是目前实验室和工业上采用最为广泛的合成纳米粉体的方法,包括沉淀法、醇盐水解法、溶胶-凝胶法和水热合成法等[2]。本文主要讨论了液相沉淀法合成纳米粉体的分类、方法、控制过程及原理。 1 液相沉淀法介绍 液相沉淀法是液相化学反应合成金属氧化物纳米材料最普通的方法。它是利用各种溶解在水中的物质反应生成不溶性氢氧化物、碳酸盐、硫酸盐和乙酸盐等,再将沉淀物加热分解,得到最终所需的纳米粉体。液相沉淀法可以广泛用来合成单一或复合氧化物的纳米粉体,其优点是反应过程简单,成本低,便于推广和工业化生产。液相沉淀法主要包括直接沉淀法、共沉淀法和均匀沉淀法。 1.1 直接沉淀法 直接沉淀法是使溶液中的金属阳离子直接与沉淀剂,如OH-、C 2O 2 -4、CO 2 -3, 在一定条件下发生反应而形成沉淀物,并将原有的阴离子洗去,经热分解得到纳 米粉体。直接沉淀法操作简便易行,对设备、技术要求不太苛刻,不易引入其他杂质,有良好的化学计量性,成本较低,因而对其研究也较多,只不过其合成的纳米粉体粒径分布较宽。廖莉玲等[3]以硝酸镁、碳酸钠为原料,用直接沉淀法合成得到纳米氧化镁,其平均粒径为30 nm。文献[4]报道了用一定溶度的ZrOCl 2 和氨水溶液在聚乙二醇水溶液中混合反应,经抽滤、洗涤、干燥、煅烧后得到纳米 ZrO 2 。其中聚乙二醇起到保护胶粒的作用。 1.2 共沉淀法 共沉淀法是在混合的金属盐溶液(含有两种或两种以上的金属离子)中加入合适的沉淀剂,反应生成均匀沉淀,沉淀热分解后得到高纯纳米粉体材料。它是制备含有两种以上金属元素的复合氧化纳米粉体的主要方法。其在制备过程中完成了反应及掺杂过程,因而得到的纳米粉体化学成分均一、粒度小而且均匀。共沉淀法已被广泛用于制备钙钛矿型材料、尖晶石型敏感材料、铁氧体及荧光材料。 文献[5]报道了用Al(NO 3) 3 和ZrO(NO 3 ) 2 混合溶液,加氨水共沉淀制备了一系列Al 2 O 3 含量由低到高的ZrO 2-Al 2 O 3 纳米复合氧化物。焦正等[6]采用喷射共沉淀法制备了 尖晶石型ZnGa 2O 4 纳米晶,晶粒细小均匀,形状完整,粒径小于10nm,无ZnO杂 相峰。

半导体纳米材料的制备方法

摘要:讨论了当前国内外主要的几种半导体纳米材料的制备工艺技术,包括物理法和化学法两大类下的几种,机械球磨法、磁控溅射法、静电纺丝法、溶胶凝胶法、微乳液法、模板法等,并分析了以上几种纳米材料制备技术的优缺点关键词:半导体纳米粒子性质;半导体纳米材料;溶胶一凝胶法;机械球磨法;磁控溅射法;静电纺丝法;微乳液法;模板法;金属有机物化学气相淀积引言 半导体材料(semiconductormaterial)是一类具有半导体性能(导电能力介于导体与绝缘体之间,电阻率约在1mΩ·cm~1GΩ·cm范围内)。相对于导体材料而言,半导体中的电子动能较低,有较长的德布罗意波长,对空间限域比较敏感。半导体材料空间中某一方向的尺寸限制与电子的德布罗意波长可比拟时,电子的运动被量子化地限制在离散的本征态,从而失去一个空间自由度或者说减少了一维,通常适用体材料的电子的粒子行为在此材料中不再适用。这种自然界不存在,通过能带工程人工制造的新型功能材料叫做半导体纳米材料。现已知道,半导体纳米粒子结构上的特点(原子畴尺寸小于100nm,大比例原子处于晶界环境,各畴之间存在相互作用等)是导致半导体纳米材料具有特殊性质的根本原因。半导体纳米材料独特的质使其将在未来的各种功能器件中发挥重要作用,半导体纳米材料的制备是目前研究的热点之一。本文讨论了半导体纳米材料的性质,综述了几种化学法制备半导体纳米材料的原理和特点。

2.半导体纳米粒子的基本性质 2.1表面效应 球形颗粒的表面积与直径的平方成正比,其体积与直径的立方成正比,故其比表面积(表面积/体积)与直径成反比。随着颗粒直径变小,比表面积将会显著增大,说明表面原子所占的百分数将会显著地增加。对直径大于0.1微米的颗粒表面效应可忽略不计,当尺寸小于0.1微米时,其表面原子百分数激剧增长,甚至1克超微颗粒表面积的总和可高达100平方米,这时的表面效应将不容忽略。 随着纳米材料粒径的减小,表面原子数迅速增加。例如当粒径为10nm 时,表面原子数为完整晶粒原子总数的20%;而粒径为1nm时,其表面原子百分数增大到99%;此时组成该纳米晶粒的所有约30个原子几乎全部分布在表面。由于表面原子周围缺少相邻的原子:有许多悬空键,具有不饱和性,易与其他原子相结合而稳定下来,故表现出很高的化学活性。随着粒径的减小,纳米材料的表面积、表面能及表面结合能都迅速增大。 超微颗粒的表面与大块物体的表面是十分不同的,若用高倍率电子显微镜对金超微颗粒(直径为2*10-3微米)进行电视摄像,实时观察发现这些颗粒没有固定的形态,随着时间的变化会自动形成各种形状(如立方八面体,十面体,二十面体多李晶等),它既不同于一般固体,又不同于液体,是一种准固体。在电子显微镜的电子束照射下,表面原子仿佛进入了“沸腾”状态,尺寸大于10纳米后才看不到这种颗粒结构的不稳定性,这时微颗粒具有稳定的结构状态。 因此想要获得发光效率高的纳米材料,采用适当的方法合成表面完好的半导体材料很重要。 2.2量子尺寸效应 量子尺寸效应--是指当粒子尺寸下降到某一数值时,费米能级附近的电子能级由准连续变为离散能级或者能隙变宽的现象。当能级的变化程度大于热能、光能、电磁能的变化时,导致了纳米微粒磁、光、声、热、电及超导特性与常规材料有显著的不同。当半导体材料从体相减小到某一临界尺寸(如与电子的德布罗意波长、电子的非弹性散射平均自由程和体相激子的玻尔半径相等)以后,其中的电子、空穴和激子等载流子的运动将受到强量子封

多孔碳纳米球的制备及其电化学性能_杨秀涛

物理学报Acta Phys.Sin.Vol.66,No.4(2017)048101 多孔碳纳米球的制备及其电化学性能 ?杨秀涛梁忠冠袁雨佳阳军亮夏辉? (中南大学物理与电子学院,长沙 410083) (2016年10月11日收到;2016年10月31日收到修改稿) 以三嵌段共聚物F108为软模板,通过水热法合成酚醛树脂球并在氮气氛围下碳化、KOH 活化处理,最终得到多孔碳纳米球材料.通过扫描电子显微镜,透射电子显微镜和氮气吸附分析仪对样品进行表征,结果表明样品的平均粒径为120nm,球形度高,比表面积达到1403m 2/g,孔径分布广.通过X 射线衍射研究样品的结晶度, 序度提高明,10000次循环充放电后,关键词:PACS:1引上的电池,长、能影响较大[纳米管[5,6]球[12?14].物为模板,活化,得到活 P123(PEO 20-. 为软模板,利用水(porous .通过扫描电子X 射线,研究孔隙结构、 ?国家自然科学基金(批准号:51673214)资助的课题.?通信作者.E-mail:xhui73@https://www.doczj.com/doc/3f3486227.html, ?2017中国物理学会Chinese Physical Society https://www.doczj.com/doc/3f3486227.html, 网络出版时间:2017-01-12 10:56:13 网络出版地址:https://www.doczj.com/doc/3f3486227.html,/kcms/detail/11.1958.O4.20170112.1056.016.html

结晶度和表面官能团的影响.结合PCNS 样品的电化学性能的测试,研究了PCNS 样品的理化特性对其电化学性能的影响. 2实验部分 2.1 多孔碳纳米球的合成 首先,称取1.96g 三嵌段共聚物F108溶解于30mL 水中搅拌均匀得到澄清溶液A.然后称1.2g 的苯酚并量取4.2mL 质量分数为37%的甲醛溶液溶解于30mL 的0.1M(mol/L)氢氧化钠溶液,搅拌均匀, min 体系中加入到溶液B.取物质烘干.氛下以700? 物PCNS 为中性,900?C 时,2.2600i)TWIX)比表面积S 孔面积(S 计算.品的孔径分布.用X 射线衍射仪(XRD,SIEMENS D500)在电压为40kV 、电流为100mA,Cu 靶、K α射线(λ=0.15056nm)、石墨单色滤波器以及衍射角为10?—70?的条件下以2?/s 的速度对样品扫描. 用红外光谱仪(FTIR,Niclet 380)对样品在波数500cm ?1—4500cm ?1范围内进行扫描,根据得到的吸收光谱图分析样品的表面元素及官能团组成. 2.3电化学特性测试 采用辰华CHI660E 电化学工作站在三电极体 系进行电化学特性的测试.测试体系的对电极和参比电极分别采用铂片电极和Hg/HgO 电极,而工作电极的制备采用(1×1)cm 2泡沫镍为基底,将制备的多孔碳纳米球样品作为活性物-质和乙炔黑,用乙醇作为溶剂,60wt%聚四氟乙烯(PTFE)混合,调成浆状,,于10MPa 压(cyclic (galvano-GC)和电化学阻spectroscopy,5,10,20,50,100V 的电压区间进行·m ), (1) (A),放电时间(g).电化学kHz,微扰为,1(b)分别是PCNS 1(c)和图1(d)是照片,图1(e)和TEM 照片,每TEM 照片,KOH 处理后其粒径大小没有明显的改变.从选区电子衍射图可知,样品在?002?和?100?晶面处具有衍射特征峰.由超高放大倍数TEM 照片,可以看出样品PCNS700和PCN900的微晶有序度要高于PCNS 的有序度.

溶胶-凝胶法在制备纳米材料方面的应用

溶胶-凝胶法在制备纳米材料方面的应用 前言 纳米科技是一个跨学科的研究与开发领域,涉及纳米电子学、纳米材料学、纳米物理学、纳米化学、纳米生物学、纳米加工及表征等。纳米材料的合成与制备一直是纳米科学领域内 一个重要的研究课题,新材料制备工艺过程的研究与控制对纳米材料的微观结构和性能具有 重要的影响。最早是采用金属蒸发凝聚"原位冷压成型法制备纳米晶体,相继又发展了各种 物理、化学方法,如机械球磨法、非晶晶化法、水热法、溶胶-凝胶法等 溶胶-凝胶法是上个世纪6、70年代发展起来的一种制备无机材料的新工艺,近年来多 被用于制备纳米微粒和薄膜。溶胶-凝胶法具有反应条件温和通常不需要高温高压,对设备 技术要求不高,体系化学均匀性好,可以通过改变溶胶-凝胶过程的参数裁剪控制纳米材料 的显微结构等诸多优点。不仅可用于制备超微粉末和薄膜,而且成功应用于颗粒表面包覆, 成为目前合成无机纳米材料的主要技术,引起了材料科学技术界的广泛关注,是一个具有挑战性和应用前景非常广阔的领域。 1.溶胶-凝胶法的工艺原理: 溶胶凝胶法的工艺原理是:以液体化学试剂配制成金属无机盐或金属醇盐的前驱体,前驱体溶于溶剂中形成均匀的溶液(有时加入少量分散剂)加入适量的凝固剂使盐水解、 醇解或发生聚合反应生成均匀、稳定的溶胶体系,再经过长时间放置(陈化)或干燥处理使 溶质聚合凝胶化,再将凝胶干燥、焙烧去除有机成分、最后得到无机纳米材料。因此,也有 人把溶胶凝胶法归类为前驱化合物法。 根据原料的不同,溶胶凝胶法一般可分为两类,即无机盐溶胶凝胶法和金属醇盐水解法。(1)在无机盐溶胶凝胶法中,溶胶的制备是通过对无机盐沉淀过程的控制,使生成的颗粒 不团聚成大颗粒而生成沉淀,直接得到溶胶;或先将部分或全部组分用适当的沉淀剂沉淀出 来,经解凝,使原来团聚的沉淀颗粒分散成胶体颗粒溶胶的形成主要是通过无机盐的水解来 完成。反应式如下 (2)金属醇盐水解法通常是以金属有机醇盐为原料! 通过水解与缩聚反应而制得溶胶’首先将金属醇盐溶入有机溶剂! 加水则会发生如下反应: 式中M为金属R为有机基团,如烷基。经加热去除有机溶液得到金属氧化物材料。 2.溶胶-凝胶法的工艺过程: 溶胶凝胶法制备无机纳米材料过程主要包括5个步骤 (1)均相溶液的制备:溶胶凝胶法的第一步是制取包含醇盐和水均相溶液,以确保醇盐的 水解反应在分子级水平上进行。在此过程中,溶剂的选择和加入量是关键。 (2)溶胶的制备:在溶胶凝胶法中,最终产品的结构在溶胶形成过程中即已初步形成,后 续工艺均与溶胶的性质直接相关,因此溶胶制备的质量是十分重要的。有两种方法制备溶胶,一是先将部分或全部组分用适当沉淀剂先沉淀出来,经解凝,使原来团聚的沉淀颗粒分散成 原始颗粒。这种颗粒的大小一般在溶胶体系中胶核大小的范围内,因而可制得溶胶;另一种方法是由同样的盐溶液,通过对沉淀过程的严格控制,使首先形成的颗粒不致团聚为大颗粒 而沉淀,从而直接得到胶体溶液。 (3)凝胶化过程:缩聚反应形成的聚合物或粒子聚集体长大为小粒子簇,后者逐渐相互连 接成为一个横跨整体的三维粒子簇连续固体网络。在陈化过程中,胶体粒子聚集形成凝胶, 由于液相被包裹于固相骨架中,整个体系失去活动性,随着胶体粒子逐渐形成网络结构, 溶胶也从Newton体向Bingham体转变,并带有明显的触变性。在许多实际应用中,制品的成型就是在此期间完成的。

化学沉淀法制备纳米二氧化硅

化学沉淀法制备纳米二氧化硅 摘要:采用硅酸钠为硅源,氯化铵为沉淀剂制备纳米二氧化硅。研究了硅酸钠的浓度、乙醇与水的体积比以及pH 值对纳米二氧化硅粉末比表面积的影响,并用红外、X射线衍射和透射电镜对二氧化硅粉末进行了表征。研究结 果表明在硅酸钠浓度为0. 4 mol/L,乙醇与水体积比为1B8, pH值为8. 5时可制备出粒径为5~8 nm分散性好的无 定形态纳米二氧化硅。 关键词:沉淀法;纳米SiO2;制备 1 引言 纳米二氧化硅为无定型白色粉末,是一种无毒、无味、无污染的材料,其颗粒尺寸小,比表面积大,是纳米 材料中的重要一员。近年来,随着纳米二氧化硅制备技术的发展及改性研究的深入,纳米二氧化硅在橡胶、 塑料、涂料、功能材料、通讯、电子、生物学以及医学等诸多领域得到了广泛的应用[1, 2]。目前,纳米二氧化硅主要制备方法有以硅烷卤化物为原料的气相法[3];以硅酸钠和无机酸为原料的化 学沉淀法[4];以及以硅酸酯等为原料的溶胶-凝胶法[5-7]和微乳液法[8-10]。在这些方法中,气相法原料昂贵, 设备要求高,生产流程长,能耗大;溶胶-凝胶法原料昂贵,制备时间长;而微乳液法成本高、有机物难以去除 易对环境造成污染。与上述三种方法相比,化学沉淀法具有原料来源广泛、价廉,能耗小,工艺简单,易于工 业化等优点,但同时也存在产品粒径大或分布范围较宽的问题,这是由于产品性状在制备过程中受许多可变 因素的影响。近年来,许多研究通过各种控制手段来改善沉淀法产品的性状,如郑典模[11]、贾东舒[12]、孙道 682 研究快报硅酸盐通报第29卷 兴[13]等对反应条件加以分别制得了平均粒径为76 nm、30~50 nm和20~40 nm的二氧化硅,何清玉[14]引入 了超重力技术制得了小于20 nm的二氧化硅。 本文以硅酸钠为硅源,氯化铵为沉淀剂,加入表面活性剂十六烷基三甲基溴化铵(CTAB)和乙醇,通过 化学沉淀法合成了粒径小且分布窄的纳米二氧化硅。 在硅酸钠溶液中,简单的偏硅酸离子并不存在,偏硅酸钠的实际结构为Na2(H2SiO4)和Na (H3SiO4),因 此溶液中的负离子H2SiO2-4为和H3SiO-4。二者在溶液中皆可与氢离子结合生成硅酸。氯化铵是一种强酸 弱碱盐,能缓慢地释放出H+,可以有效避免pH变化过大。另外反应在碱性条件下进行,反应所生成的粒子 带负电,可吸引NH+4和溶液中的Na+形成双电层,通过双电层之间库仑排斥作用,平衡离子表面电荷,从而

电化学方法制备纳米材料

电化学方法制备纳米材料 Mcc 引言:诺贝尔奖获得者Feyneman在六十年代曾经预言:如果我们对物体微小规模上的排列加以某种控制的话,我们就能使物体得到大量的异乎寻常的特性,就会看到材料的性能产生丰富的变化。他所说的材料就是现在的纳米材料。 纳米材料和纳米科技被广泛认为是二十一世纪最重要的新型材料和科技领域之一。1992年,《Nanostructured Materials》正式出版,标志着纳米材料学成为一门独立的科学。自1991年Iijima首次制备了碳纳米管以来,一维纳米材料由于具有许多独特的性质和广阔的应用前景而引起了人们的广泛关注。由于纳米材料的形貌和尺寸对其性能有着重要的影响,因此,纳米材料形貌和尺寸的控制合成是非常重要的。作为高级纳米结构材料和纳米器件的基本构成单元,纳米颗粒的合成与组装是纳米科技的重要组成部分和基础。而电化学方法制备纳米材料的研究,经历了早期的纳米薄膜、纳米微晶的制备,直至现在的电化学制备纳米金属线、金属氧化物等过程,为纳米材料的研究做出了极大的贡献。 摘要:纳米是指特征维度尺寸介于1-100 nm范围内的粒子微小粒子,又称作超微粒子。当粒子尺寸小至纳米级时,其本身将具有表面与界面效应、量子尺寸效应、小尺寸效应和宏观量子隧道效应,这些效应使得纳米材料具有很多奇特的性能。本文简单综述了纳米材料的合成与制备中常用的几种方法以及简单的一些应用,着重综述了

纳米材料的电化学制备方法并对其影响因素和发展情景做以简单探究。 关键词:纳米材料电化学制备特征应用 Electrochemical preparation of nano materials Mcc Introduction:Nobel Prize winner in the s Feyneman prophecy: if we tiny scale of objects arranged to some control of words, we can make the object have a lot of unusual characteristics, you will see the properties of materials have a wealth of change. What he said is the material of the nanometer material now. Nano materials and nanotechnology is widely thought to be the 21 st century the most important new materials and one of the areas of science and technology. In 1992, the Nanostructured Materials "the official publication, marked the nanometer material science into an independent scientific < https://www.doczj.com/doc/3f3486227.html,/gongxue/ >. Since 1991, the first time the Iijima preparation since carbon nanotubes, a one-dimensional nanomaterials due to the nature of the has many special and broad application prospects and caused the people's attention. Because the morphology of nanometer material and size of its performance has the important influence, therefore, the size

纳米材料制备方法

纳米微粒制备方法研究进展 刘伟 (湘潭大学材料科学与工程学院,13材料二班,2013701025) 摘要:纳米微粒一般是指粒径在1nm到100nm之间,处在原子簇和宏观物体交接区域内的粒子,或聚集数从十到几百范围的物质。纳米材料具有表面效应、体积效应、量子尺寸效应、宏观量子隧道效应等特点,因而有许多与传统的晶体和非晶体不同的独特性质,也与组成它们的分子或原子差异很大,在材料学、物理学、化学、催化、环境保护、生物医学等领域具有十分广阔的应用前景。本文综述目前纳米微粒的主要的制备方法, 比较和评述了每种方法的特点,以期这一新材料能得以更为深入地研究和更广泛地应用。 关键词:纳米微粒;制备;方法 1.引言 纳米微粒的制备方法从物料的状态来分,可归纳为固相法、液相法、气相法3大类;从物料是否发生化学反应而分为物理法、化学法及近年迅速发展的模板合成法、仿生法等;随着科技的不断发展及对不同物理、化学特性超微粒子的需求,又派生出许多新的技术,下面就着重介绍固相法、液相法和气相法。 2.固相法 固相法是一种传统的粉化工艺,具有成本低、产量高、制备工艺简单的优点。固相法分为固相机械粉碎法和固相反应法。固相机械粉碎法借用诸如搅拌磨、球磨机、气流磨、塔式粉碎机等多种粉碎机,利用介质和物料之间的相互研磨和冲击的原理,使物料粉碎,常用来制备微米级粒径的粉体颗粒。此法存在能耗大、颗粒粒径分布不均匀、易混入杂质、颗粒外貌不规则等缺点,因而较少用以制备纳米微粒。固相反应法是将固体反应物研细后直接混合,在研磨等机械作用下发生化学反应,然后通过后处理得到需要的纳米微粒。该方法一般要加入适量表面活性剂,所以有时也称湿固相反应。该方法具有工艺简单、产率高、颗粒粒子稳定化好、易操作等优点,尤其是可减少或避免液相中易团聚的现象。[4] 3.液相法 液相法是目前实验室和工业生产中较为广泛采用的方法。通常是让溶液中的不同分子或离子进行反应,产生固体产物。产物可以是单组分的沉淀,也可以是多组分的共沉淀。其涉及的反应也是多种多样的,常见的有:复分散反应、水解反应、还原反应、络合反应、聚合反应等。适当控制反应物的浓度、反应温度和搅拌速度,就能使固体产物的颗粒尺寸达到纳米级。液相法具有设备简单、原料易得、产物纯度高、化学组成可准确控制等优点。下面主要介绍其中的沉淀法和微乳液法。 3.1 沉淀法 沉淀法是液相法制备金属氧化物纳米微粒最早采用的方法。沉淀法基本过程是:可溶性化合物经沉淀或水解作用形成不溶性氢氧化物、水合氧化物或盐类而析出,经过滤、洗涤、煅烧得到纳米微粒粉末。沉淀法又分为均相沉淀法和共沉淀法。沉淀法工艺简单、成本低、反应时间短、反应温度低,易于实现工业化生产。但是,沉淀物通常为胶状物,水洗、过滤较困难;所制备的纳米微粒易发生团聚,难于制备粒径小的纳米微粒。沉淀剂容易作为杂质混入产物之中。此外,还由于大量金属不容易发生沉淀反应,因而这种方法适用面较窄。[3]

均匀沉淀法制备 ZnO 纳米材料

实验3 均匀沉淀法制备ZnO 纳米材料 ZnO 是一种重要的II-VI 族半导体氧化物,属于宽带隙直接带材料(E g ≥ 2.3 eV ),广泛地应用于日常用品、塑料橡胶、太阳能电池、陶瓷工业、探测材料、压电材料、光波导以及军事隐形等方面。ZnO 的研究主要集中在光电性质、光催化性质、气体探测器以及应用陶瓷等方面。纳米材料的兴起,使ZnO 纳米材料的制备与应用方面的研究受到了广泛地关注。本实验以尿素为沉淀剂,利用均匀沉淀法来制备纳米ZnO 粉体材料。 一、实验目的 (1)、了解均匀沉淀法的基本原理,利用均匀沉淀法制备ZnO 纳米材料; (2)、了解X 射线粉末衍射(XRD)仪的组成,熟悉测试的一般步骤; (3)、掌握利用Jade 软件进行物相检索的一般步骤。 二、实验原理 均匀沉淀法是利用某一化学反应使溶液中的构晶离子由溶液中缓慢地、均匀地释放出来。所加入的沉淀剂不直接与被沉淀组分发生反应,而是通过化学反应使沉淀剂在整个溶液中均匀地、缓慢地析出。均匀沉淀法制备得到的产物粒子粒径分布较窄,分散性好。本实验以硝酸锌为原料,尿素为沉淀剂,制备ZnO 纳米粉体材料。制备过程可分为如下三个方面: (1)、尿素分解反应:()22322 2ΔCO NH + 3H O 2NH H O + CO ??→↑i ; (2)、沉淀反应:()2++3242Zn + 2NH H O Zn OH + 2NH ??→↓i ; (3)、热分解反应:()2 2ΔZn OH ZnO + H O ??→↑ 三、实验仪器与试剂 (1)、仪器 恒温磁力搅拌器,磁子,电子天平,电热鼓风干燥箱,马弗炉,电动离心机,烧杯,量筒(50 mL),坩埚,圆底烧瓶(150 mL),球形冷凝管,胶管; (2)、试剂 硝酸锌,尿素,蒸馏水,乙醇。 四、实验步骤 (1)、按硝酸锌浓度~0.1 mol/L 、尿素浓度~0.4 mol/L ,配置50 mL 混合溶液(其中硝酸锌称取4 g ,尿素2.4 g 溶于蒸馏水中,总体积调为~50 mL ),将混合

第8章电化学方法在制备纳米材料中的应用

第八章电化学方法在制备纳米材料中的应用 人们对于分离超微粒子的研究开始于20世纪60年代。1963年Uyeda等人采用气体冷凝法制备了金属超微粒子,并对超微粒子的形貌和晶体结构进行了电镜和电子衍射研究;20世纪70年代末德克雷斯勒成立了NST (Nano-scale Science and Technology)研究组;1984年在柏林召开的第二届国际超微粒子和等离子体会议,使超微粒子的研究成为世界性热点之一;1989年德国著名科学家Gleiter等首次提出了纳米材料这一概念;1990年7月在美国巴尔的摩召开的第一届国际NST会议标志着这一全新科技—纳米科技的正式诞生;1992年的TMS (Minerals, Metals, Materials)年会上有5个分会场专门讨论纳米粒子的制备、结构和性质,由此可见其重要性。美国材料科学学会预言,纳米材料将是21世纪最有前途的新兴材料之一,是21世纪高新科技的重要组成部分,被科学家们誉为“21世纪最有前途的材料”闭。它的出现将和金属、半导体、荧光材料的出现一样,引起科技领域的重大变革。 纳米粒子是指特征维度尺寸介于1~100 nm范围内的微小粒子,又称作超微粒子。处在原子簇和宏观物体交界的过渡区域,是一种典型的介观系统;它的大小介于宏观物质与微观粒子如电子、原子、分子之间,属于亚微观的范畴。由纳米粒子形成的晶体称为纳米晶体,它既不像一般晶体那样具有长程有序,也不像非晶体那样具有短程有序结构,它是一种具有全新“气体状”(gas-like)固体结构的新型材料,粒子内部存在有序一无序结构(order disorder)。从传统热力学观点来看,这是一种亚稳态结构。 纳米材料由两种组元构成:晶体组元和界面组元。晶体组元由晶粒中的原子组成,这些原子都严格位于晶格位置上;界面组元由各晶粒之间的界面原子组成,这些原子由超微晶粒的表面原子转化而来。由于纳米粒子的粒径很小,使得粒子中的原子有很大部分处于粒子表面,表现在固体纳米材料中,有相当大比例的原子处于晶体界面上,即界面组元的比例很高,一般纳米晶粒内部的有序原子与纳米晶粒的界面无序原子各占总原子数的50%左右。晶界对纳米材料的结构及物性具有重要作用,由于这些大量处于晶界或晶粒缺陷中心的原子,使纳米粒子产生小尺寸效应、量子效应、宏观量子隧道效应、表面和界面效应等,引起了纳米材料在许多物理、化学、力学性能上与同组成的微米粒子材料有非常显著的差异,它不仅开拓了人们认识世界的视野,也改变了某些传统观念。例如,纳米陶瓷的出现使得陶瓷在表现刚性的同时也具有了很好的塑性;传统意义上的典型导体(如Ag)纳米化后可以变成绝缘体;同样,部分绝缘体纳米化后也可以变为导体。因此,对超微粒子及其由此压制而成的纳米固体材料结构及性能的研究引起了世人的广泛关注,对纳米粒子的研究也变得十分活跃。 中国古代早就制备出了这种材料,例如古铜镜表面的防锈层即由纳米氧化锡组成,灯灰就是纳米炭黑,只是由于表征手段的原因,当时未能给出纳米材料这一确切的名称。由此可见纳米材料是一个古老而又崭新的研究领域。 而电化学方法制备纳米材料的研究,经历了早期的纳米薄膜、纳米微晶的制备,直至现在的电化学制备纳米金属线、金属氧化物等过程,已有几十年的研究时间。早在1939年,Brenner就在其博士论文中论述了使用两个含不同成分的电解池,交替在两池之间进行电沉积制备纳米叠层膜的研究。但当时所使用的这种方法太烦琐,易造成镀件表面污染,影响沉积层质量。随后在1949年又对其工艺进行了改进,直至1963年,运用电沉积技术制备叠层膜的方法不断改进,Brenner提出了单一电解液中沉积Co-Bi多层膜的设想,由原来的多槽电沉积转变成今天的单槽电沉积,这便是当今电沉积制备纳米金属多层膜的开端。此后的一段时间里,此研究发展较慢。直到20世纪80年代,电沉积叠层膜开始有了

相关主题
文本预览
相关文档 最新文档