当前位置:文档之家› (物理)速度选择器和回旋加速器练习全集

(物理)速度选择器和回旋加速器练习全集

(物理)速度选择器和回旋加速器练习全集
(物理)速度选择器和回旋加速器练习全集

(物理)速度选择器和回旋加速器练习全集

一、速度选择器和回旋加速器

1.如图所示,虚线O 1O 2是速度选择器的中线,其间匀强磁场的磁感应强度为B 1,匀强电场的场强为E (电场线没有画出)。照相底片与虚线O 1O 2垂直,其右侧偏转磁场的磁感应强度为B 2。现有一个离子沿着虚线O 1O 2向右做匀速运动,穿过照相底片的小孔后在偏转磁场中做半径为R 的匀速圆周运动,最后垂直打在照相底片上(不计离子所受重力)。 (1)求该离子沿虚线运动的速度大小v ; (2)

求该离子的比荷

q m

; (3)如果带电量都为q 的两种同位素离子,沿着虚线O 1O 2射入速度选择器,它们在照相底片的落点间距大小为d ,求这两种同位素离子的质量差△m 。

【答案】(1)1E v B =;(2)12q E m RB B =;(3)122B B qd m E

?=

【解析】 【分析】 【详解】

(1)离子沿虚线做匀速直线运动,合力为0

Eq =B 1qv

解得

1

E

v B =

(2)在偏转磁场中做半径为R 的匀速圆周运动,所以

2

2mv B qv R

= 解得

12

q E m RB B = (3)设质量较小的离子质量为m 1,半径R 1;质量较大的离子质量为m 2,半径为R 2 根据题意

R 2=R 1+

2

d 它们带电量相同,进入底片时速度都为v ,得

21

R 2

222

m v B qv R =

联立得

22121()B q

m m m R R v

?=-=

- 化简得

122B B qd

m E

?=

2.如图所示,竖直挡板MN 右侧空间存在相互垂直的匀强电场和匀强磁场,电场方向竖直向上,电场强度E =100N/C ,磁场方向垂直纸面向里,磁感应强度B =0.2T ,场中A 点与挡板的距离L =0.5m 。某带电量q =+2.0×10-6C 的粒子从A 点以速度v 垂直射向挡板,恰能做匀速直线运动,打在挡板上的P 1点;如果仅撤去电场,保持磁场不变,该粒子仍从A 点以相同速度垂直射向挡板,粒子的运动轨迹与挡板MN 相切于P 2点,不计粒子所受重力。求: (1)带电粒子的速度大小v ; (2)带电粒子的质量m 。

【答案】(1)500m/s v =;(2)10

4.010kg m -=?

【解析】 【分析】 【详解】

(1)正粒子在正交的电场和磁场中做匀速直线运动,则向上的电场力和向下的洛伦兹力平衡,有

qE qvB =

解得带电粒子的速度大小

100m/s 500m/s 0.2

E v B =

== (2)仅撤去电场保持磁场不变,带电粒子在磁场中做匀速圆周运动,有

R

而粒子偏转90°,由几何关系可知

0.5m R L ==

联立可得带电粒子的质量

6102100.20.5kg 4.010kg 500

qBL m v --???===?

3.如图,正方形ABCD 区域内存在着竖直向下的匀强电场和垂直纸面向里的匀强磁场,已知该区域的边长为L 。一个带电粒子(不计重力)从AD 中点以速度v 水平飞入,恰能匀速通过该场区;若仅撤去该区域内的磁场,使该粒子以同样的速度v 从AD 中点飞入场区,最后恰能从C 点飞出;若仅撤去该区域内的电场,该带电粒子仍从AD 中点以相同的速度v 进入场区,求: (1)该粒子最后飞出场区的位置;

(2)仅存电场与仅存磁场的两种情况下,带电粒子飞出场区时速度偏向角之比是多少?

【答案】(1)AB 连线上距离A 3

L 处,(2)34。

【解析】 【详解】

(1)电场、磁场共存时,粒子匀速通过可得:

qvB qE =

仅有电场时,粒子水平方向匀速运动:

L vt =

竖直方向匀加速直线运动:

2

122L qE t m

= 联立方程得:

2qEL

v m

=

仅有磁场时:

R

根据几何关系可得:

R L

=

设粒子从M点飞出磁场,由几何关系:

AM

2

2

2

L

R

??

- ?

??

=

3

L

所以粒子离开的位置在AB连线上距离A点

3

2

L处;

(2)仅有电场时,设飞出时速度偏角为α,末速度反向延长线过水平位移中点:

2

tan1

2

L

L

α==

解得:45

α?

=

仅有磁场时,设飞出时速度偏角为β:

tan3

AM

OA

β==

解得:60

β?

=

所以偏转角之比:

3

4

α

β

=。

4.如图中左边有一对平行金属板,两板相距为d,电压为U,两板之间有匀强磁场,磁感应强度大小为B0,方向与金属板面平行并垂直于纸面朝里。图中右边有一半径为R、圆心为O的圆形区域内也存在匀强磁场,磁感应强度大小为B,方向垂直于纸面朝里。一正离子沿平行于金属板面、从A点垂直于磁场的方向射入平行金属板之间,沿同一方向射出平行金属板之间的区域,并沿直径CD方向射入磁场区域,最后从圆形区域边界上的F点射出。已知速度的偏向角为θ=90°,不计重力。求:

(1)离子速度v 的大小; (2)离子的比荷q/m 。 【答案】0U

v B d = ;0q U m BB Rd

=

【解析】 【详解】

(1)离子在平行金属板之间做匀速直线运动:00B qv qE =

0U E d =

得:0U

v B d

=

(2)在圆形磁场区域,离子做匀速圆周运动,由牛顿第二定律得:2

v Bqv m r

=

由几何关系得:r=R

离子的比荷为:0q U m BB Rd

=

5.如图所示为质谱仪的原理图,A 为粒子加速器,电压为1U ,B 为速度选择器,其内部匀强磁场与电场正交,磁感应强度为1B ,左右两板间距离为d ,C 为偏转分离器,内部匀强磁场的磁感应强度为2B ,今有一质量为m ,电量为q 且初速为0的带电粒子经加速器A 加速后,沿图示路径通过速度选择器B ,再进入分离器C 中的匀强磁场做匀速圆周运动,不计带电粒子的重力,试分析: (1)粒子带何种电荷;

(2)粒子经加速器A 加速后所获得的速度v ; (3)速度选择器的电压2U ;

(4)粒子在C 区域中做匀速圆周运动的半径R 。

【答案】(1)带正电;(2)12qU v m =

;(3)1

212qU U B m

=(4)1

2

21

mU r B q

=

【解析】 【分析】

(1)根据电荷在磁场中的偏转方向即可判断电荷的正负; (2)根据动能定理求解速度 (3)根据平衡求解磁场强度

(4)根据2

v qvB m r

=求解运动轨道半径;

【详解】

(1)根据电荷在磁场中的运动方向及偏转方向可知该粒子带正电; (2)粒子经加速电场U 1加速,获得速度v ,由动能定理得:

2112

qU mv =

解得:1

2qU v m

=

⑵在速度选择器中作匀速直线运动,电场力与洛仑兹力平衡得2

1U q qvB d

= 解得:211

12U B dv B qU m

== ⑶在B 2中作圆周运动,洛仑兹力提供向心力,2

v qvB m r

=

解得:1

22

21

mU mv r B q B q

=

= 故本题答案是:(1)带正电;(2)12qU v m =

;(3)1

212qU U B m

=(4)

1

2

2

1mU

r

B q

=

6.在图所示的平行板器件中,电场强度和磁感应强度相互垂直.具有某一水平速度的带电粒子,将沿着图中所示的虚线穿过两板间的空间而不发生偏转,具有其他速度的带电粒子将发生偏转.这种器件能把具有某一特定速度的带电粒子选择出来,叫作速度选择器.已知粒子A(重力不计)的质量为m,带电量为+q;两极板间距为d;电场强度大小为E,磁感应强度大小为B.求:

(1)带电粒子A从图中左端应以多大速度才能沿着图示虚线通过速度选择器?

(2)若带电粒子A的反粒子(-q, m)从图中左端以速度E/B水平入射,还能沿直线从右端穿出吗?为什么?

(3)若带电粒子A从图中右端两极板中央以速度E/B水平入射,判断粒子A是否能沿虚线从左端穿出,并说明理由.若不能穿出而打在极板上.请求出粒子A到达极板时的动能?【答案】(1) E/B (2) 仍能直线从右端穿出,由(1)可知,选择器(B, E)给定时,与粒子的电性、电量无关.只与速度有关 (3) 不可能,

2

1

22

E Eqd

m

B

??

+

?

??

【解析】

试题分析:,电场的方向与B的方向垂直,带电粒子进入复合场,受电场力和安培力,且二力是平衡力,即Eq=qvB,即可解得速度.仍能直线从右端穿出,由(1)可知,选择器(B, E)给定时,与粒子的电性、电量无关.只与速度有关.

(1) 带电粒子在电磁场中受到电场力和洛伦兹力(不计重力),当沿虚线作匀速直线运动时,两个力平衡,即Eq=Bqv

解得:

E

v

B

=

(2)仍能直线从右端穿出,由(1)可知,选择器(B, E)给定时,与粒子的电性、电量无关.只与速度有关.

(3)设粒子A在选择器的右端入射是速度大小为v,电场力与洛伦兹力同方向,因此不可能直线从左端穿出,一定偏向极板.设粒子打在极板上是的速度大小为v′.

由动能定理得:22

111

222

Eqd mv mv

'

=-

因为E=Bv

联立可得粒子A到达极板时的动能为:

2

1

22

k

E Eqd

E m

B

??

=+

?

??

点睛:本题主要考查了从速度选择器出来的粒子电场力和洛伦兹力相等,粒子的速度相

同,速度选择器只选择速度,不选择电量与电性,同时要结合功能关系分析.

7.某粒子实验装置原理图如图所示,狭缝1S 、2S 、3S 在一条直线上,1S 、2S 之间存在电压为U 的电场,平行金属板1P 、2P 相距为d ,内部有相互垂直的匀强电场和匀强磁场,磁感应强度为1B 。比荷为k 的带电粒子由静止开始经1S 、2S 之间电场加速后,恰能沿直线通过1P 、2P 板间区域,从狭缝3S 垂直某匀强磁场边界进入磁场,经磁场偏转后从距离

3S 为L 的A 点射出边界。求:

(1)1P 、2P 两板间的电压; (2)偏转磁场的磁感应强度。 【答案】(1)12U B kU ='2)222U

B L k

=【解析】 【分析】

(1)粒子先在电场中加速,然后匀速通过1P 、2P ,则根据平衡可求出1P 、2P 两板间的电压

(2)根据粒子的运动轨迹找到运动半径,借助于2

2v qvB m r

=可求出偏转磁场的磁感应强

度 【详解】

(1)设带电粒子质量为m ,所带电荷量为q ,已知

q

k m

= 粒子在电场中S 1与S 2之间加速,根据动能定理可得:2

102

qU mv =

-; 带电粒子在P 1和P 2间运动,根据电场力与洛伦兹力平衡可得:1U q qvB d

='

解得:12U B kU ='

(2)带电粒子在磁场中做匀速圆周运动,根据洛伦兹力充当向心力:2

2v qvB m r

=;

已知2L r =,解得:222U

B L k

=

8.如图所示,水平放置的平行板电容器上极板带正电,下极板带负电,两板间存在场强为 E 的匀强电场和垂直纸面向里的磁感应强度为 B 匀强磁场.现有大量带电粒子沿中线 OO ′ 射入,所有粒子都恰好沿 OO ′ 做直线运动.若仅将与极板垂直的虚线 MN 右侧的磁场去掉,则其中比荷为

q

m

的粒子恰好自下极板的右边缘P 点离开电容器.已知电容器两板间的距离为2

3mE

qB ,带电粒子的重力不计。

(1)求下极板上 N 、P 两点间的距离;

(2)若仅将虚线 MN 右侧的电场去掉,保留磁场,另一种比荷的粒子也恰好自P 点离开,求这种粒子的比荷。 【答案】(1)3mE x =2)'4'7q q m m = 【解析】 【分析】

(1)粒子自 O 点射入到虚线MN 的过程中做匀速直线运动,将MN 右侧磁场去掉,粒子在MN 右侧的匀强电场中做类平抛运动,根据类平抛运动的的规律求解下极板上 N 、P 两点间的距离;(2)仅将虚线 MN 右侧的电场去掉,粒子在 MN 右侧的匀强磁场中做匀速

圆周运动,根据几何关系求解圆周运动的半径,然后根据2

''m v q vB R

= 求解比荷。 【详解】

(1)粒子自 O 点射入到虚线MN 的过程中做匀速直线运动,

qE qvB =

粒子过 MN 时的速度大小 E v B

=

仅将MN 右侧磁场去掉,粒子在MN 右侧的匀强电场中做类平抛运动, 沿电场方向:

2

2322mE qE t qB m

= 垂直于电场方向:x vt =

由以上各式计算得出下极板上N、P两点间的距离

3mE x=

(2)仅将虚线MN右侧的电场去掉,粒子在MN 右侧的匀强磁场中做匀速圆周运动,设经过P点的粒子的比荷为

'

'

q

m

,其做匀速圆周运动的半径为R,

由几何关系得:222

2

3

()

2

mE

R x R

qB

=+-

解得

2

7

4

mE

R

qB

=

2

'

'

m v

q vB

R

=

得比荷

'4

'7

q q

m m

=

9.某速度选择器结构如图所示,三块平行金属板Ⅰ、Ⅱ、Ⅲ水平放置,它们之间距离均为d,三金属板上小孔O1、O2、O3在同一竖直线上,Ⅰ、Ⅱ间有竖直方向匀强电场

E1,Ⅱ、Ⅲ间有水平向左电场强度为E2的匀强电场及垂直于纸面向里磁感应强度为B2的匀强磁场.一质子由金属板I上端O1点静止释放,经电场E1加速,经过O2进入E2、B2的复合场中,最终从Ⅲ的下端O3射出,已知质子带电量为e,质量为m.则

A.O3处出射时粒子速度为2

2

2

E

v

B

=

B.Ⅰ、Ⅱ两板间电压2

1

2

2

mE

U

eB

=

C.粒子通过Ⅰ、Ⅱ金属板和Ⅱ、Ⅲ金属板的时间之比为1︰1

D.把质子换成α粒子,则α粒子也能从O3射出

【答案】AB

【解析】

【详解】

A.经过O2点进入E2、B2的复合场中,最终沿直线从Ⅲ的下端O3点射出,因质子受到电场力与洛伦兹力,只要当两者大小相等时,才能做直线运动,且速度不变的,依据

qE2=B2qv

解得:

v=22

E B 故A 正确;

B .质子在Ⅰ、Ⅱ两板间,在电场力作用下,做匀加速直线运动,根据动能定理,即为qU 1=

12

mv 2

,而质子以相同的速度进入Ⅱ、Ⅲ金属板做匀速直线运动,则有v =22 E B ,那么

Ⅰ、Ⅱ两板间电压

U 1=2

22

2 2mE eB 故B 正确;

C .粒子通过Ⅰ、Ⅱ金属板做匀加速直线运动,而在Ⅱ、Ⅲ金属板做匀速直线运动,依据运动学公式,即有

d =10

2

v

t +? 而d =vt 2,那么它们的时间之比为2:1,故C 错误; D .若将质子换成α粒子,根据

qU 1=

12

mv 2 导致粒子的比荷发生变化,从而影响α粒子在Ⅱ、Ⅲ金属板做匀速直线运动,因此α粒子不能从O 3射出,故D 错误; 故选AB . 【点睛】

考查粒子在复合场中做直线运动时,一定是匀速直线运动,并掌握动能定理与运动学公式的应用,注意粒子何时匀加速直线运动与匀速直线运动是解题的关键.

10.如图所示,两竖直金属板间电压为U 1,两水平金属板的间距为d .竖直金属板a 上有一质量为m 、电荷量为q 的微粒(重力不计)从静止经电场加速后,从另一竖直金属板上的小孔水平进入两水平金属板间并继续沿直线运动.水平金属板内的匀强磁场及其右侧宽度一定、高度足够高的匀强磁场方向都垂直纸面向里,磁感应强度大小均为B ,求:

(1)微粒刚进入水平金属板间时的速度大小v 0; (2)两水平金属板间的电压;

(3)为使微粒不从磁场右边界射出,右侧磁场的最小宽度D .

【答案】(1)

v=U= (3)D=

【解析】

【分析】

(1)粒子在电场中加速,根据动能定理可求得微粒进入平行金属板间的速度大小;(2)根据粒子在平行板间做直线运动可知,电场力与洛伦兹力大小相等,列式可求得电压大小;

(3)粒子在磁场中做匀速圆周运动,根据几何关系可知半径与D之间的关系,再由洛伦兹充当向心力可求得最小宽度.

【详解】

(1)在加速电场中,由动能定理,得

qU1=1

2

mv02,

解得v0

(2)在水平金属板间时,微粒做直线运动,则

Bqv0=q U

d

解得U=

(3)若微粒进入磁场偏转后恰与右边界相切,此时对应宽度为D,则

Bqv0=m

2

v

r

且r=D,

解得D

【点睛】

题考查带电粒子在电场和磁场中的运动,要注意明确带电粒子在磁场中运动时注意几何关系的应用,明确向心力公式的应用;而带电粒子在电场中的运动要注意根据功能关系以及运动的合成和分解规律求解.

11.汽车又停下来了,原来是进了加油站。小明想,机器总是要消耗能源才干活儿,要是制造出不消耗任何能源却能源源不断对外做功的机器,那该是利国利民的大功劳一件啊!小明为此设计了一个离子加速器方案:两个靠得很近的、正对处留有狭缝的半圆形金属盒,处在垂直于纸面向里、磁感应强度大小为B的匀强磁场中,M和M'是固定在金属盒狭缝边缘的两平行极板,其上有正对的两个小孔,给极板充电后,上板带正电且两板间电压为U;质量为m、带电量为q的正离子从M板小孔由静止开始加速,经M'板小孔进入磁场区域,离子经磁场偏转后又回到M板小孔继续加速,再偏转,再加速……假设电场集中在两极板之间,其他区域没有电场,并忽略离子所受的重力,试计算:

(1)两于第1次加速后获得的动能:

(2)第n 次加速后和第1n +次加速后,离子在磁场中偏转的半径大小之比;

(3)小明想,离子每次经磁场偏转后都能再次进入两极板间的电场进行加速,这个过程中电场、磁场不发生任何变化,离子动能却不断的增加……这个离子加速器就实现了不消耗任何能源便可以能源源不断地对离子做功的目的!请根据你所学的知识,试判断小明的设计方案是否科学,并具体阐述你的理由。

【答案】(1)qU ;(21

n

n +;(3)见解析。 【解析】 【分析】 【详解】

(1)由动能定理可

qU =E k -0

解得离子第1次加速后获得的动能为

E k =qU

(2)设第n 次加速后离子获得的速度为v n ,则由动能定理可知

2

102

n nqU mv =

- 设离子在磁场中偏转的轨道半径大小为r n ,根据牛顿第二定律可知

2n

n n

v qv B m r =

联立解得

12n mnU

r B q

同理,第n +1次加速后,离子子啊磁场中偏转的半径大小为

112(1)n m n U

r B q

++=

11

n n r n r n +=+(3)小明的设计不科学,因为它违背了能量守恒定律,永动机不可能制成。实际上,电场

并不只是分布在两极板之间,在极板外,仍然有从M 板出发指向M'板的电场线,离子在两极板之外的磁场中运动时,电场力做负功,回到初始位置M 板的小孔处时,电场力所做的总功为零,离子速度恢复为原来的值,离子并不能持续的加速。

12.回旋加速器是用来加速一群带电粒子使它们获得很大动能的仪器,其核心部分是两个D 形金属扁盒,两盒分别和一高频交流电源两极相接,以便在盒内的狭缝中形成匀强电场,使粒子每次穿过狭缝时都得到加速,两盒放在磁感应强度为B 的匀强磁场中,磁场方向垂直于盒底面,粒子源置于盒的圆心附近,若粒子源射出的粒子电荷量为q ,质量为m ,粒子最大回旋半径为R .忽略粒子在电场中运动的时间.求: (1)所加交变电流的频率f ; (2)粒子离开加速器时的最大速度v ;

(3)若加速的电压为U ,求粒子达到最大速度被加速的次数n .

【答案】(1)2qB m π(2)qBR m (3)22

2qB R n mU

=

【解析】 【详解】

(1)粒子在电场中运动时间极短,因此高频交变电流频率要等于粒子回旋频率,因为

2m

T qB

π=

, 回旋频率

12qB f T m

π=

=; (2)由牛顿第二定律

2

mv qvB R

=, 解得

qBR

v m

=

; (3)获得的能量来源于电场的加速,故:

21

02

nqU mv =-,

解得

22

2qB R n mU

=

13.1932年,劳伦斯和利文斯设计出了回旋加速器.回旋加速器的工作原理如图所示,置于高真空中的D 形金属盒半径为R ,两盒间的狭缝很小,带电粒子穿过的时间可以忽略不计.磁感应强度为B 的匀强磁场与盒面垂直.A 处粒子源产生的粒子,质量为m 、电荷量为+q ,在加速器中被加速,加速电压为U .加速过程中不考虑相对论效应和重力作用.

(1)求粒子第2次和第1次经过两D 形盒间狭缝后轨道半径之比; (2)求粒子从静止开始加速到出口处所需的时间t ;

(3)实际使用中,磁感应强度和加速电场频率都有最大值的限制.若某一加速器磁感应强度和加速电场频率的最大值分别为B m 、f m ,试讨论粒子能获得的最大动能E ㎞. 【答案】(1)2:1(2)

2

2BR U

π(3)当Bm

m f f ≤时,E Km =2222m q B R

m

;当Bm m f f ≥时,

E Km =222

2m mf R π

【解析】 【分析】

(1)狭缝中加速时根据动能定理,可求出加速后的速度,然后根据洛伦兹力提供向心力,推出半径表达式;

(2)假设粒子运动n 圈后到达出口,则加速了2n 次,整体运用动能定理,再与洛伦兹力提供向心力,粒子运动的固有周期公式联立求解;

(3)B m 对应粒子在磁场中运动可提供的最大频率,f m 对应加速电场可提供的最大频率,选两者较小者,作为其共同频率,然后求此频率下的最大动能. 【详解】

(1)设粒子第1次经过狭缝后的半径为r 1,速度为v 1 qU=mv 12 qv 1B=m

解得

同理,粒子第2次经过狭缝后的半径

(2)设粒子到出口处被加速了n 圈

解得.

(3)加速电场的频率应等于粒子在磁场中做圆周运动的频率,即

当磁场感应强度为B m时,加速电场的频率应为

粒子的动能

当f Bm≤f m时,粒子的最大动能由B m决定

解得

当f Bm≥f m时,粒子的最大动能由f m决定v m=2πf m R解得

【点睛】

此题是带电粒子在复合场中运动与动能定理的灵活应用,本题每一问都比较新颖,需要学生反复琢磨解答过程.

14.回旋加速器在核科学、核技术、核医学等高新技术领域得到了广泛应用,有力地推动了现代科学技术的发展。回旋加速器的原理如图,D1和D2是两个中空的半径为R的半圆金属盒,它们接在电压一定、频率为f的交流电源上,取粒子在磁场中运动的周期与交流电的周期相同。位于D1圆心处的质子源A能不断产生质子(初速度可以忽略,重力不计),它们在两盒之间被电场加速,D1、D2置于与盒面垂直的磁感应强度为B的匀强磁场中。若输出时质子束的等效电流为I.(忽略质子在电场中的加速时间及质子的最大速度远远小于光速)

(1)写出质子在该回旋加速器中运动的周期及质子的比荷q m

(2)求质子束从回旋加速器输出时的平均功率为P.

(3)若使用此回旋加速器加速氘核,要想使氘核获得与质子相同的最大动能,请分析此时磁感应强度应该如何变化,并写出计算过程。

【答案】(1)2f

B

π;(2)2I BR f π;(32 【解析】 【详解】

(1)由回旋加速器的工作原理可知,交变电源的频率与质子回旋的频率相同,由周期T 与频率f 的关系可知:T=1/f ;

设质子质量为m ,电荷量为q ,质子离开加速器的速度为v ,由牛顿第二定律可知:

2

v qvB m R

= ;

质子回旋的周期:22R m

T v qB

ππ== 则质子的比荷为:

2q f m B

π= (2)设在t 时间内离开加速器的质子数为N ,Nq

I t

=

则质子束从回旋加速器输出时的平均功率2

12N mv P t

?=

由上述各式得2

P IBR f π=

(3)若使用此回旋加速器加速氘核,E k1=E k2

22112211=22

m v m v 222222

1212221211

22R B q R B q m m m m = 2212

12

B B m m = 212B B =

2倍

15.1932年美国物理学家劳伦斯发明了回旋加速器,巧妙地利用带电粒子在磁场中运动特点,解决了粒子的加速问题.现在回旋加速器被广泛应用于科学研究和医学设备中.回旋

加速器的工作原理如图甲所示,置于高真空中的D 形金属盒半径为R ,两盒间的狭缝很小,带电粒子穿过的时间可以忽略不计.磁感应强度为B 的匀强磁场与盒面垂直,加速器接一定频率的高频交流电源,保证粒子每次经过电场都被加速,加速电压为U .A 处粒子源产生的粒子,质量为m 、电荷量为q ,初速度不计,在加速器中被加速,加速过程中不考虑相对论效应和重力作用.

(1)求第1次被加速后粒子的速度大小为v ;

(2)经多次加速后,粒子最终从出口处射出D 形盒,求粒子射出时的动能km E 和在回旋加速器中运动的总时间t ;

(3)近年来,大中型粒子加速器往往采用多种加速器的串接组合.例如由直线加速器做为预加速器,获得中间能量,再注入回旋加速器获得最终能量.n 个长度逐个增大的金属圆筒和一个靶,它们沿轴线排列成一串,如图乙所示(图中只画出了六个圆筒,作为示意).各筒相间地连接到频率为f 、最大电压值为U 的正弦交流电源的两端.整个装置放在高真空容器中.圆筒的两底面中心开有小孔.现有一电量为q 、质量为m 的正离子沿轴线射入圆筒,并将在圆筒间的缝隙的时间可以不计.已知离子进入第一个圆筒左端的速度为1v ,且此时第一、二两个圆筒间的电势差12U U U -=-.为使打到靶上的离子获得最大能量 ,各个圆筒的最小长度应满足什么条件?并求出在这种情况下打到靶上的离子的能量.

【答案】(12qU m (2)2222q B R m ,2

2BR U

π (3)())212111,2,3,2n n qU

L v n f

m

-=

+=L L ,

()()211

11,2,32

kn E n qU mv n =-+=L L

【解析】

(1)粒子第1次被加速后,212qU mv =

,2qU v m

=; (2)粒子在磁场中做匀速圆周运动,当运动轨迹的半径r R =时,粒子的速度最大,

动能最大,设最大速度为m v ,有2

m

m v qv B m R

=,

粒子获得的最大动能222

2122m m q B R E mv m

==

, 粒子在磁场中运动一个周期,被电场加速两次.设粒子到出口处被加速了n 次,

212=m nqU mv ,解得22

2qB R n mU

=,

带电粒子在磁场中运动的周期为22r m

T v qB

ππ=

=, 粒子在磁场中运动的总时间2

22T BR t n U

π==

; (3)为使正离子获得最大能量,要求离子每次穿越缝隙时,前一个圆筒的电势比后一个圆筒的电势高U ,这就要求离子穿过每个圆筒的时间都恰好等于交流电的半个周期.由于圆筒内无电场,离子在筒内做匀速运动.

设离子在第n 个圆筒内的速度为n v ,第n 个圆筒的长度为n L ,则有

·22n n n v T L v f ==,()22111122n mv mv n qU -=-,n v =

第n 个圆筒的长度应满足的条件为)1,2,3,n L n =

=L L ,

打到靶上的离子的能量为()()2

1111,2,32

kn E n qU mv n =-+

=L L . 点睛:回旋加速器中最大的 速度不是由回旋次数决定而是由回旋加速器的半径决定,另外要知道电场变化的周期恰好等于粒子在磁场中运动的周期,一个周期内加速两次.

高中物理速度选择器和回旋加速器专题训练答案及解析

高中物理速度选择器和回旋加速器专题训练答案及解析 一、速度选择器和回旋加速器 1.如图所示,有一对水平放置的平行金属板,两板之间有相互垂直的匀强电场和匀强磁场,电场强度为E =200V/m ,方向竖直向下;磁感应强度大小为B 0=0.1T ,方向垂直于纸面向里。图中右边有一半径R 为0.1m 、圆心为O 的圆形区域内也存在匀强磁场,磁感应强度大小为B = 3 3 T ,方向垂直于纸面向里。一正离子沿平行于金属板面,从A 点垂直于磁场的方向射入平行金属板之间,沿直线射出平行金属板之间的区域,并沿直径CD 方向射入圆形磁场区域,最后从圆形区域边界上的F 点射出已知速度的偏向角θ=π 3 ,不计离子重力。求: (1)离子速度v 的大小; (2)离子的比荷 q m ; (3)离子在圆形磁场区域中运动时间t 。(结果可含有根号和分式) 【答案】(1)2000m/s ;(2)2×104C/kg ;(3)4310s 6 π -? 【解析】 【详解】 (1)离子在平行金属板之间做匀速直线运动,洛仑兹力与电场力相等,即: B 0qv =qE 解得: 2000m/s E v B = = (2)在圆形磁场区域,离子做匀速圆周运动,轨迹如图所示

由洛仑兹力公式和牛顿第二定律有: 2 v Bqv m r = 由几何关系有: 2 R tan r θ = 离子的比荷为: 4 210C/kg q m =? (3)弧CF 对应圆心角为θ,离子在圆形磁场区域中运动时间t , 2t T θπ= 2m T qB π= 解得: 43106 t s π -= 2.如图,正方形ABCD 区域内存在着竖直向下的匀强电场和垂直纸面向里的匀强磁场,已知该区域的边长为L 。一个带电粒子(不计重力)从AD 中点以速度v 水平飞入,恰能匀速通过该场区;若仅撤去该区域内的磁场,使该粒子以同样的速度v 从AD 中点飞入场区,最后恰能从C 点飞出;若仅撤去该区域内的电场,该带电粒子仍从AD 中点以相同的速度v 进入场区,求: (1)该粒子最后飞出场区的位置; (2)仅存电场与仅存磁场的两种情况下,带电粒子飞出场区时速度偏向角之比是多少?

高中物理回旋加速器

高中物理回旋加速器 一.选择题(共4小题) 1.在回旋加速器中() A.D形盒内有匀强磁场,两D形盒之间的窄缝有高频电源产生的电场 B.两D形盒之间的窄缝处有场强大小、方向不变的匀强电场 C.高频电源产生的电场用来加速带电粒子 D.带电粒子在D形盒中运动时,磁场力使带电粒子速度增大 2.在回旋加速器中() A.D形盒内有匀强磁场,两D形盒之间的窄缝有高频电源产生的电场 B.两D形盒之间的窄缝处有场强大小、方向不变的匀强电场 C.高频电源产生的电场用来使带电粒子做圆周运动 D.带电粒子在D形盒中运动时,磁场力使带电粒子加速 3.关于回旋加速器的说法正确的是() A.回旋加速器是利用磁场对运动电荷的作用使带电粒子的速度增大的 B.回旋加速器是通过多次电场加速使带电粒子获得高能量的 C.粒子在回旋加速器中不断被加速,故在磁场中做圆周运动一周所用时间越来越小D.若加速电压提高到4倍,其它条件不变,则粒子获得的最大速度就提高到2倍4.回旋加速器由下列哪一位物理学家发明() A.洛伦兹B.奥斯特C.劳伦斯D.安培 二.填空题(共1小题) 5.回旋加速器的D型金属盒半径为R,两D型盒间电压为U,电场视为匀强电场,用来加速质量为m,电荷量为q的质子,使质子由静止加速到能量为E后,由小孔射出.(设质子每次经过电场加速后增加相同的能量)求: (1)加速器中匀强磁场B的大小. (2)加速到上述能量所需的回旋次数. (3)加速到上述能量所需时间.(不计经过电场的时间)

三.解答题(共1小题) 6.如图回旋加速器D形盒的半径为r,匀强磁场的磁感应强度为B.一个质量了m、电荷量为q的粒子在加速器的中央从速度为零开始加速. (1)求该回旋加速器所加交变电场的频率; (2)求粒子离开回旋加速器时获得的动能; (3)有同学想自利用该回旋加速器直接对质量为m、电量为2q的粒子加速.能行吗?行,说明理由;不行,提出改进方案.

高中物理速度选择器和回旋加速器专项练习及解析

高中物理速度选择器和回旋加速器专项练习及解析 一、速度选择器和回旋加速器 1.如图所示,虚线O 1O 2是速度选择器的中线,其间匀强磁场的磁感应强度为B 1,匀强电场的场强为E (电场线没有画出)。照相底片与虚线O 1O 2垂直,其右侧偏转磁场的磁感应强度为B 2。现有一个离子沿着虚线O 1O 2向右做匀速运动,穿过照相底片的小孔后在偏转磁场中做半径为R 的匀速圆周运动,最后垂直打在照相底片上(不计离子所受重力)。 (1)求该离子沿虚线运动的速度大小v ; (2) 求该离子的比荷 q m ; (3)如果带电量都为q 的两种同位素离子,沿着虚线O 1O 2射入速度选择器,它们在照相底片的落点间距大小为d ,求这两种同位素离子的质量差△m 。 【答案】(1)1E v B =;(2)12q E m RB B =;(3)122B B qd m E ?= 【解析】 【分析】 【详解】 (1)离子沿虚线做匀速直线运动,合力为0 Eq =B 1qv 解得 1 E v B = (2)在偏转磁场中做半径为R 的匀速圆周运动,所以 2 2mv B qv R = 解得 12 q E m RB B = (3)设质量较小的离子质量为m 1,半径R 1;质量较大的离子质量为m 2,半径为R 2 根据题意 R 2=R 1+ 2 d 它们带电量相同,进入底片时速度都为v ,得

2 121 m v B qv R = 2 222 m v B qv R = 联立得 22121()B q m m m R R v ?=-= - 化简得 122B B qd m E ?= 2.如图所示,水平放置的两平行金属板间存在着相互垂直的匀强电场和匀强磁场。已知两板间的电势差为U ,距离为d ;匀强磁场的磁感应强度为B ,方向垂直纸面向里。一质量为m 、电荷量为q 的带电粒子从A 点沿水平方向射入到两板之间,恰好沿直线从M 点射出;如果撤去磁场,粒子从N 点射出。M 、N 两点间的距离为h 。不计粒子的重力。求: (1)匀强电场场强的大小E ; (2)粒子从A 点射入时的速度大小v 0; (3)粒子从N 点射出时的动能E k 。 【答案】(1)电场强度U E d =;(2)0U v Bd =;(3)2 222k qUh mU E d B d =+ 【解析】 【详解】 (1)电场强度U E d = (2)粒子做匀速直线运动,电场力与洛伦兹力大小相等,方向相反,有:0qE qv B = 解得0E U v B Bd = = (3)粒子从N 点射出,由动能定理得:2012 k qE h E mv ?=- 解得2 222k qUh mU E d B d =+

高中物理速度选择器和回旋加速器解题技巧(超强)及练习题

高中物理速度选择器和回旋加速器解题技巧(超强)及练习题 一、速度选择器和回旋加速器 1.如图所示,水平放置的两平行金属板间存在着相互垂直的匀强电场和匀强磁场。已知两板间的电势差为U ,距离为d ;匀强磁场的磁感应强度为B ,方向垂直纸面向里。一质量为m 、电荷量为q 的带电粒子从A 点沿水平方向射入到两板之间,恰好沿直线从M 点射出;如果撤去磁场,粒子从N 点射出。M 、N 两点间的距离为h 。不计粒子的重力。求: (1)匀强电场场强的大小E ; (2)粒子从A 点射入时的速度大小v 0; (3)粒子从N 点射出时的动能E k 。 【答案】(1)电场强度U E d =;(2)0U v Bd =;(3)2 222k qUh mU E d B d =+ 【解析】 【详解】 (1)电场强度U E d = (2)粒子做匀速直线运动,电场力与洛伦兹力大小相等,方向相反,有:0qE qv B = 解得0E U v B Bd = = (3)粒子从N 点射出,由动能定理得:2012 k qE h E mv ?=- 解得2 222k qUh mU E d B d =+ 2.如图所示,一束质量为m 、电荷量为q 的粒子,恰好沿直线从两带电平行板正中间通过,沿圆心方向进入右侧圆形匀强磁场区域,粒子经过圆形磁场区域后,其运动方向与入射方向的夹角为θ(弧度).已知粒子的初速度为v 0,两平行板间与右侧圆形区域内的磁场的磁感应强度大小均为B ,方向均垂直纸面向内,两平行板间距为d ,不计空气阻力及粒子重力的影响,求: (1)两平行板间的电势差U ;

(2)粒子在圆形磁场区域中运动的时间t; (3)圆形磁场区域的半径R. 【答案】(1)U=Bv0d;(2) m qB θ ;(3)R= tan 2 mv qB θ 【解析】 【分析】 (1)由粒子在平行板间做直线运动可知洛伦兹力和电场力平衡,可得两平行板间的电势差. (2)在圆形磁场区域中,洛伦兹力提供向心力,找到转过的角度和周期的关系可得粒子在圆形磁场区域中运动的时间. (3))由几何关系求半径R. 【详解】 (1)由粒子在平行板间做直线运动可知,Bv0q=qE,平行板间的电场强度E= U d ,解得两平行板间的电势差:U=Bv0d (2)在圆形磁场区域中,由洛伦兹力提供向心力可知: Bv0q=m 2 v r 同时有T= 2r v π 粒子在圆形磁场区域中运动的时间t= 2 θ π T 解得t= m Bq θ (3)由几何关系可知:r tan 2 θ =R 解得圆形磁场区域的半径R=0 tan 2 mv qB θ 3.如图为质谱仪的原理图。电容器两极板的距离为d,两板间电压为U,极板间的匀强磁场的磁感应强度为B1,方向垂直纸面向里。一束带电量均为q但质量不同的正粒子从图示方

直线加速器(LA)物理师专业考试大纲

2010年医用设备使用人员业务能力考评直线加速器(LA)物理师专业考试大纲 (含伽玛刀物理内容) (2009年版) 中华人民共和国卫生部 人才交流服务中心

说明 为更好地贯彻落实《大型医用设备管理办法》(卫规财发[2004]474号文)精神,中华医学会和卫生部人才交流服务中心自2004年开始分别组织对全国医用设备使用人员进行培训和专业技术知识统一考试。 为使应试者了解考试范围,卫生部人才交流服务中心组织有关专家编写了《全国医用设备资格考试大纲》,作为应试者备考的依据。考试大纲中用黑线标出的为重点内容,命题以考试大纲的重点内容为主。

全国医用设备资格考试 直线加速器(LA)物理师专业考试大纲 (含伽玛刀物理内容) 第一章放射物理基础 1.1 介绍 基本物理常数重要推导物理常数物理量和单位四种基本作用力基本粒子非电离辐射和电离辐射光子致电离辐射质能关系辐射量和单位 1.2 原子与原子核结构 原子结构组成和特性卢瑟福原子模型玻尔氢原子模型及四个假定玻尔氢原子模型能级结构多电子原子壳层模型核结构核反应放射性放射性活度放射性衰变衰变常数半衰期比放射性活度平均寿命递次衰变核素活化放射性衰变方式及特点 1.3 电子相互作用 电子与轨道电子相互作用电子与原子核相互作用阻止本领总质量能量阻止本领质量阻止本领质量碰撞阻止本领质量辐射阻止本领限制性阻止本领质量散射本领传能线密度 1.4 光子相互作用 间接电离光子辐射光子束衰减性质半价层十分之一价层线性衰减系数质量衰减系数原子和电子衰减系数能量转移系数能量吸收系数光子相互作用类型光电效应相干(瑞利)散射康普顿效应对效应光致核反应各种效应的相对优势 第二章剂量学原则,量和单位 2.2 光子注量和能量注量 粒子注量能量注量粒子注量率能量注量率粒子注量谱能量注量谱; 2.3 比释动能 比释动能 2.4 CEMA Cema 2.5 吸收剂量

高中物理速度选择器和回旋加速器专项训练及答案及解析

高中物理速度选择器和回旋加速器专项训练及答案及解析 一、速度选择器和回旋加速器 1.如图所示的直角坐标系xOy ,在其第二象限内有垂直纸面向里的匀强磁场和沿y 轴负方向的匀强电场。虚线OA 位于第一象限,与y 轴正半轴的夹角θ=60°,在此角范围内有垂直纸面向外的匀强磁场;OA 与y 轴负半轴所夹空间里存在与OA 平行的匀强电场,电场强度大小E =10N/C 。一比荷q =1×106C/kg 的带电粒子从第二象限内M 点以速度v =2.0×103m/s 沿x 轴正方向射出,M 点到x 轴距离d =1.0m ,粒子在第二象限内做直线运动;粒子进入第一象限后从直线OA 上的P 点(P 点图中未画出)离开磁场,且OP =d 。不计粒子重力。 (1) 求第二象限中电场强度和磁感应强度的比值0 E B ; (2)求第一象限内磁场的磁感应强度大小B ; (3)粒子离开磁场后在电场中运动是否通过x 轴?如果通过x 轴,求其坐标;如果不通过x 轴,求粒子到x 轴的最小距离。 【答案】(1)32.010m/s ?;(2)3210T -?;(3)不会通过,0.2m 【解析】 【详解】 (1)由题意可知,粒子在第二象限内做匀速直线运动,根据力的平衡有 00qvB qE = 解得 30 2.010m/s E B =? (2)粒子在第二象限的磁场中做匀速圆周运动,由题意可知圆周运动半径 1.0m R d == 根据洛伦兹力提供向心力有 2 v qvB m R = 解得磁感应强度大小 3210T B -=? (3)粒子离开磁场时速度方向与直线OA 垂直,粒子在匀强电场中做曲线运动,粒子沿y 轴负方向做匀减速直线运动,粒子在P 点沿y 轴负方向的速度大小 sin y v v θ=

高考物理速度选择器和回旋加速器题20套(带答案)

高考物理速度选择器和回旋加速器题20套(带答案) 一、速度选择器和回旋加速器 1.图中左边有一对水平放置的平行金属板,两板相距为d ,电压为U 0,两板之间有垂直于纸面向里的匀强磁场,磁感应强度大小为B 0.图中右边有一半径为R 的圆形匀强磁场区域,磁感应强度大小为B 1,方向垂直于纸面朝外.一束离子垂直磁场沿如图路径穿出,并沿直径MN 方向射入磁场区域,最后从圆形区域边界上的P 点射出,已知图中θ=60o ,不计重力,求 (1)离子到达M 点时速度的大小; (2)离子的电性及比荷q m . 【答案】(1)00U dB (2)0 0133U dB B R 【解析】 (1)离子在平行金属板之间做匀速直线运动, 由平衡条件得:qvB 0=qE 0 已知电场强度:0 0U E d = 联立解得:0 U v dB = (2)根据左手定则,离子束带负电 离子在圆形磁场区域做匀速圆周运动,轨迹如图所示: 由牛顿第二定律得:2 1mv qvB r = 由几何关系得:3r R =

01 3 3 U q m dB B R = 点睛:在复合场中做匀速直线运动,这是速度选择器的原理,由平衡条件就能得到进入复合场的速度.在圆形磁场区域内根据偏转角求出离子做匀速圆周运动的半径,从而求出离子的比荷,要注意的是离开磁场时是背向磁场区域圆心的. 2.如图所示,一束质量为m、电荷量为q的粒子,恰好沿直线从两带电平行板正中间通过,沿圆心方向进入右侧圆形匀强磁场区域,粒子经过圆形磁场区域后,其运动方向与入射方向的夹角为θ(弧度).已知粒子的初速度为v0,两平行板间与右侧圆形区域内的磁场的磁感应强度大小均为B,方向均垂直纸面向内,两平行板间距为d,不计空气阻力及粒子重力的影响,求: (1)两平行板间的电势差U; (2)粒子在圆形磁场区域中运动的时间t; (3)圆形磁场区域的半径R. 【答案】(1)U=Bv0d;(2) m qB θ ;(3)R=0 tan 2 mv qB θ 【解析】 【分析】 (1)由粒子在平行板间做直线运动可知洛伦兹力和电场力平衡,可得两平行板间的电势差. (2)在圆形磁场区域中,洛伦兹力提供向心力,找到转过的角度和周期的关系可得粒子在圆形磁场区域中运动的时间. (3))由几何关系求半径R. 【详解】 (1)由粒子在平行板间做直线运动可知,Bv0q=qE,平行板间的电场强度E= U d ,解得两平行板间的电势差:U=Bv0d (2)在圆形磁场区域中,由洛伦兹力提供向心力可知: Bv0q=m 2 v r 同时有T= 2r v π 粒子在圆形磁场区域中运动的时间t= 2 θ π T

全国医用设备资格考试直线加速器(LA)物理师专业考试大纲

全国医用设备资格考试 直线加速器(LA)专业考试大纲 第一章放射物理基础 1.1 介绍 基本物理常数重要推导物理常数物理量和单位四种基本作用力基本粒子非电离辐射和电离辐射光子致电离辐射质能关系辐射量和单位 1.2 原子与原子核结构 原子结构组成和特性卢瑟福原子模型玻尔氢原子模型及四个假定玻尔氢原子模型能级结构多电子原子壳层模型核结构核反应放射性放射性活度放射性衰变衰变常数半衰期比放射性活度平均寿命递次衰变核素活化放射性衰变方式及特点 1.3 电子相互作用 电子与轨道电子相互作用电子与原子核相互作用阻止本领总质量能量阻止本领质量阻止本领质量碰撞阻止本领质量辐射阻止本领限制性阻止本领质量散射本领传能线密度1.4 光子相互作用 间接电离光子辐射光子束衰减性质半价层十分之一价层线性衰减系数质量衰减系数原子和电子衰减系数能量转移系数能量吸收系数光子相互作用类型光电效应相干(瑞利)散射康普顿效应对效应光致核反应各种效应的相对优势 第二章剂量学原则,量和单位 2.2 光子注量和能量注量 粒子注量能量注量粒子注量率能量注量率粒子注量谱能量注量谱; 2.3 比释动能 比释动能 2.4 CEMA Cema 2.5 吸收剂量 吸收剂量 2.6 阻止本领 阻止本领阻止本领比线性阻止本领质量阻止本领非限制性质量碰撞阻止本领限制性质量碰撞阻止本领软性碰撞硬性碰撞 2.7 不同剂量学量间的关系 能量注量和比释动能的关系碰撞比释动能辐射比释动能总比释动能 注量和吸收剂量的关系比释动能和吸收剂量的关系碰撞比释动能和照射量的关系

2.8 空腔理论 Bragg-Gray 空腔理论Spencer-Attix 空腔理论Burlin 空腔理论 第三章辐射剂量计 3.1 介绍 辐射剂量计及剂量测量 3.2 剂量计的特点 准确度精确度不确定度测量误差A类标准不确定度B类标准不确定度、合成不确定度展伸不确定度剂量响应线性剂量率的依赖性能量依赖性方向依赖性空间分辨率和物理尺寸数据读出的方便性使用的方便性 3.3 电离室剂量测定系统 电离室辐射束校准电离室的基本结构及特性静电计圆柱形电离室平行板电离室近距离治疗电离室(井形电离室或凹形电离室)外推电离室 3.4 胶片剂量计 透明度光学密度剂量-OD曲线胶片的gamma 宽容度感光度、辐射显色胶片 3.5 发光剂量计 发光现象光致发光空穴储存陷阱复合中心热释光剂量计工作原理光致荧光剂量测量系统 3.6 半导体剂量计 硅半导体剂量测量系统MOSFET剂量测量系统 3.7 其它剂量测量系统 丙胺酸/电子顺磁共振剂量测量系统塑料闪烁体剂量测量系统金刚石剂量计凝胶剂量测量系统 3.8 一级标准 一级标准空气比释动能的一级标准水吸收剂量的一级标准水量热计离子浓度测量标准化学剂量测定标准Fricke剂量计辐射化学产额量热法标准石墨量热计 3.9 常用剂量测定系统的总结 四种常用剂量计系统的主要优点与缺点 第四章辐射监测仪器 4.1 介绍 外照射检测辐射监测的范围 4.2 辐射监测中用到的量 环境剂量当量定向剂量当量个人剂量当量 4.3 场所辐射测量仪

高中物理速度选择器和回旋加速器试题类型及其解题技巧及解析

高中物理速度选择器和回旋加速器试题类型及其解题技巧及解析 一、速度选择器和回旋加速器 1.如图所示,在直角坐标系xOy 平面内有一个电场强度大小为E 、方向沿-y 方向的匀强电场,同时在以坐标原点O 为圆心、半径为R 的圆形区域内,有垂直于xOy 平面的匀强磁场,该圆周与x 轴的交点分别为P 点和Q 点,M 点和N 点也是圆周上的两点,OM 和ON 的连线与+x 方向的夹角均为θ=60°。现让一个α粒子从P 点沿+x 方向以初速度v 0射入,α粒子恰好做匀速直线运动,不计α粒子的重力。 (1)求匀强磁场的磁感应强度的大小和方向; (2)若只是把匀强电场撤去,α粒子仍从P 点以同样的速度射入,从M 点离开圆形区域,求α 粒子的比荷 q m ; (3) 若把匀强磁场撤去,α粒子的比荷 q m 不变,α粒子仍从P 点沿+x 方向射入,从N 点离开圆形区域,求α粒子在P 点的速度大小。 【答案】(1)0E v ,方向垂直纸面向里(2)03BR (3)3v 0 【解析】 【详解】 (1)由题可知电场力与洛伦兹力平衡,即 qE =Bqv 0 解得 B = E v 由左手定则可知磁感应强度的方向垂直纸面向里。 (2)粒子在磁场中的运动轨迹如图所示, 设带电粒子在磁场中的轨迹半径为r ,根据洛伦兹力充当向心力得 Bqv 0=m 20 v r

由几何关系可知 r=3R,联立得 q m =0 3BR (3)粒子从P到N做类平抛运动,根据几何关系可得 x=3 2 R=vt y= 3 2 R= 1 2 × qE m t2 又 qE=Bqv0联立解得 v=3 2 3 Bqv R m = 3 v0 2.如图所示,一束质量为m、电荷量为q的粒子,恰好沿直线从两带电平行板正中间通过,沿圆心方向进入右侧圆形匀强磁场区域,粒子经过圆形磁场区域后,其运动方向与入射方向的夹角为θ(弧度).已知粒子的初速度为v0,两平行板间与右侧圆形区域内的磁场的磁感应强度大小均为B,方向均垂直纸面向内,两平行板间距为d,不计空气阻力及粒子重力的影响,求: (1)两平行板间的电势差U; (2)粒子在圆形磁场区域中运动的时间t; (3)圆形磁场区域的半径R. 【答案】(1)U=Bv0d;(2) m qB θ ;(3)R=0 tan 2 mv qB θ 【解析】 【分析】 (1)由粒子在平行板间做直线运动可知洛伦兹力和电场力平衡,可得两平行板间的电势差. (2)在圆形磁场区域中,洛伦兹力提供向心力,找到转过的角度和周期的关系可得粒子在圆形磁场区域中运动的时间. (3))由几何关系求半径R. 【详解】

高中物理速度选择器和回旋加速器试题经典及解析

高中物理速度选择器和回旋加速器试题经典及解析 一、速度选择器和回旋加速器 1.某一具有速度选择器的质谱仪原理如图所示,A 为粒子加速器,加速电压为U 1;B 为速度选择器,磁场与电场正交,电场方向向左,两板间的电势差为U 2,距离为d ;C 为偏转分离器,磁感应强度为B 2,方向垂直纸面向里。今有一质量为m 、电荷量为e 的正粒子(初速度忽略,不计重力),经加速后,该粒子恰能通过速度选择器,粒子进入分离器后做匀速圆周运动,打在照相底片D 上。求: (1)磁场B 1的大小和方向 (2)现有大量的上述粒子进入加速器A ,但加速电压不稳定,在11U U -?到11U U +?范围内变化,可以通过调节速度选择器两板的电势差在一定范围内变化,使得加速后的不同速度的粒子都有机会进入C ,则打在照相底片D 上的宽度和速度选择器两板的电势差的变化范围。 【答案】(1)2112U m B d U e = 2)()()11112222m U U m U U D B e e +?-?=,()11min 1 U U U U U -?=() 11max 1 U U U U U +?=【解析】 【分析】 【详解】 (1)在加速电场中 2112 U e mv = 12U e v m = 在速度选择器B 中

2 1U eB v e d = 得 1B = 根据左手定则可知方向垂直纸面向里; (2)由可得加速电压不稳后获得的速度在一个范围内变化,最小值为 1v = 1 12 mv R eB = 最大值为 2v = 2 22 mv R eB = 打在D 上的宽度为 2122D R R =- 22D B = 若要使不同速度的粒子都有机会通过速度选择器,则对速度为v 的粒子有 1U eB v e d = 得 U=B 1vd 代入B 1 得 2U U = 再代入v 的值可得电压的最小值 min U U =最大值 max U U =

高中物理速度选择器和回旋加速器技巧和方法完整版及练习题及解析

高中物理速度选择器和回旋加速器技巧和方法完整版及练习题及解析 一、速度选择器和回旋加速器 1.如图所示,虚线O 1O 2是速度选择器的中线,其间匀强磁场的磁感应强度为B 1,匀强电场的场强为E (电场线没有画出)。照相底片与虚线O 1O 2垂直,其右侧偏转磁场的磁感应强度为B 2。现有一个离子沿着虚线O 1O 2向右做匀速运动,穿过照相底片的小孔后在偏转磁场中做半径为R 的匀速圆周运动,最后垂直打在照相底片上(不计离子所受重力)。 (1)求该离子沿虚线运动的速度大小v ; (2) 求该离子的比荷 q m ; (3)如果带电量都为q 的两种同位素离子,沿着虚线O 1O 2射入速度选择器,它们在照相底片的落点间距大小为d ,求这两种同位素离子的质量差△m 。 【答案】(1)1E v B =;(2)12q E m RB B =;(3)122B B qd m E ?= 【解析】 【分析】 【详解】 (1)离子沿虚线做匀速直线运动,合力为0 Eq =B 1qv 解得 1 E v B = (2)在偏转磁场中做半径为R 的匀速圆周运动,所以 2 2mv B qv R = 解得 12 q E m RB B = (3)设质量较小的离子质量为m 1,半径R 1;质量较大的离子质量为m 2,半径为R 2 根据题意 R 2=R 1+ 2 d 它们带电量相同,进入底片时速度都为v ,得

2 121 m v B qv R = 2 222 m v B qv R = 联立得 22121()B q m m m R R v ?=-= - 化简得 122B B qd m E ?= 2.某粒子源向周围空间辐射带电粒子,工作人员欲通过质谱仪测量粒子的比荷,如图所示,其中S 为粒子源,A 为速度选择器,当磁感应强度为B 1,两板间电压为U ,板间距离为d 时,仅有沿轴线方向射出的粒子通过挡板P 上的狭缝进入偏转磁场,磁场的方向垂直于纸面向外,磁感应强度大小为B 2,磁场右边界MN 平行于挡板,挡板与竖直方向夹角为α,最终打在胶片上离狭缝距离为L 的D 点,不计粒子重力。求: (1)射出粒子的速率; (2)射出粒子的比荷; (3)MN 与挡板之间的最小距离。 【答案】(1)1U B d (2)22cos v B L α(3)(1sin )2cos L αα - 【解析】 【详解】 (1)粒子在速度选择器中做匀速直线运动, 由平衡条件得: qυB 1=q U d 解得υ=1U B d ; (2)粒子在磁场中做匀速圆周运动,运动轨迹如图所示:

高考物理速度选择器和回旋加速器解题技巧讲解及练习题

高考物理速度选择器和回旋加速器解题技巧讲解及练习题 一、速度选择器和回旋加速器 1.某一具有速度选择器的质谱仪原理如图所示,A 为粒子加速器,加速电压为U 1;B 为速度选择器,磁场与电场正交,电场方向向左,两板间的电势差为U 2,距离为d ;C 为偏转分离器,磁感应强度为B 2,方向垂直纸面向里。今有一质量为m 、电荷量为e 的正粒子(初速度忽略,不计重力),经加速后,该粒子恰能通过速度选择器,粒子进入分离器后做匀速圆周运动,打在照相底片D 上。求: (1)磁场B 1的大小和方向 (2)现有大量的上述粒子进入加速器A ,但加速电压不稳定,在11U U -?到11U U +?范围内变化,可以通过调节速度选择器两板的电势差在一定范围内变化,使得加速后的不同速度的粒子都有机会进入C ,则打在照相底片D 上的宽度和速度选择器两板的电势差的变化范围。 【答案】(1)2112U m B d U e = 2)()()11112222m U U m U U D B e e +?-?=,()11min 1 U U U U U -?=() 11max 1 U U U U U +?=【解析】 【分析】 【详解】 (1)在加速电场中 2112 U e mv = 12U e v m = 在速度选择器B 中

2 1U eB v e d = 得 1B = 根据左手定则可知方向垂直纸面向里; (2)由可得加速电压不稳后获得的速度在一个范围内变化,最小值为 1v = 1 12 mv R eB = 最大值为 2v = 2 22 mv R eB = 打在D 上的宽度为 2122D R R =- 22D B = 若要使不同速度的粒子都有机会通过速度选择器,则对速度为v 的粒子有 1U eB v e d = 得 U=B 1vd 代入B 1 得 2U U = 再代入v 的值可得电压的最小值 min U U =最大值 max U U =

高中物理速度选择器和回旋加速器及其解题技巧及练习题

高中物理速度选择器和回旋加速器及其解题技巧及练习题 一、速度选择器和回旋加速器 1.如图所示,水平放置的两平行金属板间存在着相互垂直的匀强电场和匀强磁场。已知两板间的电势差为U ,距离为d ;匀强磁场的磁感应强度为B ,方向垂直纸面向里。一质量为m 、电荷量为q 的带电粒子从A 点沿水平方向射入到两板之间,恰好沿直线从M 点射出;如果撤去磁场,粒子从N 点射出。M 、N 两点间的距离为h 。不计粒子的重力。求: (1)匀强电场场强的大小E ; (2)粒子从A 点射入时的速度大小v 0; (3)粒子从N 点射出时的动能E k 。 【答案】(1)电场强度U E d =;(2)0U v Bd =;(3)2 222k qUh mU E d B d =+ 【解析】 【详解】 (1)电场强度U E d = (2)粒子做匀速直线运动,电场力与洛伦兹力大小相等,方向相反,有:0qE qv B = 解得0E U v B Bd = = (3)粒子从N 点射出,由动能定理得:2012 k qE h E mv ?=- 解得2 222k qUh mU E d B d =+ 2.如图所示,半径为R 的圆与正方形abcd 相内切,在ab 、dc 边放置两带电平行金属板,在板间形成匀强电场,且在圆内有垂直纸面向里的匀强磁场.一质量为m 、带电荷量为+q 的粒子从ad 边中点O 1沿O 1O 方向以速度v 0射入,恰沿直线通过圆形磁场区域,并从bc 边中点O 2飞出.若撤去磁场而保留电场,粒子仍从O 1点以相同速度射入,则粒子恰好打到某极板边缘.不计粒子重力.

(1)求两极板间电压U 的大小 (2)若撤去电场而保留磁场,粒子从O 1点以不同速度射入,要使粒子能打到极板上,求粒子入射速度的范围. 【答案】(1)20mv q (2)002121 22 v v v -+≤≤ 【解析】 试题分析:(1)由粒子的电性和偏转方向,确定电场强度的方向,从而就确定了两板电势的高低;再根据类平抛运动的规律求出两板间的电压.(2)先根据有两种场均存在时做直线运动的过程,求出磁感应强度的大小,当撤去电场后,粒子做匀速圆周运动,要使粒子打到板上,由几何关系求出最大半径和最小半径,从而由洛仑兹力提供向心力就能得出最大的速度和最小速度. (1)无磁场时,粒子在电场中做类平抛运动,根据类平抛运动的规律有: 212 R at = ,02R v t =,2qU a Rm = 解得:2 mv U q = (2)由于粒子开始时在电磁场中沿直线通过,则有:02U qv B q R = 撤去电场保留磁场粒子将向上偏转,若打到a 点,如图甲图: 由几何关系有:2r r R = 由洛伦兹力提供向心力有:2 11v qv B m r = 解得:1021 2 v v = 若打到b 点,如图乙所示:

高中物理速度选择器和回旋加速器技巧(很有用)及练习题及解析

高中物理速度选择器和回旋加速器技巧(很有用)及练习题及解析 一、速度选择器和回旋加速器 1.某一具有速度选择器的质谱仪原理如图所示,A 为粒子加速器,加速电压为U 1;B 为速度选择器,磁场与电场正交,电场方向向左,两板间的电势差为U 2,距离为d ;C 为偏转分离器,磁感应强度为B 2,方向垂直纸面向里。今有一质量为m 、电荷量为e 的正粒子(初速度忽略,不计重力),经加速后,该粒子恰能通过速度选择器,粒子进入分离器后做匀速圆周运动,打在照相底片D 上。求: (1)磁场B 1的大小和方向 (2)现有大量的上述粒子进入加速器A ,但加速电压不稳定,在11U U -?到11U U +?范围内变化,可以通过调节速度选择器两板的电势差在一定范围内变化,使得加速后的不同速度的粒子都有机会进入C ,则打在照相底片D 上的宽度和速度选择器两板的电势差的变化范围。 【答案】(1)2112U m B d U e = 2)()()11112222m U U m U U D B e e +?-?=,()11min 1 U U U U U -?=() 11max 1 U U U U U +?=【解析】 【分析】 【详解】 (1)在加速电场中 2112 U e mv = 12U e v m = 在速度选择器B 中

2 1U eB v e d = 得 1B = 根据左手定则可知方向垂直纸面向里; (2)由可得加速电压不稳后获得的速度在一个范围内变化,最小值为 1v = 1 12 mv R eB = 最大值为 2v = 2 22 mv R eB = 打在D 上的宽度为 2122D R R =- 22D B = 若要使不同速度的粒子都有机会通过速度选择器,则对速度为v 的粒子有 1U eB v e d = 得 U=B 1vd 代入B 1 得 2U U = 再代入v 的值可得电压的最小值 min U U =最大值 max U U =

(物理)高考必备物理速度选择器和回旋加速器技巧全解及练习题

(物理)高考必备物理速度选择器和回旋加速器技巧全解及练习题 一、速度选择器和回旋加速器 1.如图所示:在两个水平平行金属极板间存在着向下的匀强电场和垂直纸面向里的匀强磁场,电场强度和磁感应强度的大小分别为E =1×103N/C 和B 1=0.02T ,极板长度L =0.4m ,间距足够大。在极板的右侧还存在着另一圆形匀强磁场区域,磁场的方向垂直纸面向外,圆形磁场的圆心O 位于平行金属板的中线上,圆形磁场的半径R =0.6m 。有一带正电的粒子以一定初速度v 0沿极板中线水平向右飞入极板间恰好做匀速直线运动,然后进入圆形匀强磁场区域,飞出后速度方向偏转了74°,不计粒子重力,粒子的比荷q m =3.125×106C/kg ,sin37°=0.6,cos37°=0.8,5≈2.24。求: (1)粒子初速度v 0的大小; (2)圆形匀强磁场区域的磁感应强度B 2的大小; (3)在其他条件都不变的情况下,将极板间的磁场撤去,为使粒子飞出极板后不能进入圆形磁场,则圆形磁场的圆心O 离极板右边缘的水平距离d 应该满足的条件。 【答案】(1)v 0=5×104m/s ;(2)B 2=0.02T ;(3) 1.144m d ≥。 【解析】 【详解】 (1)粒子在电场和磁场中匀速运动,洛伦兹力与电场力平衡 qv 0B 1=Eq 带电粒子初速度 v 0=5×104m/s (2)带电粒子进入磁场后做匀速圆周运动,洛伦兹力充当向心力 20 02v qv B m r = 轨迹如图所示:

由几何关系,带电粒子做圆周运动的半径为 4 0.8m tan 373 R r R = ==? 联立解得: B 2=0.02T (3)带电粒子在电场中做类平抛运动 水平方向 0L v t =? 竖直方向 212 y at = 由牛顿第二定律 qE ma = 粒子飞出极板后不能进入圆形磁场即轨迹刚好与圆形磁场相切,如图所示: 由几何关系 ,利用三角形相似,有: 22 ()22 L y y R d +=+ 解得

高中物理速度选择器和回旋加速器解题技巧及练习题及解析

高中物理速度选择器和回旋加速器解题技巧及练习题及解析 一、速度选择器和回旋加速器 1.如图,空间存在匀强电场和匀强磁场,电场方向为y 轴正方向,磁场方向垂直于xy 平面(纸面)向外,电场E 和磁场B 都可以随意加上或撤除,重新加上的电场或磁场与撤除前的一样。一带正电的粒子质量为m 、电荷量为q 从P (x =0,y =h )点以一定的速度平行于x 轴正向入射。这时若只有磁场,粒子将做半径为R 0的圆周运动;若同时存在电场和磁场,粒子恰好做直线运动.求: (1)若只有磁场,粒子做圆周运动的半径R 0大小; (2)若同时存在电场和磁场,粒子的速度0v 大小; (3)现在,只加电场,当粒子从P 点运动到x =R 0平面(图中虚线所示)时,立即撤除电场同时加上磁场,粒子继续运动,其轨迹与x 轴交于M 点。(不计重力)。粒子到达x =R 0平面时速度v 大小以及粒子到x 轴的距离; (4)M 点的横坐标x M 。 【答案】(1)0mv qB (2)E B (302v ,02R h +(4)2 2000724 M x R R R h h =++-【解析】 【详解】 (1)若只有磁场,粒子做圆周运动有:2 00 qB m R =v v 解得粒子做圆周运动的半径0 0m R qB ν= (2)若同时存在电场和磁场,粒子恰好做直线运动,则有:0qE qB =v 解得粒子的速度0E v B = (3)只有电场时,粒子做类平抛,有: 00y qE ma R v a t v t === 解得:0y v v =

所以粒子速度大小为:22 002y v v v v =+= 粒子与x 轴的距离为:2 0122 R H h at h =+ =+ (4)撤电场加上磁场后,有:2 v qBv m R = 解得:02R R = 粒子运动轨迹如图所示: 圆心C 位于与速度v 方向垂直的直线上,该直线与x 轴和y 轴的夹角均为4 π ,由几何关系得C 点坐标为: 02C x R =, 02 C R y H R h =-=- 过C 作x 轴的垂线,在ΔCDM 中: 02CM R R == 2 C R C D y h ==- 解得:2 2 2 20074 DM CM CD R R h h =-=+-M 点横坐标为:2 2000724 M x R R R h h =+- 2.如图所示,相距为d 的平行金属板M 、N 间存在匀强电场和垂直纸面向里、磁感应强度为B 0的匀强磁场;在xOy 直角坐标平面内,第一象限有沿y 轴负方向场强为E 的匀强电场,第四象限有垂直坐标平面向里、磁感应强度为B 的匀强磁场.一质量为m 、电荷量为q 的正离子(不计重力)以初速度v 0沿平行于金属板方向射入两板间并做匀速直线运动,从P 点垂直y 轴进入第一象限,经过x 轴上的A 点射出电场进入磁场.已知离子过A 点时的速

高考物理专题汇编物理速度选择器和回旋加速器(一)及解析

高考物理专题汇编物理速度选择器和回旋加速器(一)及解析 一、速度选择器和回旋加速器 1.如图所示的直角坐标系xOy ,在其第二象限内有垂直纸面向里的匀强磁场和沿y 轴负方向的匀强电场。虚线OA 位于第一象限,与y 轴正半轴的夹角θ=60°,在此角范围内有垂直纸面向外的匀强磁场;OA 与y 轴负半轴所夹空间里存在与OA 平行的匀强电场,电场强度大小E =10N/C 。一比荷q =1×106C/kg 的带电粒子从第二象限内M 点以速度v =2.0×103m/s 沿x 轴正方向射出,M 点到x 轴距离d =1.0m ,粒子在第二象限内做直线运动;粒子进入第一象限后从直线OA 上的P 点(P 点图中未画出)离开磁场,且OP =d 。不计粒子重力。 (1)求第二象限中电场强度和磁感应强度的比值 E B ; (2)求第一象限内磁场的磁感应强度大小B ; (3)粒子离开磁场后在电场中运动是否通过x 轴?如果通过x 轴,求其坐标;如果不通过x 轴,求粒子到x 轴的最小距离。 【答案】(1)32.010m/s ?;(2)3210T -?;(3)不会通过,0.2m 【解析】 【详解】 (1)由题意可知,粒子在第二象限内做匀速直线运动,根据力的平衡有 00qvB qE = 解得 30 2.010m/s E B =? (2)粒子在第二象限的磁场中做匀速圆周运动,由题意可知圆周运动半径 1.0m R d == 根据洛伦兹力提供向心力有 2 v qvB m R = 解得磁感应强度大小 3210T B -=? (3)粒子离开磁场时速度方向与直线OA 垂直,粒子在匀强电场中做曲线运动,粒子沿y 轴负方向做匀减速直线运动,粒子在P 点沿y 轴负方向的速度大小 sin y v v θ=

(物理)速度选择器和回旋加速器练习全集

(物理)速度选择器和回旋加速器练习全集 一、速度选择器和回旋加速器 1.如图所示,虚线O 1O 2是速度选择器的中线,其间匀强磁场的磁感应强度为B 1,匀强电场的场强为E (电场线没有画出)。照相底片与虚线O 1O 2垂直,其右侧偏转磁场的磁感应强度为B 2。现有一个离子沿着虚线O 1O 2向右做匀速运动,穿过照相底片的小孔后在偏转磁场中做半径为R 的匀速圆周运动,最后垂直打在照相底片上(不计离子所受重力)。 (1)求该离子沿虚线运动的速度大小v ; (2) 求该离子的比荷 q m ; (3)如果带电量都为q 的两种同位素离子,沿着虚线O 1O 2射入速度选择器,它们在照相底片的落点间距大小为d ,求这两种同位素离子的质量差△m 。 【答案】(1)1E v B =;(2)12q E m RB B =;(3)122B B qd m E ?= 【解析】 【分析】 【详解】 (1)离子沿虚线做匀速直线运动,合力为0 Eq =B 1qv 解得 1 E v B = (2)在偏转磁场中做半径为R 的匀速圆周运动,所以 2 2mv B qv R = 解得 12 q E m RB B = (3)设质量较小的离子质量为m 1,半径R 1;质量较大的离子质量为m 2,半径为R 2 根据题意 R 2=R 1+ 2 d 它们带电量相同,进入底片时速度都为v ,得

21 R 2 222 m v B qv R = 联立得 22121()B q m m m R R v ?=-= - 化简得 122B B qd m E ?= 2.如图所示,竖直挡板MN 右侧空间存在相互垂直的匀强电场和匀强磁场,电场方向竖直向上,电场强度E =100N/C ,磁场方向垂直纸面向里,磁感应强度B =0.2T ,场中A 点与挡板的距离L =0.5m 。某带电量q =+2.0×10-6C 的粒子从A 点以速度v 垂直射向挡板,恰能做匀速直线运动,打在挡板上的P 1点;如果仅撤去电场,保持磁场不变,该粒子仍从A 点以相同速度垂直射向挡板,粒子的运动轨迹与挡板MN 相切于P 2点,不计粒子所受重力。求: (1)带电粒子的速度大小v ; (2)带电粒子的质量m 。 【答案】(1)500m/s v =;(2)10 4.010kg m -=? 【解析】 【分析】 【详解】 (1)正粒子在正交的电场和磁场中做匀速直线运动,则向上的电场力和向下的洛伦兹力平衡,有 qE qvB = 解得带电粒子的速度大小 100m/s 500m/s 0.2 E v B = == (2)仅撤去电场保持磁场不变,带电粒子在磁场中做匀速圆周运动,有

相关主题
文本预览
相关文档 最新文档