当前位置:文档之家› _机械能守恒与能量守恒定律经典习题 - 副本

_机械能守恒与能量守恒定律经典习题 - 副本

_机械能守恒与能量守恒定律经典习题 - 副本
_机械能守恒与能量守恒定律经典习题 - 副本

(一)利用机械能守恒定律求多个物体组成系统的运动速度问题

案例1、如图所示,质量均为m 的小球A 、B 、C ,用两条长为l 的细线相连,置于高为

h 的光滑水平桌面上,l >h ,A 球刚跨过桌边.若A 球、B 球相继下落着

地后均不再反跳,则C 球离开桌边时的速度大小是多少?

分析与解:当A 小球刚要落地时,三小球速度相等设为v 1,三个

小球机械能守恒。

2132123mv mgh mgh += 解得:321gh v =

当B 球刚要落地时,B 、C 机械能守恒。B 、C 有共同速度,设v 2

22212212212mv mgh mv mgh +=+ 解得:

352gh v = 可见:C 球离开桌边时的速度大小是

352gh

v = 变式训练:

变式1、半径为R 的光滑圆柱体固定在地面上,两质量分别是M 和m 的小球用细线连接,正好处于水平直径的两端,从此位置释放小球,当m 运动到最高点时,对球的压力恰

好为零,求此时M 的速度和两小球的质量之比。

解析:对系统运用机械能守恒定律 2)(2141v m M m g R R Mg +=-π

M 在最高点时,

R v m mg 2

= 联立解得:31-=πm

M 变式2、如图所示,一辆小车静止在光滑的水平导轨上,一个小球用

细绳悬挂在车上由图中位置释放(无初速度),则小球在下摆过程中

( )

A .绳对小车的拉力不做功

B .绳对小球的拉力做正功

C .小球的合外力不做功

D .绳对小球的拉力做负功

解析:由于绳子的拉力对物体做功,每个物体的机械能不守恒。对系统没有机械能的能量损失,因此系统的机械能是守恒的。小球由静止开始做变速曲线运动,动能增加,合力做正功,C 错误。小车在拉力作用下运动,绳子对小车的拉力做正功,绳子对小球的拉力做负功,D 正确,A 、B 错误。

正确答案:D

(四)利用机械能守恒定律求解质量分布均匀的绳子、链子问题

案例3 如图3所示,在光滑水平桌面上,用手拉住长为L质

量为M的铁链,使其1/3垂在桌边。松手后,铁链从桌边滑下,求

图2

铁链末端经过桌边时运动速度是过少?

命题解读:绳子、铁链子运动的问题,对于每一部分来讲都是变力,运用动能定理难以解决过程中变力做的功。但运用机械能守恒定律只需要知道绳子的两个运动的状态,不必考虑运动过程,因此解题就简单了。此类问题的重力势能要取每部分的中心,要选好参考平面,尽量使解题简捷。

分析与解:松手后,铁链在运动过程中,受重力和桌面的支持力,支持力的方向与运动方向垂直,对铁链不做功,即这一过程中,只是垂在桌外部分的重力做功。因此,从松手到铁链离开桌边,铁链的机械能守恒。以桌面为重力势能参考面 松手时,桌外部分的质量为31m,其重心在桌面下61

L 处 此时铁链的重力势能为:-31mg 61L =-181

mgL 铁链末端刚离桌面时,整条铁链都在空中,其重心在桌面下21

L 处 此时铁链的重力势能为:-mgL 21

设此时铁链的速度为v ,由机械能守恒定律有:

2

2121181mv mgL mgL +-=- 解得:322gL v = 故铁链末端经过桌边时,铁链的运动速度是

322gL v = 变式训练:

变式1、如图所示,均匀的铁链子搭在小定滑轮上,左端占总长的2/5,现将

铁链由静止释放,当多少?

解析:选取滑轮中心水平线为参考平面,设绳子总长为l

根据系统机械能守恒定律:

2

212515210353mv l mg l mg l mg +-=?-?-

解得铁链子刚刚离开滑轮时,链子的运动速度是:

gl v 253=

变式2、如图16所示,游乐列车由许多节车厢组成。列车全长为L ,圆形轨道半径为R ,(R 远大于一节车厢的高度h 和长度l ,但L>2πR ).已知列车的车轮是卡在导轨上的光滑

槽中只能使列车沿着圆周运动而不能脱轨。试

问:列车在水平轨道上应具有多大初速度v 0,

才能使列车通过圆形轨道?

解析:列车开上圆轨道时速度开始减慢,当整个圆轨道上都挤满了一节节车厢时,列车速度达到最小值v ,此最小速度一直保持到最后一节车厢进入圆轨道,然后列车开始加速。由于轨道光滑,列车机械能守恒,设单位长列车的质量为λ,则有:

gR R Lv Lv ??+=πλλλ22121220

要使列车能通过圆形轨道,则必有v >0 解得L g

R v π20>

(五)利用机械能守恒定律求解连通器水流速问题

案例5、粗细均匀的U 型管两端开口,左端用活塞压着液体,此时两液面

的高度差为h ,液体的总长度为L ,U 型管的截面积为s ,液体的密度为ρ。

(1)不计阻力影响,当两端液面相平时,液体运动的速度

2)若最终液体静止不动,则系统产生的内能是多少?

命题解读:流体的运动也是“变力”作用的运动,但在一定的位置流体的

、“等效法”、“整体法”、“对称法”去解决问题。

分析与解:(1)若不计阻力。如图所示,当两端液面相平时,可以等效地认为是把高度为2h

的液体对称地补偿到另一端,看成是定质量问题。

系统重力势能的减少量等于动能的增加量。 即:22122Lsv h sg h ρρ= 解得两端液面相平时,液体运动的速度是2

2L gh v = (2)根据能量转化及守恒定律,系统重力势能的减少量等于内能的增加量 所以增加的内能是:24122gsh h sg h E ρρ==?

变式训练:

如图所示,容器A 、B 各有一个可以自由移动的活塞,活塞截面积

分别为S A 、S B ,活塞下面是水,上面是空气,大气压恒为P 0,A 、B 底部

与带有阀门K 的管道相连,整个装置与外界绝热原先,A 中水面比B 中

高h ,打开阀门,使A 中水逐渐流向B 中,最后达平衡,在这个过程中,

大气压对水做功为______,水的内能增加为______(设水的密度为ρ)

解析:(1)设平衡时,左侧水面下降高度h A ,右侧水面下降高度h B ,

两侧体积相等,即:B B A A s h s h =

左侧大气压对水做正功:

A A A s h P W 0= 右侧大气压对水做负功:

B B B s h P W 0-=

大气压对水做的总功为W=W A +W B =0

(2)由能量转化及守恒定律得:

水的内能增加=?E B A B

A 2S S S S gh 2

1+ρ (六)利用机械能守恒定律解决圆周运动的问题

当系统内的物体都在做圆周运动,若机械能守恒,则可利用机械能守恒定律列一个方程,但未知数有多个,因此必须利用圆周运动的知识补充方程,才能解答相关问题。

案例6、如图所示,半径为r ,质量不计的圆盘与地面垂直,圆心

处有一个垂直盘面的光滑水平固定轴O ,在盘的最右边缘固定一个质量为m 的小球A ,在O 点的正下方离O 点r/2处固定一个质量也为m 的

小球B 。放开盘让其自由转动,问:

(1)A 球转到最低点时的线速度是多少?

(2)在转动过程中半径OA 向左偏离竖直方向的最大角度是多

少? 命题解读:这是一道机械能与圆周运动综合的问题,注意到两球

任意时刻的角速度相等。过程中系统的始态、末态的重力势能,因参考面的选取会有所不同,但重力势能的变化是绝对的,不会因参考面的选取而异。机械能守恒的表达方式可记为:2211P k P k E E E E +=+,也可写作:减增P k E E ?=?。

分析与解:该系统在自由转动过程中,只有重力做

功,机械能守恒。设A 球转到最低点时的线速度为v A ,B

球的速度为V B ,则据机械能守恒定律可得: 222121)(21B A mv mv mgr mgr +=---

据圆周运动的知识可知:v A =2v B

由上述二式可求得v A =5/4gr

设在转动过程中半径OA 向左偏离竖直方向的最大角度是θ(如图17

所示),则据机械能守恒定律可得: θθcos sin 2121mgr mgr mgr -=-

解得θ=sin -153

=370

变式训练: 小球A 用不可伸长的细绳悬于O 点,在O 点的正下方有一固定的钉子B ,OB=d ,初始时小球A 与O 同水平面无初速度释放,绳长为L ,为使小球能绕B 点做完整的圆周运动,如图15所示。试求d 的取值范围。

图17

图16

m

解析: 为使小球能绕B 点做完整的圆周运动,则小球在D 对绳的拉力F 1应该大于或等于零,即有:

d L V m m g D -≤2 根据机械能守恒定律可得[])(212d L d mg mV D --= 由以上两式可求得:L d L ≤≤53

(七)用能量守恒相对滑S F Q =解相对运动问题

案例7、如图所示,小车的质量为M ,后端放一质量为m 的铁块,铁块与小车之间的

动摩擦系数为μ,它们一起以速度v 沿光滑地面向右运动,

小车与右侧的墙壁发生碰撞且无能量损失,设小车足够长,

则小车被弹回向左运动多远与铁块停止相对滑动?铁块在小

车上相对于小车滑动多远的距离?

命题解读:本题考查动能定理、能量守恒定律、动量守恒定律。两个物体相互摩擦而产生的热量Q (或说系统内能的增加量)等于物体之间滑动摩擦力F f 与这两个物体间相对滑动的路程的乘积,即相对滑S F Q =。利用这结论可以简便地解答高考试题中的“摩擦生热”问题。

分析与解:小车反弹后与物体组成一个系统满足动量守恒,规定小车反弹后的方向作向左为正方向,设共同速度为x v ,则: x v m M mv Mv )(+=- 解得: v m M m M v x +-=

以车为对象,摩擦力始终做负功,设小车对地的位移为S 车 则: -车222121Mv Mv mgS x -=μ 即:

22

2)(2m M g v M S +μ=车 系统损耗机械能为: 相fS Q E ==?

22)(21)(21x v m M v m M mgS +-+=相μ

g m M Mv S )(22

+μ=相;

变式训练:

变式1、如图4-4所示,质量为M,长为L的木板(端

点为A、B,中点为O)在光滑水平面上以v0的水平速度向

右运动,把质量为m、长度可忽略的小木块置于B端(对

地初速度为0),它与木板间的动摩擦因数为μ,问v0在什么范围内才能使小木块停在O、A之间?

解析:木块与木板相互作用过程中合外力为零,动量守恒。设木块、木板相对静止时速度为v,

则(M +m)v = Mv0

能量守恒定律得:

Q

mv

Mv

Mv+

+

=2

2

2

02

1

2

1

2

1

滑动摩擦力做功转化为内能:

mgs Qμ

=

相对位移的范围是:

L

s

L

≤≤

2

解得v0的范围应是:

M

gL m

M)

(+

μ

≤v0≤M

gL m

M)

(

2+

μ

变式2、在光滑水平面上停放着一辆质量为M的小车,

质量为m的物体与劲度系数为k的轻弹簧牢固连接,弹簧的

另一端与小车左端连接。将弹簧压缩x0后用细线把物体与小

车拴住,使物体静止于车上A点,如图4所示。物体m与小

车间的动摩擦因素为μ,O为弹簧原长时物体右端所在位置。

然后将细线烧断,物体和小车都要开始运动。求:

(1)当物体在车上运动到距O点多远处,小车获得的速度最大?

(2)若小车的最大速度是v1,则此过程中弹簧释放的弹性势能是多少?

解析:(1)物块m和小车M组成的系统动量守恒。当物块速度最大时,小车的速度也最大。对物块m,速度最大时,加速度为零。

则有kx=μmg,所以x=μmg/k。

(2)由系统动量守恒,得Mv1-mv2=0,V2=Mv1/m

由能量守恒定律可知,,弹簧释放的弹性势能转化为动能和内能,有

△E p=E kM+E km+Q

而Q=fs相对=μmg(x0-μmg/k),

△Ep=Mv12(M+m)/2m+μmg(x0-μmg/k)

(八)用能量守恒解决传送带的运动问题

案例8、如图7所示,传送带与地面的倾角θ=37°,从A端到B端的长度为16m,传送带以v0=10m/s的速度沿逆时针方向转动。在传送

带上端A处无初速地放置一个质量为0.5kg的物体,它与传送带之间

的动摩擦因数为μ=0.5,求(1)物体从A端运动到B端所需的时间是

多少?(2)这个过程中系统产生的内能。(sin37°=0.6,cos37°=0.8)图7

命题解读:该题目的关键就是要分析好各阶段物体所受摩擦力的大小和方向,若μ>0.75,第二阶段物体将和传送带相对静止一起向下匀速运动;若L <5m ,物体将一直加速运动。因此,在解答此类题目的过程中,对这些可能出现两种结果的特殊过程都要进行判断。

分析与解:物体放在传送带上后,开始阶段,传送带的速度大于物体的速度,传送带施加给物体一沿斜面向下的滑动摩擦力,物体由静止开始加速下滑,受力分析如图(a )所示;当物体加速至与传送带速度相等时,由于μ<tanθ,物体在重力作用下将继续加速,此后物体的速度大于传送带的速度,传送带给物体沿传送带向上的滑动摩擦力,但合力沿传送带向下,物体继续加速下滑,受力分析如图(b)所示。综上可知,滑动摩擦力的方向在获得共同速度的瞬间发生了“突变”。

开始阶段由牛顿第二定律

mgsinθ+μmgcosθ=ma 1

解得a 1=gsinθ+μgcosθ=10m/s 2

物体加速至与传送带速度相等时需要的时间

t 1=v/a 1=1s

发生的位移为s =21a 1t12=5m <16m

可知物体加速到10m/s 时仍未到达B 点

第二阶段的受力分析如图(b)所示,应用牛顿第二定律

有mgsinθ-μmgcosθ=ma 2

所以a 2=2m/s 2

设第二阶段物体滑动到B 端的时间为t 2

则L AB -s =v t2+21

a 2t22

解得t 2=1s t2′=-11s (舍去)

故物体经历的总时间t=t 1+t 2=2s

(2)W 1=fs 1=μmgcos θ·s 1=10J

W 2=-fs 2=-μmgcos θ·s 2= -22J

所以,W=W 1+W 2=10-22=-12J

故知系统发热产生的内能是12J

变式训练:

如图12所示,绷紧的传送带与水平面的夹角θ=30°,皮带在电动机的带动下,始终保持v 0=2m/s 的速率运行。现把一质量m=10kg 的工件(可看为质点)轻轻放在皮带的底端,经时间t=1.9s ,工件被传送到h=1.5m 的高处,取g=10m/s 2。求(1)工件与皮带间的动摩擦

因数。(2)电动机由于传送工件多消耗的电能。

解析:由题意可知皮带长s=h/sin30°=3m.

工件速度达到v 0前,做匀加速运动的位移为

201t v s

达到v 0后做匀速运动的位移s-s 1=v 0(t-t 1)

加速运动的加速度为a=v 0/t 1=2.5m/s 2

图8

工件受的支持力F N = mgcosθ,

对工件据牛顿第二定律得:μmgcosθ-mgsinθ=ma 解出动摩擦因数为23=μ

在时间t 1内,皮带运动位移s 2=v 0t 1=1.6m

工件相对皮带的位移△s=s 2-s 1=0.8m

在时间t 1内,摩擦生热Q=μmgcosθ△s=60J

工件获得的动能E k =mv 02/2=20J

工件增加的势能E p =mgh=150J

电动机多消耗的电能W=Q+E k +E p =230J

[误区分析]

误区一、误认为弹力对物体所做的功等于系统机械能的变化,忽视功能关系的概念。

典型案例1、如图所示,质量m=2kg 的物体,从光

滑斜面的顶端A 点以v 0=5m/s 的初速度滑下,在D 点与

弹簧接触并将弹簧压缩到B 点时的速度为零,已知从A

到B 的竖直高度h=5m ,求弹簧的弹力对物体所做的功。

错误解法:W=mgh+2021mv

应对办法:如果物体只受重力和弹力作用,或只有重力或弹力做功时,满足机械能守恒定律。如果求弹力这个变力做的功,可用机械能守恒定律先求解势能的变化,再根据弹力做功与弹性势能的关系求解弹力做的功。

走出误区:解法一 由于斜面光滑故机械能守恒,但弹簧的弹力是变力,弹力对物体做负功,弹簧的弹性势能增加,且弹力做的功的数值与弹性势能的增加量相等。

取B 所在水平面为零参考面,弹簧原长处D 点为弹性势能的零参考点,则:

系统机械守恒:mgh+2021mv =Ep+0

弹力做功:W 弹力= 0-E P

解得: W 弹簧= -(mgh+2021mv )= -125J

解法二 根据动能定理:

20210mv W mgh -=+ 解得:W 弹簧= -(mgh+2021mv )= -125J

误区二:误认为“杆的弹力方向”与“绳的弹力方向”都与

杆或绳子垂直,都不做功,每个物体的机械能都守恒,忽

视弹力做功的特点。

典型案例2、如图所示,在长为l 的轻杆中点A 和端点B 各固定一质量均为m 的小球,杆可绕无摩擦的轴O 转动,使杆从水平位置无初速释放摆下。求当杆转到竖直位置时,轻杆对A 、B 两球分别做了多少功?

错误解法:由于杆的弹力总垂直于小球的运动方向,所以轻杆对A 、B 两球均不做功。0==B A W W

应对办法:绳的弹力是一定沿绳的方向的,而杆的弹力不一定沿杆的方向。所以当物体的速度与杆垂直时,杆的弹力对一个物体做正功,对另一个物体做负功,这一对作用力与反作用力做功的代数和为零,系统的机械能守恒。

走出误区:设当杆转到竖直位置时,A 球和B 球的速度分别为v A 和v B 。如果把轻杆、地球、两个小球构成的系统作为研究对象,那么由于杆和小球的相互作用力做功总和等于零,故系统机械能守恒。若取B 的最低点为零重力势能参考平面,可得:

2mg l =mgL mv mv B A 21212122++

又因A 球对B 球在各个时刻对应的角速度相同,故v B =2v A 由以上二式得:512,53gl v gl v B A ==

根据动能定理,可解出杆对A 、B 做的功。对于A 有

W A +mg 2l =221A mv -0

所以W A =-2.0mgl

对于B 有W B +mgi =0212-B mv ,所以W B =0.2mgl

误区三、误认为始末状态机械能守恒成立,忽视物体做圆周运动的过程特点。

典型案例3、如图所示,一细绳的上端固定在天花板上靠近墙壁的O 点,下端拴一小球,L 点是小球下垂时的平衡位置,Q 点代表一固定在墙上的细长钉子,位于OL 直线上,N 点在Q 点正上方,且QN =QL ,M 点与Q 点等高。现将小球从竖直位置(保持绳绷直)拉开到与N 等高的P 点,释放后任其向L 摆动,运动过程中空气阻力可忽略不计,小球到达L 后。因细绳被长钉挡住,将开始沿以Q 为中心的圆弧继续运动,在此以后( )

A .小球向右摆到M 点,然后就摆回来

B .小球沿圆弧摆到N 点,然后竖直下落

C .小球将绕Q 点旋转,直线细绳完全缠绕在钉子上为止

D .以上说法都不正确

错误解法:因为全程只有重力做功,机械能一定守恒,从P 到N

运用机械能守恒定律,P 点机械能为零,N 点的机械能必为零,

所以B 正确。 应对办法:对于竖直面内的圆周运动问题,首先应该考虑圆周运

动的临界条件,然后再考虑机械能守恒定律。运用机械能守恒定律常用关系:

图7

P k E E ?-=?。

走出误区:从P 到M ,根据机械能守恒定律得:

221M mv mgR = v M >0 可见小球能够通过M 点继续做圆周运动。A 错误。

设QN =QL =R 若使小球能够做圆周运动到达N 点,至少有

R v m mg N 2= Rg v N = 根据机械能守恒定律,选取PN 水平面势能为零。0212>=N PN mv mgh 要求PN 两点的相对高度R h PN 21= 小球不可能到达N 点。B 错误。

由上面的分析知道,小球只能在MN 之间的某位置斜抛出去,C 错误。

正确答案:D

误区四、误认为摩擦产生的热量就等于物体动能的增加,混淆能量的转化与守恒定律。 典型案例4、如图所示,传送带以v 的初速度匀速运动。将质量为m 的物体无初速度放在传送带上的A 端,物体将被传送带带到B 端,已知物体到达B 端之前已和传送带相对静止,电动机的内阻不可忽略。则下列说法正确的是( )

A .传送带对物体做功为221υm

B .传送带克服摩擦做功2

21υm

C .电动机消耗的电能为2

21υm

D .在传送物体过程产生的热量为2

21υm 错误理解:两物体的相对位移就等于物体的对地位移,根据动能定理系统产生的热量就是物体动能的增加。D 正确。

应对办法:这种解法结果虽然碰对了,但是理解却是完全错误的。首先能量守恒是对系统而言的,其次上述观点不符合能的转化及守恒定律。摩擦力对物体做了正功,物体的动能增加了,而物体的内能却也应该增加了,显然不符合能量转化及守恒定律。系统摩擦发热产生的内能相对s F Q f =,滑动摩擦力对系统做功是阻力做功才损失机械能,增加内能。

分析与解:物体先加速后匀速,在加速过程中滑动摩擦力对物体做功,使物体的动能增加,由动能定理知传送带对物体做功为221υm ,A 正确。物体移动的位移是

t v s 21=

,皮

带移动的位移是122s vt s ==,根据功的定义,传送带克服摩擦做功应为2mv ,B 错误。由能量守恒定律知电机消耗的电能就是2221mv Rt I +,C 错误。由能量守恒定律滑动摩擦产生的内能Q=2

121mv mgs s mg ==?μμ,D 正确。

正确答案:AD

误区五:误认为全过程机械能都守恒,忽视机械能的瞬时损失。

典型案例5、一质量为m 的小球,系于长为R 的轻绳的一端,绳的另一端固定在空间的O 点,假定绳是不可伸长的、柔软且无弹性的。

今把小球从O 点的正上方离O 点的距离为R 98的O 1点以水平的速度gR v 430=抛出,如图9所示。试求 (1)轻绳刚伸直时,绳与竖直方向的夹角为多少?

(2)当小球到达O 点的正下方时,绳对质点的拉力为多大?

错误解法:对全过程,设质点到达O 点的正下方时速度为v ,根据能量守恒定律可得: 2

2021)98(21mv R R mg mv =++ 根据向心力公式得:R v m mg T 2=-,解得:mg T 1441934=

应对办法:认真分析小球运动的过程,可知小球运动经过三个阶段。平抛、绷直时、圆

周运动。绳子绷直以后,小球在竖直面内做圆周运动,故知绳子绷直时瞬时速度马上变为切线方向。有能量的损失。

走出误区:上述解法是错误的。这些同学对物理过程没

有弄清楚,忽视了在绳被拉直瞬时过程中机械能的瞬时损失。

其实质点的运动可分为三个过程: 第一过程:质点做平抛运动。设绳即将伸直时,绳与竖直方向θsin 0R t v =, 的夹角为θ,如图所示,则

θcos 98212R R gt -=,其中gR v 430=

图9

图10

图11

联立解得g R

t 34,2==

πθ。

第二过程:绳绷直过程。绳棚直时,绳刚好水平,如图10所示

由于绳不可伸长,故绳绷直时,v 0损失,质点仅有速度v y , 且gR gt v y 34==。

第三过程:小球在竖直平面内做圆周运动。设质点到达O 点正下方时,速度为v ′,根据机械能守恒守律有:

mgR mv mv y +=22/2121

设此时绳对质点的拉力为T ,则

R v m mg T 2

/

=- 联立解得:mg T 943=。

误区六:误认为连接体的速度都是相同的,混淆“物体运动的

速度”与“绳子的速度”。

典型案例6、如图12,半径为R 的1/4圆弧支架竖直放置,支

架底AB 离地的距离为2R ,圆弧边缘C 处有一小定滑轮,一轻绳两

端系着质量分别为m 1与m 2的物体,挂在定滑轮两边,且m 1>m 2,开始时m 1、m 2均静止,m 1、m 2可视为质点,不计一切摩擦。求:

⑴ m 1释放后经过圆弧最低点A 时的速度;

⑵ 若m 1到最低点时绳突然断开,求m 1落地点离A 点水平距离; ⑶ 为使m 1能到达A 点,m 1与m 2之间必须满足什么关系?

错误解法:两个物体的速度大小相等v 2=v 1

由机械能守恒定律得:

()212121212v m m R g m gR m +=

- 解得:()

2121122m m g m gR m v +-=

应对办法:物体运动到终点的速度图如图13所示,由此可知两物体的速度大小并不相等。而两物体沿着绳子的速度分量相等。即m 1沿着绳子的速度分量等于m 2的速度。 走出误区:⑴设m 1运动到最低点时速度为v 1,此时m 2的速度为v 2,

速度分解如图,得:v 2=v 1sin45°

由m 1与m 2组成系统,机械能守恒,有 222112121212mv v m R g m gR m +=-

2 v 2

由上述两式求得1υ=

⑵ 断绳后m 1

做平抛运动1t == s = v 1t

解得:s =4

⑶ m 1能到达A 点满足条件v 1≥0

又1υ=

解得:12m ≥

误区七、误认为两物体竖直高度变化相同,混淆半径的的变化与高度的变化不等

典型案例7、半径为R 的光滑圆柱体固定在地面上,两质量分别是M 和m 的小球用细线连接,正好处于水平直径的两端,如图所示。从此位置释放小球,当m 运动到最高点时,

对球的压力恰好为零,求此时M 的速度和两小球的质量之比。

错误解法:M 下降的高度与m 升高的高度相等都是R 根据机械能守恒定律得: 2

)(21)(v m M gR m M +=-

m 在最高点时,

R v m mg 2

= 解得:

13=m M 应对办法:作出两小球运动状态的图景,由于绳长不变,所以M 下降4R

π,m 上升R 。 走出误区:对系统运用机械能守恒定律

2

)(2141v m M mgR R Mg +=-π

m 在最高点时,

R v m mg 2

= 联立解得:13-=πm M

误区八、误认为整个铁链子的动能变化是初始位置的重力做功引起的。忽视“重力”是变力。

典型案例8、 如图所示,在光滑水平桌面上,用手拉住长为L质量为M的铁链,使其1/3垂在桌边。松手后,铁链从桌边滑下,求铁链末端经过桌边时运动速度是过少?

错误解法:根据动能定理,系统动能的变化是由于下垂直垂1/3部分做功引起。根据动能定理:

2216231mv L L mg =??? ??- 解得:

gL v 261= 走出误区:动能定理不是物理上的万能公式。本题中铁链子在桌面上运动的过程中的下垂部分重力时刻变化,属于变质量、变重力问题。这个变重力做功我们还不能直接求解。这类问题只能运用机械能守恒定律解决。

松手后,铁链在运动过程中,受重力和桌面的支持力,支持力的方向与运动方向垂直,对铁链不做功,即这一过程中,只是垂在桌外部分的重力做功。因此,从松手到铁链离开桌边,铁链的机械能守恒。以桌面为重力势能参考面 松手时,桌外部分的质量为31m,其重心在桌面下61

L 处 此时铁链的重力势能为:-31mg 61L =-181

mgL 铁链末端刚离桌面时,整条铁链都在空中,其重心在桌面下21

L 处 此时铁链的重力势能为:-mgL 21

设此时铁链的速度为v ,由机械能守恒定律有:

2

2121181mv mgL mgL +-=- 解得:322gL v = 故铁链末端经过桌边时,铁链的运动速度是

322gL v =

[专题专练]

一、选择题(共10小题,在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确。全部选对的得4分,选不全的得2分,有选错的或不答的得0分)

1.一物体在竖直平面内做圆匀速周运动,下列物理量一定不会发生变化的是( )

A .向心力

B .向心加速度

C .动能

D .机械能

2.行驶中的汽车制动后滑行一段距离,最后停下;流星在夜空中坠落并发出明亮的光焰;降落伞在空中匀速下降;条形磁铁在下落过程中穿过闭线圈,线圈中产生电流,上述不同现象中所包含的相同的物理过程是( )

A.物体克服阻力做功

B.物体的动能转化为其他形式的能量

C.物体的势能转化为其他形式的能量

D.物体的机械能转化为其他形式的能量

3.一吊车吊物体匀加速上升,则( )

A .吊车对物体所做的功等于机械能的增量

B .绳的拉力与重力的合力对物体所做的功等于动能的增量

C .物体克服重力做功等于系统势能的增量

D .绳的拉力与重力的合力对物体所做的功等于物体势能的增量

4.一块质量为m 的木块放在地面上,用一根弹簧连着木块,如图所示。用恒

力F 拉弹簧,使木块离开地面,如果力F 的作用点向上移动的距离为h ,则( ) A .木块的重力势能增加了Fh B .木块的机械能增加了Fh

C .拉力所做的功为Fh

D .木块的动能增加Fh 5.一个质量为m 的物体,以a=2g 的加速度竖直向下运动,则在此物体下降h

高度过程中,物体的( )

A .重力势能减少了2mgh

B .动能增加了2mgh

C .机械能保持不变

D .机械能增加了mgh

6.物体做自由落体运动, k E 代表动能,p E 代表势能,h 代表下落的距离,以水平地面为零势能面。下列所示图像中,能正确反映各物理量之间的关系的是 ( )

7.质量为m 的物体静止在粗糙的水平地面上,若物体受水平力F 的作用从静止开始通过位移时的动能为E 1,当物体受水平力2F 作用,从静止开始通过相同位移,它的动能为E 2,则( )

A .E 2=E 1 B. E 2=2E 1 C. E 2>2E 1 D. E 1<E 2<2E 1

8.如图所示,传送带以0υ的初速度匀速运动。将质量

为m 的物体无初速度放在传送带上的A 端,物体将被传送

带带到B 端,已知物体到达B 端之间已和传送带相对静止,

则下列说法正确的是( )

A .传送带对物体做功为221υm

F m

B .传送带克服摩擦做功221υm

C .电动机由于传送物体多消耗的能量为2

21υm

D .在传送物体过程产生的热量为2

21υm

9.利用传感器和计算机可以测量快速变化的力的瞬时值。如图中的右图是用这种方法

获得的弹性绳中拉力随时间的变化图线。实验时,把小球举

高到绳子的悬点O 处,然后放手让小球自由下落。 由此图

线所提供的信息,以下判断正确的是( )

A.t 2时刻小球速度最大

B.t 1~t 2期间小球速度先增大后减小

C.t 3时刻小球动能最小

D.t 1与t 4时刻小球速度一定相同

10.如图所示,斜面置于光滑水平地面上,其光滑斜面上有一物体由静止沿斜面下滑,

在物体下滑过程中,下列说法正确的是 ( )

A. 物体的重力势能减少,动能增加

B. 斜面的机械能不变

C .斜面对物体的作用力垂直于接触面,不对物体做功

D .物体和斜面组成的系统机械能守恒

11.如图所示,粗糙的水平面上固定一个点电荷Q ,在M 点无初速度是放一带有恒定电量的小物块,小物块在Q 的电场中运动到N 点静止。则从M 点运动到N 点的过程中( )

A .小物块所受的电场力逐渐减小

B .小物块具有的电势能逐渐增大

C .M 点的电势一定高于N 点的电势

D .小物块电势能变化量的大小一定等于克服摩擦力做的功

12.如图所示,在竖直平面内有一半径为1m 的半圆形轨道,质

量为2kg 的物体自与圆心O 等高的A 点由静止开始滑下,通过最低

点B 时的速度为3m/s ,物体自A 至B 的过程中所受的平均摩擦力为

( )

A .0N

B .7N

C .14N

D .28N

13.2008年9月25日至28日我国成功实施了“神舟”七号载入航天飞行并实现了航

天员首次出舱。飞船先沿椭圆轨道飞行,后在远地点343千米处点火加速,由椭圆轨道变成高度为343千米的圆轨道,在此圆轨道上飞船运行周期约为90分钟。下列判断正确的是

A .飞船变轨前后的机械能相等

B .飞船在圆轨道上时航天员出舱前后都处于失重状态

C .飞船在此圆轨道上运动的角度速度大于同步卫星运动的角速度

D .飞船变轨前通过椭圆轨道远地点时的加速度大于变轨后沿圆轨道运动的加速度

二、填空题(共2小题,共18分,把答案填在题中的横线上)

14 某一在离地面10m 的高处把一质量为2kg 的小球以10m/s 的速率抛出,小球着地时

的速率为15m/s 。g 取10m/s 2, 人抛球时对球做功是 J ,球在运动中克服空气阻力做

功是 J

15. 质量m=1.5kg 的物块在水平恒力F 作用下,从水平面上A 点由静止开始运动,运动一段距离撤去该力,物块继续滑行t=2.0s 停在B 点,已知A 、B 两点间的距离s=5.0m ,物块与水平面间的动摩擦因数μ=0.20,恒力F 等于 (物块视为质点g 取10m/s 2).

三、实验探究题

16.探究力对原来静止的物体做的功与物体获得的速度的关系,试验装置如图所示,试验主要过程如下:

(1)设法让橡皮筋对小车做的功分别为W 、2W 、3W…

(2)分析打点计时器打出的纸带,求出小车的速度1v 、2v 、3v 、…;

(3)做出W-v 草图;

(4)分析W-v 图像。如果W-v 图像是一

条直线,表明W ∝v ;如果不是直线,可

考虑是否存在W ∝2v 、W ∝3

v 、W ∝

等关系。

以下关于该实验的说法中有一项不正确,

它是 。

A 本实验设法让橡皮筋对小车做的功分别为W 、2W 、3W…。所采用的方法是选用同样的橡皮筋,并在每次实验中使橡皮筋拉伸的长度保持一致。当用1条橡皮筋进行实验室,橡皮筋对小车做的功为W ,用2条、3条、…。橡皮筋并在一起进行第2次、第3次、…。实验时,橡皮筋对小车做的功分别是2W 、3W…。

B 小车运动中会受到阻力,补偿的方法,可以使木板适当倾斜。

C 某同学在一次实验中,得到一条记录纸带。纸带上打出的点,两端密、中间疏。出现这种情况的原因,可能是没有使木板倾斜或倾角太小。

D 根据记录纸带上打出的点,求小车获得的速度的方法,是以纸带上第一点到最后一点的距离来进行计算。

四、论述计算题(共6小题,共92分,解答下列各题时,应写出必要的文字说明、表达式和重要步骤。只写最后答案的不得分。有数值计算的题,答案中必须明确写出数值和单位。)

17. 某市规定:卡车在市区内行驶速度不得超过40km/h ,一次一辆卡车在市区路面紧急刹车后,量得刹车痕迹s=18m ,假设车轮与路面的滑动摩擦系数为0.4。问这辆车是否违章?试通过计算预以证明。

18.如图所示,在光滑的平台上,有一质量为m 的物体,物体与轻绳的一端相连,轻绳跨过定滑轮(定滑轮的质量和摩擦不计)另一端被滑轮正下方站在地面上的人拉住,人与绳的接触点和定滑轮的高度差为h ,若此人以速度v 0 向右匀速前进s ,求在此过程中人的拉

力对物体所做的功。

19.一半径R=1米的1/4圆弧导轨与水平导轨相连,从圆弧导轨顶端A 静止释放一个质量m=20克的木块,测得其滑至底端B 的速度v B =3米/秒,以后又沿水平导轨滑行BC=3米而停止在C 点,如图8所示,试求(1)圆弧导轨摩擦力的功;(2)BC 段导轨摩擦力的

功以及滑动摩擦系数(取g=10米/秒2)

20.如图9所示,在水平桌面的边角处有一轻质光滑的定滑轮K ,一条不可伸长的轻绳绕过K 分别与A 、B 连,A 、B 的质量分别为A m 、B m ,开始时系统处于静止状态.现用一水平恒力F 拉物体A ,使物体B 上升.已知当B 上升距离h 时,B 的速度为v .求此过程中物体A 克服摩擦力所做的功.重力加速度为g .

21.儿童滑梯可以看成是由斜槽AB 和水平槽CD 组成,中间用很短的光滑圆弧槽BC 连接,如图10所示.质量为m 的儿童从斜槽的顶点A 由静止开始沿斜槽AB 滑下,再进入水平槽CD ,最后停在水平槽上的E 点,由A 到E 的水平距离设为L .假设儿童可以看作质点,已知儿童的质量为m ,他与斜槽和水平槽间的动摩擦因数都为μ,A 点与水平槽CD 的高度差为h .

(1)求儿童从A 点滑到E 点的过程中,重力做的功和克服摩擦力做的功.

(2)试分析说明,儿童沿滑梯滑下通过的水平距离L 与斜槽AB 跟水平面的夹角无关.

(3)要使儿童沿滑梯滑下过程中的最大速度不超过v ,斜槽与水平面的夹角不能超过多少?

22.某校物理兴趣小组决定举行遥控赛车比赛。比赛路径如图所示,赛车从起点A 出发,沿水平直线轨道运动L 后,由B 点进入半径为R 的光滑竖直圆轨道,离开竖直圆轨道后继续在光滑平直轨道上运动到C 点,并能越过壕沟。已知赛车质量m=0.1kg ,通电后以额定功率P=1.5w 工作,进入竖直轨道前受到阻力恒为0.3N ,随后在运动中受到的阻力均可不记。图中L=10.00m ,R=0.32m ,h=1.25m ,S=1.50m 。问:要使赛车完成比赛,电动机至少工作

多长时间?(取g=10m/s 2)

23.如图所示,质量为m 的小球,由长为l 的细线系住,细线的另一端固定在A 点,AB 是过A 的竖直线,E 为AB 上的一点,且AE=0.5l ,过E 作水平线EF ,在EF 上钉铁钉D ,若线能承受的最大拉力是9mg ,现将小球拉直水平,然后由静止释放,若小球能绕钉子在竖直面内做圆周运动,求钉子位置在水平线上的取值范围。不计线与钉子碰撞时的能量损失。

m

[参考答案]

1.D

2.AD 3.AB 4.BC 5.BD 6.B 7. C 8.AD 9.B 10.AD

11.AD 12.B 13.BC

13.解析:飞船点火变轨,前后的机械能不守恒,所以A 不正确。飞船在圆轨道上时万有引力来提供向心力,航天员出舱前后都处于失重状态,B 正确。飞船在此圆轨道上运动

的周期90分钟小于同步卫星运动的周期24小时,根据可知,飞船在此圆轨道上运动的角度速度大于同步卫星运动的角速度,C 正确。飞船变轨前通过椭圆轨道远地点时只有万有引力来提供加速度,变轨后沿圆轨道运动也是只有万有引力来提供加速度,所以相等,D 不正确。

考点:机械能守恒定律,完全失重,万有引力定律

提示:若物体除了重力、弹性力做功以外,还有其他力(非重力、弹性力)不做功,且其他力做功之和不为零,则机械能不守恒。

根据万有引力等于卫星做圆周运动的向心力可求卫星的速度、周期、动能、动量等状态

量。由得,由得

,由得,可求向心加速度。

14.100J 75J 15. 15N

16.答案:I .23.0mA ,0.57V ,320Ω II .(1)3,0.6,1,0~10(2)电压表的分流 III 答案:D 。

17.解:设卡车运动的速度为v 0,刹车后至停止运动,由动能定理:-μmgs=0-2021mv 。

得v=18104.022???=gs μ=12m/s=43.2km/h 。因为v 0>v 规,所以该卡车违章了。

18.解:当人向右匀速前进的过程中,绳子与竖直

方向的夹角由0°逐渐增大,人的拉力就发生了变化,

故无法用W =Fscos θ计算拉力所做的功,而在这个过

化,故可以用动能定理来计算拉力做的功。

当人在滑轮的正下方时,物体的初速度为零, 当人水平向右匀速前进s 时物体的速度为v 1 ,由图

1可知: v 1= v 0sin a

2T πω=

22Mm v G m r r =v =222()Mm G m r r T π=2T π=22Mm G m r r ω=ω=2n Mm G ma r =0

验证机械能守恒定律实验(吐血整理经典题)

实验:验证机械能守恒定律 1.下列关于“验证机械能守恒定律”实验的实验误差的说法中,正确的是 ( ) A .重物质量的称量不准会造成较大误差 B .重物质量选用得大些,有利于减小误差 C .重物质量选用得较小些,有利于减小误差 D .纸带下落和打点不同步不会影响实验 2.用如图所示装置验证机械能守恒定律,由于电火花计时器两限位孔不在同一竖直线上,使纸带通过时受到较大的阻力,这样实验造成的结果是( ) A .重力势能的减少量明显大于动能的增加量 B .重力势能的减少量明显小于动能的增加量 C .重力势能的减少量等于动能的增加量 D .以上几种情况都有可能 3.有4条用打点计时器(所用交流电频率为50 Hz)打出的纸带A 、B 、C 、D ,其中一条是做“验证机械能守恒定律”实验时打出的。为找出该纸带,某同学在每条纸带上取了点迹清晰的、连续的4个点,用刻度尺测出相邻两个点间距离依次为s 1、s 2、s 3。请你根据下列s 1、s 2、s 3的测量结果确定该纸带为(已知当地的重力加速度为9.791 m/s 2) ( ) A .61.0 mm 65.8 mm 70.7 mm B .41.2 mm 45.1 mm 53. 0mm C .49.6 mm 53.5 mm 57.3 mm D .60.5 mm 61.0 mm 60.6 mm

4.如图是用自由落体法验证机械能守恒定律时得到的一条纸带.有关尺寸在图中已注明.我们选中n 点来验证机械能守恒定律.下面举一些计算n 点速度的方法,其中正确的是( ) A .n 点是第n 个点,则v n =gnT B .n 点是第n 个点,则v n =g (n -1)T C .v n =s n +s n +1 2T D .v n =h n +1-h n -1 2T 5.某研究性学习小组在做“验证机械能守恒定律”的实验中,已知打点计时器所用电源的频率为50 Hz ,查得当地的重力加速度g =9.80 m/s 2。测得所用重物的质量为1.00 kg 。 (1)下面叙述中正确的是________。 A .应该用天平称出重物的质量 B .可选用点迹清晰,第一、二两点间的距离接近2 mm 的纸带来处理数据 C .操作时应先松开纸带再通电 D .打点计时器应接在电压为4~6 V 的交流电源上 (2)实验中甲、乙、丙三学生分别用同一装置得到三条点迹清晰的纸带,量出各纸带上第一、二两点间的距离分别为0.18 cm 、0.19 cm 、0.25 cm ,则可肯定________同学在操作上有错误,错误是________。若按实验要求正确地选出纸带进行测量,量得连续三点A 、B 、C 到第一个点O 间的距离分别为15.55 cm 、19.20 cm 和23.23 cm 。则当打点计时器打点B 时重物的瞬时速度v =________ m/s ;重物由O 到B 过程中,重力势能减少了________J ,动能增加了________J(保留3位有效数字), 6.在“验证机械能守恒定律”的实验中,图(甲)是打点计时器打出的一条纸带,选取

大学物理物理知识点总结

y 第一章质点运动学主要内容 一. 描述运动的物理量 1. 位矢、位移和路程 由坐标原点到质点所在位置的矢量r r 称为位矢 位矢r xi yj =+r v v ,大小 r r ==v 运动方程 ()r r t =r r 运动方程的分量形式() ()x x t y y t =???=?? 位移是描述质点的位置变化的物理量 △t 时间内由起点指向终点的矢量B A r r r xi yj =-=?+?r r r r r △,r =r △路程是△t 时间内质点运动轨迹长度s ?是标量。 明确r ?r 、r ?、s ?的含义(?≠?≠?r r r s ) 2. 速度(描述物体运动快慢和方向的物理量) 平均速度 x y r x y i j i j t t t u u u D D = =+=+D D r r r r r V V r 瞬时速度(速度) t 0r dr v lim t dt ?→?== ?r r r (速度方向是曲线切线方向) j v i v j dt dy i dt dx dt r d v y x ??????+=+==,2222y x v v dt dy dt dx dt r d v +=?? ? ??+??? ??==?? ds dr dt dt =r 速度的大小称速率。 3. 加速度(是描述速度变化快慢的物理量) 平均加速度v a t ?=?r r 瞬时加速度(加速度) 220lim t d d r a t dt dt υυ→?===?r r r r △ a r 方向指向曲线凹向j dt y d i dt x d j dt dv i dt dv dt v d a y x ????ρ ?2222+=+== 2 2222222 2 2???? ??+???? ??=? ?? ? ??+??? ??=+=dt y d dt x d dt dv dt dv a a a y x y x ? 二.抛体运动 运动方程矢量式为 2 012 r v t gt =+ r r r

大学物理习题第4单元 能量守恒定律

第四章 能量守恒定律 序号 学号 姓名 专业、班级 一 选择题 [ D ]1. 如图所示,一劲度系数为k 的轻弹簧水平放置,左端固定,右端与桌面上一质量 为m 的木块连接,用一水平力F 向右拉木块而使其处于静止状态,若木块与桌面间的静摩擦系 数为μ,弹簧的弹性势能为 p E ,则下列关系式中正确的是 (A) p E = k mg F 2)(2 μ- (B) p E =k mg F 2)(2 μ+ (C) K F E p 22 = (D) k mg F 2)(2μ-≤p E ≤ k mg F 2)(2 μ+ [ D ]2.一个质点在几个力同时作用下的位移为:)SI (654k j i r +-=? 其中一个力为恒力)SI (953k j i F +--=,则此力在该位移过程中所作的功为 (A )-67 J (B )91 J (C )17 J (D )67 J [ C ]3.一个作直线运动的物体,其速度 v 与时间 t 的关系曲线如图所示。设时刻1t 至2t 间 外力做功为1W ;时刻2t 至3t 间外力作的功为2W ;时刻3t 至4t 间外力做功为3W ,则 (A )0,0,0321<<>W W W (B )0,0,0321><>W W W (C )0,0,0321><=W W W (D )0,0,0321<<=W W W [ C ]4.对功的概念有以下几种说法: (1) 保守力作正功时,系统内相应的势能增加。 (2) 质点运动经一闭合路径,保守力对质点作的功为零。 (3) 作用力和反作用力大小相等、方向相反,所以两者所作的功的代数和必然为零。 在上述说法中: (A )(1)、(2)是正确的 (B )(2)、(3)是正确的 (C )只有(2)是正确的 (D )只有(3)是正确的。 [ C ]5.对于一个物体系统来说,在下列条件中,那种情况下系统的机械能守恒? (A )合外力为0 (B )合外力不作功 (C )外力和非保守内力都不作功 (D )外力和保守力都不作功。 二 填空题 1.质量为m 的物体,置于电梯内,电梯以 2 1 g 的加速度匀加速下降h ,在此过程中,电梯对物体的作用力所做的功为 mgh 2 1 - 。 2.已知地球质量为M ,半径为R ,一质量为m 的火箭从地面上升到距地面高度为2R 处,在此过程中,地球引力对火箭作的功为)1 31(R R GMm -。 3.二质点的质量各为1m 、2m ,当它们之间的距离由a 缩短到b 时,万有引力所做的功为 )1 1(21b a m Gm --。 4.保守力的特点是 ________略__________________________________;保守力的功与势能的关系式为______________________________略_____________________. 5.一弹簧原长m 1.00=l ,倔强系数N/m 50=k ,其一端固定在半径 为R =0.1m 的半圆环的端点A ,另一端与一套在半圆环上的小环相连,在把小环由半圆环中点B 移到另一端C 的过程中,弹簧的拉力对小环所作的功为 -0.207 J 。 6.有一倔强系数为k 的轻弹簧,竖直放置,下端悬一质量为m 的小球。先使弹簧为原长,而小球恰好与地接触。再将弹簧上端缓慢地提起,直到小球刚能脱离地面为止。在此过程中外力所作的功 A B C R v O 1 t 2t 3 t 4 t

重力势能和机械能守恒定律的典型例题

“重力势能和机械能守恒定律”的典型例题 【例1】如图所示,桌面距地面0.8m,一物 体质量为2kg,放在距桌面0.4m的支架上. (1)以地面为零势能位置,计算物体具有的 势能,并计算物体由支架下落到桌面过程中, 势能减少多少? (2)以桌面为零势能位置时,计算物体具有的势能,并计算物体由支架下落到桌面过程中势能减少多少? 【分析】根据物体相对零势能位置的高度,直接应用公式计算即得. 【解】(1)以地面为零势能位置,物体的高 度h1=1.2m,因而物体的重力势能: Ep1=mgh1=2×9.8×1.2J=23.52J 物体落至桌面时重力势能: E p2=mgh2=2×9.8×0.8J=15.68J 物体重力势能的减少量: △E p=E p1-Ep2=23.52J-15.68J=7.84J

而物体的重力势能: 物体落至桌面时,重力势能的减少量 【说明】通过上面的计算,可以看出,物体的重力势能的大小是相对的,其数值 与零势能位置的选择有.而重力势能的变化是绝对的,它与零势能位置的选择无关,其变化值是与重力对物体做功的多少有关.当物体从支架落到桌面时重力做功: 【例2】质量为2kg的物体自高为100m处以5m/s的速度竖直落下,不计空气 阻力,下落2s,物体动能增加多少?重力势能减少多少?以地面为重力势能零位置,此时物体的机械能为多少?(g取10m/s2) 【分析】物体下落时,只受重力作用,其加速度a=g,由运动学公式算出2s末的速度和2s内下落高度,即可由定义式算出动能和势能. 【解】物体下落至2s末时的速度为: 2s内物体增加的动能: 2s内下落的高度为:

高中物理机械能守恒定律经典例题及技巧

一、单个物体的机械能守恒 判断一个物体的机械能是否守恒有两种方法:(1)物体在运动过程中只有重力做功,物体的机械能守恒。 物体在运动过程中不受媒质阻力和摩擦阻力,物体的机械能守恒。 所涉及到的题型有四类:(1)阻力不计的抛体类。(2)固定的光滑斜面类。(3)固定的光滑圆弧类。(4)悬点固定的摆动类。 (1)阻力不计的抛体类 包括竖直上抛;竖直下抛;斜上抛;斜下抛;平抛,只要物体在运动过程中所受的空气阻力不计。那么物体在运动过程中就只受重力作用,也只有重力做功,通过重力做功,实现重力势能与机械能之间的等量转换,因此物体的机械能守恒。 例:在高为h 的空中以初速度v 0抛也一物体,不计空气阻力,求物体落地 时的速度大小? 分析:物体在运动过程中只受重力,也只有重力做功,因此物体的机械能守恒,选水平地面为零势面,则物体抛出时和着地时的机械能相等 2202 121t mv mv mgh =+ 得:gh v v t 220+= (2)固定的光滑斜面类 在固定光滑斜面上运动的物体,同时受到重力和支持力的作用,由于支持力和物体运动的方向始终垂直,对运动物体不做功,因此,只有重力做功,物体的机械能守恒。 例,以初速度v 0 冲上倾角为光滑斜面,求物体在斜面上运动的距离是多少? 分析:物体在运动过程中受到重力和支持力的作用,但只有重力做功,因此物体的机械能守恒,选水平地面为零势面,则物体开始上滑时和到达最高时的机械能相等 θsin 2120?==mgs mgh mv 得:θ sin 220g v s = (3)固定的光滑圆弧类 在固定的光滑圆弧上运动的物体,只受到重力和支持力的作用,由于支持力始终沿圆弧的法线方向而和物体运动的速度方向垂直,对运动物体不做功,故只有重力做功,物体的机械能守恒。 例:固定的光滑圆弧竖直放置,半径为R ,一体积不计的金属球在圆弧的最低点至少具有多大的速度才能作一个完整的圆周运动? 分析:物体在运动过程中受到重力和圆弧的压力,但只有重力做功,因此物体的机械能守恒,选物体运动的最低点为重力势能的零势面,则物体在最低和最高点时的机械能相等 2202 1221t mv R mg mv += 要想使物体做一个完整的圆周运动,物体到达最高点时必须具有的最小速度为: Rg v t = 所以 gR v 50= (4)悬点固定的摆动类 和固定的光滑圆弧类一样,小球在绕固定的悬点摆动时,受到重力和拉力的作用。由于悬线的拉力自始至终都沿法线方向,和物体运动的速度方向垂直而对运动物体不做功。因此只有重力做功,物体的机械能守恒。 例:如图,小球的质量为m ,悬线的长为L ,把小球拉开使悬线和竖直方向的夹角为,然后从静止释放,

能量守恒定律 例题解析

能量守恒定律例题解析 例 1 在摩擦生热的现象中________能转化为________能;在气体膨胀做功的现象中________能转化为________能;在热传递的过程中,高温物体的内能________,低温物体的内能________,内能从________转移到________,而能的总量________. 策略分析此题的关键在于如何理解“能量守恒定律”中的“转化”、“转移”和“守恒”这几个关键的词,当能量发生转化时一定表现为:一种形式的能减少而变化成另一种形式的能,则另一种形式的能增大.而“转移”则是指一种形式的能在物体与物体间,或同一物体的不同部分间发生了数量的变化,即增加与减少,而没有形式的变化.但能的总量却保持不变.所以无论在摩擦生热现象中,气体膨胀做功的过程中及热传递的过程中,都服从“能量守恒”定律. 解答机械能;内;内;机械;减少;增加;高温物体;低温物体;保持不变. 总结1.易错分析:对能量守恒定律理解不深,不善于考察题中各种情况的能量转化或转移. 2.同类变式:利用做功的方法改变物体内能的实质是________和________间的相互________过程.利用热传递改变物体内能的实质是________在物体之间相互________的过程 答案:机械能,内能,转化,内能,转移3.思维延伸:下列各种现象中,只有能的转移而不发生能的转化的过程是 [ ] A.冬天用手摸户外的东西感到冷 B.植物吸收太阳光进行光合作用 C.水蒸气顶起壶盖 D.电灯发光发热 答案:A 例2 下列现象中,能量转化正确的是 [ ] A.子弹打入墙壁的过程中,机械能转化为内能 B.电流通过电炉时,电能转化为内能 C.暖水瓶中的水蒸气把瓶塞冲起,内能转化为机械能 D.给蓄电池充电的过程中,化学能转化为电能 策略判断这四个现象中的能的转化的关键,是理解好“转化”的含意.即“转移、变化”的意思,这里既有数量的变化.同时还有形式的变化,在给蓄电池充电时消耗的是电能,得到的是化学能,即电能减少,化学能增大,所以应是电能转化成化学能,而不是化学能转成电能.所以D选项错误,其余三项正确. 解答A、B、C 总结1.易错分析:不能把握实例中物体最初具有什么能.后来又转化成了什么形式的能.漏选A是对转化成的内能这个结果不清楚.漏选B是由于疏忽而认为是内能转化为电能.而选D是误认为充电过程是

机械能守恒定律典型例题精析(附答案)

机械能守恒定律 一、选择题 1.某人用同样的水平力沿光滑水平面和粗糙水平面推动一辆相同的小车,都使它移动相同的距离。两种情况下推力做功分别为W1和W2,小车最终获得的能量分别为E1和E2,则下列关系中正确的是()。 A、W1=W2,E1=E2 B、W1≠W2,E1≠E2 C、W1=W2,E1≠E2 D、W1≠W2,E1=E2 2.物体只在重力和一个不为零的向上的拉力作用下,分别做了匀速上升、加速上升和减速上升三种运动.在这三种情况下物体机械能的变化情况是() A.匀速上升机械能不变,加速上升机械能增加,减速上升机械能减小 B.匀速上升和加速上升机械能增加,减速上升机械能减小 C.由于该拉力与重力大小的关系不明确,所以不能确定物体机械能的变化情况 D.三种情况中,物体的机械能均增加 3.从地面竖直上抛一个质量为m的小球,小球上升的最大高度为H.设上升过程中空气阻力F阻恒定.则对于小球的整个上升过程,下列说法中错误的是() A.小球动能减少了mgH B.小球机械能减少了F阻H C.小球重力势能增加了mgH D.小球的加速度大于重力加速度g 4.如图所示,一轻弹簧的左端固定,右端与一小球相连,小球处于光滑水平面上.现对小球施加一个方向水平向右的恒力F,使小球从静止开始运动,则小球在向右运动的整个过程中() A.小球和弹簧组成的系统机械能守恒 B.小球和弹簧组成的系统机械能逐渐增加 C.小球的动能逐渐增大 D.小球的动能先增大后减小 二、计算题 1.如图所示,ABCD是一条长轨道,其AB段是倾角为的斜面,CD段是水平的,BC是与AB和CD相切的一小段弧,其长度可以略去不计。一质量为m的物体在A点从静止释放,沿轨道滑下,最后停在D点,现用一沿轨道方向的力推物体,使它缓慢地由D点回到A点,设物体与轨道的动摩擦因数为,A点到CD间的竖直高度为h,CD(或BD)间的距离为s,求推力对物体做的功W为多少 2.一根长为L的细绳,一端拴在水平轴O上,另一端有一个质量为m的小球.现使细绳位于 水平位置并且绷紧,如下图所示.给小球一个瞬间的作用,使它得到一定的向下的初速度. (1)这个初速度至少多大,才能使小球绕O点在竖直面内做圆周运动 (2)如果在轴O的正上方A点钉一个钉子,已知AO=2/3L,小球以上一问中的最小速度开始运动,当它运动到O点的正上方,细绳刚接触到钉子时,绳子的拉力多大 3.如图所示,某滑板爱好者在离地h=1.8m高的平台上滑行,水平离开A点后落在水平地

能量守恒定律的典型例题

能量守恒定律的典型例题 [例1]试分析子弹从枪膛中飞出过程中能的转化. [分析]发射子弹的过程是:火药爆炸产生高温高压气体,气体推动子弹从枪口飞出. [答]火药的化学能→通过燃烧转化为燃气的内能→子弹的动能. [例2]核电站利用原子能发电,试说明从燃料铀在核反应堆中到发电机发出电的过程中的能的转化. [分析]所谓原子能发电,是利用原子反应堆产生大量的热,通过热交换器加热水,形成高温高压的蒸汽,然后推动蒸汽轮机,带动发电机发电. [答]能的转化过程是:核能→水的内能→汽轮机的机械能→发电机的电能. [说明] 在能的转化过程中,任何热机都不可避免要被废气带走一些热量,所以结合量守恒定律可得到结论:

不消耗能量,对外做功的机器(称为第一类永动机)是不可能的; 把工作物质(蒸汽或燃气)的能量全部转化为机械能(称第二类永动机)也是不可能的. 【例3】将一个金属球加热到某一温度,问在下列两种情况下,哪一种需要的热量多些?(1)将金属球用一根金属丝挂着(2)将金属球放在水平支承面上(假设金属丝和支承物都不吸收热量)A.情况(1)中球吸收的热量多些 B.情况(2)中球吸收的热量多些 C.两情况中球吸收的热量一样多 D.无法确定 [误解]选(C)。 [正确解答]选(B)。 [错因分析与解题指导]小球由于受热体积要膨胀。由于小球体积的膨胀,球的重心位置也会变化。如图所示,在情况(1)中,球受热后重心降低,重力对球做功,小球重力势能减小。而在情况(2)中,

球受热后重心升高。球克服重力做功,重力势能增大。可见,情况( 1)中球所需的热量较少。 造成[误解]的根本原因,是忽略了球的内能与机械能的转变过程。这是因为内能的变化是明确告诉的,而重力势能的变化则是隐蔽的。在解题时必须注意某些隐蔽条件及其变化。 [例4]用质量M=0.5kg的铁锤,去打击质量m=2kg的铁块。铁锤以v=12m/s的速度与铁块接触,打击以后铁锤的速度立即变为零。设每次打击产生的热量中有η=50%被铁块吸收,共打击n=50次,则铁块温度升高多少?已知铁的比热C=460J/kg℃。 [分析] 铁锤打击过程中能的转换及分配关系为 据此,即可列式算出△t. [解答]铁锤打击n=50次共产生热量:

高一物理机械能守恒解析及典型例题

高一物理机械能守恒解析及典型例题 (1)只有重力做功时机械能守恒. 设一个质量为m 的物体自然下落,经过高度为1h 的A 点(初位置)时速度为1v ,下落到高度为2h 的B 点(末位置)时速度为2v (图8-42),由动能定理得:21222 121mv mv W G -=. 又由重力做功与重力势能的关系得:21mgh mgh W G -= 则2121222121mgh mgh mv mv -=-或2221212 121mgh mv mgh mv +=+ 这表明,在自由落体中,物体的动能与重力势能之和保持不变,则机械能守恒. 事实上,上面推导过程中涉及重力做功与动能变化、势能变化的关系,与物体的运动轨迹形状无关,因而物体只受重力作曲线运动(如平抛运动、斜抛运动等)时,机械能也一定守恒. (2)只有弹力作用时机械能守恒. 如图8-43所示,一个质量为m 的小球被处于压缩状态的弹簧弹开,速度由1v 增大到2v ,由动能定理得:

1221222 121k k N E E mv mv W -=-= 由弹力做功与弹性势能的关系得:21p p N E E W -= 则2112p p k k E E E E -=-即2211p k p k E E E E +=+,物体的动能与弹性势能之和保持不变,机械能守恒. (3)既有重力做功,又有弹力做功,并且只有这两个力做功时,机械能也守恒. 如图8—44所示,一根轻弹簧一端固定在天花板上,另一端固定一质量为m 的小球,小球在竖直平面内从高处荡下,在速度由1v 增大到2v 的过程中,由动能定理得 21222 121mv mv W W N G -=+ 又由重力做功与重力势能的关系得21p p G E E W -= 由弹力做功与弹性势能的关系得''21p p N E E W -= 则212221212 121mv mv 'E 'E E E p p p p -=-+- 即222221112 1'21'mv E E mv E E p p p p ++=++,物体的动能、重力势能和弹性势能之和保持不变,机械能守恒.

最新能量守恒定律练习题40道

一、选择题 1、关于能量的转化与守恒,下列说法正确的 是() A.任何制造永动机的设想,无论它看上去多么巧妙,都是一种徒劳 B.空调机既能致热,又能致冷,说明热传递不存在方向性 C.由于自然界的能量是守恒的,所以说能源危机不过是杞人忧天 D.一个单摆在来回摆动许多次后总会停下来,说明这个过程的能量不守恒 2、下列过程中,哪个是电能转化为机械能 A.太阳能电池充电B.电灯照明C.电风扇工 作D.风力发电 3、温度恒定的水池中,有一气泡缓缓上升,在此过程中,气泡的体积会逐渐增大,若不考虑气泡内气体分子间的相互作用力,则下列说法中不正确的是 A.气泡内的气体对外做功 B.气泡内的气体内能不变

C.气泡内的气体与外界没有热交换 D.气泡内气体分子的平均动能保持不变 4、一个系统内能减少,下列方式中哪个是不可能的 A.系统不对外界做功,只有热传递 B.系统对外界做正功,不发生热传递 C.外界对系统做正功,系统向外界放热 D.外界对系统作正功,并且系统吸热 5、下列说法正确的是 A.气体压强越大,气体分子的平均动能就越大 B.在绝热过程中,外界对气体做功,气体的内能减少 C.温度升高,物体内每个分子的热运动速率都增大 D.自然界中涉及热现象的宏观过程都具有方向性 6、一定量的气体吸收热量,体积膨胀并对外做功,则此过程的末态与初态相比, A.气体内能一定增加B.气体内能一定减小

C.气体内能一定不变D.气体内能是增是减不能确定 7、有关气体压强,下列说法正确的是 A.气体分子的平均速率增大,则气体的压强一定增大 B.气体的分子密度增大,则气体的压强一定增大 C.气体分子的平均动能增大,则气体的压强一定增大 D.气体分子的平均动能增大,气体的压强有可能减小 8、如图所示,两个相通的容器P、Q间装有阀门K,P中充满气 体,Q中为真空整个系统与外界没有热交换.打开阀门K后,P中的气体进入Q中,最终达到平衡,则 A.气体体积膨胀,内能增加 B.气体分子势能减少,内能增加 C.气体分子势能增加,压强可能不变 D.Q中气体不可能自发地全部退回到P中 9、关于物体内能的变化,以下说法中正确的 是() A.物体机械能减少时,其内能也一定减少

(完整版)高中物理机械能守恒经典习题30道带答案

一.选择题(共30小题) 1.(2015?金山区一模)一物体静止在粗糙水平地面上,现用一大小为F1的水平拉力拉动物体,经过一段时间后其速度为v,若将水平拉力的大小改为F2,物体从静止开始经过同样的时间后速度变为2v,对于上述两个过程,用W F1、W F2分别表示拉力F1、F2所做的功,W f1、W f2分别表示前两次克服摩擦力所做的功,则()A.W F2>4W F1,W f2>2W f1B.W F2>4W F1,W f2=2W f1 C.W F2<4W F1,W f2=2W f1D.W F2<4W F1,W f2<2W f1 2.(2008?山东)质量为1500kg的汽车在平直的公路上运动,v﹣t图象如图所示,由此可求() A.前25s内汽车的平均速度 B.前10s内汽车的加速度 C.前10s内汽车所受的阻力 D.15﹣25s内合外力对汽车所做的功 3.(2007?上海)物体沿直线运动的v﹣t图如图所示,已知在第1秒内合外力对物体做的功为W,则下列结论正确的是() A.从第1秒末到第3秒末合外力做功为W B.从第3秒末到第5秒末合外力做功为﹣2W C.从第5秒末到第7秒末合外力做功为W D.从第3秒末到第4秒末合外力做功为﹣0.75W 4.(2015?武清区校级学业考试)如图所示,物体在力F的作用下沿水平面移动了一段位移L,甲、乙、丙、丁四种情况下,力F和位移L的大小以及θ角均相同,则力F做功相同的是() A.甲图与乙图B.乙图与丙图C.丙图与丁图D.乙图与丁图5.(2015?赫山区校级一模)如图所示,A、B两物体质量分别是m A和m B,用劲度系数为k的弹簧相连,A、B 处于静止状态.现对A施竖直向上的力F提起A,使B对地面恰无压力.当撤去F,A由静止向下运动至最大速度时,重力做功为()

高中物理《能量守恒定律》教案设计

能量守恒定律 本节课的设计,教材继续沿用了前几节的课程模式,先由生活中的实例引出研究问题,然后用实验加以证实,让学生接受这个物理事实.接着再从理论上推导、证明,从而得出结论. 这节课教材是从生活中骑自行车上坡的实例入手,引出动能和重力势能在此过程中是在相互转化的.接着通过实验来证实这个转化过程中的守恒结论.最后提出了自然界中最普遍、最基本的规律之一能量转化和守恒定律. 机械能守恒定律是能量守恒定律的一个特例,要使学生对定律的得出、含义、适用条件有一个明确的认识,这是能够用该定律解决力学问题的基础. 各种不同形式的能相互转化和守恒的规律,贯穿在整个物理学中,是物理学的基本规律之一.能量守恒定律是学习各种不同形式的能量转化规律的起点,也是运动学和动力学知识的进一步综合和展开的重要基础.所以这一节知识是本章重要的一节. 机械能守恒定律是本章教学的重点内容,本节教学的重点是使学生掌握物体系统机械能守恒的条件;能够正确分析物体系统所具有的机械能. 分析物体系统所具有的机械能,尤其是分析、判断物体所具有的重力势能,是本节学习的难点之一.在教学中应让学生认识到,物体重力势能大小与所选取的参考平面(零势面)有关;而重力势能的变化量是与所选取的参考平面无关的.在讨论物体系统的机械能时,应先确定参考平面. 教学重点1.理解机械能守恒定律的内容; 2.在具体的问题中能判定机械能是否守恒,并能列出定律的数学表达式; 3.理解能量转化和守恒定律. 教学难点1.从能的转化和功能关系出发理解机械能守恒的条件; 2.能正确判断研究对象在所经历的过程中机械能是否守恒. 教具准备自制投影片、CAI课件、重物、电磁打点计时器以及纸带、复写纸片、低压电源及两根导线、铁架台和铁夹、刻度尺、小夹子. 课时安排1课时 三维目标 一、知识与技能 1.知道什么是机械能,知道物体的动能和势能可以相互转化; 2.理解机械能守恒定律的内容; 3.在具体问题中,能判定机械能是否守恒,并能列出机械能守恒的方程式; 4.理解能量守恒定律,能列举、分析生活中能量转化和守恒的例子. 二、过程与方法 1.初步学会从能量转化和守恒的观点解释现象、分析问题; 2.通过用纸带与打点计时器来验证机械能守恒定律,体验验证过程和物理学的研究方法. 三、情感态度与价值观 1.通过能量守恒的教学,使学生树立科学观点,理解和运用自然规律,并用来解决实际问题; 2.通过实验验证,体会学习的快乐,激发学习的兴趣;通过亲身实践,树立“实践是检验真理的唯一标准”的科学观.培养学生的观察和实践能力,培养学生实事求是的科学态度. 教学过程 导入新课 [实验演示]

大学物理物理知识点总结!!!!!!

B r ? A r B r y r ? 第一章质点运动学主要内容 一. 描述运动的物理量 1. 位矢、位移和路程 由坐标原点到质点所在位置的矢量r 称为位矢 位矢r xi yj =+,大小 2r r x y ==+运动方程 ()r r t = 运动方程的分量形式() ()x x t y y t =???=?? 位移是描述质点的位置变化的物理量 △t 时间内由起点指向终点的矢量B A r r r xi yj =-=?+?△,2r x =?+△路程是△t 时间内质点运动轨迹长度s ?是标量。 明确r ?、r ?、s ?的含义(?≠?≠?r r s ) 2. 速度(描述物体运动快慢和方向的物理量) 平均速度 x y r x y i j i j t t t 瞬时速度(速度) t 0r dr v lim t dt ?→?== ?(速度方向是曲线切线方向) j v i v j dt dy i dt dx dt r d v y x +=+==,2222y x v v dt dy dt dx dt r d v +=??? ??+??? ??== ds dr dt dt = 速度的大小称速率。 3. 加速度(是描述速度变化快慢的物理量) 平均加速度v a t ?=? 瞬时加速度(加速度) 220lim t d d r a t dt dt υυ→?===?△ a 方向指向曲线凹向j dt y d i dt x d j dt dv i dt dv dt v d a y x 2222+=+== 2 2222222 2 2???? ??+???? ??=? ?? ? ? ?+??? ??=+=dt y d dt x d dt dv dt dv a a a y x y x 二.抛体运动

机械能守恒定律典型分类例题

机械能守恒定律典型题分类 一、单个物体的机械能守恒 判断一个物体的机械能是否守恒有两种方法:(1)物体在运动过程中只有重力做功,物体的机械能守恒。(2)物体在运动过程中不受媒质阻力和摩擦阻力,物体的机械能守恒。 所涉及到的题型有四类:(1)阻力不计的抛体类。(2)固定的光滑斜面类。(3)固定的光滑圆弧类。(4)悬点固定的摆动类。 (1)阻力不计的抛体类 包括竖直上抛;竖直下抛;斜上抛;斜下抛;平抛,只要物体在运动过程中所受的空气阻力不计。那么物体在运动过程中就只受重力作用,也只有重力做功,通过重力做功,实现重力势能与机械能之间的等量转换,因此物体的机械能守恒。 (2)固定的光滑斜面类 在固定光滑斜面上运动的物体,同时受到重力和支持力的作用,由于支持力和物体运动的方向始终垂直,对运动物体不做功,因此,只有重力做功,物体的机械能守恒。 (3)固定的光滑圆弧类 在固定的光滑圆弧上运动的物体,只受到重力和支持力的作用,由于支持力始终沿圆弧的法线方向而和物体运动的速度方向垂直,对运动物体不做功,故只有重力做功,物体的机械能守恒。 (4)悬点固定的摆动类 和固定的光滑圆弧类一样,小球在绕固定的悬点摆动时,受到重力和拉力的作用。由于悬线的拉力自始至终都沿法线方向,和物体运动的速度方向垂直而对运动物体不做功。因此只有重力做功,物体的机械能守恒。 作题方法: 一般选取物体运动的最低点作为重力势能的零势参考点,把物体运动开始时的机械能和物体运动结束时的机械能分别写出来,并使之相等。 注意点:在固定的光滑圆弧类和悬点定的摆动类两种题目中,常和向心力的公式结合使用。这在计算中是要特别注意的。 习题: 1、三个质量相同的小球悬挂在三根长度不等的细线上,分别把悬线拉至水平位置后轻轻释放小球,已知线长L a>L b>L c,则悬线摆至竖直位置时,细线中张力大小的关系是() A T c>T b>T a B T a>T b>T c C T b>T c>T a D T a=T b=T c 4、一质量m = 2千克的小球从光滑斜面上高h = 3.5米高处由静止滑下斜面底端紧接着一个半径R = 1m的 光滑圆环(如图)求: (1)小球滑至圆环顶点时对环的压力; (2)小球至少要从多高处静止滑下才能越过圆环最高点; (3)小球从h0 = 2米处静止滑下时将在何处脱离圆环(g =9.8米/秒2)。 二、系统的机械能守恒 由两个或两个以上的物体所构成的系统,其机械能是否守恒,要看两个方面 (1)系统以外的力是否对系统对做功,系统以外的力对系统做正功,系统的机械能就增加,做负功,系统的机械能就减少。不做功,系统的机械能就不变。 (2)系统间的相互作用力做功,不能使其它形式的能参与和机械能的转换。 系统内物体的重力所做的功不会改变系统的机械能 系统间的相互作用力分为三类:

高一物理能量守恒定律练习题

第3节能量守恒定律测试 1、下列关于机械能守恒的说法中,正确的是() A .做匀速直线运动的物体的机械能一定守恒 B .做匀变速运动的物体的机械能不可能守恒 C .如果没有摩擦力和介质阻力,运动物体的机械能一定守恒 D .物体只发生动能和势能的相互转换时,物体的机械能守恒 2、试以竖直上抛运动为例,证明机械能守恒.设一个 质量为m 的物体,从离地h i 处以初速v i 竖直上抛,上 升至 h 2高处速度为V 2,如图7-7-1所示. 3、在下列情况中,物体的机械能守恒的是(不计空气阻 力)() A .推出的铅球在空中运动的过程中 B .沿着光滑斜面匀加速下滑的物体 C .被起重机匀速吊起的物体 D .细绳的一端系一小球,绳的另一端固定,使小球在竖直平面 内做圆周运动 4、如图7-7-2所示,某人以拉力F 将物体沿斜面拉下,拉力大小等 于摩擦力,则下列说法中正确的是() A .物体做匀速运动 B .合外力对物体做功等于零 C .物体的机械能保持不变 |卽才 陀一 87-7-1

D.物体机械能减小5、下列关于物体机械能守恒的说法中,正确的是() A .运动的物体,若受合外力为零,则其机械能一定守恒 B .运动的物体,若受合外力不为零,则其机械能一定不守恒 C.合外力对物体不做功,物体的机械能一定守恒 D .运动的物体,若受合外力不为零,其机械能有可能守恒 6、当物体克服重力做功时,物体的() A .重力势能一定减少,机械能可能不变 B .重力势能一定增加,机械能一定增加 C.重力势能一定增加,动能可能不变 D .重力势能一定减少,动能可能减少 7、物体在空中以9. 8m/s2的加速度加速下降,则运动过程中物体 的机械能() A .增大 B .减小C.不变D .上述均有可能 &如图7-7-3所示,物体沿光滑半圆形凹面从A 点滑至B点的过程中,物体受力和力的作用,其中只 有力做功,重力势能,动能,但两者之和. 9、竖直向上将子弹射出,子弹在上升过程中,子弹的动能,重力势能.在最高点时子弹的动能为,重力势能达。由于空气阻力的存在, 最高点时的重力势能于射击时的初动能,子弹的机械能。 10、一质量为m的皮球,从不同高度自由落下时反弹起来后能上升的最大高度是原来的,现将该球从高为h处竖直向下抛出,要使它反弹到h

动能和动能定理,机械能守恒典型例题和练习(精品)

学习目标 1. 能够推导并理解动能定理知道动能定理的适用围 2. 理解和应用动能定理,掌握外力对物体所做的总功的计算,理解“代数和”的含义。 3. 确立运用动能定理分析解决具体问题的步骤与方法 类型一 .常规题型 例1. 用拉力F 使一个质量为m 的木箱由静止开始在水平冰道上移动了s ,拉力 F 跟 木 箱 前进的方向的夹角为,木箱与冰道间的动摩擦因数为,求木箱获得的速度αμ 例2. 质量为m 的物体静止在粗糙的水平地面上,若物体受水平力F 的作用从静止起通过位移s 时的动能为E1,当物体受水平力2F 作用,从静止开始通过相同位移s ,它的动能为E2,则: A. E2=E1 B. E2=2E1 C. E2>2E1 D. E1<E2<2E1 针对训练 材料相同的两个物体的质量分别为m1和m2,且m m 124=,当它们以相同的初动能在水平面上滑行,它们的滑行距离之比s s 12:和滑行时间之比 t t 12:分别是多少?(两物体与水平面的动摩擦因数相同)

类型二、应用动能定理简解多过程问题 例3:质量为m的物体放在动摩擦因数为μ的水平面上,在物体上施加水平力F 使物体由静止开始运动,经过位移S后撤去外力,物体还能运动多远? 例4、一个物体从斜面上高h处由静止滑下并紧接着在水平面上滑行一段距离后停止,测得停止处对开始运动处的水平距离为S,如图2-7-6,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的动摩擦因数相同.求动摩擦因数μ. 2-7-6 针对训练2 将质量m=2kg的一块石头从离地面H=2m高处由静止开始释放,落入泥潭并陷入泥中h=5cm深处,不计空气阻力,求泥对石头的平均阻力。(g 取10m/s2)

大学物理练习题3((角)动量与能量守恒定律)

大学物理练习题3:“力学—(角)动量与能量守恒定律” 一、填空题 1、一个质量为10kg 的物体以4m/s 的速度落到砂地后经0.1s 停下来,则在这一过程中物体对砂地的平均作用力大小为 。 2、t F x 430+=(式中x F 的单位为N ,t 的单位为s )的合外力作用在质量为kg m 10=的物体上,则:(1)在开始s 2内,力x F 的冲量大小为: ;(2)若物体的初速度1110-?=s m v ,方向与x F 相同,则当力x F 的冲量s N I ?=300时,物体的速度大小为: 。 3、一质量为kg 1、长为m 0.1的均匀细棒,支点在棒的上端点,开始时棒自由悬挂。现以100N 的力打击它的下端点,打击时间为0.02s 时。若打击前棒是静止的,则打击时棒的角动量大小变化为 ,打击后瞬间棒的角速度为 。 4、某质点最初静止,受到外力作用后开始运动,该力的冲量是100.4-??s m kg ,同时间内该力作功4.00J ,则该质点的质量是 ,力撤走后其速率为 。 5、设一质量为kg 1的小球,沿x 轴正向运动,其运动方程为122-=t x ,则在时间s t 11=到s t 32=内,合外力对小球的功为 ;合外力对小球作用的冲量大小为 。 6、一个力F 作用在质量为 1.0 kg 的质点上,使之沿x 轴运动。已知在此力作用下质点的运动 学方程为3 243t t t x +-= (SI)。则在0到4 s 的时间间隔内,力F 的冲量大小I = ,力F 对质点所作的功W = 。 7、设作用在质量为 2 kg 上的物体上的力x F x 6=(式中x F 的单位为N ,x 的单位为m )。若物体由静止出发沿直线运动,则物体从0=x 运动到m x 2=过程中该力作的功=W ,m x 2=时物体的速率=v 。 8、已知质量kg 2=m 物体在一光滑路面上作直线运动,且0=t 时,0=x ,0=ν。若该物体受力为x F 43+=(式中F 的单位为N ,x 的单位为m ),则该物体速率ν随 x 的函数关系=)(x ν ;物体从0=x 运动到2=x m 过程中该力作的功=W 。 9、一质量为10kg 的物体,在t=0时,物体静止于原点,在作用力i x F )43(+=作用下,无摩

机械能守恒典型例题带详解

第七章 机械能同步练习(一) 例1 以20m/s 的速度将一物体竖直上抛,若忽略空气阻力,g 取10m/s 2,试求: (1) 物体上升的最大高度; (2) 以水平地面为参考平面,物体在上升过程中重力势能和动能相等的位置。 解析 (1) 设物体上升的最大高度为H ,在物体整个上升过程中应用机械能守恒定律,有2 02 1mv mgH = , 解得10 22022 20?==g v H m=20m 。 (2) 设物体重力势能和动能相等的位置距地面的高度为h ,此时物体的速度为v ,则有2 2 1mv mgh =。 在物体被抛出到运动至该位置的过程中应用机械能守恒定律,有2 022 121mv mv mgh =+ 。 由以上两式解得10 42042 20?==g v h m=10m 。 点拨 应用机械能守恒定律时,正确选取研究对象和研究过程,明确初、末状态的动能和势能,是解决问题的关键。 本题第(2)问也可在物体从重力势能与动能相等的位置运动至最高点的过程中应用机械能守恒定律,由 221mv mgh = ,mgH mv mgh =+22 1 , 解得 2 20 2= =H h m=10m 。 例2 如图所示,总长为L 的光滑匀质铁链跨过一个光滑的轻小滑轮,开始时下端A 、B 相平齐,当 略有扰动时其一端下落,则当铁链刚脱离滑轮的瞬间,铁链的速度为多大? 解析 这里提供两种解法。 解法一(利用E 2=E 1求解):设铁链单位长度的质量为ρ,且选取初始位置铁链的下端A 、B 所在的水平面为参考平面,则铁链初态的机械能为 214 1 4gL L Lg E ρρ=?=, 末态的机械能为 2222 1 21Lv mv E ρ== 。根据机械能守恒定律有 E 2=E 1, 即 2241 21gL Lv ρρ=,解得铁链刚脱离滑轮时的速度 2 gL v =。 解法二(利用△E k =-△E p 求解):如图所示,铁链刚离开滑轮时,相当于原来的BB ’部分移到了 AA ’的位置。重力势能的减少量 24 1 221gL L Lg E p ρρ=?=?-, 动能的增加量 2 2 1Lv E k ρ=?。 根据机械能守恒定律有 △E k =-△E p , 即 224 1 21gL Lv ρρ=, 解得铁链刚脱离滑轮时的速度 2 gL v = 。 点拨 对于绳索、链条之类的物体,由于发生形变,其重心位置相对物体来说并不是固定不变的,能否确定重心的位置,常是解决该类问题的关键。可以采用分段法求出每段的重

初中功与机械能典型例题精编版

功与机械能 例1.关于能的概念,下列说法中错误的是( ) A.一个物体能够做功,我们就说这个物体具有能。 B. 一个物体被站立的人举在手中,人不松手,物体不能做功,所以物体没有能。 C.一个物体做了功,说明这个物体具有能。 D.物体已做的功越多,说明物体具有的能越多。 解析:本题考查物理学中非常重要的两个概念——能和功的联系和区别。 能和功的联系:是物体做功的本领;而做功总是伴随着物体能量的变化。 能和功的区别:能是物体做功的本领。但是“具有能量”并不等于“做功”,这同“有钱”并不等于“花钱”是一个道理。 本题中,选项B属于因为条件所限不能做功(”尚未”花钱),并非没有能量(”没有钱”);选项C则是已经做过功(”花过钱”),而眼下还有没有能量(”钱”),则不得而知了.例如一块石头从高处下落,则重力对它做了功,至于现在它是否还有能量却难以确定----可能有(如果它还在下落过程中),也可能没有(也许早就”一块石头落了地”). 符合题意的答案为B.C.D. 小结:物体在一定的条件下,可以通过做功的方式改变自己的能量;而所谓”物体做功”,无非是能量在不同物体之间转移,或是能量在不同形式之间转化. 例2.关于动能的概念,下列说法中正确的是() A.运动的物体具有的能,叫动能. B. 物体由于运动具有的能,叫动能. C.速度大的物体甲具有的动能一定大于速度小的物体乙具有的动能. D.运动物体质量越大,所具有的动能一定越多. 解析:本题考查动能的决定因素. 决定物体动能大小的因素有两条:一是物体的运动速度,二是运动物体的质量.选项C和D都犯了片面看问题(C未考虑两者质量的关系,D未考虑物体的运动速度)的错误,但错误较为明显,容易察觉.而选项A的错误则比较隐蔽.问题就出在”物体可以同时具有多种能量”!例如运动物体,它除了具有动能外,还可以同时具有势能.内能...等等. 本题正确选项为B. 小结:解题时要全面考虑问题,警惕隐含条件. 例3.关于势能的下列说法中,正确的是() A.举高的物体具有的能,叫重力势能. B. 甲物体比乙物体举得高,所以甲物体的重力势能一定大于乙物体的重力势能. C.甲物体的弹性形变大于乙物体的弹性形变,甲物体具有的弹性势能一定大于乙物体的弹性势能. D.以上说法都不对. 解析:本题考查重力势能和弹性势能的决定因素. 重力势能的大小,与物体的质量和被举高的高度有关;弹性势能的大小,除了与物体弹性形变的大小有关之外,还 跟形变物体的材料.几何形状等有关.例如一根细橡皮筋和一条粗橡胶管(形状类似自行车的气门心),都被拉长1厘米,两者的弹性势能就不一样.所以选项C错误;选项B有什么错误,请自行分析. 本题应选A(重力势能的定义). 小结:对于课本上各个概念的定义,必须熟记. 例4.将一石子竖直向上抛出,在它上升过程中,不计空气阻力,那么它的() A.动能减少,重力势能增加,机械能增加. B.动能减少,重力势能增加,机械能不变.

相关主题
文本预览
相关文档 最新文档