当前位置:文档之家› 不等式的证明分析法与综合法习题

不等式的证明分析法与综合法习题

不等式的证明分析法与综合法习题
不等式的证明分析法与综合法习题

2.3不等式的证明(2)——分析法与综合法习题

知能目标锁定

1.掌握分析法证明不等式的方法与步骤,能够用分析法证明一些复杂的不等式;

2.了解综合法的意义,熟悉综合法证明不等式的步骤与方法;

重点难点透视

1.综合法与分析法证明不等式是重点,分析法是证明不等式的难点.

方法指导

1. 分析法

⑴分析法是证明不等式的一种常用方法.它的证明思路是:从未知,看需知,逐步靠已知.即”执果索因”.

⑵分析法证明的逻辑关系是:结论A B B B B n ????? 21 (A 已确认). ⑶用分析法证题一定要注意书写格式,并保证步步可逆.

⑷用分析法探求方向,逐步剥离外壳,直至内核.有时分析法与综合法联合使用.当不等式两边有多个根式或多个分式时,常用分析法. 2. 综合法

⑴综合法的特点是:由因导果.其逻辑关系是:已知条件

B

B B B A n ????? 21(结论),后一步是前一步的必要条件.

⑵在用综合法证题时要注意两点:常用分析法去寻找证题思路,找出从何处入手,将不等式变形,使其结构特点明显或转化为容易证明的不等式.

一.夯实双基

1.若a>2,b>2,则ab 与a+b 的大小关系是ab( )a+b

A.=

B. <

C.>

D.不能确定

2.0>>a b 设,则下列不等式中正确的是( ) A.0

lg

>b a B.a b a b ->- C.

a

a a

a ++<

+211 D.

1

1++<

a b a

b

3.若a,b,c +

∈R ,且a+b+c=1,那么

c

b

a

111+

+

有最小值( )

A.6

B.9

C.4

D.3

4.设2

6,37,2-=-==

c b a ,那么a,b,c 的大小关系是( )

c b a A >>. b c a B >>. c a b C >>. a c b D >>.

5.若x>y>1,则下列4个选项中最小的是( ) A.

2

y x + B.

y

x xy +2 C.xy D. )11(21y

x

+

二.循序厚积

6.已知两个变量x,y 满足x+y=4,则使不等式m

y

x

≥+

41恒成立的实数m 的取值范

围是________;

7.已知 a,b 为正数,且a+b=1则22+++b a 的最大值为_________; 8.若a,b,c +

∈R ,且a+b+c=1,则c b a ++的最大值是__________;

9.若xy+yz+zx=1,则222z y x ++与1的关系是__________; 10. b

a n

b a m b a -=

-

=

>>,,0若,则m 与n 的大小关系是______.

三、提升能力

11. a 、b 、c 、d 是不全相等的正数,求证:(a b+cd)(ac+bd)>abcd

12.设x>0,y>0,求证: 2

2

y x y

x +≤

+

13.已知a,b +

∈R ,且a+b=1,求证:2

25)1()1(2

2

+

++

b

b a

a .

14.设a,b,c 是不全相等的正数, 求证:c b a c a c b b a lg lg lg 2

lg

2

lg

2

lg

++>+++++.

15.如果直角三角形的周长为2,则它的最大面积是多少?

易错点:乱用均值不等式;误用分析法,把”逆求”作为”逆推”,以证” p ?q 为例,这时的推理过程就是:p q q q q n ????? 21.证明的结果是证明了逆命题”q ?p ”.而正确的推证过程是:p q q q q n ????? 21. 易忽视点:均值不等式中能否取道”=”的条件分析易被忽视导致出错. 解题规律:用定理,抓步骤,重格式.

不等式典型例题之基本不等式的证明

5.3、不等式典型例题之基本不等式的证明——(6例题) 雪慕冰 一、知识导学 1.比较法:比较法是证明不等式的最基本、最重要的方法之一,它是两个实数大小顺序和运算性质的直接应用,比较法可分为差值比较法(简称为求差法)和商值比较法(简称为求商法). (1)差值比较法的理论依据是不等式的基本性质:“a-b≥0a≥b;a-b≤0a≤b”.其一般步骤为:①作差:考察不等式左右两边构成的差式,将其看作一个整体;②变形:把不等式两边的差进行变形,或变形为一个常数,或变形为若干个因式的积,或变形为一个或几个平方的和等等,其中变形是求差法的关键,配方和因式分解是经常使用的变形手段;③判断:根据已知条件与上述变形结果,判断不等式两边差的正负号,最后肯定所求证不等式成立的结论.应用范围:当被证的不等式两端是多项式、分式或对数式时一般使用差值比较法. (2)商值比较法的理论依据是:“若a,b∈R + ,a/b≥1a≥b;a/b≤1a≤b”.其一般步骤为:①作商:将左右两端作商;②变形:化简商式到最简形式;③判断商与1的大小关系,就是判定商大于1或小于1.应用范围:当被证的不等式两端含有幂、指数式时,一般使用商值比较法. 2.综合法:利用已知事实(已知条件、重要不等式或已证明的不等式)作为基础,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后推出所要证明的不等式,其特点和思路是“由因导果”,从“已知”看“需知”,逐步推出“结论”.即从已知A逐步推演不等式成立的必要条件从而得出结论B. 3.分析法:是指从需证的不等式出发,分析这个不等式成立的充分条件,进而转化为判定那个条件是否具备,其特点和思路是“执果索因”,即从“未知”看“需知”,逐步靠拢“已知”.用分析法证明书写的模式是:为了证明命题B成立,只需证明命题B1为真,从而有…,这只需证明B2为真,从而又有…,……这只需证明A为真,而已知A为真,故B必为真.这种证题模式告诉我们,分析法证题是步步寻求上一步成立的充分条件. 4.反证法:有些不等式的证明,从正面证不好说清楚,可以从正难则反的角度考虑,即要证明不等式A>B,先假设A≤B,由题设及其它性质,推出矛盾,从而肯定A>B.凡涉及到的证明不等式为否定命题、惟一性命题或含有“至多”、“至少”、“不存在”、“不可能”等词语时,可以考虑用反证法. 5.换元法:换元法是对一些结构比较复杂,变量较多,变量之间的关系不甚明了的不等式可引入一个或多个变量进行代换,以便简化原有的结构或实现某种转化与变通,给证明带来新????

不等式的证明分析法与综合法习题

2.3不等式的证明(2)——分析法与综合法习题 知能目标锁定 1.掌握分析法证明不等式的方法与步骤,能够用分析法证明一些复杂的不等式; 2.了解综合法的意义,熟悉综合法证明不等式的步骤与方法; 重点难点透视 1.综合法与分析法证明不等式是重点,分析法是证明不等式的难点. 方法指导 1. 分析法 ⑴分析法是证明不等式的一种常用方法.它的证明思路是:从未知,看需知,逐步靠已知.即”执果索因”. ⑵分析法证明的逻辑关系是:结论A B B B B n ????? 21 (A 已确认). ⑶用分析法证题一定要注意书写格式,并保证步步可逆. ⑷用分析法探求方向,逐步剥离外壳,直至内核.有时分析法与综合法联合使用.当不等式两边有多个根式或多个分式时,常用分析法. 2. 综合法 ⑴综合法的特点是:由因导果.其逻辑关系是:已知条件 B B B B A n ????? 21(结论),后一步是前一步的必要条件. ⑵在用综合法证题时要注意两点:常用分析法去寻找证题思路,找出从何处入手,将不等式变形,使其结构特点明显或转化为容易证明的不等式. 一.夯实双基 1.若a>2,b>2,则ab 与a+b 的大小关系是ab( )a+b A.= B. < C.> D.不能确定 2.0>>a b 设,则下列不等式中正确的是( ) A.0 lg >b a B.a b a b ->- C. a a a a ++< +211 D. 1 1++< a b a b

3.若a,b,c + ∈R ,且a+b+c=1,那么 c b a 111+ + 有最小值( ) A.6 B.9 C.4 D.3 4.设2 6,37,2-=-== c b a ,那么a,b,c 的大小关系是( ) c b a A >>. b c a B >>. c a b C >>. a c b D >>. 5.若x>y>1,则下列4个选项中最小的是( ) A. 2 y x + B. y x xy +2 C.xy D. )11(21y x + 二.循序厚积 6.已知两个变量x,y 满足x+y=4,则使不等式m y x ≥+ 41恒成立的实数m 的取值范 围是________; 7.已知 a,b 为正数,且a+b=1则22+++b a 的最大值为_________; 8.若a,b,c + ∈R ,且a+b+c=1,则c b a ++的最大值是__________; 9.若xy+yz+zx=1,则222z y x ++与1的关系是__________; 10. b a n b a m b a -= - = >>,,0若,则m 与n 的大小关系是______. 三、提升能力 11. a 、b 、c 、d 是不全相等的正数,求证:(a b+cd)(ac+bd)>abcd 12.设x>0,y>0,求证: 2 2 y x y x +≤ + 13.已知a,b + ∈R ,且a+b=1,求证:2 25)1()1(2 2 ≥ + ++ b b a a .

综合法与分析法(公开课教案)

肥东锦弘中学高中部公开课教案设计 2. 2 .1 综合法与分析法 授课时间:2013.4.16下午第一节 地点:高二(15)班 授课人:赵尚平 一.教材分析 《直接证明与间接证明》是在学习了推理方法的基础上学习的,研究的是如何正确利用演绎推理来证明问题.本节课是《直接证明与间接证明》的第一节,主要介绍了两种证明方法的定义和逻辑特点,并引导学生比较两种证明方法的优点,进而灵活选择证明方法,规范证明步骤.本节课的学习需要学生具有一定的认知基础,应尽量选择学生熟悉的例子. 二.教学目标 1.知识与技能目标 (1)了解直接证明的两种基本方法:综合法和分析法. (2)了解综合法和分析法的思维过程和特点. 2.过程与方法目标 (1)通过对实例的分析、归纳与总结,增强学生的理性思维能力. (2)通过实际演练,使学生体会证明的必要性,并增强他们分析问题、解决问题的能力. 3.情感、态度及价值观 通过本节课的学习,了解直接证明的两种基本方法,感受逻辑证明在数学及日常生 活中的作用,养成言之有理、论之有据的好习惯,提高学生的思维能力. 三.教学重难点 重点:综合法和分析法的思维过程及特点. 难点:综合法和分析法的应用. 四.教具准备:多媒体. 五.教法与学法:师生合作探究 六.教学过程: (一)创设情境 引入新课 证明对我们来说并不陌生,我们在上一节学习的合情推理,所得的结论的正确性就是要证明的,并且我们在以前的学习中,积累了较多的证明数学问题的经验,但这些经验是零散的、不系统的,这一节我们将通过熟悉的数学实例,对证明数学问题的方法形成较完整的认识. (二) 新 课 讲 授 合情推理分为归纳推理和类比推理,所得的结论的正确性是要证明的,数学中的两大基本证明方法——直接证明与间接证明. 思考:已知a ,b >0,求证2222 ()()4a b c b c a abc +++≥ 设计意图:引导学生应用不等式证明以上问题,引出综合法的定义. 证明:因为222,0b c bc a +≥>, 所以22()2a b c abc +≥, 因为222,0c a ac b +≥>, 所以22()2b c a abc +≥. 因此, 2222()()4a b c b c a abc +++≥.

证明基本不等式的方法

2.2 证明不等式的基本方法——分析法与综合法 ●教学目标:1、理解综合法与分析法证明不等式的原理和思维特点. 2、理解综合法与分析法的实质,熟练掌握分析法证明不等式的方法与步骤. ●教学重点:综合法与分析法证明不等式的方法与步骤 ●教学难点:综合法与分析法证明不等式基本原理的理 ●教学过程: 一、复习引入: 1、复习比较法证明不等式的依据和步骤? 2、今天学习证明不等式的基本方法——分析法与综合法 二、讲授新课: 1、综合法:一般地,从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫做综合法综合法又叫顺推证法或由因导果法。 用综合法证明不等式的逻辑关系是:例1、已知a,b,c是不全相等的正数,求证: . 分析:观察题目,不等式左边含有“a2+b2”的形式,我们可以创设运用基本不等式:a2+b2≥2ab;还可以这样思考:不等式左边出现有三次因式:a2b,b2c,c2a,ab2,bc2,ca2的“和”,右边有三正数a,b,c的“积”,我们可以创设运用重要不等式:a3+b3+c3≥3abc.(教师引导学生,完成证明) 解:∵a>0,b2+c2≥2bc∴由不等式的性质定理4,得a(b2+c2)≥2abc.① 同理b(c2+a2)≥2abc,②c(a2+b2)≥2abc.③ 因为a,b,c为不全相等的正数,所以以上三式不能全取“=”号,从而①,②,③三式也不能全取“=”号. 由不等式的性质定理3的推论,①,②,③三式相加得:a(b2+c2)+b(c2+a2)+c(a2+b2)>6abc. 点评:(1)综合法的思维特点是:由因导果,即由已知条件出发,利用已知的数学定理、性质和公式,推出结论的一种证明方法。基本不等式以及一些已经得证的不等式往往与待证的不等式有着这样或那样的联系,作由此及彼的联想往往能启发我们证明的方向.尝试时贵在联想,浮想联翩,思潮如涌。 (2)在利用综合法进行不等式证明时,要善于直接运用或创设条件运用基本不等式,其中拆项、并项、分解、组合是变形的重要技巧. 变式训练:已知a,b,c是不全相等的正数,求证:例2、已知且,求证:分析:观察要证明的结论,左边是个因式的乘积,右边是2的次方,再结合,发现如果能将左边转化为的乘积,问题就能得到解决。 2、分析法:从要证的结论出发,逐步寻求使它成立的充分条件,直至所需条件为已知条件或一个明显成立的事实(定义、公理或已证明的定理、性质等),从而得出要证的命题成立,这种证明方法叫做分析法这是一种执果索因的思考和证明方法。 ①用分析法证明不等式的逻辑关系是:②分析法论证“若A则B”这个命题的模式是:为了证明命题B为真,这只需要证明命题B1为真,从而有……这只需要证明命题B2为真,从而又有……这只需要证明命题A为真,而已知A为真,故B必真。 例3.求证:分析:观察结构特点,可以利用分析法。 点评:①分析法的思维特点是:执果索因.对于思路不明显,感到无从下手的问题宜用分析法探究证明途径.另外,不等式的基本性质告诉我们可以对不等式做这样或那样的变形,分析时贵在变形,不通思变,变则通! ②证明某些含有根式的不等式时,用综合法比较困难,常用分析法. ③在证明不等式时,分析法占有重要的位置.有时我们常用分析法探索证明的途径,然后用综

2-2-1综合法与分析法

选修1-2 2.2.1 一、选择题 1.分析法证明问题是从所证命题的结论出发,寻求使这个结论成立的( ) A .充分条件 B .必要条件 C .充要条件 D .既非充分条件又非必要条件 [答案] A [解析] 分析法证明是从所证命题的结论出发,寻求使结论成立的充分条件. 2.要证明3+7<25可选择的方法有以下几种,其中最合理的为( ) A .综合法 B .分析法 C .反证法 D .归纳法 [答案] B [解析] 要证明3+7<25最合理的方法是分析法. 3.a >0,b >0,则下列不等式中不成立的是( ) A .a +b +1ab ≥2 2 B .(a +b )????1a +1b ≥4 ≥a +b ≥ab [答案] D [解析] ∵a >0,b >0,∴2ab a +b ≤ab . 4.下面的四个不等式: ①a 2+b 2+c 2≥ab +bc +ca ;②a (1-a )≤14;③b a +a b ≥2;④(a 2+b 2)·(c 2+d 2)≥(ac +bd )2. 其中恒成立的有( ) A .1个 B .2个 C .3个 D .4个 [答案] C [解析] ∵a 2+b 2+c 2≥ab +bc +ac , a (1-a )-14=-a 2+a -14=-(a -12)2≤0,

(a 2+b 2)·(c 2+d 2)=a 2c 2+a 2d 2+b 2c 2+b 2d 2 ≥a 2c 2+2abcd +b 2d 2=(ac +bd )2, 只有当b a >0时,才有b a +a b ≥2,∴应选C. 5.若a ,b ∈R ,则1a 3>1b 3成立的一个充分不必要条件是( ) A .ab >0 B .b >a C .a 1b 3,但1a 3>1b 3?/ a 1b 3的一个充分不必要条件. 6.若x 、y ∈R ,且2x 2+y 2=6x ,则x 2+y 2+2x 的最大值为( ) A .14 B .15 C .16 D .17 [答案] B [解析] 由y 2=6x -2x 2≥0得0≤x ≤3,从而x 2+y 2+2x =-(x -4)2+16,∴当x =3时,最大值为15. 7.设a 与b 为正数,并且满足a +b =1,a 2+b 2≥k ,则k 的最大值为( ) D .1 [答案] C [解析] ∵a 2+b 2≥12(a +b )2=12(当且仅当a =b 时取等号),∴k max =12 . 8.已知函数f (x )=????12x ,a 、b ∈R +,A =f ????a +b 2,B =f (ab ),C =f ??? ?2ab a +b ,则A 、B 、C 的大小关系为( ) A .A ≤ B ≤C B .A ≤ C ≤B C .B ≤C ≤A D .C ≤B ≤A [答案] A [解析] ∵a +b 2≥ab ≥2ab a +b , 又函数f (x )=(12)x 在(-∞,+∞)上是单调减函数,∴f (a +b 2)≤f (ab )≤f (2ab a +b ).

不等式证明的常用基本方法

证明不等式的基本方法 导学目标:1.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.2.会用比较法、综合法、分析法、反证法、放缩法证明比较简单的不等式. [自主梳理] 1.三个正数的算术—几何平均不等式:如果a ,b ,c>0,那么_________________________,当且仅当a =b =c 时等号成立. 2.基本不等式(基本不等式的推广):对于n 个正数a 1,a 2,…,a n ,它们的算术平均不小于它们的几何平均,即a 1+a 2+…+a n n ≥n a 1·a 2·…·a n ,当且仅当__________________时等号成立. 3.证明不等式的常用五种方法 (1)比较法:比较法是证明不等式最基本的方法,具体有作差比较和作商比较两种,其基本思想是______与0比较大小或______与1比较大小. (2)综合法:从已知条件出发,利用定义、______、______、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫综合法.也叫顺推证法或由因导果法. (3)分析法:从要证明的结论出发,逐步寻求使它成立的________条件,直至所需条件为已知条件或一个明显成立的事实(定义 、公理或已证明的定理、性质等),从而得出要证的命题成立为止,这种证明方法叫分析法.也叫逆推证法或执果索因法. (4)反证法 ①反证法的定义 先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不正确,从而证明原命题成立,我们把它称为反证法. ②反证法的特点 先假设原命题不成立,再在正确的推理下得出矛盾,这个矛盾可以是与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实等矛盾. (5)放缩法 ①定义:证明不等式时,通过把不等式中的某些部分的值________或________,简化不等式,从而达到证明的目的,我们把这种方法称为放缩法. ②思路:分析观察证明式的特点,适当放大或缩小是证题关键. 题型一 用比差法与比商法证明不等式 1.设t =a +2b ,s =a +b 2+1,则s 与t 的大小关系是( A ) ≥t >t ≤t 0;②a 2+b 2≥2(a -b-1);③a 2+3ab>2b 2;④,其中所 有恒成立的不等式序号是 ② . ②【解析】①a=0时不成立;②∵a 2+b 2-2(a-b-1)=(a-1)2+(b+1)2≥0,成立;③a=b=0时不成立;④a=2,b=1时不成立,故恒成立的只有②.

经典不等式证明的基本方法

不等式和绝对值不等式 一、不等式 1、不等式的基本性质: ①、对称性: 传递性:_________ ②、 ,a+c >b+c ③、a >b , , 那么ac >bc ; a >b , ,那么ac <bc ④、a >b >0, 那么,ac >bd ⑤、a>b>0,那么a n >b n .(条件 ) ⑥、 a >b >0 那么 (条件 ) 2、基本不等式 定理1 如果a, b ∈R, 那么 a 2+b 2≥2ab. 当且仅当a=b 时等号成立。 定理2(基本不等式) 如果a ,b>0,那么 当且仅当a=b 时,等号成立。即两个正数的算术平均不小于它们的几何平均。 结论:已知x, y 都是正数。(1)如果积xy 是定值p ,那么当x=y 时,和x+y 有最小值 ; (2)如果和x+y 是定值s ,那么当x=y 时,积xy 有最大值 小结:理解并熟练掌握基本不等式及其应用,特别要注意利用基本不等式求最值时, 一 定要满足“一正二定三相等”的条件。 3、三个正数的算术-几何平均不等式 二、绝对值不等式 1、绝对值三角不等式 实数a 的绝对值|a|的几何意义是表示数轴上坐标为a 的点A 到原点的距离: a b b a c a c b b a >?>>,R c b a ∈>,0>c 0> d c 2,≥∈n N n 2,≥∈n N n 2 a b +≥2 1 4 s 3 ,,3a b c a b c R a b c +++∈≥==定理如果,那么当且仅当时,等号成立。 即:三个正数的算术平均不小于它们的几何平均。2122,,,,n n n a a a a a n a a ++≥=== 11把基本不等式推广到一般情形:对于n 个正数a 它们的算术平均不小于它们的几何平均,即: 当且仅当a 时,等号成立。

《综合法和分析法》参考教案

第一课时 2.2.1 综合法和分析法(一) 教学要求:结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点. 教学重点:会用综合法证明问题;了解综合法的思考过程. 教学难点:根据问题的特点,结合综合法的思考过程、特点,选择适当的证明方法. 教学过程: 一、准备: 1. 已知“若12a a +∈R , ,且121a a +=,则12 11 4a a +≥”,试请此结论推广猜想. (答案:若12n a a a +∈R , ,,,且121n a a a +++=,则 212 111 n n a a a +++ ≥) 2.已知a b c +∈R , ,,1a b c ++=,求证:1 119a b c ++≥. 先完成证明 → 讨论:证明过程有什么特点? 二、讲授新课: 1. 教学例题: ①出示例1:已知a b c ,,是不全相等的正数,求证: 222222()()()6a b c b c a c a b abc +++++>. 分析:运用什么知识来解决?(基本不等式) → 板演证明过程(注意等号的处理)→ 讨论:证明形式的特点 ② 提出综合法:利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立. 框图表示: 要点:顺推证法;由因导果. ③ 练习:已知a b c ,,是全不相等的正实数,求证3b c a a c b a b c a b c +-+-+-++>. ④ 例题讲解: P37例1:△ABC 在平面α外,AB ∩α=P ,BC ∩α=Q ,AC ∩α=R ,求证:PQR 三点共线.

高中数学基本不等式证明

不等式证明基本方法 例1 :求证:221a b a b ab ++≥+- 分析:比较法证明不等式是不等式证明的最基本的方法,常用作差法和作商法,此题用作差法较为简便。 证明:221()a b a b ab ++-+- 2221[()(1)(1)]02 a b a b =-+-+-≥ 评注:1.比较法之一(作差法)步骤:作差——变形——判断与0的关系——结论 2.作差后的变形常用方法有因式分解、配方、通分、有理化等,应注意结合式子的形式,适当选 用。 例2:设c b a >>,求证:b a a c c b ab ca bc 2 22222++<++ 分析:从不等式两边形式看,作差后可进行因式分解。 证明:)(222222b a a c c b ab ca bc ++-++ =)()()(a b ab c a ca b c bc -+-+- =)()]()[()(a b ab c b b a ca b c bc -+-+-+- =))()((a c c b b a --- c b a >>Θ,则,0,0,0<->->-a c c b b a ∴0))()((<---a c c b b a 故原不等式成立 评注:三元因式分解因式,可以排列成一个元的降幂形式: =++-++)(222222b a a c c b ab ca bc )())(()(2a b ab b a b a c a b c -++-+-,这样容易发现规律。 例3 :已知,,a b R +∈求证:11()()2()n n n n a b a b a b ++++≤+ 证明:11()()2()n n n n a b a b a b ++++-+ 11n n n n a b ab a b ++=+-- ()()n n a b a b a b =-+- ()()n n a b b a =--

2.2.1综合法与分析法 (5)

第二章第2节直接证明与间接证明 一、综合法与分析法 课前预习学案 一、预习目标: 了解综合法与分析法的概念,并能简单应用。 二、预习内容: 证明方法可以分为直接证明和间接证明 1.直接证明分为和 2.直接证明是从命题的或出发,根据以知的定义, 公里,定理,推证结论的真实性。 3.综合法是从推导到的方法。而分析法是一种从 追溯到的思维方法,具体的说,综合法是从已知的条件出发,经过逐步的推理,最后达到待证结论,分析法则是从待证的结论出发,一步一步寻求结论成立的条件,最后达到题设的以知条件或以被证明的事实。综合法是由导,分析法是执索。 三、提出疑惑 课内探究学案 一、学习目标 让学生理解分析法与综合法的概念并能够应用 二、学习过程: 例1.已知a,b∈R+,求证: 例2.已知a,b∈R+,求证: 例3.已知a,b,c∈R,求证(I) 课后练习与提高

1.(A 级)函数???≥<<-=-0 ,; 01,sin )(12x e x x x f x π,若,2)()1(=+a f f 则a 的所有可能值为 ( ) A .1 B .22 - C .1,或 D .1, 2.(A 级)函数x x x y sin cos -=在下列哪个区间内是增函数 ( ) A .)23,2(π π B .)2,(ππ C .)2 5,23(π π D .)3,2(ππ 3.(A 级)设b a b a b a +=+∈则,62,,22R 的最小值是 ( ) A .22- B .3 3 5- C .-3 D .27- 4.(A 级)下列函数中,在),0(+∞上为增函数的是 ( ) A .x y 2sin = B .x xe y = C .x x y -=3 D .x x y -+=)1ln( 5.(A 级)设c b a ,,三数成等比数列,而y x ,分别为b a ,和c b ,的等差中项,则 =+y c x a ( ) A .1 B .2 C .3 D .不确定 6.(A 级)已知实数0≠a ,且函数)1 2()1()(2a x x a x f +-+=有最小值1-,则 a =__________。 7.(A 级)已知b a ,是不相等的正数,b a y b a x +=+= ,2 ,则y x ,的大小关 系是_________。 8.(B )若正整数m 满足m m 102105121<<-,则)3010.02.(lg ______________ ≈=m 9.(B )设)(),0)(2sin()(x f x x f <<-+=?π?图像的一条对称轴是8 π =x . (1)求?的值;

高中数学选修1-2《2.2.1综合法和分析法》练习精选

第2课时 分析法及其应用练习 双基达标 (限时20分钟) 1.要证明3+7<25,可选择的方法有以下几种,其中最合理的是 ( ). A .综合法 B .分析法 C .反证法 D .归纳法 答案 B 2.已知f (x )=a (2x +1)-2 2x +1 是奇函数,那么实数a 的值等于 ( ). A .1 B .-1 C .0 D .±1 解析 奇函数f (x )在x =0时有意义,则f (0)=0, ∴f (0)=a (20+1)-220+1=2a -2 2=0, ∴a =1,故选A. 答案 A 3.如果x >0,y >0,x +y +xy =2,则x +y 的最小值是 ( ). A.32 B .23-2 C .1+ 3 D .2- 3 解析 由x >0,y >0,x +y +xy =2, 则2-(x +y )=xy ≤? ????x +y 22 , ∴(x +y )2+4(x +y )-8≥0, ∴x +y ≥23-2或x +y ≤-2-2 3. ∵x >0,y >0,∴x +y 的最小值为23-2. 答案 B 4.设A =12a +12b ,B =2 a +b (a >0,b >0),则A 、B 的大小关系为________.

解析 A -B =a +b 2ab -2 a + b =(a +b )2-4ab 2ab (a +b )≥0. 答案 A ≥B 5.若抛物线y =4x 2上的点P 到直线y =4x -5的距离最短,则点P 的坐标为________. 解析 数形结合知,曲线y =4x 2在点P 处的切线l 与直线y =4x -5平行. 设l :y =4x +b .将y =4x +b 代入y =4x 2, 得4x 2-4x -b =0,令Δ=0,得b =-1. ∴4x 2-4x +1=0, ∴x =1 2,∴y =1. 答案 ? ?? ?? 12,1 6.设a ,b >0,且a ≠b ,求证:a 3+b 3>a 2b +ab 2. 证明 法一 分析法 要证a 3+b 3>a 2b +ab 2成立. 只需证(a +b )(a 2-ab +b 2)>ab (a +b )成立, 又因a +b >0, 只需证a 2-ab +b 2>ab 成立, 只需证a 2-2ab +b 2>0成立, 即需证(a -b )2>0成立. 而依题设a ≠b ,则(a -b )2>0显然成立. 由此命题得证. 法二 综合法 a ≠ b ?a -b ≠0?(a -b )2>0 ?a 2-2ab +b 2>0?a 2-ab +b 2>ab . 注意到a ,b ∈R +,a +b >0,由上式即得 (a +b )(a 2-ab +b 2)>ab (a +b ). ∴a 3+b 3>a 2b +ab 2. 综合提高 (限时25分钟)

4 基本不等式的证明(1)

4、基本不等式的证明(1) 目标: (,0)2 a b a b +≥的证明过程,并能应用基本不等式证明其他不等式。 过程: 一、问题情境 把一个物体放在天平的一个盘子上,在另一个盘子上放砝码使天平平衡,称得物体的质量为 a 。如果天平制造得不精确,天平的两臂长略有不同(其他因素不计) ,那么a 并非物体的实际质量。不过,我们可作第二次测量:把物体调换到天平的另一个盘上,此时称得物体的质量为b 。那么如何合理的表示物体的质量呢? 把两次称得的物体的质量“平均”一下,以2 a b A +=表示物体的质量。这样的做法合理吗? 设天平的两臂长分别为12,l l ,物体实际质量为M ,据力学原理有1221,l M l a l M l b == ,有2,M ab M == ,0a b >时,2 a b +叫,a b ,a b 的几何平均数 2 a b + 二、建构 一般,判断两数的大小可采用“比较法”: 02a b +-=≥ 2 a b +≤(当且仅当a b =时取等号) 说明:当0a =或0b =时,以上不等式仍成立。 从而有 2 a b +≤(0,0)a b ≥≥(称之“基本不等式” )当且仅当a b =时取等号。 2 a b +≤的几何解释: 如图,,2 a b OC CD OC CD +≥== 三、运用 例1 设,a b 为正数,证明:1(1)2(2)2b a a a b a +≥+≥ 注意:基本不等式的变形应用 2,2a b a b ab +??≤+≤ ???

例2 证明: 22(1)2a b ab +≥ 此不等式以后可直接使用 1(2)1(1)1 x x x + ≥>-+ 4(3)4(0)a a a +≤-< 2 2≥ 2 2> 例3 已知,0,1a b a b >+=,求证:123a b +≥+ 四、小结 五、作业 反馈32 书P91 习题1,2,3

分析法证明不等式

分析法证明不等式 山东 林 博 分析法是不等式证明的基本方法,但它不失为不等式证明的重要方法.下面以几道不等式证明题作为分析法的范例加以阐释. 例1 已知:a b c +∈R ,,, 求证:3223a b a b c ab abc +++????-3- ? ????? ≤. 分析:这道题从考查思维的角度来看,方法基本,只要从分析法入手———步步变形,问题极易解决. 证明:为了证明3223a b a b c ab abc +++????-3- ? ????? ≤, 只需证明323ab c abc --≤, 即证明332abc c ab c ab ab +=++≤. 而3333c ab ab c ab ab abc ++=≥成立,且以上各步均可逆, ∴32323a b a b c ab abc +++????-- ? ????? ≤. 点评:分析法是思考问题的一种基本方法,容易找到解决问题的突破口. 例2 已知关于x 的实系数方程2 0x ax b ++=有两个实根αβ,,证明: (1)如果||2α<,||2β<,那么2||4a b <+,且||4b <; (2)如果2||4a b <+,且||4b <,那么||2α<,||2β<. 分析:本题涉及参数较多,应注意它们之间的等量关系. 证明:∵αβ,是方程20x ax b ++=的两个实根, ∴a αβ+=-,b αβ=. (1)欲证2||4a b <+,且||4b <. 只要证2||4αβαβ+<+,且||4αβ<, 而||2α<,||2β<,从而有||4αβ+<,40αβ+>. 故只要证224()(4)αβαβ+<+,只要证22(4)(4)0αβ-->.

(完整版)综合法和分析法习题

直接证明与间接证明测试题 一、选择题 1.下列说法不正确的是() A.综合法是由因导果的顺推证法 B.分析法是执果索因的逆推证法 C.综合法与分析法都是直接证法 D.综合法与分析法在同一题的证明中不可能同时采用 2.用反证法证明一个命题时,下列说法正确的是() A.将结论与条件同时否定,推出矛盾 B.肯定条件,否定结论,推出矛盾 C.将被否定的结论当条件,经过推理得出的结论只与原题条件矛盾,才是反证法的正确运用 D.将被否定的结论当条件,原题的条件不能当条件 3.若a b c ,,是不全相等的实数,求证:222 ++>++. a b c ab bc ca 证明过程如下: a b c∈R ∵,222 ,, +≥,222 +≥, b c bc c a ac ∴≥,222 a b ab + 又a b c ∵不全相等,∴以上三式至少有一个“=”不成立,∴将以上三式相加得,, 222 2()2() ++>+++,222 a b c ab b c ac ∴.此证法是() a b c ab bc ca ++>++ A.分析法B.综合法C.分析法与综合法并用D.反证法 41>. +>+ 11,即证75111

,3511>∵,∴原不等式成立. 以上证明应用了( ) A.分析法 B.综合法 C.分析法与综合法配合使用 D.间接证法 5.以下数列不是等差数列的是( ) A. B.π2π5π8+++,, D.204060,, 6.使不等式 116a <成立的条件是( ) A.a b > B.a b < C.a b >,且0ab < D.a b >,且0ab > 二、填空题 7.求证:一个三角形中,至少有一个内角不小于60°,用反证法证明时的假设为“三角形的 ”. 8.已知00a b m n >>==,,m 与n n 的关系为 . 9.当00a b >>,时,①11()4a b a b ??++ ???≥;②22222a b a b +++≥; ;④2ab a b + 以上4个不等式恒成立的是 .(填序号)

综合法与分析法

综合法与分析法 学习目标: 1. 理解综合法和分析法的概念及区别 2. 熟练的运用综合法分析法证题 学习重难点: 综合法和分析法的概念及区别 自主学习: 一:知识回顾 1. 合情推理:前提为真,结论可能为真的推理。它包括归纳推理与类比推理。 2. 演绎推理:根据一般性的真命题(或逻辑规则)导出特殊命题为真的推理叫演绎推理 二:课题探究 1. 直接证明: 从命题的条件或结论出发,根据已知的定义,公理,定理直接推证结论的真实性. 2. 综合法:从题设中的已知条件或已证的真实判断出发,经过一系列的中间推理,最后导出所 求证的命题.综合法是一种由因所果的证明方法. 3. 分析法: 一般地,从要证明的结论出发,追溯导致结论成立的条件,逐步上溯,直到使 结论成立的条件和已知条件或已知事实吻合为止,这种证明的方法叫做分析 法.分析法是一种执果索因的证明方法. 4.综合法的证明步骤用符号表示: 0P (已知) 1n P P ???L (结论) 5.分析法的证明“若A 成立,则B 成立”的思路与步骤; 要正(或为了证明)B 成立, 只需证明1A 成立(1A 是B 成立的充分条件). 要证1A 成立, 只需证明2A 成立(2A 是1A 成立的充分条件). … , 要证k A 成立, 只需证明A 成立(A 是k A 成立的充分条件).. Q A 成立, ∴B 成立. 三: 例题解析 例1: 已知a>0,b>0,求证a(b 2+c 2)+b(c 2+a 2)≥4abc 证明: 因为b 2+c 2 ≥2bc,a>0 所以a(b 2+c 2)≥2abc. 又因为c 2+b 2 ≥2bc,b>0 所以b(c 2+a 2)≥ 2abc.因此a(b 2+c 2)+b(c 2+a 2)≥4abc. 例2: 已知:a,b,c 三数成等比数列,且x,y 分别为a,b 和b,c 的等差中项.

人教A版选修【4-5】2.2《综合法与分析法》习题及答案(最新整理)

数学·选修4-5(人教A 版) 2.2  综合法与分析法一层练习 1.分析法证明不等式中所说的“执果索因”是指寻求使不等式成立的( ) A .必要条件 B .充分条件 C .充要条件 D .必要或充分条件 答案:B 2.若x >y >1,0<a <1,则下列式子中正确的是( ) A .a x >a y B .log a x >log a y C .x a <y a D .x -a <y -a 答案:D 3.设a ,b∈R +,A =+,B =,则A ,B 的大小关系是( ) a b a +b A .A≥B B .A≤B C .A>B D .A

4.已知0<a <1,0<b <1,且a≠b,那么a +b,2,a 2+b 2,2ab 中最大的是________.ab 答案:a +b 5.求证:<2-. 753证明:21<25?<5 21?2<10 21?10+2<20 21?(+)2<(2)2735?+<2735?<2-.753所以原不等式成立. 二层练习 6.若10,M =,N =a +b ,则M 与N 的大小关系是________. a 2+ b 2 ab 答案:M≥N

8.a ,b 是正数,求证:≥.a 2+b 2 a +b 212 证明:=a 2+b 2 a +b 2 a +b 2-2ab a +b 2 =1-≥1-=1-=,2ab a +b 22·(a +b 2)2 a +b 21212 当且仅当a =b 时取“=”. 9.若a ,b ,c 是不全相等的正数,求证: lg +lg +lg >lg a +lg b +lg c.a +b 2b +c 2c +a 2 证明:证法一(综合法) ∵a,b ,c∈R +, ∴≥>0,≥>0,≥>0,且上述三个不等式中等号不能同时成立,a +b 2ab b +c 2bc c +a 2ac ∴··>abc.a +b 2b +c 2c +a 2 ∴lg +lg +lg >lg a +lg b +lg c.a +b 2b +c 2c +a 2证法二(分析法)lg +lg +lg >lg a +lg b +lg c ?a +b 2b +c 2c +a 2lg >lg abc ?(a +b 2·b +c 2·c +a 2) ··>abc.a +b 2b +c 2c +a 2因为≥>0,≥>0,≥>0,且以上三个不等式中等号不能同时成立,所以·a +b 2ab b +c 2bc c +a 2ac a +b 2·>abc 成立,从而原不等式成立.b +c 2c +a 210.(2018·新课标Ⅱ卷)设a ,b ,c 均为正数,且a +b +c =1,求证: (1)ab +bc +ca≤;13

综合法和分析法

《综合法和分析法(1)》导学案 编写人:马培文 审核人:杜运铎 编写时间:2016-02-24 【学习目标】 结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法。 【重点难点】 1. 结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法; 2. 会用综合法证明问题;了解综合法的思考过程。 3. 根据问题的特点,结合综合法的思考过程、特点,选择适当的证明方法。 【学法指导】 ① 课前阅读课文(预习教材P 85~P 89,找出疑惑之处)② 思考导学案中的探究 问题,并提出你的观点。 【知识链接】 复习1 两类基本的证明方法: 和 。 复习2 直接证明的两中方法: 和 。 知识点一 综合法的应用 问题 已知,0a b >, 求证 2222()()4a b c b c a abc +++≥。 新知 一般地,利用 ,经过一系列的推理论 证,最后导出所要证明的结论成立,这种证明方法叫综合法。 反思 框图表示 要点 顺推证法;由因导果。 【典型例题】 例1 已知,,a b c R +∈,1a b c ++=,求证:1119a b c ++≥ 变式 已知,,a b c R +∈,1a b c ++=,求证 111(1)(1)(1)8a b c ---≥。

小结 用综合法证明不等式时要注意应用重要不等式和不等式性质,要注意公式应 用的条件和等号成立的条件,这是一种由因索果的证明。 例2 在△ABC 中,三个内角A 、B 、C 的对边分别为a 、b 、c ,且A 、B 、C 成等 差数列,a 、b 、c 成等比数列. 求证:为△ABC 等边三角形。 变式 设在四面体P ABC -中,90,,ABC PA PB PC ∠=?==D 是AC 的中点. 求证 PD 垂直于ABC ?所在的平面。 小结 解决数学问题时,往往要先作语言的转换,如把文字语言转换成符号语言,或 把符号语言转换成图形语言等,还要通过细致的分析,把其中的隐含条件明 确表示出来。 【基础达标】 A1. 求证 对于任意角θ,44cos sin cos 2θθθ-=。 B2. ,A B 为锐角,且tan tan tan A B A B +=, 求证 60A B += . (提示:算tan()A B +)。

2. 2 .1 综合法和分析法

§2. 2 .1 综合法和分析法 一、教学目标: (一)知识与技能: 结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合 法;了解分析法和综合法的思考过程、特点。 (二)过程与方法: 培养学生的辨析能力和分析问题和解决问题的能力; (三)情感、态度与价值观: 通过学生的参与,激发学生学习数学的兴趣。 二、教学重点: 了解分析法和综合法的思考过程、特点 三、教学难点: 分析法和综合法的思考过程、特点 四、教学过程: (一)导入新课: 合情推理分归纳推理和类比推理,所得的结论的正确性是要证明的。数学结论的正确性必须通过逻辑推理的方式加以证明。本节我们将学习两类基本的证明方法:直接证明与间接证明。 (二)推进新课: 1. 综合法 在数学证明中,我们经常从已知条件和某些数学定义、公理、定理等出发,通过推理推导出所要的结论。例如: 已知a,b>0,求证2222()()4a b c b c a abc +++≥ 教师活动:给出以上问题,让学生思考应该如何证明,引导学生应用不等式证 明。教师最后归结证明方法。 学生活动:充分讨论,思考,找出以上问题的证明方法 设计意图:引导学生应用不等式证明以上问题,引出综合法的定义 证明:因为222,0b c bc a +≥>, 所以22()2a b c abc +≥。 因为222,0c a ac b +≥>, 所以22()2b c a abc +≥。 因此 2222()()4a b c b c a abc +++≥。 一般地,利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种方法叫做综合法。 用P 表示已知条件、已有的定义、定理、公理等,Q 表示要证明的结论,则综合法可表示为: ()()()11223().....n P Q Q Q Q Q Q Q ?→?→?→→? 综合法的特点是:由因导果,即由已知条件出发,利用已知的数学定理、性质和公式,推出结论的一种证明方法。 例1、在△ABC 中,三个内角A,B,C 的对边分别为,,a b c ,且A,B,C 成等差数列, ,,a b c 成等比数列,求证△ABC 为等边三角形.

文本预览
相关文档 最新文档