克隆、质粒和噬菌体DNA的构建成功,核酸自动合成仪的诞生,大大丰富了核酸探针的来源,新的核酸分子杂交类型和方法不断涌现。按其作用方式可大" />
当前位置:文档之家› 原位杂交组织化学技术的基本方法及操作规程

原位杂交组织化学技术的基本方法及操作规程

原位杂交组织化学技术的基本方法及操作规程
原位杂交组织化学技术的基本方法及操作规程

原位杂交组织化学技术的基本方法及操作规程

一、核酸分子杂交技术

1961年Hall开拓了液相核酸杂交技术的研究,其基本原理是利用核酸分子单链之间有互补的碱基顺序,通过碱基对之间非共价键的形成,出现稳定的双链区,形成杂交的双链。自此以后,由于分子生物学技术的迅猛发展,特别是70年代末到80年代初,分子克隆">克隆、质粒和噬菌体DNA的构建成功,核酸自动合成仪的诞生,大大丰富了核酸探针的来源,新的核酸分子杂交类型和方法不断涌现。按其作用方式可大致分为固相杂交和液相杂交两种:液相杂交是指参加反应的两条核酸链都游离在溶液中,而固相杂交是将参加反应的一条核酸链固定在固体的支持物上常用的有硝酸纤维素滤膜,其它如尼龙膜、乳胶颗粒和微孔板等),另一条参加反应的核酸链游离在溶液中。固相杂交有菌落原位杂交(colony in situ hybri dization)、斑点杂交法(Dot blot)、Southern印迹杂交(Southern blot)、Northern印迹杂交( N orthern blot)和组织原位杂交(Tissue in situ hybridization),即原位杂交组织化学技术和原位杂交免疫细胞化学技术。液相分子杂交技术包括吸附杂交、发光液相杂交、液相夹心杂交和复性速率液相分子杂交等。

二、原位杂交组织化学技术的由来及发展

原位杂交组织(或细胞)化学技术简称原位杂交(In situ hybridization),如上所述,属于固相核酸分子杂交的范畴。但它区别于固相核酸分子杂交中的任何一种核酸分子杂交技术。菌落杂交系细菌裂解释放出DNA,然后进行杂交。Southern印迹杂交法是以鉴定DNA中某一特定的基因片段,而Norhtern印迹杂交法是用以检测某一特定的RNA片段的。它们都只能证明该病原体、细胞或组织中是否存在待测的核酸而不能证明该核酸分子在细胞或组织中存在的部位。1969年美国耶鲁大学Gall和Pardue首先用爪蟾核糖体基因探针与其卵母细胞杂交,确定该基因定位于卵母细胞的核仁中。与此同时,Buongiorno– Nardell i和Amaldi, John及其同事等相继利用同位素标记核酸探针进行了细胞或组织的基因定位,从而创造了原位杂交细胞或组织化学技术。Orth(1970)应用3H标记的兔乳头状瘤病毒cRNA探针与兔乳头状瘤组织的冰冻切片进行杂交,首次用原位杂交检测了病毒DNA在细胞中的定位,但当时的工作多采用冰冻组织切片或培养细胞,探针均采用同位素标记。

由于同位素标记探针具有放射性既污染环境,又对人体有害,且受半衰期限制等缺点,科学工作者们开始探索用非放射性的标记物标记核酸探针进行原位杂交。Bauman(1981)等首先应用荧光素标记cRNA探针做原位杂交,然后用荧光显微镜观察获得成功。Shroyer(1982)报道用2,4二硝基苯甲醛(DNP)标记DNA探针,使该DNA探针具有抗原性,然后用兔抗DNP的抗体来识别杂交后的探针,最后经免疫过氧化物酶的方法来定位杂交探针。这两种方法至今仍有采用,但因敏感度不够高,应用不够普遍。 Pezzella(1 987)创建了用磺基化DNA探针来做细胞或组织原位杂交的方法,其基本原理是使DNA探针的胞嘧啶碱基磺基化,利用单克隆">克隆抗体识别磺基化探针,再通过免疫组化方法显示结合的单克隆抗体,从而对杂交结合的探针进行定位。本法的优点是磺基化DAN探针标记简便,不需作缺口平移标记,敏感度也较高。但自生物素和高辛标记探针技术建立后,已有取而代之的趋势。生物素标记探针技术是Brigat(1983)首先建立的,它利用生物素标记的探针在组织切片上检测了病毒DNA,通过生物素与抗生物素结合,过氧化物酶-抗过氧化物酶显示系统显示病毒DNA在细胞中的定位。生物素标记探针技术目前已被广泛应用,特别是在病毒学和病理学的临床诊断中。这种生物素标记技术又叫酶促生物素标记技术。另一种叫光促生物素标记核酸技术,该技术是用光敏生物素(Photobiotin)标记核酸。目前应用的光敏生物素有乙酸盐和补骨脂素生物素,它们都是由三个部分组成:光敏基团、连结臂和生物素(图20-1)。在强光下,不需酶反应,光敏生物素的光敏基团即可与核酸中的碱基相结合。光敏生物素标记核酸,方法简单,灵敏度也不低,但标记效率不高,每100~150个碱基才能标记一个生物素,对于短的基因探针特别是寡核苷酸探针不宜使用,以免因标记数过少而影响灵敏度(Forster et al 1985)。

近年来,地高辛(Digoxigonin)标记技术引起科技工作者的极大兴趣。Boeringer Mannhem Bio-ch emisca于1987年将地高辛标记的有关试剂及药盒投放市场。和其它非放射性标记物一样,地高辛较放射性标记系统安全,方便、省时间。同时在敏感性和质量控制方面比生物素标记技术要优越,可以检测出人基因组DNA中的单拷贝基因。地高辛标记法显示的颜色为紫蓝色(标记碱性磷酸酶-抗碱性磷酸酶显色系统),有较好的反差背景。

核酸探针根据标记方法的不同可粗略分为放射性探针和非放射性探针两类。根据探针的核酸性质不同可分为DNA探针、RNA探针、cDNA探针、cRNA探针和寡核苷酸探针等。DNA探针还有单链DNA(Single st

randed, ssDNA)和双链DNA(Double stranded, dsDNA)之分(详见十九章)。早期应用的主要是DNA探针,继之Temin在70年代研究致癌RNA病毒时制备了cDNA探针(complementary DNA),其基本原理是以RNA为模板,经逆转录酶(reverse transcriptase)又称为RNA指导的DNA聚合酶催化产生的。该酶以R NA为模板,按照RNA的核苷酸顺序合成DNA,这一途径与一般遗传信息流的方向相反,故称逆转录。CDNA 是指互补于mRNA的DNA分子。RNA探针是将特异性的 cDNA片段插入含有相当的RNA聚合酶启动子的转录性载体。这类载体包括pSP64和pSP65,它们具有不同的启动子在多克隆位点的各侧。Psp64和pSP65在s P6启动子的多克隆位点的方向是不同的。通过改变外源基因的插入方向或选用不同的RNA聚合酶,可以控制RNA的转录方向,即以哪条DNA链为模反转录RNA。从而可以得到与mRNA同序列的同义RNA探针(Sens e probe)和与mRNA互补的反义RNA探针(antisense probe),又称互补RNA探针(complementary RNA probe , cRNA)。通常用同义RNA探针做为反义RNA探针的阴性对照。由于RNA探针是单链分子,所以它与靶序列的杂交反应极高。有报告认为其杂交率高于DNA探针的8倍。 DNA合成仪的诞生使制造寡核苷酸探针成为可能,与上述探针不同的是寡核苷酸探针不是克隆性DNA探针,它是由DNA合成仪依照所需杂交的靶核苷酸序列合成的。具有制造方便,价格低廉的优点,也可进行放射性与非放射性标记,但其特异性不如克隆性探针强,亦不如其杂交信号高。

原位杂交组织化学技术在近20年的发展可以说是飞跃的,其突出的特点是由分子遗传学研究提供的探针大量增加,探针生产的可靠性和速率大大发展了,更重要的是非放射性标记物的发展使原位杂交组织化学技术在不久的将来将和现今的免疫细胞化学技术一样成为实验室的常规技术和临床日常应用的诊断技术。新的非放射性标记技术正在继续不断涌现。 Coulton(1991)建议将非放射性标记技术更名为亲合复合物标记技术(Affinity– Complex Labelled Probes, ACLP )。因为“非( non)“在英文里是一个否定的名词,而且根据非放射性标记技术的原理是将一个标记物利用其亲合性,应用直接或间接的方法结合在核苷酸分子上。

原位杂交组织化学技术在生命科学的研究中可视为一项革命性的技术。它使它们的研究从器官、组织和细胞水平走向分子水平。为各个学科的研究带来突破性的进展。其中特别突出的是细胞或组织的基因表达、染色体分析、病毒诊断和发育生物学。我们在下节将详加叙述。

三、位杂交组织化学技术的基本方法

如前所述,由于核酸探针的种类和标记物的不同,在具体应用的技术方法上也各有差异,但其基本方法和应用原则大致相同。大致可分为:①杂交前准备,包括固定、取材、玻片和组织的处理,如何增强核酸探针的穿透性、减低背景染色等;②杂交;③杂交后处理;④显示(visual-ization):包括放射性自显影和非放射性标记的显色。

a)固定

原位杂交组织化学技术(In Situ Hybridization Histochemistry, ISHH)在固定剂的应用和选择上应兼顾到三个方面:保持细胞结构,最大限度地保持细胞内DNA或RNA的水平;使探针易于进入细胞或组织。DNA是比较稳定的,mRNA是相对稳定的但易为酶合成和降解。RNA却绝然不同,非常容易被降解。因此,对于DNA的定位来说,固定剂的种类和浓度并不十分重要。相反,在RNA的定位上,如果要使RNA的降解减少到最低限度,那么,不仅固定剂的种类浓度和固定的时间十分重要,而且取材后应尽快予以冷冻或固定。在解释ISHH的结果时应考虑到取材至进入固定剂或冰冻这段时间对RNA保存所带来的影响,因组织中mRNA的降解是很快的。在固定剂中,最常用的是多聚甲醛。和其它的固定剂(如戊二醛)不同,多聚甲醛不会与蛋白质产生广泛的交叉连接,因而不会影响探针穿透入细胞或组织。其它如醋酸-酒精的混合液和Bouin’s固定剂也能获得较满意的效果。对于mRNA的定位,我们常采用的方法是将组织固定于4%多聚甲醛磷酸缓冲液中1~2h,在冷冻前浸入15%蔗糖溶液中,置4℃冰箱过夜,次日切片或保存在液氮中待恒冷箱切片机或振荡切片机切片。组织也可在取材后直接置入液氮冷冻,切片后才将其浸入4%多聚甲醛约1 0min,空气干燥后保存在-70℃。如冰箱温度恒定,在-70℃可保存数月之久不会影响杂交结果。在病理学活检取材多用福尔马林固定和石蜡包埋,这种标本对检测DNA和mRNA有时也可获得杂交信号,但石蜡包埋切片由于与蛋白质交叉连接的增加,影响核酸探针的穿透,因而杂交信号常低于冰冻切片。同时,在包埋的过程中可减低mRNA的含量。其它固定剂如应用多聚甲醛蒸汽固定干燥后的冷冻切片也可获得满意效果。各种固定剂均有各自优缺点,如沉淀性(Precipitating)固定剂:酒精/醋酸混合液、Bouin’s液、Carn oy’s液等能为增加核酸探针的穿透性提供最佳条件,但它们不能最大限度地保存RNA,而且对组织结构有损伤。戊二醛能较好地保存RNA和组织形态结构,但由于和蛋白质产生广泛的交叉连接,从而大大地影响了核酸探针的穿透性。至今,多聚甲醛仍被公认为ISHH较为理想的固定剂。

b)玻片和组织切片的处理

1.玻片的处理玻片包括盖片和载片应用热肥皂刷洗,自来水清洗干净后,置于清洁液中浸泡24h,清水洗净烘干,95%酒精中浸泡24h后蒸馏水冲洗、烘干,烘箱温度最好在150℃或以上过夜以去除任何R NA酶。盖玻片在有条件时最好用硅化处理,锡箔纸包裹无尘存放

由于ISHH的实验周期长,实验程序繁杂,因此,要应用粘附剂预先涂抹在玻片上,干燥后待切片时应用,以保证在整个实验过程中切片不致脱落。常用的粘附剂有铬矾-明胶液,其优点是价廉易得,但在长周期实验过程中,粘附效果不够理想。多聚赖氨酸液具有较好的粘附效果,但价格昂贵,需进口。

2.增强组织的通透性和核酸探针的穿透性此步骤根据应用固定剂的种类、组织的种类、切片的厚度和核酸探针的长度而定。比如用戊二醛固定的组织由于其与蛋白质产生广泛的交叉连接就需要应用较强的增强组织通透性的试剂。增强组织通透性常用的方法如应用稀释的酸洗涤、去垢剂(detergent)或称清洗剂Triton X-100、酒精或某些消化酶如胃蛋白酶、胰蛋白酶、胶原蛋白酶和淀粉酶(diastase)等。这种广泛的去蛋白作用无疑可增强组织的通透性和核酸探针的穿透性,提高杂交信号,但同时也会减低RNA 的保存最和影响组织结构的形态,因此,在用量及孵育时间上应慎为掌握。蛋白酶K( Proteinase K)的消化作用在ISHH中是应用于蛋白消化的关键步骤,其浓度及孵育时间视组织种类、应用固定剂种类、切片的厚薄而定。一般应用酶K1μg/ml(于0.1mol/L Tris/50mmol/L EDTA, pH8.0缓冲液中),37℃孵育15~2 0min,以达到充分的蛋白消化作用而不致影响组织的形态为目的。蛋白酶K还具有消化包围着靶DNA的蛋白质的作用,从而提高杂交信号。在蛋白酶K消化后,应用0.1mol/L的甘氨酸溶液(在PBS中)清洗以终止蛋白酶K的消化作用,甘氨酸是蛋白酶K的抑制剂。为保持组织结构,通常用4%多聚甲醛再固定。Burn s等(1987)报告应用胃蛋白酶(Pepsin)20~100μg/ml(用0.1N HCl 配)37℃、30min进行消化,所获实验结果优于蛋白酶K。

不少实验工作者在多聚甲醛固定后,浸入乙酸酐(acetic anhydride)和三乙醇胺(tri-ethanolam ine)中以减低静电效应,减少探针对组织的非特异性背景染色。有的作者除在室温下浸于上述溶液10min 外,还在预热37℃的50%甲酰胺/2×SSC液中预杂交15min,然后用2×SSC,0.30mol/L NaAc/0.030mol/L 枸橼酸钠液中浸15min。但Heinz、Hofer等一些著名学者却对此持有异议,根据他们的实验和经验证明,乙酸酐和三乙醇胺液的处理并不能起到减低背景的目的,不能改善ISHH的信/噪比例。

3.减低背景染色和免疫细胞化学染色一样ISHH实验程序中,如何减低背景染色是一个重要的问题。ISHH中背景染色的形成是诸多因素构成的。杂交后(Posthybridization)的酶处理和杂交后的洗涤均有助于减低背景染色。

预杂交(Prehybridization)是减低背景染色的一种有效手段。预杂交液和杂交液的区别在于前者不含探针和硫酸葡聚糖(Dextran sulphate)。将组织切片浸入预杂交液中可达到封闭非特异性杂交点的目的,从而减低背景染色。

有的实验室在杂交后洗涤中采用低浓度的RNA酶溶液(20μg/ml)洗涤一次,以减低残留的和内源性的RNA酶,减低背景染色。

4.防止RNA酶的污染由于在手指皮肤及实验用玻璃器皿上均可能含有RNA酶,为防止其污染影响实验结果,在整个杂交前处理过程都需戴消毒手套。所有实验用玻璃器皿及镊子都应于实验前一日置高温(240℃)烘烤以达到消除RNA酶的目的。要破坏RNA酶,其最低温度必须在150℃左右。有条件的国外实验室在消毒的玻璃器皿外包以锡箔纸以利于标记和防止取出时空气污染。在无高温消毒的烤箱时,亦可用国内出产的卫生蒸汽消毒锅(山东新华医疗器材厂生产)。杂交前及杂交时所应用的溶液均需经高压消毒处理。

c)杂交(Hybridisation)

在ISHH,整个实验周期是比较长的,实验程序也比较繁杂,而杂交在ISHH整个实验中可被认为是“短兵相接”的一步。杂交前的一切准备工作如增加组织通透性都是为了在杂交这一步骤中核酸探针能进入细胞或组织与其内的靶核苷酸相结合。因此,杂交是ISHH中关键的而且是最重要的一个环节。

杂交是将杂交液滴于切片组织上,加盖硅化的盖玻片。国内向正华等采用无菌的蜡膜代替硅化的盖玻片也可获得满意的实验结果。加盖片的目的是防止孵育过程中的高温(50℃左右)导致杂交液的蒸发。因

此,也有为稳妥起见,在盖玻片周围加液体石蜡封固的,但作者认为这并不十分必要,因封固的石蜡在高温下融解反易导致杂交液的污染,必要时可加橡皮泥封固盖片四周。硅化的盖玻片的优点是清洁无杂质,光滑不会产生气泡和影响组织切片与杂交液的接触,盖玻片自身有一定重量能与有限的杂交液吸附达到覆盖和防止蒸发的作用。在孵育时间较长时,为保证杂交所需的湿润环境,可将复有硅化盖玻片进行杂交的载片放在盛有少量5×SSC或2×SSC(standard saline citrate, SSC)溶液的硬塑料盒(要能防止高温破坏)中进行孵育。杂交液的成分和预杂交液基本相同,所不同的是加入了标记的核酸探针和硫酸葡聚糖。

如前所述,杂交前的准备只是为杂交的成功奠定基础,要获得满意的实验结果,在杂交这一实验过程中还须注意以下的环节。

1.探针的浓度很难事先确定每一种实验探针的浓度,但要掌握一个原则,即探针浓度必须给予该实验最大的信/噪比值。背景染色的高低也与探针浓度有关。根据国内外实验工作者的经验,认为最佳原则应是应用最低探针浓度以达到与靶核苷酸的最大饱和结合度为目的。这和我们在免疫细胞化学试验中选择抗血清的最佳工作浓度的原则一样。

探针浓度依其种类和实验需要略有不同,根据笔者的经验及所查阅文献,在原位杂交细胞化学中,探针浓度为0.5~5.0μg/ml(即0.5~5.0ng/μl)。根据Heinz、Hofelt实验室经验,对放射性标记的dsD NA或cRNA探针,其浓度在2~5ng/μl。Conlton认为生物素标记探针,其最佳浓度在0.5~5ng/μl。作者在英皇家研究生院Polak教授实验室应用于放射性标记cRNA探针的浓度为0.5ng/μl,而在非放射性标记(生物素或地高辛) cRNA探针浓度为2.5ng/μl,放射性标记DNA探针浓度为1.0ng/μl。向正华等应用地高辛标记生长抑素cRNA探针获得满意结果,其探针浓度为0.5ng/μl。

必须强调的是,国内外实验室都证明加杂交液的量要适当,以10~20μl/每张切片为宜。杂交液过多不仅造成浪费,而且液量过多常易致盖玻片滑动脱落,影响杂交效果,过量的杂交液含核酸探针浓度过高,反易导致高背景染色等不良后果。

2.探针的长度一般应用于ISHH探针的最佳长度应在50~100个碱基之间。探针短易进入细胞,杂交率高,杂交时间短。据报告,长500个碱基的探针,其杂交时间约需20h左右。200~500个碱基的探针仍可应用,如超过500个碱基的探针则在杂交前最好用碱或水解酶进行水解,使其变成短的片段,达到实验所需求的碱基数。

3.杂交的温度和时间杂交的温度也是杂交成功与否的一个重要环节。在第十八章概述中曾提到D NA或RNA需加热或变性、解链后才能进行杂交。能使50%的核苷酸变性解链所需的温度,叫解链温度或融解温度(melting temperature, 简称Tm)。原位杂交中,多数DNA探针需要的Tm是90℃,而RNA则需要95℃。这种高温对保存组织形态完整和保持组织切片粘附在载玻片上是不可能的。因此,在杂交的程序中常规的加入30%~50%甲酰胺(for-mamide)于杂交液中。McConaughy报告,反应液中每增加1%的甲酰胺浓度,Tm值可降低0.72℃。因此,可用调节盐浓度的办法来调节Tm。Tm的计算公式在第十九章有介绍,由公式的列出也表明了它与盐的浓度、探针的长度、甲酰胺的百分比等诸多因素有关。由于盐和甲酰胺浓度的调节等因素,实际采用的原位杂交的温度在Tm-25℃左右,即比Tm减低25℃,大约在30~60℃之间,根据探针的种类不同,温度略有差异,RNA和cRNA探针一般在37~42℃左右,而DNA探针或细胞内靶核苷酸为DNA的,则必须在80~95℃加热使其变性,时间5~15min,(有作用报告在105℃微波炉加热使之变性),然后在冰上搁置1min,使之迅速冷却,以防复性,再置入盛有2×SSC的温盒内,在37~42℃孵育杂交过夜。

杂交的时间如过短会造成杂交不完全,而过长则会增加非特异性染色。从理论上讲,核苷酸杂交的有效反应时间在3h左右。Barns等(1987)报告用DNA探针杂交,其反应完成时间为2~4h。但为稳妥起见,一般将杂交反应时间定为16~20h,或为简便起见杂交孵育过夜,从现有文献报告看无不良结果。当然,杂交反应的时间与核酸探针长度与组织通透性有关,在确定杂交反应时间应予考虑,并经反复实验确定。有作者主张杂交反应的孵育应在黑暗环境中进行,因为光线会促进甲酰胺的电离作用。

4.杂交严格度(Hybridization stringency)杂交条件的严格度(stringency)表示通过杂交及冲洗条件的选择对完全配对及不完全配对杂交体的鉴别程度。错配对(mismatch)杂交的稳定性较完全配对杂交体差,因此,通过控制杂交温度、盐浓度等,可减弱非特异性杂交体的形成,提高杂交的特异性。所以,杂交的条件愈高,特异性愈强,但敏感性降低,反应亦然。一般来说,低严格度(low stringency)杂交及冲洗条件在Tm-35℃至Tm–40℃之间,高盐或低甲酰胺浓度。在这种条件下,大约有70%~90%的同源性核苷酸序列被结合,其结果是导致非特异性杂交信号的产生。中严格度, Tm -20℃至Tm-30℃的范围。

高严格度(high stringency)为Tm-10℃至Tm-15℃,低盐和高甲酰胺浓度。在这种条件下,只有具有高同源性的核苷酸序列才能形成稳定的结合。麦跃行装用地高辛标记原位杂交技术检测尖锐湿疣中人乳头瘤病毒DNA型别,结果发现在严格条件下(Tm-12℃)各型病毒DNA的检出率和阳性率明显低于非严格条件下(Tm-35℃),其相差非常明显(P<0.001)。因为,在严格条件下只有同源性很强的DNA才被检出,而在非严格条件下同源性较低的DNA序列也被检出。因此,他建议对病毒DNA分型需在高严格条件下进行,而低严格条件则可用于对病毒感染进行筛选。

由于原位杂交技术多数是在Tm-25℃进行的,不属于高严格范围,无疑会产生非特异性结合导致信/噪比减低。在这种情况下,可用加强杂交后处理洗涤的严格度使非特异性的杂交体减少。由于RNA杂交的稳定性,应用cRNA探针进行细胞或组织的原位杂交时的杂交温度比其它核酸探针要高10~15℃。实验证明,cRNA产生的信号比双链cDNA要强。单链的RNA探针其杂交信号大于双链的cDNA的约8倍。

5.硫酸葡聚糖(Dextran sulphate)和甲酰胺(formamide)硫酸葡聚糖是核酸杂交液中仅次于甲酰胺的一种组成成份。在杂交液中,甲酰胺占50%左右,而硫酸葡聚糖占10%左右。它是一种大分子的多聚胺化合物,具有极强的水合(hydrate)作用,因而能大大增加杂交液的粘稠度。硫酸葡聚糖的主要作用是促进杂交率,特别是对双链核酸探针。这是应用硫酸葡聚糖于杂交液中的主要目的。

甲酰胺的主要作用在上节已提及,在调节杂交反应温度方面,甲酰胺起了极为重要的作用,从而有助于保持组织的形态结构。甲酰胺还可防止在低温时非同源性片段的结合,但甲酰胺具有破坏氢键的作用从而具有一种不稳定的作用。

d)杂交后处理(post hybridisation treatment)

杂交后处理包括系列不同浓度,不同温度的盐溶液的漂洗。在原位杂交组织化学的实验程序中,这也是一个重要的环节。特别因为大多数的原位杂交实验是在低严格度条件下进行的,非特异性的探针片段粘附在组织切片上,从而增强了背景染色。RNA探针杂交时产生的背景染色特别高,但能通过杂交后的洗涤有效地减低背景染色,获得较好的反差效果。在杂交后漂洗中的RNA酶液洗涤能将组织切片中非碱基配对RNA除去。洗涤的条件如盐溶液的浓度、温度、洗涤次数和时间因核酸探针的类型和标记的种类不同而略有差异,一般遵循的共同原则是盐溶液浓度由高到低而温度由低到高。必须注意的是在漂洗的过程中,切勿使切片干燥。干燥的切片即使大量的溶液漂洗也很难减少非特异性结合,从而增强了背景染色。放射性标记探针杂交后漂洗过程中可用底片曝光的方法检测背景染色(非特异性标记的多少)作为改善漂洗程序的指针。在35S标记的核酸探针在漂洗液中须加入14mmol/L的β-巯基乙醇(β-mercaptoethanol)或硫代硫酸盐(thiosulphate),以防止35S标记的核酸探针被氧化。总之,如何控制漂洗的严格度从而达到理想的信/噪比无既定方案可循,必须从反复的实践中取得经验。

e)显示(Visualization)

显示又可称为检测系统(Detection system)。根据核酸探针标记物的种类分别进行放射自显影或利用酶检测系统进行不同显色处理。细胞或组织的原位杂交切片在显示后均可进行半定量的测定,如放射自显影可利用人工或计算机辅助的图象分析检测仪(computer– assisted image analysis)检测银粒的数量和分布的差异。非放射性核酸探针杂交的细胞或组织可利用酶检测系统显色,然后利用显微分光光度计或图像分析仪对不同类型和数量的核酸的显色强度进行检测。但利用ISHH做半定量测定必须注意严格控制实验的同一条件,切片的厚度和核酸的保存量如取材固定的间隔时间等。如为放射自显影,核乳胶膜的厚度与稀释度等必须保持一致。

f)对照实验和ISHH结果的判断

和其它实验方法一样,并非ISHH的任何阳性信号都是特异性的,故必须同时有对照试验以证明其特异性。对照试验的设置须根据核酸探针和靶核苷酸的种类和现有的可能条件去选定。从理论上讲,对照试验设置愈多其靶核苷酸特异性确定愈可靠,但现实是不可能的。因此,在上述对照试验中应任选设至少3~4种用以证实ISHH结果的可靠性。在上述试验中,标明*者为比较可靠的对照试验。①Northern 和 Southe rn印迹杂交法证明的方式和用Western印迹法检测抗体(蛋白质)的特异性一样,是比较可靠的。②如果具备相当的免疫组化抗血清,可用结合的免疫组织化学和ISHH法从蛋白质(或多肽)水平和转录水平在相邻切片或同一切片中证明同一种多肽和相应mRNA共存于同一细胞中。③预先将切片用 DNA酶或RNA酶消化,然后用ISHH技术证明丢失的是DNA或RNA。如同免疫组化的吸收试验一样,事先与特异性的cRNA或c DNA进行杂交。再进行ISHH,其结果应为阴性。由于同义RNA探针和组织内 mRNA序列顺序是相同的,应

用其进行ISHH,结果应为阴性。④检测系统的对照如乳胶或酶显色系统也应在无标记探针的情况下进行。 ISHH的最大优点是它的高度特异性,它可测定组织、培养的单个细胞或细胞提取物中的核苷酸含量。应用高敏感度的放射性标记cRNA探针在理想的ISHH的实验条件下检测mR-NA,其敏感度可达到20个mRNA 拷贝/每个细胞。由于双链DNA的稳定性,在用ISHH定位DNA时很少发生丢失,降解。在靶核苷酸序列比较伸展的情况如染色体铺片,长于2kb的探针可以应用。因此,其敏感性高到能够出在染色体铺片上,有时甚至在组织切片上的单个基因拷贝。正因为如此,对ISHH结果的解释应持慎重态度,特别是前人未报告过的新发现。因为如前所述,影响ISHH实验结果的因素太多,比如在外科或实验取材后未及时的固定或冷冻可由于组织中mRNA的降解而导致假阴性结果。另外,在各种类型核酸探针进入细胞、组织和各种器官的能力,又叫可接近性(acessiblity)各异。这些诸多因素都将影响ISHH的实验结果

原位杂交操作规程

(一)、仪器设备

医用微波炉;水浴锅。

(二)、试剂

0.2mol/L HCl:HCl 8.2ml,H20 定容0.5L。0.1mol/L三乙醇胺(pH8.0):三乙醇胺 5.33ml,H20 定容0.4L。.5ml/L醋酸-2.5ml/L醋酸酐:三乙醇胺13.2ml,NaCl 5g,浓HCl 4ml,H20 定容0.98L,醋酸酐(用前加)2.5ml。20×SSC(pH7.0):NaCl 175.3g,枸橼酸钠88.2g,H20 定容1L。100×Denhardt's:Ficoll 1g,PVP 1g,BSA 1g,H20 定容50ml。杂交液:Formamide 5ml,20×SSC 2.5ml,Dextran sulfate 1g,100×Denhardt's 0.5ml,10%SDS 0.5ml,10g/L sperm DNA 0.1ml,H20 1.4L。BufferⅠ(pH7.5):0.1mol/L ris·Cl,0.15mol/L NaCl。BufferⅢ(pH9.5):0.1mol/L Tris·Cl,0.1mol/L NaCl,0.05mol/L MgCl2。BufferⅣ(pH8.0):10mmol/L Tris·Cl,1mmol/L EDTA。

(三)、操作流程

1、使用地高辛标记的核酸探针进行石蜡切片的RNA原位杂交第一天

1)二甲苯于37℃脱蜡2次,每次15分钟;

2)无水乙醇浸泡2次,每次3分钟;

3)95%乙醇浸泡2次,每次3分钟;

4)PBS清洗3分钟;

5)2%焦碳酸二乙酯室温下浸泡10分钟;

6)PBS清洗10分钟;

7)加入胃蛋白酶25ul/ml,37℃孵育15分钟;

8)PBS清洗2次,每次3分钟;

9)0.2N的HCl孵育30分钟;

10)PBS清洗2次,每次3分钟;

11)0.25%无水乙酸和0.1M三乙醇胺孵育10分钟;

12)PBS清洗2次,每次5分钟;

13)预杂交缓冲液孵育30分钟;

14)准备核酸探针混合物:使用预杂交缓冲液稀释探针,85℃加热5分钟,置于冰块中10分钟;

15)杂交;第二天

16)将玻片置于SSC中2次,每次5分钟以去除封片;

17)PBS清洗3分钟;

18)RNA酶A溶液中(或0.1-1ng/mlPBS中),37℃孵育30分钟;

19)PBS清洗5分钟;

20)室温,2×SSC清洗10分钟;

21)37℃,1×SSC清洗10分钟;

22)37℃,0.5×SSC清洗10分钟;

23)缓冲液A孵育10分钟;

24)缓冲液A(1%正常绵羊血清和0.03%三重氢核X-100)孵育30分钟;

25)加入抗地高辛抗体(1/200的上述缓冲液,来自Boehringer Mannheim),37℃孵育3 小时;

26)缓冲液A清洗2次,每次10分钟;

27)缓冲液B清洗2次,每次5分钟;

28)制成NBT/BCIP暗处保存30-60分钟,显微镜下进行观察,如果背景尚佳,显色时间可延长到16小时;

29)停止缓冲液B的反应,用水进行简单的清洗;

30)固红,脱水以及封片进行核的复染。

2、使用地高辛标记的寡核苷酸探针进行石蜡切片的原位DNA杂交第一天

1)二甲苯于37℃脱蜡2次,每次15分钟;

2)无水乙醇浸泡2次,每次5分钟;

3)95%乙醇浸泡2次,每次5分钟;

4)PBS清洗5分钟;

5)2%焦碳酸二乙酯室温下浸泡10分钟;

6)PBS清洗5分钟;

7)加入胃蛋白酶25ul/ml,37℃孵育10分钟;

8)PBS清洗2次,每次5分钟;

9)0.2N的HCl孵育30分钟;

10)PBS清洗2次,每次5分钟;

11)0.25%无水乙酸和0.1M三乙醇胺孵育10分钟;

12)PBS清洗5分钟;

13)预杂交缓冲液孵育30分钟;

14)准备寡核苷酸探针混合物:使用预杂交缓冲液稀释探针;

15)杂交;第二天

16)将玻片置于SSC中以去除封片;

17)室温,2×SSC清洗10分钟;

18)37℃,1×SSC清洗10分钟;

19)37℃,0.5×SSC清洗10分钟;

20)缓冲液A孵育10分钟;

21)缓冲液A孵育30分钟;

22)加入抗地高辛抗体37℃孵育3小时;

23)缓冲液A清洗2次,每次5分钟;

24)缓冲液B清洗2次,每次5分钟;

25)制成NBT/BCIP暗处保存30-60分钟,显微镜下进行观察,如果背景尚佳,显色时间可长到16小时;

26)停止缓冲液B的反应,用水进行简单的清洗;

27)固红,脱水以及封片进行核的复染。

免疫组织化学(傅琦博)-免疫组织化学

免疫组织化学 傅琦博 引言 酶工程是生物工程的重要组成部分,近几十年来,随着研究手段的更新和技术水平的提高,产生了一门以研究酶在细胞内的存在及其动态,以阐明组织细胞的结构和功能为主要内容的科学——酶组织化学。酶组织化学是利用酶化学反应的产物可在光学显微镜或电子显微镜下被识别的特性,借以从形态学角度判定酶在组织细胞内的存在的部位的一门技术,其基础是组织化学。它具有将形态学、生物化学和生理学联系起来的特点,在生物学、生物化学、医学生物领域内日益发挥着重要的作用。研究组织细胞内特定酶分布的酶组织化学方法大致分为:(1)利用酶的活性反映的方法;(2)利用抗原抗体反应(免疫应答)证实酶的存在部位的方法。后者也被称之为免疫组织化学。 免疫组织化学概述 免疫组织化学简称免疫组化,是应用免疫学及组织化学原理,对组织切片或细胞标本中的某些化学成分,进行原位的定性、定位或定量的研究。这种技术称为免疫组织化学技术。免疫组化是利用抗体与抗原的结合具有高度特异性的特点,采用一直的抗体检测组织或细胞的抗原物质,以期确定组织或细胞是否存在未知抗原,并进行定性、定位或定量的研究。抗原与抗体结合形成的免疫复合物是无色的,故必须借助组织化学方法,将抗体抗原反应部位显示出来。它的主要研究方法是免疫组织染色法(简称免疫染色法),食用该方法检测细胞内物质,必须具备两个条件:①作为检测对象的物质须具有抗原性,能制作出与之相应的特异、高效价的抗体;②在免疫反应发生之前,目标物质要保持抗原性,同时还要保持在组织细胞内的稳定状态。要检测抗原,就要用与之相应的抗体进行免疫反应,同时要用可视的标记标出抗原或抗体,采用这种方法的免疫染色法称为标识抗体法或标识抗原法,常用的表示抗体法有直接法、间接法、补体结合法以及多重染色法等。直接法是标识要检出的抗原的抗体,然后进行反应的方法,其特异性高,但检出的敏感度不如间接法,标识抗体的食用范围手局限。间接法是以未标识的第一抗体进行反应,接着标识以第一抗体为抗原所制作的抗体(即第二抗体)进行重叠反应,间接的证明抗原,这种方法的缺点是容易出现非特异性反应,但敏感度较高,标识抗体的用途也广;补体结合法是将间接法中的第二抗体作为标识抗补体抗体食用;多重染色法则是在同一标本上检出多种抗原物质的方法,可以用反复进行的重复标记的直接法,也可以用酶标记的重复进行的间接法。此外,还有后标识抗体的免疫染色法,此法先采用未标识的抗体进行反应,反应结束后,通过免疫化学反应或其他化学反应,用适当的标记物质来识别已与组织细胞内抗原发生结合的抗体。 免疫组织化学技术的发展 免疫组织化学技术是形态学研究领域一门新兴方法学。自它问世以来发展迅猛,用“日新月异”一词形容它毫不过分。酶标免疫组织化学技术是由Nakane 等人于60 年代末期创立的最早的免疫酶组织化学技术,之后Sternberger 等人于70 年代初期便在此基础上建立了非标记抗体酶法(又称间接法) 和PAP 法(过氧化酶抗过氧化酶法) 。80 年代初期美籍华人Hsu 又建立了卵白素生物素复合物法(ABC法) ,自此之后,免疫金银染色法、免疫电镜等技术相继问世。80 年代末期人们又发现链霉菌抗生物素蛋白(或译成链霉菌亲合素,St reptavidin) 与生物素结合力极强,遂用它标记过氧化酶建立起了SP 法,或称LSAB 法(链霉菌亲合素生物素过氧化酶法) 。由于链霉菌亲合素不与人组织中的内源性生物素起非特异性结合反应,故背景染色更加清晰,且敏感性比ABC 法高4~8 倍,比PAP 法高8~16 倍。进入90 年代,免疫组织化学又向基因水平深入发展,与分子生物学技术的结合日益紧密。如原位杂交后信 号的放大与显示便是采用了免疫组织化学显色技术,因而又可称之为原位杂交免疫组织化学技术。而图象分析、流式细胞仪的运用,是免疫细胞化学定量分析技术提高到更精确的水平。现就该技术的发展及其应用作一概述。 1利用免疫荧光标记技术可以分辨出标记抗原抗体所在的位置及其性质, 并可利用荧光定量技术计算抗原(或抗体) 的含量, 以达到对定性、定位、定量测定的目的[2 ]。如黄祥瑞等人(1999) 利用免疫荧光细胞化学技术研究西藏环状病毒细胞生物学特性和敏感细胞范围(CPE) , 成功地观察到该病毒的细胞病变效应特异荧光发生的部位、细胞数量和病毒的形态发生。辛德毕斯热是由辛德毕斯病毒Sindbis V irus (SiN ) 引起的人兽共患虫媒病毒病, 1974 年南非发生辛德毕斯热大流行。1991年梁国栋等通

原位杂交原理及具体操作

原位杂交原理及具体操作

原位杂交实验原理与方法 一、目的 本实验的目的是学会原位杂交的使用方法。了解各种原位杂交的基本原理和优缺点。 二、原理 原位杂交组化(简称原位杂交,in situ hybridization histochemistry;ISHH)属于分子杂交的一种,是一种应用标记探针与组织细胞中的待测核酸杂交,再应用标记物相关的检测系统,在核酸原有的位置将其显示出来的一种检测技术。原位杂交的本质就是在一定的温度和离子浓度下,使具有特异序列的单链探针通过碱基互补规则与组织细胞内待测的核酸复性结合而使得组织细胞中的特异性核酸得到定位,并通过探针上所标记的检测系统将其在核酸的原有位置上显示出来。 当然杂交分子的形成并不要求两条单链的碱基顺序完全互补,所以不同来源的核酸单链只要彼此之间有一定程度的互补顺序(即某种程度的同源性)就可以形成杂交双链。 探针的种类按所带标记物可分为同位素标记探针和非同位素标记探针两大类。目前,大多数放

射性标记法是通过酶促反应将标记的基因掺入DNA中,常用的同位素标记物有3H、35S、125I 和32P。同位素标记物虽然有灵敏性高,背底较为清晰等优点,但是由于放射性同位素对人和环境均会造成伤害,近来有被非同位素取代的趋势。非同位素标记物中目前最常用的有生物素、地高辛和荧光素三种。 探针的种类按核酸性质不同又可分为DNA探针、cDNA探针、cRNA探针和合成寡核苷酸探针。cDNA 探针又可分为双链cDNA探针和单链cDNA探针。原位杂交又可分为菌落原位杂交和组织原位杂交。 菌落原位杂交(Colony in situ hybridization)菌落原位杂交是将细菌从培养平板转移到硝酸 纤维素滤膜上,然后将滤膜上的菌落裂菌以释出DNA。将NDA烘干固定于膜上与32P标记的探针杂交,放射自显影检测菌落杂交信号,并与平板上的菌落对位。 组织原位杂交(Tissue in situ hybridization)组织原位杂交简称原位杂交,指组织或细胞的原位杂交,它与菌落的原位杂交不同。菌落原位杂交需裂解细菌释出DNA,然后进行杂交。而原位

DNA实验技术:原位杂交实验要求及步骤

原位杂交组织(或细胞)化学(In situ Hybridization Histochemistry,ISHH)简称原位杂交(In Situ Hybridization),属于固相分子杂交的范畴,它是用标记的DNA或RNA为探针,在原位检测组织细胞内特定核酸序列的方法。根据所用探针和靶核酸的不同,原位杂交可分为DNA-DNA杂交,DNA-RNA杂交和RNA-RNA 杂交三类。 根据探针的标记物是否直接被检测,原位杂交又可分为直接法和间接法两类。直接法主要用放射性同位素、荧光及某些酶标记的探针与靶核酸进行杂交,杂交后分别通过放射自显影、荧光显微镜术或成色酶促反应直接显示。间接法一般用半抗原标记探针,最后通过免疫组织化学法对半抗原定位,间接地显示探针与靶核酸形成的杂交体。 原位杂交最初是以同位素标记探针进行的。尽管同位素标记(如35S,3H,32P等)仍然广泛使用,但非同位素标记探针的迅速发展(尤其是生物素标记探针和地高辛标记探针),更引起科技工作者的极大兴趣。 一、基本要求 1. 组织取材:组织取材应尽可能新鲜。由于组织RNA降解较快,所以新鲜组织和培养细胞最好在30 min 内固定。 2. 固定目的是: (1)保持细胞结构; (2)最大限度地保持细胞内DNA或RNA的水平; (3)使探针易于进入细胞或组织。 最常用的固定剂是多聚甲醛,与其它醛类固定剂(如戊二醛)不同,多聚甲醛不会与蛋白质产生广泛的交叉连接,因而不会影响探针穿透入细胞或组织。 3. 增强组织的通透性和核酸探针的穿透性: (1)稀酸处理和酸酐处理:为防止探针与组织中碱性蛋白之间的静电结合,以降低背景,杂交前标本可用0.25%乙酸酐处理10 min,经乙酸酐处理后,组织蛋白中的碱性基团通过乙酰化而被阻断。组织和细胞标本亦可用0.2 M HCl处理10 min,稀酸能使碱性蛋白变性,结合蛋白酶消化,容易将碱性蛋白移除。 (2)去污剂处理:去污剂处理的目的是增加组织的通透性,利于杂交探针进入组织细胞,最常应用的去污剂是Triton X-100。注意:过度的去污剂处理不仅影响组织的形态结构,而且还会引起靶核酸的丢失。

免疫组化技术全程原理

免疫组化技术全程原理 一、概念和常用方法介绍 1、定义 用标记的特异性抗体对组织切片或细胞标本中某些化学成分的分布和含量进行组织和细胞原位定性、定位或定量研究,这种技术称为免疫组织化学(immunohistochemistry)技术或免疫细胞化学(immunocytochemistry)技术。 2、原理 根据抗原抗体反应和化学显色原理,组织切片或细胞标本中的抗原先和一抗结合,再利用一抗与标记生物素、荧光素等的二抗进行反应,前者再用标记辣根过氧化物酶(HRP)或碱性磷酸酶(AKP)等的抗生物素(如链霉亲和素等)结合,最后通过呈色反应或荧光来显示细胞或组织中化学成分,在光学显微镜或荧光显微镜下可清晰看见细胞内发生的抗原抗体反应产物,从而能够在细胞爬片或组织切片上原位确定某些化学成分的分布和含量。 3、分类 1)按标记物质的种类,如荧光染料、放射性同位素、酶(主要有辣根过氧化物酶和碱性磷酸酶)、铁蛋白、胶体金等,可分为免疫荧光法、放射免疫法、免疫酶标法和免疫金银法等。 2)按染色步骤可分为直接法(又称一步法)和间接法(二步、三步或多步法)。与直接法相比,间接法的灵敏度提高了许多。 3)按结合方式可分为抗原-抗体结合,如过氧化物酶-抗过氧化物酶(PAP)法;亲和连接,如卵白素-生物素-过氧化物酶复合物(ABC)法、链霉菌抗生物素蛋白-过氧化物酶连结(SP)法等,其中SP法是比较常用的方法;聚合物链接,如即用型二步法,此方法尤其适合于内源性生物素含量高的组织抗原检测。 4、目前几种常用免疫组化方法简单介绍 1)免疫荧光方法 是最早建立的免疫组织化学技术。它利用抗原抗体特异性结合的原理,先将已知抗体标上荧光素,以此作为探针检查细胞或组织内的相应抗原,在荧光显微镜下观察。当抗原抗体复合物中的荧光素受激发光的照射后即会发出一定波长的荧光,从而可确定组织中某种抗原的定位,进而还可进行定量分析。由于免疫荧光技术特异性强、灵敏度高、快速简便,所以在临床病理诊断、检验中应用较广。 2)免疫酶标方法

原位杂交技术(in situ hybridization)

原位杂交的基本原理 原位杂交技术的基本原理是利用核酸分子单链之间有互补的碱基序列,将有放射性或非放射性的外源核酸(即探针)与组织、细胞或染色体上待测DNA或RNA互补配对,结合成专一的核酸杂交分子,经一定的检测手段将待测核酸在组织、细胞或染色体上的位置显示出来。为显示特定的核酸序列必须具备3个重要条件:组织、细胞或染色体的固定、具有能与特定片段互补的核苷酸序列(即探针)、有与探针结合的标记物(曾呈奎等2000)。 RNA原位核酸杂交又称RNA原位杂交组织化学或RNA原位杂交。该技术是指运用cRNA或寡核苷酸等探针检测细胞和组织内RNA表达的一种原位杂交技术。其基本原理是:在细胞或组织结构保持不变的条件下,用标记的已知的RNA核苷酸片段,按核酸杂交中碱基配对原则,与待测细胞或组织中相应的基因片段相结合(杂交),所形成的杂交体 (Hybrids)经显色反应后在光学显微镜或电子显微镜下观察其细胞内相应的mRNA、rRNA和tRNA分子。RNA原位杂交技术经不断改进,其应用的领域已远超出DNA原位杂交技术。尤其在基因分析和诊断方面能作定性、定位和定量分析,已成为最有效的分子病理学技术,同时在分析低丰度和罕见的mRNA表达方面已展示了分子生物学的一重要方向。 原位杂交技术(in situ hybridization)是以标记的核酸分子为探针,在组织细胞原位检测特异核酸分子的技术。这一技术不需要从组织细胞中提取核酸,对组织中含量极低的靶序列有很高的灵敏度,并可保持组织与细胞的结构完整,反映特异核酸分子的定位。特别是配合使用能定位特异蛋白分子的免疫细胞化学技术,就能对生理或病理条件下从DNA 到mRNA到蛋白质这样一个基因表达过程进行定性和定位的分析,是基因表达研究强有力的手段。 (一)原位杂交技术的原理 原位杂交技术的原理是:使含有特异序列、经过标记的核酸单链即探针,在适宜条件下与组织细胞中的互补核酸单链即靶核酸发生杂交,再以放射自显影或免疫细胞化学方法对标记探针进行探测,从而在细胞原位显示特异的DNA或RNA分子。

植物(拟南芥水稻)原位杂交详细protocol试验方法

植物材料的固定、包埋和制片 一、植物材料的固定和包埋 在此过程应注意避免Rnase的污染。所使用的熔蜡管(管盖不能耐受180℃烘,只需高压湿热灭菌即可)、量筒、三角瓶和药勺均需180℃烘5小时以上。所用蒸馏水无需用DEPC处理。所固定的材料越小越好,尽可能切除多余的材料。材料取下后应立即固定。取材后若不能立即固定,则应置于冰上运输。配试剂前请计算一下所需用量,用多少配多少,节约试剂。 300 ml量为例) 1、先打开一个60℃左右的水浴锅。 2、在通风橱中往三角瓶中加入12 g多聚甲醛(终浓度为4%)。 3、用量筒配300 ml PBS缓冲液(30 ml 10×PBS+270 ml水),另加1粒NaOH,盖好锡 箔纸后,轻轻摇动,稍微溶化后置于水浴锅中溶解。 4、完全溶解后,取出,加0.1% Tween-20 (300 ul)和0.1% Triton(300 ul)混匀(包 埋水稻时还要再加3 ml 25%的戊二醛)。 5、置于冰上或4℃冰箱降至室温,然后用硫酸调pH 至7.0。 6、把配制好的甲醛溶液分装到小瓶中,(一般用10 ml的小瓶)。 7、分装好的甲醛溶液应放置在冰浴中当天使用。 二、固定材料 1、取植物新鲜材料,去除不需要的部分至适当大小。注意:所固定的材料越小越好, 尽可能去除无用多余的部分。 2、把取好材料放入冰浴的装有甲醛溶液的小瓶中。注意每瓶中的切块数:太多固定不 好;太少则浪费固定液(固定液:材料≥20:1)。 3、材料放入固定液后,应通过抽真空(1至数分钟,视具体情况而定:尽可能短时间, 以材料沉入固定液中为准),帮助固定液进入组织中,以达到迅速固定植物材料的目 的。抽气减压时,尽量不要使液体过分沸腾。抽真空时,材料一般在固定液中浮起; 抽完真空的材料应该沉入固定液中,有时可能要反复多次抽真空,直至材料沉没在 固定液中。一般抽真空多于5分钟大部份材料还不沉没在固定液中的情况极少见, 如果此情况发生,建议抽真空达10分钟后,继续做步骤4。 4、抽真空后需要更换一次新鲜的固定液。 5、更换新鲜固定液后,材料在4℃过夜。 注意:甲醛有剧毒,因此药品的称取和溶液的配置必须在通风橱中进行!多聚甲醛极易飞散;称取时通风橱可暂不抽风;要避免将多聚甲醛洒落在天平或台面上造成污染,如有洒落,要及 按以下序列对材料进行脱水(水为高压灭过菌的双蒸水)。 0.85% NaCl 冰浴,30 分钟 2、50%乙醇/0.85% NaCl 冰浴,5 小时 3、70%乙醇/0.85% NaCl 冰浴,5 小时 4、85%乙醇/0.85% NaCl 4℃,过夜 50%乙醇后,材料应开始脱色。 /水 4℃,5小时 2、100%乙醇 4℃,5小时 3、100%乙醇 4℃,过夜 注:第三天起,每个脱水步骤时间可延长至一天。两次100%乙醇脱水后,材料应为无色。

原位杂交实验操作步骤

原位杂交实验操作步骤 一质粒制备 1质粒的转化和扩增 1.1制备XL1-Blue感受态细菌 1.取400uLXL1-Blue菌种加入到含200mlLB培养基的锥形瓶中,37℃、100rpm 培养4h,离心,倒置,以冰冷的0.1mol/LCaCl_2重悬细菌,冰浴30min,离心,弃上清,倒置,再加4ml(含15%甘油)冰冷的CaCl2重悬细菌,分装(200μ/tube),-80℃保存。 2.转化:在冰浴中将1管XL1-Blue感受态菌解冻,将浓度为2ng/μ1的质粒DNA4μ1加入到8Oμ1感受态菌中。 3.轻轻摇匀,冰浴30min。 4.42℃热激9O秒,然后迅速冰浴2min。 5.加入LB培养液(无氨苄青霉素)0.8ml,在37℃,100转/min水浴孵育60min。 6.取200μl菌液铺于琼脂板上(涂有X-Gal(20mg/ml)-IPTG(200mg/ml)的LB-氨苄青霉素50mg/ml,1μl/ml培养基),待菌液全部被吸收后,倒置平板于37℃培养12-16h。 1.2鉴定和挑选含重组质粒的菌落 1.用无菌牙签挑取单菌落,接种到10ml含氨苄青霉素的LB培养液的离心管中,于37℃,200转/分培养2h,取1ml之一Eppendorf离心管,加 50μl10mmol/L EDTA(pH8.0)。 2.加入50μl新配置的0.2mol/LNaOH、0.5%SDS、20%蔗糖溶液后,振荡30秒。 3.在70℃温育5min,然后冷却到室温。 4.加1.5μ14mol/LKCl和0.5μ1含0.4%溴酚兰染液,振荡3O秒后,冰浴5min。 5.12000g,4℃离以3min,以除去细菌碎片。 6.制备1%的琼脂糖凝胶(含EB0.5μg/ml),取50μl上清液加入到样品孔中,其中一孔加入中等分子量DNAMarker。恒压50V,进行电泳。 7.当溴酚兰迁移到凝胶全长的2/3-3/4时,停止电泳,在紫外灯下检查质粒DNA 分于量的大小是否与转入质粒相符。

原位杂交组织化学技术的基本方法及操作规程

原位杂交组织化学技术的基本方法及操作规程 一、核酸分子杂交技术 1961年Hall开拓了液相核酸杂交技术的研究,其基本原理是利用核酸分子单链之间有互补的碱基顺序,通过碱基对之间非共价键的形成,出现稳定的双链区,形成杂交的双链。自此以后,由于分子生物学技术的迅猛发展,特别是70年代末到80年代初,分子克隆">克隆、质粒和噬菌体DNA的构建成功,核酸自动合成仪的诞生,大大丰富了核酸探针的来源,新的核酸分子杂交类型和方法不断涌现。按其作用方式可大致分为固相杂交和液相杂交两种:液相杂交是指参加反应的两条核酸链都游离在溶液中,而固相杂交是将参加反应的一条核酸链固定在固体的支持物上常用的有硝酸纤维素滤膜,其它如尼龙膜、乳胶颗粒和微孔板等),另一条参加反应的核酸链游离在溶液中。固相杂交有菌落原位杂交(colony in situ hybri dization)、斑点杂交法(Dot blot)、Southern印迹杂交(Southern blot)、Northern印迹杂交( N orthern blot)和组织原位杂交(Tissue in situ hybridization),即原位杂交组织化学技术和原位杂交免疫细胞化学技术。液相分子杂交技术包括吸附杂交、发光液相杂交、液相夹心杂交和复性速率液相分子杂交等。 二、原位杂交组织化学技术的由来及发展 原位杂交组织(或细胞)化学技术简称原位杂交(In situ hybridization),如上所述,属于固相核酸分子杂交的范畴。但它区别于固相核酸分子杂交中的任何一种核酸分子杂交技术。菌落杂交系细菌裂解释放出DNA,然后进行杂交。Southern印迹杂交法是以鉴定DNA中某一特定的基因片段,而Norhtern印迹杂交法是用以检测某一特定的RNA片段的。它们都只能证明该病原体、细胞或组织中是否存在待测的核酸而不能证明该核酸分子在细胞或组织中存在的部位。1969年美国耶鲁大学Gall和Pardue首先用爪蟾核糖体基因探针与其卵母细胞杂交,确定该基因定位于卵母细胞的核仁中。与此同时,Buongiorno– Nardell i和Amaldi, John及其同事等相继利用同位素标记核酸探针进行了细胞或组织的基因定位,从而创造了原位杂交细胞或组织化学技术。Orth(1970)应用3H标记的兔乳头状瘤病毒cRNA探针与兔乳头状瘤组织的冰冻切片进行杂交,首次用原位杂交检测了病毒DNA在细胞中的定位,但当时的工作多采用冰冻组织切片或培养细胞,探针均采用同位素标记。 由于同位素标记探针具有放射性既污染环境,又对人体有害,且受半衰期限制等缺点,科学工作者们开始探索用非放射性的标记物标记核酸探针进行原位杂交。Bauman(1981)等首先应用荧光素标记cRNA探针做原位杂交,然后用荧光显微镜观察获得成功。Shroyer(1982)报道用2,4二硝基苯甲醛(DNP)标记DNA探针,使该DNA探针具有抗原性,然后用兔抗DNP的抗体来识别杂交后的探针,最后经免疫过氧化物酶的方法来定位杂交探针。这两种方法至今仍有采用,但因敏感度不够高,应用不够普遍。 Pezzella(1 987)创建了用磺基化DNA探针来做细胞或组织原位杂交的方法,其基本原理是使DNA探针的胞嘧啶碱基磺基化,利用单克隆">克隆抗体识别磺基化探针,再通过免疫组化方法显示结合的单克隆抗体,从而对杂交结合的探针进行定位。本法的优点是磺基化DAN探针标记简便,不需作缺口平移标记,敏感度也较高。但自生物素和高辛标记探针技术建立后,已有取而代之的趋势。生物素标记探针技术是Brigat(1983)首先建立的,它利用生物素标记的探针在组织切片上检测了病毒DNA,通过生物素与抗生物素结合,过氧化物酶-抗过氧化物酶显示系统显示病毒DNA在细胞中的定位。生物素标记探针技术目前已被广泛应用,特别是在病毒学和病理学的临床诊断中。这种生物素标记技术又叫酶促生物素标记技术。另一种叫光促生物素标记核酸技术,该技术是用光敏生物素(Photobiotin)标记核酸。目前应用的光敏生物素有乙酸盐和补骨脂素生物素,它们都是由三个部分组成:光敏基团、连结臂和生物素(图20-1)。在强光下,不需酶反应,光敏生物素的光敏基团即可与核酸中的碱基相结合。光敏生物素标记核酸,方法简单,灵敏度也不低,但标记效率不高,每100~150个碱基才能标记一个生物素,对于短的基因探针特别是寡核苷酸探针不宜使用,以免因标记数过少而影响灵敏度(Forster et al 1985)。 近年来,地高辛(Digoxigonin)标记技术引起科技工作者的极大兴趣。Boeringer Mannhem Bio-ch emisca于1987年将地高辛标记的有关试剂及药盒投放市场。和其它非放射性标记物一样,地高辛较放射性标记系统安全,方便、省时间。同时在敏感性和质量控制方面比生物素标记技术要优越,可以检测出人基因组DNA中的单拷贝基因。地高辛标记法显示的颜色为紫蓝色(标记碱性磷酸酶-抗碱性磷酸酶显色系统),有较好的反差背景。 核酸探针根据标记方法的不同可粗略分为放射性探针和非放射性探针两类。根据探针的核酸性质不同可分为DNA探针、RNA探针、cDNA探针、cRNA探针和寡核苷酸探针等。DNA探针还有单链DNA(Single st

原位杂交组织化学技术的基本方法

原位杂交组织化学技术的基本方法 一、核酸分子杂交技术 1961年Hall开拓了液相核酸杂交技术的研究,其基本原理是利用核酸分子单链之间有互补的碱基顺序,通过碱基对之间非共价键的形成,出现稳定的双链区,形成杂交的双链。自此以后,由于分子生物学技术的迅猛发展,特别是70年代末到80年代初,分子克隆">克隆、质粒和噬菌体DNA的构建成功,核酸自动合成仪的诞生,大大丰富了核酸探针的来源,新的核酸分子杂交类型和方法不断涌现。按其作用方式可大致分为固相杂交和液相杂交两种:液相杂交是指参加反应的两条核酸链都游离在溶液中,而固相杂交是将参加反应的一条核酸链固定在固体的支持物上常用的有硝酸纤维素滤膜,其它如尼龙膜、乳胶颗粒和微孔板等),另一条参加反应的核酸链游离在溶液中。固相杂交有菌落原位杂交(colony in situ hybri dization)、斑点杂交法(Dot blot)、Southern印迹杂交(Southern blot)、Northern印迹杂交( N orthern blot)和组织原位杂交(Tissue in situ hybridization),即原位杂交组织化学技术和原位杂交免疫细胞化学技术。液相分子杂交技术包括吸附杂交、发光液相杂交、液相夹心杂交和复性速率液相分子杂交等。 二、原位杂交组织化学技术的由来及发展 原位杂交组织(或细胞)化学技术简称原位杂交(In situ hybridization),如上所述,属于固相核酸分子杂交的范畴。但它区别于固相核酸分子杂交中的任何一种核酸分子杂交技术。菌落杂交系细菌裂解释放出DNA,然后进行杂交。Southern印迹杂交法是以鉴定DNA中某一特定的基因片段,而Norhtern印迹杂交法是用以检测某一特定的RNA片段的。它们都只能证明该病原体、细胞或组织中是否存在待测的核酸而不能证明该核酸分子在细胞或组织中存在的部位。1969年美国耶鲁大学Gall和Pardue首先用爪蟾核糖体基因探针与其卵母细胞杂交,确定该基因定位于卵母细胞的核仁中。与此同时,Buongiorno– Nardell i和Amaldi, John及其同事等相继利用同位素标记核酸探针进行了细胞或组织的基因定位,从而创造了原位杂交细胞或组织化学技术。Orth(1970)应用3H标记的兔乳头状瘤病毒cRNA探针与兔乳头状瘤组织的冰冻切片进行杂交,首次用原位杂交检测了病毒DNA在细胞中的定位,但当时的工作多采用冰冻组织切片或培养细胞,探针均采用同位素标记。 由于同位素标记探针具有放射性既污染环境,又对人体有害,且受半衰期限制等缺点,科学工作者们开始探索用非放射性的标记物标记核酸探针进行原位杂交。Bauman(1981)等首先应用荧光素标记cRNA探针做原位杂交,然后用荧光显微镜观察获得成功。Shroyer(1982)报道用2,4二硝基苯甲醛(DNP)标记DNA探针,使该DNA探针具有抗原性,然后用兔抗DNP的抗体来识别杂交后的探针,最后经免疫过氧化物酶的方法来定位杂交探针。这两种方法至今仍有采用,但因敏感度不够高,应用不够普遍。 Pezzella(1 987)创建了用磺基化DNA探针来做细胞或组织原位杂交的方法,其基本原理是使DNA探针的胞嘧啶碱基磺基化,利用单克隆">克隆抗体识别磺基化探针,再通过免疫组化方法显示结合的单克隆抗体,从而对杂交结合的探针进行定位。本法的优点是磺基化DAN探针标记简便,不需作缺口平移标记,敏感度也较高。但自生物素和高辛标记探针技术建立后,已有取而代之的趋势。生物素标记探针技术是Brigat(1983)首先建立的,它利用生物素标记的探针在组织切片上检测了病毒DNA,通过生物素与抗生物素结合,过氧化物酶-抗过氧化物酶显示系统显示病毒DNA在细胞中的定位。生物素标记探针技术目前已被广泛应用,特别是在病毒学和病理学的临床诊断中。这种生物素标记技术又叫酶促生物素标记技术。另一种叫光促生物素标记核酸技术,该技术是用光敏生物素(Photobiotin)标记核酸。目前应用的光敏生物素有乙酸盐和补骨脂素生物素,它们都是由三个部分组成:光敏基团、连结臂和生物素(图20-1)。在强光下,不需酶反应,光敏生物素的光敏基团即可与核酸中的碱基相结合。光敏生物素标记核酸,方法简单,灵敏度也不低,但标记效率不高,每100~150个碱基才能标记一个生物素,对于短的基因探针特别是寡核苷酸探针不宜使用,以免因标记数过少而影响灵敏度(Forster et al 1985)。 近年来,地高辛(Digoxigonin)标记技术引起科技工作者的极大兴趣。Boeringer Mannhem Bio-ch emisca于1987年将地高辛标记的有关试剂及药盒投放市场。和其它非放射性标记物一样,地高辛较放射性标记系统安全,方便、省时间。同时在敏感性和质量控制方面比生物素标记技术要优越,可以检测出人基因组DNA中的单拷贝基因。地高辛标记法显示的颜色为紫蓝色(标记碱性磷酸酶-抗碱性磷酸酶显色系统),有较好的反差背景。 核酸探针根据标记方法的不同可粗略分为放射性探针和非放射性探针两类。根据探针的核酸性质不同可分为DNA探针、RNA探针、cDNA探针、cRNA探针和寡核苷酸探针等。DNA探针还有单链DNA(Single st randed, ssDNA)和双链DNA(Double stranded, dsDNA)之分(详见十九章)。早期应用的主要是DNA探

原位杂交操作流程

原位杂交操作流程 1、使用地高辛标记的核酸探针进行石蜡切片的RNA原位杂交第一天 1)二甲苯于37℃脱蜡2次,每次15分钟; 2)无水乙醇浸泡2次,每次3分钟; 3) 95%乙醇浸泡2次,每次3分钟; 4) PBS清洗3分钟; 5) 2%焦碳酸二乙酯室温下浸泡10分钟; 6) PBS清洗10分钟; 7)加入胃蛋白酶25ul/ml,37℃孵育15分钟; 8) PBS清洗2次,每次3分钟; 9) 0.2N的HCl孵育30分钟; 10)PBS清洗2次,每次3分钟; 11)0.25%无水乙酸和0.1M三乙醇胺孵育10分钟; 12)PBS清洗2次,每次5分钟; 13)预杂交缓冲液孵育30分钟; 14)准备核酸探针混合物:使用预杂交缓冲液稀释探针,85℃加热5分钟,置于冰块中10分钟; 15)杂交;第二天 16)将玻片置于SSC中2次,每次5分钟以去除封片; 17)PBS清洗3分钟; 18)RNA酶A溶液中(或0.1-1ng/mlPBS中),37℃孵育30分钟; 19)PBS清洗5分钟; 20)室温,2×SSC清洗10分钟; 21)37℃,1×SSC清洗10分钟; 22)37℃,0.5×SSC清洗10分钟; 23)缓冲液A孵育10分钟; 24)缓冲液A(1%正常绵羊血清和0.03%三重氢核X-100)孵育30分钟; 25)加入抗地高辛抗体(1/200的上述缓冲液,来自Boehringer Mannheim),37℃孵育3 小时; 26)缓冲液A清洗2次,每次10分钟; 27)缓冲液B清洗2次,每次5分钟; 28)制成NBT/BCIP暗处保存30-60分钟,显微镜下进行观察,如果背景尚佳,显色时间可延长到16小时;29)停止缓冲液B的反应,用水进行简单的清洗; 30)固红,脱水以及封片进行核的复染。 2、使用地高辛标记的寡核苷酸探针进行石蜡切片的原位DNA杂交第一天 1)二甲苯于37℃脱蜡2次,每次15分钟; 2)无水乙醇浸泡2次,每次5分钟; 3) 95%乙醇浸泡2次,每次5分钟; 4) PBS清洗5分钟; 5) 2%焦碳酸二乙酯室温下浸泡10分钟; 6) PBS清洗5分钟; 7)加入胃蛋白酶25ul/ml,37℃孵育10分钟; 8) PBS清洗2次,每次5分钟; 9) 0.2N的HCl孵育30分钟; 10)PBS清洗2次,每次5分钟; 11)0.25%无水乙酸和0.1M三乙醇胺孵育10分钟;

原位杂交的方法

原位杂交 1 探针的设计与合成 1)根据实验室已有的p8基因cDNA全长序列,用premier primer5.0设计引物p81和p82, 以卤虫cDNA为模板,PCR扩增得到346bp的产物,用Takara胶回收试剂盒回收纯化。引物编号引物序列长度 p81 TGCGGACGAAACAGGAAG 18 bp p82 GCTCAAACAGTGA TGCCAGT 20 bp 2)目的片段克隆 a. 在无菌离心管中加入连接载体的各种成分,载体与片段的摩尔比控制在1:3-1:8,根据凝胶电泳检测后的浓度及载体与片段分子大小来计算摩尔比。加入成分及比例如下: 目的PCR片段 5 μl pGM-T载体(约50ng/uL) 1 μl 10×T4 DNA Ligation Buffer 1 μl T4 DNA Ligase(3U/uL) 1 μl 无菌去离子水 3 μl 总体积10 μl b. 轻轻弹动离心管以混合内容物,短暂离心。置于PCR仪中16℃过夜连接,反应结束后将离心管置于冰上。 c. 向铺好的含有氨苄青霉素的固体平板表面加入16 μl的IPTG(50mg/ml)、40 μl的X-gal (20mg/ml),使用无菌的弯头玻璃棒将其均匀的涂开,避光置于37℃培养箱1-3小时,使溶解X-gal的二甲基甲酰挥发干净。 d. 将10 μl的连接产物加到100 μl DH5 感受态细胞中,轻弹混匀,冰浴半小时,将离心管置于42℃水浴90秒,取出管后立即置于冰浴上放置2-3分钟,其间不要摇动离心管。向离心管加入500 μl 37℃预热的LB(不含抗生素)培养基,150rpm摇床37℃振荡培养45分钟。目的是使质粒上相关的抗性标记基因表达,使菌体复苏。将菌液于4000g下离心10分钟,去掉上清,加入100 μl培养液重溶并加入到配制好的LB固体培养基上,用无菌的弯头玻璃棒轻轻将细胞均匀涂开。待平板表面干燥后,倒置平板,37℃培养12-16小时。 e. 挑取白色菌落直接进行PCR检测,筛选转化子。 f. 将转化子接种于LB液体培养基中培养24小时,吸取1mL菌液送至大连宝生物公司进行序列测序。 3)重组质粒的线性化 取6 μl以测序的重组质粒,选取NcoI内切酶37℃酶切4h。酶切反应体系为20 μl: 质粒 6 μl 10xK Buffer 2 μl NcoI酶 1 μl 0.1% BSA 2 μl 灭菌水9 μl 终体积20 μl 取酶切前后的质粒各4 μl,经1%琼脂糖电泳检测,确认酶切完全,将酶切产物用Takara胶回收试剂盒回收纯化,作为探针合成的模板。 4)探针合成 按罗氏DIG RNA Labeling Kit (SP6/T7)试剂盒使用指南,标记反义RNA探针。 使用的所有试剂和器皿均经去RNase处理,合成方法如下:先准备反应体系。冰上向RNase-Free的微离心管中顺序加入下列试剂:

原位杂交-经典方法-地高辛标记探针

原位杂交 (In situ hybridization) 一、目的 掌握核酸探针原位杂交操作技术,并利用该技术对单细胞的靶目标进行定位,用于细胞生物学基础研究。 二、原理 原位杂交技术(in situ hybridization)是分子生物学和组织化学成功结合的产物,是特定标记的已知序列核酸作为探针与细胞或组织切片中核酸进行杂交并对其实行检测的方法。其基本原理是含互补序列的标记DNA或RNA片段,即探针,在适宜的条件下与细胞内特定的DNA或RNA形成稳定的杂交体。 原位杂交能在成分复杂的组织中进行单一细胞的研究而不受同一组织中其它成分的影响,因此对于那些细胞数量少且散在于其他组织中的细胞内DNA或RNA研究更为方便;由于原位杂交不需要从组织中提取核酸,对于组织中含量极低的靶序列有极高的敏感性,并可完整地保持组织与细胞的形态,更能准确地反映出组织细胞的相互关系及功能状态。 三、仪器设备 烘箱,切片机,展片机,染色缸,湿盒,原位PCR仪,显微镜、镊子、量筒、烧杯、吸水纸、枪与枪头、载玻片、盖玻片、冰盒等。 四、材料和试剂 1.材料:带有病原体的水生动物,如感染WSSV病毒的对虾、感染虹彩病毒的水生动物等。 2.试剂: Davidson’s AFA固定液: 330 ml 95%乙醇 220 ml 福尔马林(37~39%甲醛水溶液) 115 ml 冰醋酸 335 ml H2O 混匀后封口,室温放置; DIG标记与检测试剂盒(Roche公司); TNE:50 mmol/L Tris-HCl 6.57 g Tris Base 10 mmol/L NaCl 0.58 g NaCl 1 mmol/L EDTA 0.37 g EDTA ddH2O 900 ml (定容至1L) 用HCl调pH至7.4,高压灭菌,4℃保存;

原位杂交实验操作步骤

原位杂交实验操作步骤 撰写人:范为民 一、实验原理 原位杂交是指借助于核酸分子杂交的方法,在显微镜水平检测和定位特异的核苷酸片段。现在原位杂交已经成为在分子水平研究肿瘤和遗传性疾病的发生,发展和调控等根本性问题的有力工具。 二、试剂盒 本实验室常用的原位杂交试剂盒是博士德公司生产的敏感加强型原位杂交检测试剂盒,此试剂盒分为两种,一种为过氧化物酶(POD)检测(MK1030型),一种为碱性磷酸酶(AP)检测系统(MK1032型),用于mRNA的杂交。过氧化物酶(POD)检测的最终信号为棕黄色,而碱性磷酸酶(AP)检测的信号为紫色,因后者信号比较突出,所以一般采用后一种检测方法。两种检测方法的实验步骤相差不多,所用洗脱缓冲液也大同小异。用于杂交的探针也可以分为两种,一种是DNA探针,即是用DNA与组织中的mRNA杂交,另一种是RNA 探针,即用RNA与组织中的mRNA杂交。DNA探针处理操作简单,但杂交信号一般不如RNA探针强烈,所以条件允许的话一般采用RNA探针。下面先介绍碱性磷酸酶(AP)检测试剂盒,采用RNA作为探针的操作步骤。 三、实验步骤 原位杂交实验主要包括三大部分,即组织冰冻切片、RNA探针标记、原位杂交三部分。 (一)组织冰冻切片 1. 实验准备 (1)原位杂交专用载玻片:用多聚赖氨酸处理后的载玻片,使切片紧密粘附在玻片上,可以用于后面的洗脱。一般一张载玻片上可以贴至多十张切片(可以是不同组织的切片),所以需要玻片的数目需要根据实验的要求而定。这种专用载玻片可以从中杉金桥公司购买,目前价格是每片2.2元,玻片有一面的一端是毛玻璃,用于标记组织名称等,切片应该贴在此面,切勿贴到反面。 (2)缓冲液配备 1.1器具准备 剪刀、镊子各三把,开壳钳一把,100ml量筒一个,磁力搅拌子一个;100ml试剂瓶一个,250ml试剂瓶三个。以上器具均洗净后置于180摄氏度以上烘烤6小时以上。铅笔、显微镜、冰、吸水纸、一次性塑料手套等。 1.2 溶液配制 0.1M PB缓冲液:Na2HPO4?12H2O 5.8021g,NaH2PO4?2 H2O 0.5928 g,加入200ml ddH2O溶解于之前准备的250ml试剂瓶中,再加入200ūl DEPC,充分摇匀后过夜,高压灭菌。以上溶液配制两份,其中一份瓶中放入磁力搅拌子。

原位杂交ISH方法

原位杂交技术(ISH)步骤与注意事项 材料 (一)仪器:光学显微镜、烤箱、温箱、水浴箱、电吹风机 (二)器皿:塑料反应盒、玻片架、洗涤杯、微量移液器、Eppendorf 管 (三)试剂: 1.DEPC (所有的试剂以此配制,注:DEPC致癌,应在通风下进行,并避免接触皮肤;含有Tris 中不能用DEPC) 3.0.2mol/L HCl 1.72ml 浓HCl,加ddH2O至1000ml 4.20%冰醋酸20ml 冰醋酸,加ddH2O至100ml 5.蛋白酶(50μg/ml) 6.溶液I: 含0.1mol/L Tris、0.1mol/L NaCl、2mmol/L MgCl2、0.05% Triton X-100 取12.1g Tris; 5.85g NaCl; 0.41g MgCl2·6H2O,溶于800ml ddH2O中,再加入0.5ml Triton X-100,用HCl调pH至7.5,加ddH2O至1000ml。8×105Pa高压蒸汽灭菌15min 7.溶液II: 含0.1 mol/L Tris、0.1mol/L NaCl、50mol/L MgCl2。方法:取12.1gTris;5.85g NaCl ; 10.15g MgCl2·6H2O,溶于800ml ddH2O中,用HCl调至9.5 ddH2O至1000ml。8×105Pa高压蒸汽灭菌15min。 8.4%多聚甲醛:A液:称4g多聚甲醛,加40ml ddH2O,加温至60℃后,边摇边滴加1mol/L NaOH至全部溶解。B:液:1.69g NaH2PO4·2H2O,加30ml ddH2O至溶。C液:0.39gNaOH 溶于20ml ddH2O中。先将B液与C液混合后再加入A液,以1mol/L NaOH或HCl调pH 值至7.2~7.4,加ddH2O至100ml。4℃保存。 9.去离子甲酰胺:新的。 10.20×SSC:含有3mol/L NaCl, 0.3mol/L SSC。取175.32g NaCl,加ddH2O,充分溶解后,加88.2gSSC,溶解后加ddH2O至1000ml。8×105Pa高压蒸汽灭菌15min。 11.硫酸葡聚糖(1mg/ml),取硫酸葡聚糖1g溶于1ml灭菌水,-20℃下保存。 12.50×Denhart液:含1% BSA,1% Ficoll-400(水溶性聚蔗糖),1% PVP-40(聚乙烯吡咯烷酮),分别称取1g BSA,1g PVP-40,1g Ficoll-400,用少量的ddH2O溶解混合,加ddH2O 至100ml。过滤灭菌,贮存于-20℃下备用。 13.亲和素---碱性磷酸酶(Av-AP)200U/200μl 14.底物显色液 15.50%甲酰胺50ml甲酰胺,加50ml 2×SSC,混匀后备用。 16.0.1mol/L pH 7.4 PBS.。称取43.2g Na2PO4·2H2O,溶于少量ddH2O,分别溶解后将二者合并,加入127.5g NaCl至完全溶解,加ddH2O至1500ml。8×105Pa高压蒸汽灭菌15min。使用时作10倍稀释。 17.2%BSA。取0.1g BSA,溶于5ml溶液I中。 杂交前标本处理 试剂配制与准备 A 0.1mol/L PBS, pH 7.0 B 0.2% DEPC C 4%多聚甲醛 D 0.1mol/L HCl E 200μg/ml RNase A F 蛋白酶K,稀释成含0.5-1μg/ml, 必要时用1-3或5μg/ml(用10 mg/ml贮存液稀释) G 0.1%甘氨酸, 用0.1mol/L PBS, pH 7.5配制 H 2×SSC, 1×SSC, 用20×SSC贮存液稀释配制

荧光原位杂交(FISH)实验步骤

仪器设备 1、医用微波炉; 2、水浴锅; 3、OLYMPUS BX51荧光显微镜; 4、OLYMPUS DP11数字显微照相机。 FISH试剂 (1)1×PBS:由10×PBS溶液稀释而成,储存于4℃; (2)20×SSC(); (3)2×SSC,由20×SSC溶液稀释而成; (4)25mg/ml蛋白酶K消化液。 (5)变性液(70%甲酰胺+2×SSC,:4ml 20×SSC;8ml蒸馏水;28ml甲酰胺。每次新鲜配制。 (6)杂交后洗涤液:20×SSC 4ml;蒸馏水16ml;甲酰胺20ml。每次新鲜配制。调节pH 前升至室温。 实验步骤 1、脱蜡: 1)二甲苯脱蜡3次,每次5min; 2)100%酒精两次,每次2min; 3)移出酒精,斜置切片,标记末段向下,空气干燥。 2、蛋白酶处理: 1)每个染色缸40ml蛋白酶K消化溶液,配制方法如下:2×SSC 40ml倒人Facal管,在水浴槽中预热。将消化酶液加入管内,摇动直到酶溶解。 2)37℃水浴槽中预热染色缸和蛋白酶K溶液。37℃孵育20min。 3)×SSC在室温下漂洗切片3次,每次1min。 4)梯度酒精脱水(-20℃预冷)。 3、变性: 1)每一个立式染色缸配制40ml变性溶液; 2)78℃水浴槽中平衡预热混合液染色缸; 3)78℃孵育8min; 4)即移入-20℃预冷70%酒精的染色缸内2min,再依次移入80%、90%和100%的-20℃预冷酒精内,每缸2min; 5)空气干燥。 4、杂交: 1)准备探针; 2)取一个较大的湿盒,交叉放置切片; 3)滴10μl探针在切片的组织上,加盖玻片; 4)盖上湿盒盖,37℃孵育12h~16h。 杂交后的水洗: 5)镊子小心去除盖玻片; 6)43℃预热杂交后水洗溶液40ml水洗切片15min; 7)2×SSC(37℃)洗两次,每次10min; 8)切片放人染色缸的1×PBS内待检测,勿使切片干燥。 检测:

相关主题
文本预览
相关文档 最新文档