当前位置:文档之家› 十万立方外浮顶油罐设计--总图

十万立方外浮顶油罐设计--总图

十万立方外浮顶油罐设计--总图

1500立方米储罐设计正文

15003m储罐设计 1 综述 1.1国内外汽油储罐的发展概况 长期以来,我国库存轻质油品,广泛采用固定顶油罐和浮顶油罐。由于固定顶油罐在存贮和收发油品时存在“小呼吸”和“大呼吸”,油品蒸发损耗较大,而且会因为油气逸散到空气中造成环境污染,危害人们身体健康。因此油品及化学品的蒸发损耗一直是石油、化学工业关心的问题。人们最初关心的是经济损失和安全,近年来还关心生态、环境保护方面的问题。为了较经济有效地解决这个问题,世界上发达国家如美国、法国、前苏联早在五、六十年代相继开始研制浮顶油罐。我国直到70年代末期才开始研制。由于浮顶罐能降低损耗,减少环境污染,主要用于储存原油、汽油、柴油等介质。随着内浮顶技术的发展,汽油和航空煤油大多数采用内浮顶罐,新建的外浮顶罐几乎都用于储存原油。 1955年前后,第一次实际采用塑料泡沫浮顶这个充气的救生筏形的构件漂浮在液面上,能减少汽油罐的蒸发损失85%。法国还研制了由硬聚氯乙烯浮动盖板组成并以同样材料作为浮子支撑的内浮顶罐。前苏联从1961年起开始使用合成材料做内浮盖,到1970年末已有3006223 m容量的储罐装配了合成材料做的内盖。1962年美国在组瓦克建有世界上最大直径为187ft(61.6m)的带盖浮顶罐。到1972年美国已建造了600多个内浮顶油罐。 由于塑料浮顶耐温较差及使用寿命等问题, 从20世纪50年代开始,非钢内浮顶罐开始出现,其材料有铝、环氧及聚酯玻璃钢、聚氯乙烯塑料和聚氨酯泡沫塑料等。加拿大欧文炼厂在直径为28.65m油罐中就采用了全铝制的内浮顶。 与钢制内浮顶相比,非钢内浮顶具有质轻、耐腐蚀等优点,但强度较差,有的价格较贵,使其应用受到限制。20世纪80年代以前以钢制内浮顶的应用为主,但此后,耐腐蚀能力和综合力学性能较好的铝合金在内浮顶制造上得以应用,用其制造的装配式铝制内浮顶油罐的降耗率能够达到96%,而且现场安装时的动火量比钢盘式内浮顶减少95%以上,因此得到广泛的推广应用。为了更好的设计和发展内浮顶储罐,1978年美国API650附录H对内浮盘的分类、设计、安装、检验及标准荷载、浮力

浮顶油罐和内浮顶油罐

三、浮顶油罐和内浮顶油罐 1.浮顶油罐的浮顶顶有哪几种形式 浮顶油罐的浮顶有单盘式和双盘式两种形式。 油罐容积较小时,浮顶做成双层式,它由上下两层圆形钢板,以及中间用隔板隔成若干个沿圆周形排列的单个封闭舱组成,像船一样浮于油面上。为了排除雨水,其上层顶板做成向中心坡向,再由可折的排水管引至罐底排水孔排出。而其下层顶板中心比周边略高,以便收集油蒸气。双屋浮顶中间隔有一层空气,它可起很好的隔热作用,减少了大气温度对油品的影响,但双层浮顶钢材用量大,而且结构复杂。 油罐容积较大时,为了节省钢材,在保证足够浮力的条件下,浮顶一般为单层浮顶,其周边上也做成双层浮舱,只是中间部分为单层钢板,其余设施与双层浮顶相同。 2.简述内浮顶油罐的结构 内浮顶油罐体外形结构与拱顶油罐大体相同。与浮顶油罐相比 较,它多了一个固定顶,这对改善油品调度的储存条件,特别是对防止雨水杂质进入油罐和减缓密封圈的老化有利。同时,内浮顶也能有效地减少油品损耗,所以,内浮顶油罐同时兼有固定顶油罐和浮顶油罐的优点。 3.浮顶罐密封装置有哪几种形式 常见的有机械密封、弹性材料密封和管式密封。 4.简述内浮盘结构 内浮盘可用钢板、铝板或纤维增强聚脂及环氧物、硬泡沫塑料及各种复合材料建造。内浮顶的浮舱结构形式有音层和双层两种,它也可分为隔包式浮舱式、浮盘式、浮筒拼接式等多种。 5.简述内浮盘的附件 内浮盘附件是直接安装在浮盘上的附件,它们与内浮盘的浮动过程及检修有关。 (1)人孔。在内浮盘上通常设有2个人孔,用于检修时通风及操作人员进出。 (2)支柱套管和支柱。支柱的作用是在油罐放空时,支撑内浮盘。使其与罐底板保持一定高度。内浮盘有2个控制高度,第一控制高度由支柱套管控制,支柱套管穿过浮盘。并以加强圈和筋板与浮盘焊接。 在浮雕盘加强环板处的支柱套管高出浮盘900mm,其余部位的套管高出浮盘400mm。支柱套管高出浮盘面的一端都设有法兰与盲板,平时用密封垫圈和螺栓、螺母紧固严实。浮盘以下支柱套管长度无均为500mm。这样在平时收发油作业时,浮盘下降的最低高度便控制在

油罐防雷

如何快速准确判断船中吃水修正 (2009-06-12 09:10:20) 转载▼ 分类:检验认证实用资料 标签: 杂谈 如果船中水尺标记不再中垂线上,在水尺计重计算时便产生了船中修正.对 于很多鉴定员来说,船中吃水修正的正负号判断是一个比较头疼的问题.下面介绍一 种方法—“极限法”,能清楚的判断船中修正是加还是减,并且简单易学,对提高工作 效率有一定帮助. 先针对一种比较常见的情况:船舶尾倾(船艉吃水大于船艏吃水)时,船中水尺标记位于中垂线之后.这种情况船中吃水修正是加还是减呢?可以利用”极限法”快速判断:既然船中水尺标记位于中垂线后,我们可以设想船中水尺标记无限后移,直到无限接近于船艉水尺标记.我们都知道, 船舶尾倾时船艉吃水大于船艏吃水,也就是说,此种情况船舶的吃水从船艏到船艉是逐步增大的过程.船舯吃水无限接近于船艉吃水可以认为此是船中吃水约等于船艉吃水,而船尾吃水是船中水尺标记无限后移最大的吃水,实际上船中吃水没有那么大,之所以这么大是我们人为的进行夸张无限后移造成的结果.既然多算了我们就应该减去,所以此时船中修正就为”-“ 对于船中水尺标记在船中前而此时船舶尾倾,我们可以设想船中水尺标记无限前移,约达到船首吃水位置,船首吃水为最小的,实际船中吃水没有那么小,我们少算了,所以应该加上,此时修正为”+’.对于船舶首倾的情况正好相反,限于篇幅所限,不一一分析. 另外,对于部分新手,船舶的艏艉修正负号也不理解不透彻,我们仍然可以利用极限法.船艏水尺标记通常位于艏垂线后,我们可以设想它无限远离首垂线,直到达到艉吃水位置,艉倾时整个过程艉吃水最大,我们多算了自然应该减去.对于船艉修正判断方法相同. 上面是笔者工作过程中一点总结,如有不妥之处,敬请各位指教 . 液化石油气储配站生产区内的建、构筑物的防雷等级确定为二级,雷电易引起储配站可燃气爆炸并对建筑物造成损害,因此要采取有效措施进行防雷。通常采用的方式有以下几种: 一是采用避雷针或间距不大于6-10米的屋面避雷网作接闪器。

大型原油储罐设计中主要安全问题及对策

大型原油储罐设计中主要安全问题及对策 大型储罐有节省钢材、占地少、投资省、便于操作、管理等优点。随着国民经济的飞速发展,我国油品储罐越来越趋向大型化。国内第一座10万立方米大型钢制原油外浮顶储罐于1985 年从日本引进。发达国家建造、使用大型储罐已有近30 年历史,而我国尚处于起步阶段。影响大型储罐安全运营的因素很多,一旦发生事故,就可能引发重大事故,损失将十分惨重。因此,迫切需要及时总结经验,提出改进措施。笔者对其中的主要安全问题进 行分析,并提出对策,为工程设计提供参考。 1 大型原油储罐工程危险性分析 1.1 原油危险性分析 原油为甲B 类易燃液体,具有易燃性;爆炸极限范围较窄,但数值较低,具有一定的爆炸危险性,同时原油的易沸溢性,应在救火工作时引起特别重视。 1.2 火灾爆炸事故原因分析 原油的特性决定了火灾爆炸危险性是大型原油储罐最主要也是最重要的危险因素。发生着火事故的三个必要条件为:着火源、可燃物和空气。 着火源的问题主要是通过加强管理来解决,可燃物泄漏问题则必须在储罐设计过程中加以预防和控制。 泄漏的原油暴露在空气中,即构成可燃物。原油泄漏,在储运中发生较为频繁,主要有冒罐跑油,脱水跑油,设备、管线、阀件损坏跑油,以及密封不良造成油气挥发,另外还存在着罐底开焊破裂、浮盘沉底等特大型泄漏事故的可能性。 腐蚀是发生泄漏的重要因素之一。国内外曾发生多起因油罐底部腐蚀造成的漏油事故。对原油储罐内腐蚀情况初步调查的结果表明,罐底腐蚀情况严重,大多为溃疡状的坑点腐蚀,主要发生在焊接热影响区、凹陷 及变形处,罐顶腐蚀次之,为伴有孔蚀的不均匀全面腐蚀,罐壁腐蚀较轻,为均匀点蚀,主要发生在油水界面,油与空气界面处。相对而言,储罐底部的外腐蚀更为严重,主要发生在边缘板与环梁基础接触的一面。 浮盘沉底事故是浮顶油罐生产作业时非常忌讳的严重恶性设备事故之一。该类事故的发生,一方面反映了设计、施工、管理等方面的严重缺陷,另一方面又将造成大量原油泄漏,严重影响生产、污染环境并构成火灾隐患。 2 大型原油储罐设计中的主要安全问题及其对策 2.1 储罐地基和基础 储罐工程地基勘察和罐基础设计是确保大型储罐安全运营最根本的保证。根据石化行业标准规定,必须在工程选址过程中进行工程地质勘察,针对一般地基、软土地基、山区地基和特殊土地基,分别探明情况,提出相应的地基处理方法,同时还应作场地和地基的地震效应评价,避免建在软硬不一的地基上或活动性地质断裂带的影响范围内。 常见的罐基础形式有环墙(梁)式、外环墙(梁)式和护坡式。应根据地质条件进行选型。罐基础必须具 有足够的整体稳定性、均匀性和足够的平面抗弯刚度,罐壁正下方基础构造的刚度应予加强,支持底板的基床应富于柔性以吸收焊接变形,宜设防水隔油层和漏油信号管,地下水位与基础顶面之间的距离不得小于毛细水所能达到的高度(一般为 2m )。

6000m3内浮顶油罐设计

本科毕业论文 题目:6000m3内浮顶油罐设计 院系:机械工程学院专业:油气储运工程班级: 学生姓名: 指导教师:

毕业设计任务书机械工程学院油气储运工程专业班学生: 毕业设计题目:6000m3内浮顶油罐设计 毕业设计内容:设计计算书一份; 设计说明书一份; 绘制施工图折合A1号图6张。 毕业设计专题部分:油罐内浮顶结构设计 指导教师:签字2010 年3 月日 教研室主任:签字2010 年3 月日 院长:签字2010 年3 月日

设计参数: 1. 公称容积:6000m 3 2. 设计压力:常压 3. 设计温度:0℃~50℃ 4. 贮液重度:3 750m kg =液γ 5. 罐底地基系数:35cm kgf K b = 6. 焊接接头系数:9.0=φ 7. 腐蚀裕度:C 1=1mm 8. 设计风速:55m/s 9. 地震防烈度:8度 10. 贮罐场地类型:II 类 11. 贮液进出口管:DN200,流速2m/s

摘要 本设计题目为6000立方米内浮顶油罐。储罐是一种储存液体或气体的钢制密封容器。主要应用与石油化工工业贮存石油及其产品以及其他液体化学产品。钢制储罐是石油、化工、粮油、食品、消防、交通、冶金、国防等行业必不可少的、重要的基础设施,我们的经济生活中总是离不开大大小小的钢制储罐,钢制储罐储油是目前应用最普遍的一种储油方式。它很少受到自然条件和地理位置的制约,储油容量可以根据需要灵活确定。 浮顶是一覆盖在油面上,并随着油面升降的盘状结构物。由于浮顶外缘与罐壁之间有环形密封装置,使得浮顶与油面间几乎不存在气体空间,从而极大的减少油品的蒸发损耗,减少油气对大气的污染,减少火灾的危险性。浮顶罐特别适宜建造大容积储罐,建造大容积储罐,可以节省单位储油容积的耗钢量和建设投资。但是,由于外浮顶直接暴露于大气,储存的油品很容易被雨雪、灰尘玷污,故外浮顶多用于储存原油,较少用于储存成品油。 内浮顶储罐是在拱顶储罐内部增设浮顶而成,罐内增设浮顶可减少介质的挥发损耗,外部的拱顶又可以防止雨水、积雪及灰尘等进入罐内,保证罐内介质清洁。这种储罐主要用于储存轻质油,例如汽油、航空煤油等。目前国内的内浮顶有两种结构:一种是与浮顶储罐相同的钢制浮顶;另一种是拼装成型的铝合金浮顶。 通过查阅工具书及相关参考资料,了解贮罐,罐壁,罐顶,罐底和其他附件等各部件的结构和功能,并分析它们在各种载荷下的受力及各种应变,通过分步完成各部件的选材,设计计算和各种应力校核,最终完成一个公称容积为6000立方米的内浮顶贮罐的设计,指明贮罐在工业

10000立方米浮顶油罐设计

沈阳化工大学本科毕业设计 题目: 10000立方米浮顶油罐设计 院系:机械工程学院 专业:油气储运工程 班级:油气0801 学生姓名:田震 指导教师:冯颖 论文提交日期: 2012 年 6 月日 论文答辩日期: 2012 年 6 月日

毕业设计任务书机械工程学院油气储运工程专业2008-1 班学生: 田震

摘要 本设计为10000立方米浮顶油罐。储罐是储运单元储备原料的。油罐材料经历了非金属到金属的循环发展历程,而油罐容量经历了由小到大再到特大的过程。无论是陆地或海洋原油的开采,还是炼油厂油品的存储;无论是长输管线的泵站,运销油库和军用油料油库,还是国家物资储备与战略储备,均离不开各种类型的储罐。因此,油罐的设计问题已日益成为有关设计和科研单位的重要课题。这也是本设计的目的。 立式浮顶金属油罐是近几年来广泛使用的一种油罐,分为外浮顶油罐和内浮顶油罐。外浮顶油罐通常用于储存原油,内浮顶油罐一般用于储存轻质油品等;本文通过对以前设计方法的运用及总结,较深入的研究了10000立方米立式浮顶油罐的设计。 通过查阅工具书等相关参考资料,以及运用互联网的方法,了解贮罐各部件的结构和功能,分析它们在各种载荷下的受力及应变,通过分析完成各部件的选材,设计计算和应力校核,最终完成一个公称容积为10000立方米的浮顶贮罐的设计。本设计的主要特点是:本贮罐的罐顶形式为单盘式浮顶,容积为10000立方米,专题为浮顶的设计。 本设计文字资料完成文献综述一份,设计计算书一份,设计说明书一份,并完成A1号图纸六张,包括10000立方米浮顶油罐装配图一张,浮顶油罐盘梯图一张,浮顶油罐罐底图一张,浮顶油罐浮顶装配图一张,浮顶油罐浮顶零件图一张,它们分别描绘了10000立方米贮罐各个主要部件的组成与结构特点。 关键词:立式贮罐;浮顶;结构设计

大型浮顶储罐的防雷设计安装

大型浮顶储罐的防雷设计安装 1、储罐上不应装设避雷针(网),但储罐必须做环形防雷接地,接地点不应少于两处,其 间弧形距离不宜大于30M。接地体距罐壁的距离应大于3M,每一接地点的冲击接地电阻不应大于10欧姆。必要时需要添加垂直接地极。 2、罐体基础自然接地体应与罐区接地装置连接,浮顶应与罐体做电线连接,匀不少于两处。 连接导线不少于二根,每根导线应选用截面积不小于50平方毫米扁镀锡软铜复绞线,连接点用铜接线端子及二个M12的不锈钢螺栓连接并加防松垫片固定;宜采用可靠的连接方式将浮盘与罐体沿罐周做均布的电气连接。 3、储罐附属电气设备的保护接地宜与防雷接地、防静电接地共用同一接地装置,接地电阻 不应大于4欧姆。 4、在距罐体五米的地方,敷设环形水平接地地网。水平接地体为闭合环形,以罐体中心为 圆心直径32米,采用4*40的镀锌扁钢,埋深1米。 5、在水平接地体的基础上,采用离子接地单元,接地单元均匀颁布于水平接地体下,并与 水平接地地网进行良好的焊接。在每两个离子接地单元之间,均匀埋设两根长2.5米,直径为50mm的镀锌钢管作为辅助接地极,以增强雷电流的泄流效果及均衡雷电环境下的地电位。 6、储罐接地引下线应采用镀锌扁钢,扁钢与油罐底座金属构件间采用焊接方式连接,焊接 点消除焊剂残渣并刷防锈漆、沥青防腐。 7、储罐采用了多条接地引线,应在各条接地线高断接卡。每条接地线设一处断接卡,用镀 锌扁钢制成,扁钢的搭接长度不小于100mm。每个断接卡两端的扁钢用两条镀锌螺栓(8mm直径)作连接,在连接处不再涂刷任何具有绝缘特性的防腐涂料。 8、延长接地装置的使用寿命,除离子接地单元采用离子填充剂包覆外,接地极宜采用高能 防腐离子接地极,达到接地体防腐的目的。 9、储罐电气设施、防静电放电装置的接地连接导体与油罐联合接地装置做电气连接。 10、储罐区的联合接地装置接地电阻,应小于4欧姆,达不到时再补加垂直和水平接地极。 11、水平接地体间的连接采用焊接,焊接采用的方式,搭接长度不小于扁钢宽度的二倍,并采取防腐处理措施。 12、储罐项取样操作平台上,操作口的两侧一米之外应各设一组接地端子,为消除人体静电、取样绳索、检尺等工具接地用。 13、储罐设置二次密封的应设置不锈钢板导电靴(间隔小于1.5M),且与罐体可靠连接。

10万立方油罐安装方案1

一、工程概况 二、编制依据 三、工程特点 四、施工流程框图 五、施工方案 1、施工部署 2、储罐施工: (1).施工准备; (2).材料检验 (3).基础验收 (4).储罐预制一般要求 (5).罐壁板预制 (6).罐顶板预制 (7).构件预制 3、储罐主体安装工艺措施 (1).罐地板组装 (2).罐壁组装 (3).罐顶盖的组装 (4).附件安装; (5).焊接施工 (6).焊接顺序 4、充水试验 5、防腐工程 6、绝热工程 7、施工机械及机具六.安全管理与安全保障 七;安全技术管理措施八.主要施工用手段用料

10万立方油罐安装方案 一、工程概况 1.简述 本工程为新增2台100000m3油罐,本工程在2009年月日开工,计划于2009年月日竣工,单台罐重量约为2100吨。本施工方案针对承担两台罐施工的工况进行编制。本次施工新建 2 台 100000立方汽油罐制作安装;油罐顶板及底板(除边缘板)均为搭接,罐底边缘板、罐壁立缝、环缝为对接。其主体结构形式为立式油罐,该结构的主要特点是,焊接量大、焊接质量要求高、焊接变形控制要求严,因此要求施工人员严格按照施工方案、施工技术交底卡进行施工。确保油罐优质、高效、按期完成。 二、编制依据 1 …………………………………设计施工图; 2 合同、招标文件; 3 GBJ128-90 《立式圆筒钢制焊接油罐施工及验收规范》; 4 GB50235-97 《工业金属管道工程质量验收规范》; 5 GB50236-98 《现场设备、工业管道焊接工程施工验收规范》; 6 SH3501-199 7 《石油化工剧毒、可燃介质管道施工及验收规范》; 7 JB4730-94 《压力容器无损检测》; 8 SH3046-923 《石油化工立式圆筒形钢制焊接储罐设计规范》; 9 SH3048-1999 《石油化工钢制焊接储罐设备抗震设计规范》; 10 Q/HD0026-1995 《立式圆筒钢制焊接储罐铠装式外防腐保温工程施工及验收规范》; 11 GB4053.2-1993 《固定式钢斜梯》; 12 GB8923-88 《涂装前钢材表面锈蚀等级和除锈等级》; 13 SH3530-93 《石油化工立式圆筒形钢制储罐施工工艺标准》; 14 公司质量管理手册及程序文件 15罐体基本参数

如何设计储油罐防雷接地方案

如何设计储油罐防雷接地方案 石化企业,做好联合储油罐区防雷是一项重要工作,因雷电引起油罐爆炸起火的事故时有发生。将给国家和人民带来严重的损失。因此在雷电多发期,高度重视油罐区防雷是极其重要的,但在实际工作中要做好防雷工作须注意解决好几个问题。 1.认清雷电属性,正确采取措施 雷电是自然界中放电现象。产生雷电时,电压可达30万伏以上,电流可达20万安培以上。雷电直击在建筑物上,有相当大的冲击力,并产生热量。其动力可将巨数劈倒,顽石击裂。雷电本身产生的热量足以酿成一场大火。只有正确采取措施,才能避免事故发生。正确预防首先就要认清雷的自然属性。雷最常见的是线状雷,有时也会出现球形雷。他们都是以放出电荷作用与物体,但其作用方式不同。线状雷直击物体,球形雷绕击物体。因线状雷经常出现。根据其性质目前通常使用避雷针,它的原理是它能够将雷电引向自身,将强大的雷电流导入大地,从而达到保护油罐的目的,但其对球形雷是无能为力的,尽管球形雷出现次数较少,但不是不能发生,因此亦应加以防范。根据球形雷的性质,其预防措施应采用静电屏蔽。就是用金属网构成笼式防雷网,以防止球雷进入,从而达到了保护油罐的目的。 2.储油罐不同,防雷措施不同 2.1对于密封金属油罐。罐壁厚度大于或等于4mm,一般不装避雷针,仅作防感应雷接地,其接地电阻不应大于3欧姆即可。 2.2有呼吸伐带有阻火器,且液压安全阀密封的密闭金属油罐,罐壁厚度和顶盖厚大于或等于4mm的,可以采取自身保护,只要与其连接的管线及其他金属配件等有良好的电器联结,且与接地装置相联结处不少于两点的,可不装避雷针。 2.3对于外浮顶油罐,由于罐的顶盖随液面的升降而浮动,罐内的空气间隙极小不能形成爆炸性的混合物,而且浮顶和罐壁之间是密封的。多疑也可以不装避雷针,一般只接地即可。但浮动的金属罐顶,要用可扰得跨接线与金属罐体相连,并通过罐体接地,其接地电阻不应大于1欧姆。对于内浮顶油罐,虽然浮动部件与罐底、罐顶做良好的电器连接,并接地可靠,但由于浮顶罐的浮盘与罐顶之间的空间内可能聚集爆炸性混合物,因此还需设防雷措施。 2.4对于其他油罐,应设避雷针,避雷针最好单独设置,但也允许焊在油罐的顶部或圈板的边缘。对于拱顶罐需在罐顶先焊一块40mm、厚度4mm的钢板,然后装针。 3.防雷设施的检查及应注意的问题

非标拱顶油罐设计计算书

5625m3非标拱顶油罐设计计算书 目录 1.罐壁设计 (2) 1.1油罐直径与高度的确定 (2) 1.2确定壁板的下料尺寸 (2) 1.3其他主要参数的确定 (3) 1.4罐壁强度校核计算 (3) 1.5罐壁稳定性计算及加强圈确定 (4) 2.油罐罐底板设计及计算 (6) 2.1排板形式确定 (6) 2.2下料尺寸的确定 (6) 2.3底板质量计算公式 (8) 2.4垫板质量计算 (9) 3.拱顶设计 (10) 3.1拱顶尺寸的确定 (10) 2.1拱顶质量的确定 (12) 4.参考文献 (11)

5625m 3 非标拱顶油罐设计计算书 第一章 拱顶油罐总图设计计算过程 第一节 油罐直径与高度的确定 1.油罐直径D 的确定 油罐储存容量为5625m 3,名义容量约为5625÷0.95 = 5921( m 3)。 综合考虑耗钢量和占地面积,油罐直径取: D=21.7(m) 则壁板周长 C=68(m) , 单圈下料块数为8.5块。 2.油罐高度的确定 根据 2 4V H D π≈ 得 H=16(m ) 根据已知的H 值,结合钢板规格,进行壁板编排并确定钢板的圈层数。并以此列出表1。 壁板总高为 H= 16 + 0.03 = 16.03 (m ) 实际名义容量 2211 3.1421.716.0344 V D H π= =???=5925 m 3 安全高度为 H 安全 =0.95H= 0.95 × 16.03 = 15.23 (m ) 作业高度为 H 作业 = H 安全-进出由短管中心距油罐底板的高度=15.23-0.25=14.98 (m ) V 作业=4 .7212π×14.98 = 5537.34 m 3

简述储油罐罐顶结构及防雷安全措施原理参考文本

简述储油罐罐顶结构及防雷安全措施原理参考文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

简述储油罐罐顶结构及防雷安全措施原 理参考文本 使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 根据储油罐罐顶的结构不同可分为固定顶和活动油罐 两类。固定顶油罐包括桁架锥顶罐、拱顶油罐;活动顶油 罐则包括无力矩油罐、浮顶油罐和内浮顶油罐。 (1)桁架式锥顶罐:其罐顶结构呈圆锥形,过去曾在 我国大量建造,由于其结构较复杂,备料、施工均不方 便,耗钢多,且耐压低,现已很少再建。 (2)无力矩顶油罐:其顶部结构呈扁“人”形,中间 由立柱支撑,因其顶部易积水而腐蚀,操作使用不太安 全,目前亦已不再建造。 (3)拱顶油罐:罐顶为球缺形,球缺半径一般为油罐 直径的1.2倍。拱顶本身是承重构件,有较大的刚性,还能

承受较高的内压,有利于降低蒸发损耗。拱顶罐的设计一般为:正压:1.96kPa;负压:0.49kPa。 (4)(外)浮顶油罐:浮顶(又名外浮顶)油罐主要有一个浮盘覆盖在油面上,并随着油面的升降而升降。由于浮盘与油面间几乎不存在气体空间,因此可以大大减油品蒸发损耗,还可提高储油的安全性,由于该类罐易受尘埃、雨水积聚,甚至污染油品。故常用以储存原油。 (5)浮顶油罐:由于它有固定顶盖的遮挡,浮盘上不会积聚雨水,而且可以避免尘埃、风沙对油品的污染。由于内浮顶油罐具有拱顶油罐和浮顶油罐的优点,因而广泛用来储存汽油、煤油、溶剂汽油、航空汽油和航空煤油等。 储油罐防雷安全措施原理如下: a) 防雷设备避雷针。避雷针下端的引下线与接地装置焊接, 该引下线如采用圆钢, 直径不得小于8 mm, 如采用

提高大型外浮顶油罐密封效果

提高大型外浮顶油罐密封效果 提高大型外浮顶油罐密封效果 【摘要】:由于外浮顶油罐密封装置在生产运行过程中密封不严或密封压缩过紧的问题较为严重,本文对密封泄漏的问题进行深入剖析,找出造成泄漏的主要原因,从而在外浮顶油罐密封方式上来控制并提高密封的效果,达到有效的控制。 【关键词】:大型外浮顶油罐;密封件性能;控制 中图分类号:C35文献标识码: A 0.引言 为保证大型外浮顶油罐在生产过程中能正常运行,针对外浮顶油罐密封装置的密封效果进行研究,从而提出了怎么提高大型外浮顶油罐密封效果的方法,并在实际应用当中得到了证明。在外浮顶油罐密封的形式上作出改进,更好的保持浮顶与油罐壁的紧密接触,减少储液蒸发损耗,储液质量不受影响,对大气不会造成污染。浮顶储罐的浮顶就是指在储液表面上漂浮的浮动顶盖,它会随着储液的输入多少而上下浮动,从而使储液在顶盖上下浮动时形成了大气了隔绝,减少了储液在生产运行过程中的蒸发损耗。罐内油品质量取决于密封是否良好,浮顶油罐的密封装置就是为减少油气损耗,降低油气泄漏而设计形成的。怎么提高浮顶油罐的密封效果就要在密封效果上进行研究考虑,从而更好达到密封的效果。 1.影响密封效果的因素 1.1导向管、量油管偏差 浮顶会随着导向管和量油管上下运行,导向管、量油管对浮顶横向、纵向移动时有一定的限制作用,但在油罐运行中,浮顶还是会出现一定幅度的自由漂移。如果导向管、量油管垂直度偏差会加剧这种现象的发生,使得浮船与罐壁之间间距出现不均匀的现象,从而影响油罐的密封效果。 1.2浮顶漂移

储油罐经过长期运行后,由于罐基础承压不均匀造成的储油罐基础不均匀沉降。罐体产生一定的倾斜,外罐主体承压不均匀的罐壁凹凸变形也会造成浮船与罐壁之间的环向空间间隙大小不均匀。上述情况都会导致浮顶向一侧漂移影响油罐的密封效果。 1.3油罐基础沉降 油罐建造和焊接工艺落后,油罐壁板在加工和安装过程时不能完全按照标准去完成,使壁板的垂直度和椭圆度发生偏差,形成密封托板宽度不一致,浮顶侧面托板变形,罐壁椭圆度变大,与浮顶圆心不一致等问题,影响油罐的密封效果。 1.4现场安装不到位 厂家批量生产密封包带、密封海绵条、I型压板等密封部件,尺寸规格都是一致的,但是现场实际间隙尺寸不一样,现场实际安装时不能调整密封部件尺寸,造成部分安装不到位,影响油罐的密封效果。还有密封包带长期受阳光照射或风蚀造成的老化开裂现象,引起密封失效。 1.5外界环境的影响 储油罐在运行过程中罐顶空气和温度的变化也有可能造成密封 泄漏。流动的空气形成的涡流会造成罐体的油气不均匀,油气不断蒸发流失。阳光照射和昼夜温差引起的罐顶液面温差,会增加环形气象空间与大气压的压差,从而造成油气泄漏。 2.提高密封效果措施 针对上述几种影响密封效果的原因进行改进措施,从而提高大型浮顶油罐的密封效果。 2.1减少现场误差 从第二圈以上壁板的垂直度进行逐圈控制,尽量使总体垂直度的控制误差平分到各圈壁板上。从而加强油罐壁板质量控制,提高底圈壁板的安装质量。通过管托、支架来使导向管、量油管的上下端固定;通过垂直掉线重新校正,使之满足sy/t5921-2000规定的15mm的要求来调整导向管、量油管的倾度。 通过调整滚轴,使浮顶与罐壁之间局部的环向间隙适当,控制间隙数值。在大型储罐施工中,还应加强质量安全要求和提高技术水平,

储油罐防雷应当注意的问题

储油罐防雷应当注意的问题 一、认清雷电属性,正确采取措施 雷电是自然界中放电现象。产生雷电时,电压可达30万伏以上,电流可达20万安培以上。雷电直击在建筑物上,有相当大的冲击力,并产生热量。其动力可将巨数劈倒,顽石击裂。雷电本身产生的热量足以酿成一场大火。只有正确采取措施,才能避免事故发生。正确预防首先就要认清雷的自然属性。雷最常见的是线状雷,有时也会出现球形雷。他们都是以放出电荷作用与物体,但其作用方式不同。线状雷直击物体,球形雷绕击物体。因线状雷经常出现。根据其性质目前通常使用避雷针,它的原理是它能够将雷电引向自身,将强大的雷电流导入大地,从而达到保护油罐的目的,但其对球形雷是无能为力的,尽管球形雷出现次数较少,但不是不能发生,因此亦应加以防范。根据球形雷的性质,其预防措施应采用静电屏蔽。就是用金属网构成笼式防雷网,以防止球雷进入,从而达到了保护油罐的目的。 目前已研制出一种新的防雷保护设施——半导体消雷器,它既能防线状雷,也能防球状雷,还有待广泛用于防雷实践中。 二、储油罐不同,防雷措施不同 (一)对于密封金属油罐。罐壁厚度大于或等于4mm,一般不装避雷针,仅作防感应雷接地,其接地电阻不应大于30欧姆即可。 (二)有呼吸伐带有阻火器,且液压安全阀密封的密闭金属油罐,罐壁厚度和顶盖厚大于或等于4mm的,可以采取自身保护,只要与其连接的管线及其他金属配件等有良好的电器联结,且与接地装置相联结处不少于两点的,可不装避雷针。 (三)对于其他油罐,应设避雷针,避雷针最好单独设置,但也允许焊在油罐的顶部或圈板的边缘。对于拱顶罐需在罐顶先焊一块40mm、厚度4mm的钢板,然后装针。

大型石油储罐设计选型与安全

大型石油储罐设计选型 与安全 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

大型石油储罐设计选型与安全大型储罐有节省钢材、占地少、投资省、便于操作、管理等优点。随着国民经济的飞速发展,我国油品储罐越来越趋向大型化。国内第一座10万立方米大型钢制原油外浮顶储罐于1985年从日本引进。发达国家建造、使用大型储罐已有近30年历史,而我国尚处于起步阶段。影响大型储罐安全运营的因素很多,一旦发生事故,就可能引发重大事故,损失将十分惨重。因此,迫切需要及时总结经验,提出改进措施。笔者对其中的主要安全问题进行分析,并提出对策,为工程设计提供参考。 目前,我国成品油储罐主要有内浮顶储罐、拱顶储罐两种型式。由于内浮顶罐的浮顶随油面的升降而升降,浮顶与液面之间不存在气体空间,油品蒸发量小,因而基本上消除了大小呼吸损耗,既降低油品损耗外,又减少对大气的污染,所以,易蒸发的油品储罐多采用铝浮盘内浮顶储罐。 密封装置:浮顶储罐绝大部分液面是被浮顶覆盖的,而浮顶与罐壁之间的环形空间要依靠密封装置来减少油品的蒸发损失及气候变化对油品的影响,密封材料应满足耐温、耐磨、耐腐蚀、阻燃、抗渗透、抗老化、等性能要求。油罐内浮顶与罐壁之间的密封带应采用丁腈胶带。 1大型原油储罐工程危险性分析

1.1原油危险性分析 原油为甲B类易燃液体,具有易燃性爆炸极限范围较窄,但数值较低,具有一定的爆炸危险性,同时原油的易沸溢性,应在救火工作时引起特别重视。 1.2火灾爆炸事故原因分析 原油的特性决定了火灾爆炸危险性是大型原油储罐最主要也是最重要的危险因素。发生着火事故的三个必要条件为:着火源、可燃物和空气。 着火源的问题主要是通过加强管理来解决,可燃物泄漏问题则必须在储罐设计过程中加以预防和控制。 泄漏的原油暴露在空气中,即构成可燃物。原油泄漏,在储运中发生较为频繁,主要有冒罐跑油,脱水跑油,设备、管线、阀件损坏跑油,以及密封不良造成油气挥发,另外还存在着罐底开焊破裂、浮盘沉底等特大型泄漏事故的可能性。 腐蚀是发生泄漏的重要因素之一。国内外曾发生多起因油罐底部腐蚀造成的漏油事故。对原油储罐内腐蚀情况初步调查的结果表明,罐底腐蚀

最新埋地油罐课程设计指导书

埋地油罐课程设计指 导书

绪论 1.1 金属油罐设计的基本知识 1.1.1金属油罐的发展趋势 近一、二十年来,油罐的设计与施工技术都较过去有了更快的发展。从世界范围来讲,这一状况与前一时期国际上的能源危机有关。由于能源危机,近若干年来许多工业化的、靠进口原油的国家都增加了原油的储备量,这就迫使这些国家不得不建造更多更大的油罐。这一经济需求不仅促进了油罐事业的发展,也使越来越多的新课题,随着这些新课题的研究和解决,这就使油罐的设计与施工技术进一步发展和深化。 现在油罐发展的总体趋势是走向大型化,而所以有此趋势是由于大型化具有下列优点: (1)节省钢材。 (2)减少投资。 (3)占地面积小。 (4)便于操作管理。 (5)节省管线及配件。 由以上分析可以看出,油罐大型化有许多经济利益,这也就是这种趋势的动力。目前油库的组成结构与十年前相比有了很大的改观,由油罐的“小而多”变为“大而少”。这一点也是衡量一个国家在油罐设计、研究、建造等方面技术水平高低的一个尺度。 1.1.2 对金属油罐的基本要求 对金属油罐的基本要求主要有以下五个方面: (1)强度要求。油罐在卸载以后不应留下塑性变形。 (2)有抵抗断裂的能力。无论在水压或操作条件下,油罐不得产生断裂破坏。 (3)有抵抗风荷的能力。在整个建造及使用期间,在建罐地区的最大风荷下不产生破坏。 (4)有抗地震的能力。要求在整个使用期间内,在建罐地区的最大烈度下不产生烈性变形。 (5)油罐要坐落在稳固的基础之上。油罐的基础在整个使用期间期间的不均匀沉陷要在允许的范围之内。 上述基本要求是就总体而言的,具体的某一构件还要有其各自的特殊要求。 如前所述,油罐大型化以后给人们带来了一些利益,但另一方面随着油罐大型化,也出现了一些新的技术课题。因而要付出更大的努力才能满足以上五个基本要

10000立方米的汽油储罐设计

6*10000m3成品油库安全设计 一汽油的理化性质 1.1 物理化学性质 汽油的重要性能有为蒸发性、抗爆性、安定性和腐蚀性。 1.2 汽油的危险特性 1.2.1 油料的火灾危险特性 油料具有较强的挥发性和扩散性,具有易燃易爆特性,具有易积累静电和热膨胀性。由于这些特性的存在,使它具有较大的火灾危险性:挥发性;扩散性;易燃性;易爆性;易积聚静电荷性;热膨胀性;沸溢性。 1.3 安全防护措施 汽油的安全防护措施可以分为以下几类。 1 工程控制。生产过程密闭,全面通风。 2 呼吸系统防护。高浓度环境中,佩带供气式呼吸器。应急或有计划进入浓度未知区域,或处于立即危及生命或健康的状况 3 眼睛、身体和手的防护。一般不需特殊防护,但高浓度接触时安全防护眼镜。且必须穿工作服。对于手,一般不需特殊防护,高浓度接触戴防护手套。 4 其他防护。工作现场严禁吸烟。避免长期反复接触。进入罐或其它高浓度区作业,须有人监护。 二油罐的整体设计 2.1 油罐的选型 2.2 10000m3油罐设计参数 储罐内径:φ 28000mm 罐壁高度:18000mm 公称容积:10000m3计算容量:11084m3 设计压力:490Pa~1960Pa 设计风压:850Pa 设计温度:-10~50 ℃腐蚀裕度: 1.5mm 地震烈度:7 焊缝系数:0.9 2.3 材料确定 根据汽油物性选择罐体材料,汽油几乎没有腐蚀性,且有属于低压灌,可以考虑16MnR这两种钢材。 2.4 结构设计

内浮顶油罐的结构形式其实就是内浮盘和密封装置的结构形式。本设计采用边缘板的钢制单盘式内浮顶和弹性材料密封结构。 2.4.1内浮盘 内浮盘由一层薄的单盘板,在其外侧围以一圈边缘板焊制而成。盘上带有若干立柱,使浮盘下沉时最终支撑在罐底上,以免浮顶与罐内附件相碰。为了检修需要,内浮盘上还设有人孔。 2.4.2密封装置 内浮顶油罐要求密封间隙为150mm,密封为196N/m时,达到良好的密封性能。本设计采用弹性材料密封结构,由密封袋、软泡沫塑料块、固定钩板等组成。考虑到储存介质为汽油,密封袋采用丁腈耐油橡胶带制作,厚度取1.5mm。 2.4.3 内浮顶与罐壁之间的密封 圆弧转角是为不致戳破密封胶袋。每米圆周长度设置固定钩板。内浮盘与罐壁之间间隙取 150mm,采用断面宽度 230~250mm 的软泡沫塑料密封块,密封力约为200N/m。为消除蒸汽空间,弹性块应侵入液面下 20-50mm,外层密封袋能在使用环境中经久耐用,且不污染储液。为防止液体的毛细现象,要在橡胶密封袋上压有锯齿。 三罐体的设计 3.1 罐壁设计 随着储罐的大型化,储罐的直径和钢材总重量也随之增大。大型储罐的设计应尽可能地减少钢材的消耗量. 达到比较好的经济合理性。罐壁钢材的重量在大型储罐罐体的总重量中约占35%~50% ,因此确定罐壁厚度的罐壁强度计算. 对于减少罐壁的重量从而降低整个储罐的钢材消耗量、对于大型储罐的经济合理性具有决定性的作用。考虑贮液静压力,罐壁应由上至下逐渐增厚,但实际制造中不可能采用过多的板厚规格。罐壁的最大应力为环向应力,一次薄膜应力与局部应力相叠加,最大应力值分面在距罐底1000mm 左右的位置,并随贮罐直径和罐底、罐壁厚度增加而升高。 1 与罐底板相焊的最低层罐壁应适当加厚,且选用较宽的板材,以上各层则分档减薄,最小厚度4mm。 2 在最低层罐壁上开清扫口及人孔时,对罐壁强度有一定削弱,应对开孔大小、结构、热处理、探伤等提出明确要求。 储罐罐壁除应满足强度要求外,还应具有足够的抗风能力,以避免储罐在风载作用下失稳。随着储罐大型化和高强度钢的采用,使储罐罐壁减薄,储罐的抗风稳定性设计越趋重要。对于大型储罐来说,为防止储罐抗风圈以下的罐壁局部被风吹,通常需要在罐壁适当的位置上设置一道或数道加强圈。加强圈的功能是在罐壁上形成节线圈,以提高储罐的抗外压能力。当两个加强圈之间(或加强圈与抗风圈、包边角钢、罐底等加强截面之间)的罐壁许用临界压力大于设计外压时,就可以认为罐壁具备了足够的抗风能力。对于加强圈的设计计算,各国标准中部有详细的计算方法,我国标准SH3046《石油化工立式圆筒形钢制焊接储罐设计规范》中也对加强圈的计算做了详细的描述。

石油石化设备防雷标准

石油与石油设施雷电安全规范(GB 15599-95) 发布时间:2005-04-13 10:59发布单位:规划处 1 主题内容与适用范围 本规范规定了石油和石油产品在生产、运输、贮存、销售、使用过程中避免或减少石油设备雷电危害的基本原则和措施。 本规范适用于石油设备的雷电安全保护。 2 引用标准 GB13348-92 液体石油产品静电安全规程 GB50057-94 建筑物防雷设计规范 GBJ74-84 石油库设计规范 3 预防雷电危害的基本原则 3.1 石油和石油产品应贮存在密闭性的容器内,并避免易燃或可燃性油气混合在容器周围积聚。 3.2 易燃或可燃性油气可能泄漏或积聚的区域,应避免金属导体间产生火花放电。 3.3 固定顶金属容器附件(如呼吸阀、安全阀)必须装设阻火器。 3.4 石油容器及其附属装置(如阻火器、呼吸阀、量油孔等)均应保持良好的工作状 态。 3.5 石油设备应采用防雷接地。防雷接地、防静电接地和电气设备接地宜共用同一接地装置(参见GB13348第 4.1条)。 4 预防雷电危害的技术措施 4.1 金属油罐 4.1.1 当贮存易燃、可燃油品的油罐,其顶板厚度小于4mm时,应装设防直击雷设备,如避雷针或半导体消雷器等。其中单支避雷针保护范围的确定参见附录A,其它情况下保护范围的确定详见GB50057附录四。半导体消雷器保护范围的确定参见附录B。 4.1.2 当贮存易燃、可燃油品的油罐,其顶板厚度大于、等于4mm时,按GBJ74第11.2.2条规定,可不装设防直击雷设备。但在多雷区(注),当油罐顶板厚度大于、等于4mm时,仍可装设防直击雷设备。 注:多雷区通常指年雷暴日大于40天的地区,参见附录C。 4.13 金属油罐必须作环型防雷接地,其接地点不应少于两处,其间弧形距离不应大于30m。接地体距罐壁的距离应大于3m,当罐顶装有避雷针或利用罐体作接闪器时,每一接地点的冲击接地电阻不应大于10Ω。 4.1.4 浮顶金属油罐可不装设防直击雷设备,但必须用两根截面不小于25mm2的软铜绞线将浮船与罐体作电气连接。其连接点不应小于两处,连接点沿油罐周长的间距不应大于30m。浮顶油罐的密封结构,宜采用耐油导静电材料制品。 4.1.5 金属油罐的阻火器、呼吸阀、量油孔、人孔、透光孔等金属附件必须保持等电位连接。 4.2 非金属油罐 4.2.1 贮存易燃、可燃油器的非金属油罐应装设独立避雷针(网)或半导体消雷器等防直击雷设备。 4.2.2 独立避雷针与被保护物的水平距离不应小于3m,并应有独立的接地电阻,其冲击接地电阻不得小于10Ω。 4.2.3 避雷网应用直径不小于8mm的圆钢或截面不小于24×4mm的扁钢制成,网格不宜大于6×6m;避雷网引下线不得少于2根,并沿四周均匀或对称布置,其间距不得大于18m,接地点不得少于两处。 4.2.4 非金属油罐必须装设阻火器和呼吸阀。油罐的阻火器、呼吸阀、量油孔、人孔、透光孔、法兰等金属附件必须严密并作接地。它们必须在防直击雷装置的保护范围内。

储油罐种类及罐区防雷技术分析

储油罐种类及罐区防雷技术分析 1前言 石化企业,联合储油罐区作为一个易燃易爆的场所,经常受到雷电的威胁,因雷电引起油罐爆炸起火的事故时有发生,因此,储油罐区的防雷工作就显得尤为重要,现就其综合防雷系统进行技术分析与探讨。 2储油罐的种类 2.1金属储油罐 目前常见的金属储油罐主要是立式圆柱形罐,按罐顶的结构形式又分为固定拱顶罐、内浮顶罐和外浮顶罐,具体设计那种结构,主要视油品物性、罐的容量和投资而定。 2.1.1固定拱顶罐 拱顶储罐是指罐顶为球冠状、罐体为圆柱形的一种钢制容器,固定拱顶油罐的罐顶与罐壁是焊接固定的,随着气温的变化、罐内液面的升降,常有空气吸进罐内,油气呼出罐外,这不仅增加油品的损耗,也增加了火灾危险性。固定拱顶储罐制造简单、造价低廉,所以在国内外许多行业应用最为广泛,最常用的容积为1000-10000m3。 2.1.2内浮顶罐 内浮顶储罐是在固定拱顶储罐内部增设浮顶而成,罐内增设随油面上下升降的浮顶可减少介质的挥发损耗,而且由于内浮顶把介质即罐内储料和空气有效隔绝从一定程度上也降低了发生火灾爆炸的危险等级,外部的拱顶又可以防止雨水、积雪及灰尘等进入罐内,保证罐内介质清洁。这种储罐主要用于储存轻质油,例如汽油、航空煤油等。内浮顶储罐采用直线式罐壁,壁板对接焊制,拱顶按拱顶储罐的要求制作。 目前国内的内浮顶约有四种结构:一种是与浮顶储罐相同的钢制浮顶,另一种是拼装成型的铝合金浮顶,还有不锈钢浮顶和玻璃钢浮顶,只有钢制浮顶需要进行防腐涂装。 内浮顶罐和固定拱顶罐的最大区别是在拱顶内有一个活动的浮盘,它综合了外浮顶罐和固定拱顶罐的优点。 2.1.3外浮顶罐 外浮顶储罐是由漂浮在介质表面上的浮顶和立式圆柱形罐壁所构成。浮顶随

5000立方储油罐基础的设计

5000立方储油罐基础的设计 【摘要】本文以春风油田二号联合站建设工程5000立方储油罐(拱顶罐)基础设计为例,介绍了钢储罐环墙式基础的设计步骤;提出了当钢储油罐设计温度大于90℃时,应采取的隔热措施;并进行了罐基础地基承载力及沉降计算。 【关键词】钢储罐基础;环墙式基础;隔热措施;沉降计算 1、引言 随着世界石油工业的迅速增长和能源需求的不断增加,原油和成品油的储备受到了各国的普遍关注,对各类油库储备能力的要求也越来越高,因而使各类储罐的数量剧增,对储油罐基础的安全设计有了更高要求。本文以春风油田二号联合站建设工程5000立方储油罐(拱顶罐)基础设计为例,简单介绍了钢储罐环墙式基础的设计步骤。 2、钢储罐基础设计 2.1储油罐参数 油罐为5000m3拱顶罐,罐壁径23.64m,罐底直径23.8m,高度12.518m,罐体自重(不含罐底板)1700kN,罐底板自重300kN,保温重230kN,运行重量50250kN。罐

的设计温度为95℃,操作温度为93℃。 2.2、地质条件 表1 各土层一览表 地层编号岩土名称土层 厚度 (m)压缩模 量Es (MPa)摩擦角 (°)黏聚力 (kPa)桩的极限侧阻力标准值qsik(kPa)桩的极限端阻力标准值qpk(kPa)地基承载力特征值 (kPa) ①粉质黏土0.5~3.4 13.47 20.9 19.1 40 300 140 ①1 粉土0.7~2.6 17.5 22.3 19.1 53 400 140 ②粉砂 1.2~5.6 8 25 0 46 400 140 ③粉质黏土最大揭露厚度24.50m 13.02 22 18.5 53 400 140 ③1 粉砂0.7~7.0 8 25 0 35 600 160 ③2 粉砂 1.2~7.9 10 27 0 50 750 160 ③3 粉砂0.5~5.6 10 27 0 50 900 180 ③4 粉砂 1.5~1.8 14 30 0 64 1100 180 场地土对混凝土结构具有中腐蚀性,对钢筋混凝土结构

相关主题
文本预览
相关文档 最新文档