当前位置:文档之家› 哈密顿力学

哈密顿力学

哈密顿力学
哈密顿力学

量子力学中几种表象及其之间的关系

量子力学中几种表象及其之间的关系 摘要 体系的态可以用以坐标为变量的波函数ψ(x,t)来描写,力学量则以作用在这种波函数上的算符(量子力学中的算符代表对波函数的一种运算)来表示,这是量子力学中态和力学量的一种具体表述方式。态还可以用其他变量的函数作为波函数来描写体系的状态。 微观粒子体系的状态(量子态)和力学量的具体表示形式称为表象。 常用的表象有坐标表象、动量表象和能量表象。 而研究量子力学规律的各种表示形式以及这些不同形式之间的变换的理论,则称为表象理论。 关键词 态的表象 坐标表象 动量表象 Q 表象 算符表象 角动量表象 正文 体系的态既可用以x (表示全部坐标变量)为变量的波函数ψ(x,t)来描写,也可用以动量p 为变量的波函数c(p,t)来描写。ψ(x,t)和c(p,t)之间的变换关系是 式中 是动量的本征函数, dx x t x t p c dp x t p c t x p p )(),(),()(),(),(*ψ?=?=ψψψ /2 /1)2(1)(ipx p e x -=πψ

称ψ(x,t)是在坐标表象中的波函数,而c(p,t)是同一态在动量表象中的波函数。 由ψ(x,t)可知,粒子坐标在x 到x+dx 之间的概率 c 由(p,t )可知,粒子动量在p 到p+dp 之间的概率 如果ψ(x,t)所描写的状态是具有动量p ’的自由粒子的状态,即ψ(x,t)=ψp ’(x,t),则 在动量表象中,粒子具有确定动量p ’的波函数是以动量p 为变量的δ函数。 那么,态在任意力学量Q 的表象中的描写方式又是什么样呢? 设力学量Q 具有分立的本征值Q1,Q2,…Qn …,对应的本征函数为u1(x),u2(x),…,un(x),…,并组成正交归一的完全系。将态在坐标表象中的波函数ψ(x,t)按{un(x)}展开成 dx t x dx t x w 2 ),(),(ψ=dp t p c dp t p w 2 ),(),(=dx e x x dx x t x t p c t iEp p p p p /''')()()(),(),(-**?=ψ?=ψψψ /')'(t iEp e p p --=δ) ()(),(x u t a t x n n n ∑=ψ

1哈密顿原理

牛顿质点动力学 1 牛顿第二定律 dt d p f 从三个方面来应用: 全局性研究:对称性、守恒律、稳定性; 局部研究:平均值、动量定理、动能定理; 瞬时研究:极限求导、奇异性、突变性; 2 重点研究非惯性、矢量性、连续性、相对性的问题; 3 从动力学观点上升到能量的观点。 哈密顿原理、保守力及其势 4 五大类典型模型 概括: 一个原理:哈密顿原理(稳定性与对称性原理); 哈密顿原理的文字表述如下: 二种建模方法:动力学方法、能量法; 三类研究方法:对称性方法(全局)、平均值方法(局部) 求极限、求导、突变及奇异性研究方法(瞬时);

四大重点问题:矢量性(矢量空间法)、连续性(微元动力学法)、相对性(相对速度公式法)、非惯性(等效性法); 五项典型模型:准粒子模型、碰撞模型、势模型、相空间模型、简谐振动与波模型。(科学计算技术与研究式的学习模式) 哈密顿原理、对称性和稳定性 1.拉格朗日函数和哈密顿量 拉格朗日函数L 对于一个物理系统,可用一个称为拉格朗日函数的量),,(t q q L i i &来描述,其中i q 是广义坐标,=i q &dt dq i /是广义速度;广义坐标与通常所说的坐标区别在于,广义坐标是针对系统的自由度确定的,譬如一个质点限制在半径R 的球面上运动,其坐标显然有x 、y 、z 三个,但广义坐标只有φθ,两个,其中?θcos sin R x =,θ?θcos ,sin sin R z b R y ==;一般由于运动受到约束,坐标与广义坐标的数量是不相等的,仅在无约束条件下,坐标与广义坐标的数目才是一样的,与坐标一样广义坐标的选取也不是唯一的。 在保守力作用下,系统的拉格朗日量L 定义为动能与势能之差;U T L -= 哈密顿量H 物理系统还可以用一个称之为哈密顿量的函数描述,在保守力作用下,哈密顿量定义为系统的动能与势能之和

对“从拉格朗日力学到哈密顿力学”的研究

对“从拉格朗日力学到哈密顿力学”的研究 ----2010应用物理学专业 ----王兵 本文从达朗贝尔原理出发,导出拉格朗日方程,进而得到哈密顿力学,最后再讨论两者之间的统一性,共包含三大部分。 一 拉格朗日力学体系的形成 已知达朗贝尔公式: 0)(1 =?-∑=i i i n i i r m F r δ (1) 仔细观察我们发现达朗贝尔公式存在如下不足: 1.对于一个力学系统共含有n 个部分,单是对矢径r 共需要至少考虑3n 次,由此可见此法考虑的相关量较多,实际问题中比较复杂。 2.始终存在矢量,因此在处理过程中也会增加复杂程度。 针对以上问题,我们提出一种新的思路或方法: 1.能将n 个整体量的研究转化为对另外s 个部分量(广义坐标)的研究, 从而使问题简化。但是对这n 个量的研究意义等价于对这s 个部分量(广义坐标)的研究. 2.能实现将矢量的研究转化为对标量的研究。 基于上面的分析讨论,我们将广义坐标引入,并对达朗贝尔公式做如下修正: 基本关系式:),,,,(21t q q q r r i i α??????= s ,,2,1??????=α由此得到: ααα δδq q r r s i i ∑=??= 1 (2) 首先我们将达朗贝尔公式作如下分解: 0)(1 1 1 =?-?=?-∑∑∑===i i n i i i n i i i i i n i i r r m r F r r m F δδδ 接下来将(2)式分别中的两部分分别研究:

第一部分: i n i i r F δ?∑=1 将(2)式代入有: ααααα ααα δδδδα q Q q q r F q F r F s i s n i i s q r n i i i n i i i ∑∑∑∑∑∑====??===????=?=?1111 1 1 )()( (3) 式中:α αq r F Q i n i i ??? = ∑-1,由于其具有力的量纲,所以称其为广义力。 第二步分: i i n i i r r m δ?∑= 1 首先将(2)式代入: ααααααδδq q r r m q q r r m i i s n i i s i i n i i ????=???∑∑∑∑====)()(1111 (4) 式中存在两阶全导数,而且还有矢量,而且还有质量。因此我们尝试将其转化为动能,因此首先想到将其降阶处理,所以尝试用分部求导法,并将括号内的部分提取出来单独研究: )(d d )(d d 111αααq r t r m q r r t m q r r m i i n i i i i n i i i i n i i ???-???=???∑∑∑=== (5) 观察发现上式两部分中均含有i r ,为了能将其放入到偏导符号内部,我们需要将偏导符号内部的i r 转化为i r ,所以我们尝试做如下分析: 假设有22y x r i += (1)由上式可直接得到: x x r i 2=??,x x r i ?=2 再有: x x r i 2=?? 结果我们发现如下关系式: x r x r i i ??=?? 因此,我们猜测: ββq r q r i i ??=?? (6) (2)已知 x x r i 2=??,x x r i ?=2 则: x x r t i 2)(d d =??

7第5章哈密顿原理

第5章哈密顿原理 如前所述,力学的变分原理的实质是:将真实运动与可能发生的运动加以比较,建立判别准则以区分真实运动和可能的运动。哈密顿原理是通过真实运动与可能的运动在位形空间的位形轨迹加以比较,而哈密顿作用量S 是对不同的位形轨线取不同值的泛函,从而得到对真实运动来讲,哈密顿作用量的变分等于零。 将拉格朗日方程引人哈密顿函数,导出哈密顿正则方程;给出了一种对偶的数学体系,开拓了应用前景;由动力学普遍方程对时间积分,导出一个重要的力学变分原理——哈密顿原理,提出了将真实运动与同样条件下的可能运动区分开来的准则;对于有限过程,提供了一种动力学问题的直接近似解法。 5.1 哈密顿正则方程 哈密顿正则方程是分析力学中又一个重要的力学方程,它与拉格朗日方程等价,是2n 个一阶常微分方程组。我们知道,对于一个质点系统,在建立拉格朗日方程后,重要的问题是研究这个微分方程组的积分,但是求解往往是很困难的。哈密顿正则方程的重要性在于它将n 个二阶微分方程变换为2n 个一阶方程,而且结构对称、简洁,为正则积分理论创造了有利条件。若是说拉格朗日方程对分析力学起着开拓性作用,则哈密顿正则方程对分析力学中的积分理论起着基础的和推动的作用。哈密顿正则方程的重要性还在于在许多理论的定性研究中,并不需要求解微分方程组,而是将二阶微分方程变换为二个一阶方程并应用几何方法求解。 5.1.1 正则方程的建立 对于主动力均有势的k 个自由度的完整约束系统,其拉格朗日方程为 ),,2,1(0d d k j q L q L t j j ==??-???? ???? (5-1) 引入广义动量 ),,2,1(k j q L p j j =??= (5-2) 代入式(5-1),有 ),,2,1(k j q L p j j =??= (5-3) 设拉格朗日函数L 满足条件 0det 2≠??? ? ? ????k j q q L 于是,可由式(5-2)反解出 ),,2,1(),,,,,,(11k j t p p q q f q k k j j == (5-4) 式(5-3)和式(5-4)就把方程(5-1)由k 个二阶微分方程化为2k 个一阶微分方程,其中方程 组(5-4)并非正则形式。引入哈密顿函数

哈密顿原理

§7-4 哈密顿原理 人们为了追求自然规律的统一、 和谐, 按照科学的审美观点, 总是力图用尽可能少的原理(即公理)去概括尽可能多的规律. 牛顿提出的三个定律, 是力学的基本原理. 由这些基本原理出发, 经过严格的逻辑推理和数学演绎, 可以获得经典力学的整个理论框架. 哈密顿原理是分析力学的基本原理, 它潜藏着经典力学的全部内容并把这门学科的所有命题统一起来. 也就是说, 由它出发, 亦可得到经典力学的整个框架. 哈密顿原理是力学中的积分变分原理. 变分原理提供了一个准则, 使我们能从约束许可条件下的一切可能运动中, 将力学系统的真实运动挑选出来. 变分原理的这一思想, 不仅在力学中, 而且在物理学科的其他领域中, 都具有重要意义. 一、变分法简介 1. 函数的变分. 自变量为x 的函数表示为)(x y y =. 函数的微分x y y d d ′=是由自变量x 的变化引起的函数的变化. 函数的变分也是函数的微变量, 但它不是因为自变量x 的变化, 而是由于函数形式的变化引起

的. 这种由于函数形式变化造成的函数的变更称为函数的变分, 记作y δ. 与函数y 邻近但形式与y 不同的函数有许多, 这些函数可以表示如下: )()0,(),(* x x y x y εηε+= 其中ε是任意小的参数, ()x η是任意给定的可微函数. 因0=ε时()()x y x y =0,, 所以函数形式的变化决定于上式的第二项. 因此, 函数的变分写成 ()()()x x y x y y εηε=?=0,,δ* 在自由度为1的力学系统中讨论变分的概念. 设广义坐标为q , )(t q q =. 建立以t q ,为轴的二维时空坐标系(又称事件空间), 曲线I 是)(t q q =的函数曲线, 代表了系统的真实运动. q t d d →函数的微分. 在曲线I 附近, 存在 着许多相邻曲线, 这些曲 线都满足力学系统的约束 条件, 称为可能运动曲线, 它们的方程表示为 ()()()t t q t q εηε+=0,,* 在t 不变的情况下, 函数形式的改变也能引起函数的变化, 这种变化纯粹是由函数形式变化引起的, 它就是函数的变分q δ, ()()()t t q t q q εηεδ=?=0,,*

5.7哈密顿原理作业

1 哈哈密密顿顿原原理理作作业业 1.如图示,质量为m 的复摆绕通过某点O 的水平轴作微小振动,复摆对转轴的转动惯量为0I ,质心C 到悬点O 的距离为 ,试用哈密顿原理求该复摆的运动方程及振 动周期。 1.解:取θ为广义坐标,则拉格朗日函数为: θ+θ=-=cos mg I 21 V T L 2 0 其中取悬点O 为零势能点。 于是哈密顿原理0dt L 21t t =δ?可得:0dt cos mg I 2 121t t 20=??? ??θ+θδ? 即:()0dt sin mg I 2 1t t 0=θδθ-θδθ ? 而δθθ-δθθ=δθθ=θδθ 0 000I )I (dt d )(dt d I I 则:()0dt sin mg I )I (dt d dt sin mg I 212 1t t 00t t 0=??? ??θδθ-δθθ-δθθ=θδθ-θδθ ?? 即:()0dt sin mg I I 212 1t t 0t t 0=δθθ+θ-δθθ ? 而0I 21t t 0=δθθ ,δθ取任意值 所以:0sin mg I 0=θ+θ 即:0sin I mg 0=θ+θ 而θ≈θsin ,则:0I mg 0 =θ+θ ,此即为所求的运动方程。 其中角频率0I /mg =ω 所以振动周期)mg /(I 2/2T 0 π=ωπ=。 2.试用哈密顿原理求质量为m 的质点在重力场中用直角坐标系表示的运动微分方程。 2.解:取x,y,z 为广义坐标,则: 体系的动能)z y x (m 2 1 T 222 ++= 势能mgz V =(以地面为零势能点) 拉氏函数mgz )z y x (m 21 V T L 222-++=-=

量子力学第三章算符

第三章 算符和力学量算符 算符概述 设某种运算把函数u 变为函数v ,用算符表示为: ?Fu v = () ? F 称为算符。u 与v 中的变量可能相同,也可能不同。例如,11du v dx =,22xu v =3 v =, (,) x t ?∞ -∞ ,(,)x i p x h x e dx C p t -=,则d dx ,x dx ∞ -∞ ,x i p x h e -?都是算符。 1.算符的一般运算 (1)算符的相等:对于任意函数u ,若??Fu Gu =,则??G F =。 (2)算符的相加:对于任意函数u ,若???Fu Gu Mu +=,则???M F G =+。算符的相加满足交换律。 (3)算符的相乘:对于任意函数u ,若???FFu Mu =,则???M GF =。算符的相乘一般不满足交换律。如果????FG GF =,则称?F 与?G 对易。 2.几种特殊算符 (1)单位算符 对于任意涵数u ,若?I u=u ,则称?I 为单位算符。?I 与1是等价的。 (2)线性算符 对于任意函数u 与v ,若**1212 ???()F C u C v C Fu C Fv +=+,则称?F 为反线性算符。 (3)逆算符 对于任意函数u ,若????FGu GFu u ==则称?F 与?G 互为逆算符。即1??G F -=,111??????,1F G FF F F ---===。 并非所有的算符都有逆算符,例如把零作为算符时,称之为零算符,零算符就没有逆算符。 对于非齐次线性微分方程:?()()Fu x af x =,其中?F 为d dx 与函数构成的线性算符,a 为常数。

1哈密顿原理

1哈密顿原理

牛顿质点动力学 1 牛顿第二定律 dt d p f 从三个方面来应用: 全局性研究:对称性、守恒律、稳定性; 局部研究:平均值、动量定理、动能定理; 瞬时研究:极限求导、奇异性、突变性; 2 重点研究非惯性、矢量性、连续性、相对性的问题; 3 从动力学观点上升到能量的观点。 哈密顿原理、保守力及其势 4 五大类典型模型 概括: 一个原理:哈密顿原理(稳定性与对称性原理); 哈密顿原理的文字表述如下: 保守的、完整的力学体系在相同时间内,由某一初位形转移到另一已知位形的一切可能运动中,真实运动的主函数具有稳定值,即对于真实运动来讲,主函数的变分等于0。 二种建模方法:动力学方法、能量法; 三类研究方法:对称性方法(全局)、平均值方法(局部) 求极限、求导、突变及奇异性研究方法(瞬时);

四大重点问题:矢量性(矢量空间法)、连续性(微元动力学法)、相对性(相对速度公式法)、非惯性(等效性法); 五项典型模型:准粒子模型、碰撞模型、势模型、相空间模型、简谐振动与波模型。(科学计算技术与研究式的学习模式) 哈密顿原理、对称性和稳定性 1.拉格朗日函数和哈密顿量 拉格朗日函数L 对于一个物理系统,可用一个称为拉格朗日函数的量),,(t q q L i i &来描述,其中i q 是广义坐标,=i q &dt dq i /是广义速度;广义坐标与通常所说的坐标区别在于,广义坐标是针对系统的自由度确定的,譬如一个质点限制在半径R 的球面上运动,其坐标显然有x 、y 、z 三个,但广义坐标只有φθ,两个,其中?θcos sin R x =,θ?θcos ,sin sin R z b R y ==;一般由于运动受到约束,坐标与广义坐标的数量是不相等的,仅在无约束条件下,坐标与广义坐标的数目才是一样的,与坐标一样广义坐标的选取也不是唯一的。 在保守力作用下,系统的拉格朗日量L 定义为动能与势能之差;U T L -= 哈密顿量H 物理系统还可以用一个称之为哈密顿量的函数描述,在保守力作用下,哈密顿量定义为系统的动能与势能之和

1哈密顿原理-新版.pdf

牛顿质点动力学 1 牛顿第二定律dt d p f 从三个方面来应用: 全局性研究:对称性、守恒律、稳定性;局部研究:平均值、动量定理、动能定理;瞬时研究:极限求导、奇异性、突变性; 2 重点研究非惯性、矢量性、连续性、相对性的问题; 3 从动力学观点上升到能量的观点。哈密顿原理、保守力及其势 4 五大类典型模型概括: 一个原理:哈密顿原理(稳定性与对称性原理); 哈密顿原理的文字表述如下: 保守的、完整的力学体系在相同时间内,由某一初位形转移到另一已知位形的一切可能运动中, 真实运动的主函数具有 稳定值,即对于真实运动来讲,主函数的变分等于0。二种建模方法:动力学方法、能量法; 三类研究方法:对称性方法(全局)、平均值方法(局部)求极限、求导、突变及奇异性研究方法(瞬时) ;

四大重点问题:矢量性(矢量空间法)、连续性(微元动力学法)、相对性(相对速度公式法)、非惯性(等效性法);五项典型模型:准粒子模型、碰撞模型、势模型、相空间模型、简谐振动与波模型。(科学计算技术与研究式的学习模式) 哈密顿原理、对称性和稳定性 1.拉格朗日函数和哈密顿量拉格朗日函数 L 对于一个物理系统,可用一个称为拉格朗日函数的量 ),,(t q q L i i 来描述,其中i q 是广义坐标,i q dt dq i /是广义速 度;广义坐标与通常所说的坐标区别在于,广义坐标是针对系统的自由度确定的,譬如一个质点限制在半径R 的球面上 运动,其坐标显然有x 、y 、z 三个,但广义坐标只有 ,两 个,其中cos sin R x ,cos ,sin sin R z b R y ;一 般由于运动受到约束,坐标与广义坐标的数量是不相等的,仅在无约束条件下,坐标与广义坐标的数目才是一样的,与坐 标一样广义坐标的选取也不是唯一的。 在保守力作用下,系统的拉格朗日量L 定义为动能与势 能之差;U T L 哈密顿量H

关于量子力学中的算符

关于量子力学中的算符 1对微观粒子的力学量不能用经典的方法来描述,而引入了一种新的数学手段——力学量用算符来表示,这实际上是量子力学的基本假设之一。 2在物理学中,只有其平均值为实数的算符才能表示量子力学中的力学量。厄米算符的平均值是实数,因此,表示力学量的算符必须是厄米算符。 3由于量子力学中的态满足迭加原理,所以表示力学量的算符还应当是线性的。 4线性厄米算符作用在波函数上,其物理意义为:在波函数所描述的状态下,对微观粒子的某个力学量F进行测量,在测量过程中可能会出现不同的结果,但对同一状态进行多次测量,力学量F的平均值将趋于一个确定的值A。而每一次测量结果相对于平均值都有一个误差 ? F- = F F ?来表示力学量的偏差,故力学量均方偏差的平均值为在量子力学中,引入算符F ?? F F- = 由力学量算符的厄米性,上式可写成 5在对微观粒子的不同力学量同时进行测量时,一般是不可能使每个力学量都获得准确的值的,即使是从理论上也是如此。这与所用实验仪器的精度或实验者的能力无关,而是微观粒子的二象性所带来的必然结果,这就是量子力学中的不确定关系。不确定关系指出了用经典方法描述微观粒子所产生误差的极限,以精炼的数学形式反映了微观粒子的二象性,是量子力学中的一个十分重要的原理。算符理论对此关系给出了严格的证明,并以其独特的表达方式给出了不同力学量和其算符间的联系:

6 所谓“力学量用算符表示”这一量子力学假设,包含着如下物理意义: (1) 力学量的平均值与算符的关系为: r d r F r F )(?)(*ψψ?= (2) 力学量的测量值与该力学量算符之间的关系:实验中测得的力学量的值,就是该力 学量所对应算符的一系列本征值; (3) 力学量之间的关系也可以通过算符之间的关系反映出来:相互对易的算符,它们对 应的力学量同时具有确定的测量值。 7 力学量在一般情况下不能同时确定,若系统处于某力学量的本征态中,这个力学量就有 确定值。对两个或多个力学量同时进行测量,只要系统同时处于每个力学量共同的本征态时,它们就同时具有确定值。由于力学量是用厄米算符表示的,两个力学量能否同时确定就反映在两个力学量的算符之间的关系上。可以证明两个算符具有同样的完全本征函数系,则这两个算符是对易的;它的逆定理也成立。推广到两个以上的情况,如果一组算符有共同的本征函数,而这些本征函数组成完全系,则这组算符中的任何一个和其余算符对易。 若两力学量的算符之间不对易,就不能同时确定,它反映在不确定度关系上,即由 K i F G G F ?????=- 可得一般表达式为: ()()4222K G F ≥??? 当0→?F 时,∞→?G ,而当0→?G 时,∞→?F 。它是微观粒子波粒二象性的反映,只要承认微观粒子有波动性的一面,就必有此规律。 在算符的对易关系中,其基本对易关系是x 与其相应的动量x p ?之间满足: i p p x x x =-?? 或 [] i p x x =?, 由此得到 [])(?),(x f x i p x f x ??= 其不确定度关系为 ()()4222 ≥???x p x 8 量子化是算符表示力学量的必然结果。至于为什么力学量要用算符表示,没有更深入的物理上的起源。有人认为(刘全慧,刘天贵,朱正华,曾永华,量子力学定态不是驻波,物理[J],33卷 (2004年)3期,223~224)量子力学定态是由波的干涉形成的驻波。但该文作者认为,量子力学中的定态和驻波实质上是有区别的。

简单的论述哈密顿原理

简单的论述哈密顿原理 摘要:证明力积分变量与变分无关的情况下积分运算与变分运算次序的可交换性,从不同角度论述了哈密顿原理的含义。 关键词:哈密顿原理,拉格朗日函数,变分,拉格朗日方程 1.引言 哈密顿原理是分析力学中几个重要原理之一,但它不是一个独立原理,它可已从其他原理推导出来,因而可以从不同角度说明它的物理含义。一般理论力学教材都是在拉格朗日方程两边同时乘以虚位移求所有自由度下的虚功之和,然后再求从位形1即(到位形2,即(之间或时间至 之间的作用量得出,最后变换成,并没有说明最后一步为 什么要那样做,也没有说明那样做的意义。本文先证明当积分变量与变分无关的条件下积分运算与变分运算次序的可交换性,然后再从不同角度论述哈密顿原理的意义。 2.理论 2.1变分运算与积分运算次序的可交换性 假定变量由一个或一组函数的选取而确定,则变量称 为函数的泛函,记作[]。泛函由n个函数的形式确定,是函数的“函数”。泛函与函数的概念略有不同,函数中的变量是可以变化的数值,而对于泛函处于自变量地位的是形式可以变化的函数。下面举例说明,如图1中有,两个固定点,连接两个固定点之间的曲线的长度由下式确定,即

显然,依赖于函数的选取,若函数的形式发生变化,则曲线的形状随 之变化,曲线的长度也随之变化。长度就是的 泛函。 下面证明变分运算与积分运算顺序的可交 换性,该泛函只依赖一个函数,即 自变量为的函数表示为。函数的变分是函数的微变量,它与函数的微分有本质有本质的不同,函数的微分,粗略的讲,它是由自变量的变化引起的。而函数的变分不是因为自变量的变化,它是来自函数形式的变化引起,这种由于函数形式变化造成的函数的变化称为函数的变分,记作。与函数临近但形 式与不同的函数有许多。 假设这些函数可以表示为如下的形式: 其中是非常小的参数,是任意给定的可微函数,因时,函 数形式的变化决定于上式的第二项。因此函数的变分写成 引入(2)式的记法(1)可记为 被积函数的形式是已知的,积分的上下限是固定的。当函数 的形式上发生变化时,泛函就会发生变化,这种由于函数形式的变化引起泛函的变化就为泛函的变分,记作。现将被积函数

哈密顿原理

哈密顿原理 文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

牛顿质点动力学 1 牛顿第二定律 dt d p f 从三个方面来应用: 全局性研究:对称性、守恒律、稳定性; 局部研究:平均值、动量定理、动能定理; 瞬时研究:极限求导、奇异性、突变性; 2 重点研究非惯性、矢量性、连续性、相对性的问题; 3 从动力学观点上升到能量的观点。 哈密顿原理、保守力及其势 4 五大类典型模型 概括: 一个原理:哈密顿原理(稳定性与对称性原理); 二种建模方法:动力学方法、能量法; 三类研究方法:对称性方法(全局)、平均值方法(局部) 求极限、求导、突变及奇异性研究方法(瞬时); 四大重点问题:矢量性(矢量空间法)、连续性(微元动力学法)、相对性(相对速度公式法)、非惯性(等效性法); 五项典型模型:准粒子模型、碰撞模型、势模型、相空间模型、简谐振动与波模型。(科学计算技术与研究式的学习模式) 哈密顿原理、对称性和稳定性

1.拉格朗日函数和哈密顿量 拉格朗日函数L 对于一个物理系统,可用一个称为拉格朗日函数的量),,(t q q L i i 来描述,其中i q 是广义坐标,=i q dt dq i /是广义速度;广义坐标与通常所说的坐标区别在于,广义坐标是针对系统的自由度确定的,譬如一个质点限制在半径R 的球面上运动,其坐标显然有x 、y 、z 三个,但广义坐标只有φθ,两个,其中?θcos sin R x = , θ?θcos ,sin sin R z b R y ==;一般由于运动受到约束,坐标与广义 坐标的数量是不相等的,仅在无约束条件下,坐标与广义坐标的数目才是一样的,与坐标一样广义坐标的选取也不是唯一的。 在保守力作用下,系统的拉格朗日量L 定义为动能与势能之差; U T L -= 哈密顿量H 物理系统还可以用一个称之为哈密顿量的函数描述,在保守力作用下,哈密顿量定义为系统的动能与势能之和 ),,(t p q H i i =U T +(i=1,2…s ) 其中 )(/i i q L p ??=是广义动量,哈密顿量是广义坐标和广义动量的函数,在直角坐标下对于质点运动的广义动量可写成v p m =。作用量I 定义为 ?=2 1 t t Ldt I 其中,积分上下限是质点初末态I q 、F q 对应的时间。 2.哈密顿原理及轨道稳定性

1.7-量子力学中的算符和力学量

算符即运算规则算符即运算规则。。它作用在一个函数ψ(x)(x)上即是对上即是对ψ(x)(x)进行某进行某 种运算种运算,,得到另一个函数?(x) §1.7 1.7 量子力学中的力学量和算符量子力学中的力学量和算符 例: )()(?x x F ?ψ=)()(?x xf x f x =)()(?x f x f I =dx d D = ?1、定义

2、乘法与对易 算符的乘法一般不服从交换律: )?(??ψψB A B A ≡A B B A ????≠例如:

则算符的对易式可记为则算符的对易式可记为::若对任意若对任意ΨΨ,都有: 则称 和 对易: 引入记号: ψψA B B A ????=A ?B ?]?,?[????B A A B B A ≡?0]?,?[=B A I x D ?]?,?[=h i p x x =]?,?[易证:

可定义算符的可定义算符的n n 次方为: A A A A n ???????=可定义算符的多项式和算符的函数可定义算符的多项式和算符的函数。。例如:

3、线性算符 设C 1, C 2为常数为常数,,若算符满足: 则称其为线性算符则称其为线性算符。。 量子力学态叠加原理要求力学量算符必须是线性算符 例如例如,,下列算符为线性算符下列算符为线性算符:: 2 2112211??)(?Ψ+Ψ=Ψ+ΨF C F C C C F x p H y x x ?,?,,2 ??? ??

算符的本征值方程:4、本征函数本征函数、、本征值 λ为算符 的本征值的本征值,,为算符 的本征值为λ的本征函数的本征函数。。 例如,e 2x 是微商算符的本征函数: )()(?x x F λψψ=)(x ψF ?F ?F ?

哈密顿正则变换

正则变换的研究 学生xx 红河学院理学院物理学,云南省,中国,661100 摘 要:正则变换是由一组正则变量到另一组能保持正则形式不变的变量的变换。是解决正则方程的 解而引入的一种重要的变换方法。 关键词:正则变换;母函数;广义坐标。 1788年,拉格朗日写了一本大型著作《分析力学》。在这一本著作中,完全用数学分析的方法来解决所有的力学问题。而无需借助以往常用的几何方法,全书一张图都没有。在基础上,逐步发展为一系列处理力学问题的新方法,称之为分析力学。 拉格朗日是用s 个独立变量来描写力学体系的运动,所以和牛顿运动方程一样,是二阶常微分方程组,我们通常把这组方程叫做拉格朗日方程。后来,哈密顿在1834年又提出:如果用坐标和动量作为独立变量,则虽方程式的数目增加了一倍,由s 个变为2s 个,但微分方程式却都由二阶将为一阶。这组方程叫哈密顿正则方程。他在1843年又运用变分法提出了另一个和牛顿定律等价的哈密顿原理,用来描述力学体系的运动。哈密顿正则变换将是求解哈密顿正则方程必不可少的一种计算方法。本节将给出正则变换的目的、条件和变换形式。 (一)正则变换的目的和条件 哈密顿函数是 ),...,2,1(,p s q =ααα及t 的函数,而哈密顿正则方程则是2s 个一阶微 分方程。如果H 中不出现某个q ,例如q i ,则这个不出现q i 就是循环坐标,而我们也将 由正则方程式 ),...,2,1(q s H H q p p =??? ? ??? ??- =??=ααα αα …… (1) 力学体系的哈密顿函数H 中,有没有循环坐标,与我们所选的坐标系有关,在某种坐标系中没有循环坐标,在另一种坐标系中却可以有一个或几个循环坐标,有心力就是一个最明显的例子,在极坐标中,如质点的质量是m ,则动能)(m 2 122 2θ r r T += 。对平方反比引力问题来讲,势能r m V k 2 - =,故H=T+V.很显然,这里极角θ是一个循环坐标,故对应

由哈密顿正则方程证明拉格朗日方程

由哈密顿正则方程证明拉格朗日方程 姓名:谭建学号:222010315210236 学院:物理学院年级:2010级4班 一、 问题重述 已知H q p α? ??=?,H p q α???=-?,H L t t ??=-??(1,2,...,)s ?= 求证拉格朗日方程()0d L L dt q q ???-=?? 二、 问题分析及证明 H 是q,p,t 的函数,L 是q,q ?,t 的函数,因此我们要先将H 换成q,q ? ,t 的函数。勒让德变换有 1s H L H p p ααα =?=-+?∑……………………………………..(1) 1(( ))s H H dL dH d p dp p p ααααα =??=-++??∑…………..(2) 此处的H 仍是q,p,t 的函数,因此将H 全微分有 1()s H H H dH dp dq dt p q t αααα α=???=++???∑…………….(3) 将(3)式带入(2)得 1 (())s H H H dL d p dq dt p q t ααααα=???=--???∑………..(4) 再将已知条件H q p α???=?,H p q α???=-?,H L t t ??=-??(1,2,...,)s ?= 代入(4)有1 ()s L dL p d q p dq dt t αααα???=?=++ ?∑………………(5) 而L 是q,q ?,t 的函数,即L (q,q ?,t )。我们将L 全微分 1()s L L L dL dq d q dt q t q ααααα??=???=++???∑ (6)

比较(5)、(6)两式我们可得到如下公式 L p q αα??=?,L p q αα ??=? 所以我们可得到()d L p dt q αα???=?,L p q αα??= ? 所以有()0d L L p p dt q q αα?????-=-=??……………..(7) 第七式即为拉格朗日方程。 三、 参考资料 分析力学,勒让德变换,哈密顿正则方程

哈密顿原理

哈密顿原理 设n 个质点所形成的力学体系受有k 个几何约束,则这力学体系的自由度是k n s -=3。因此,我们如果能够做到把s 个广义坐标αq ),,2,1(s =α作为时间t 的函数加以确定,我们也就确定了这力学体系的运动。因运动方程是s 个二阶微分方程,故有s 2个积分常数,兹以s c c c 221,,, 表之。另一方面,我们也可以认为s 个确定的αq 代表着s 维空间的一个点,而描写力学体系运动状态的积分 ),,,,(221s c c c t q q αα= ),,2,1(s =α (5.7.7) 由于时间t 的推移则在s 维空间中描出一条曲线。 为了寻求力学体系的运动规律,哈密顿提出可以从具有相同端点,并为约束所许可的许多条可能的运动轨道即s 维空间曲线中,挑出一条真实轨道。为此,可以采用变分法的方法来挑选这一条真实轨道。既然可以从许多约束所许可的轨道中,选出真实轨道,当然也就确定了力学体系沿这条真实轨道运动时的运动规律。 我们现在用拉格朗日方程来推导在保守力系作用下的哈密顿原理。至于任意力系作用下的哈密顿原理,由于用得不是太多,我们就从略了。 把拉格朗日方程(5.3.18)中的各项乘以αδq ,对α求和,然后沿着一条可能的运动轨道即s 维空间一条曲线自两曲线共同端点)(11t t P =至)(22t t P =对t 积分,则得 0211=?? ????????????????-???? ?????∑=dt q q L q L dt d t t s ααααδ (5.7.8) 但 )(ααααααδδδq dt d q L q q L dt d q q L dt d ??-??? ? ????=???? ???? ααααδδq q L q q L dt d ??-??? ? ????= (5.7.9) 因哈密顿用的是等时变分,故这里也用了变分对易关系式)(ααδδq dt d dt dq =??? ??,把式(5.7.9)代入式(5.7.8),得 ?∑∑===??? ? ????+??-??2111210t t s s dt q q L q q L t t q q L ααααααααδδδ (5.7.10) 因);,,,;,,,(2121t q q q q q q L L s s =,而1|t t q =αδ=2|t t q =αδ=0,故式(5.7.10)简化为 ?=2 10t t Ldt δ (5.7.11) 又因0=t δ,故式(5.7.11)中积分号内的δ可移至积分号外,即

量子力学中 算符及其本征函数

论文题目: ?L算符及其本征函数 量子力学中2 (理工类)

?L算符及其本征函数 1量子力学中2 摘要 角动量算符是量子力学中一个很重要的力学量,本论文分别对2?L的定义、意义、性质以及作用做了阐述,给出了2?L算符在球坐标系中的表示式,并用经典坐标变换以及对易关系进行了推导,2?L是描述旋转运动及原子分子状态的一个重要的物理量,因此对2?L 的研究将有助于理解量子力学中的诸多问题。本论文将采取理论分析,并结合数学推导的方法,在掌握大量材料的基础上,作出自己的见解,把理论模型建立在合理的体系上,立足实际情况对它们进行深入的分析和研究。 关键词 角动量算符;空间转子;角量子数;自旋 The 2?L in the Quantum Mechanics and Its Eigenfunction Abstract Angular momentum operator is a very important mechanics in quantum mechanics ,this paper definite the definition, significance, as well as the nature of the2?L operator , and gives the expression of 2?L operator in spherical coordinates .And according with classic and easy to transform the relationship between the derivation. The 2?L operator is a very important mechanics which describe rotary movement and the state of Atomic and Molecular, so it will help to understand lots of questions of quantum mechanics. This paper will take theoretical analysis, and mathematical derivation of the method, the availability of large on the basis of material to make their own opinion, the theoretical model based on a reasonable system, based on the actual situation on their conduct in-depth analysis and research. Keywords angular momentum operator;Spatial rotor;Azimuthal quantum number;Spinning 1作者简介:王慧1986年10月出生,女汉族河南兰考人,郑州大学物理工程学院凝聚态物理专业硕士研究生一年级,主要研究方向为陶瓷功能材料。

量子力学期末考试知识点+计算题证明题

1. 你认为Bohr 的量子理论有哪些成功之处?有哪些不成功的地方?试举一例说明。 (简述波尔的原子理论,为什么说玻尔的原子理论是半经典半量子的?) 答:Bohr 理论中核心的思想有两条:一是原子具有能量不连续的定态的概念;二是两个定态之间的量子跃迁的概念及频率条件。首先,Bohr 的量子理论虽然能成功的说明氢原子光谱的规律性,但对于复杂原子光谱,甚至对于氦原子光谱,Bohr 理论就遇到了极大的困难(这里有些困难是人们尚未认识到电子的自旋问题),对于光谱学中的谱线的相对强度这个问题,在Bohr 理论中虽然借助于对应原理得到了一些有价值的结果,但不能提供系统解决它的办法;其次,Bohr 理论只能处理简单的周期运动,而不能处理非束缚态问题,例如:散射;再其次,从理论体系上来看,Bohr 理论提出的原子能量不连续概念和角动量量子化条件等,与经典力学不相容的,多少带有人为的性质,并未从根本上解决不连续性的本质。 2. 什么是光电效应?光电效应有什么规律?爱因斯坦是如何解释光电效应的? 答:当一定频率的光照射到金属上时,有大量电子从金属表面逸出的现象称为光电效应;光电效应的规律:a.对于一定的金属材料做成的电极,有一个确定的临界频率0υ,当照射光频率 0υυ<时,无论光的强度有多大,不会观测到光电子从电极上逸出;b.每个光电子的能量只与 照射光的频率有关,而与光强无关;c.当入射光频率0υυ>时,不管光多微弱,只要光一照,几乎立刻9 10s -≈观测到光电子。爱因斯坦认为:(1)电磁波能量被集中在光子身上,而不是象波那样散布在空间中,所以电子可以集中地、一次性地吸收光子能量,所以对应弛豫时间应很短,是瞬间完 成的。(2)所有同频率光子具有相同能量,光强则对应于光子的数目,光强越大,光子数目越多,所以遏止电压与光强无关,饱和电流与光强成正比。(3)光子能量与其频率成正比,频率越高,对应光子能量越大,所以光电效应也容易发生,光子能量小于逸出功时,则无法激发光电子。 3.简述量子力学中的态叠加原理,它反映了什么? 答:对于一般情况,如果1ψ和2ψ是体系的可能状态,那么它们的线性叠加:1122c c ψψψ=+(12c c ,是复数)也是这个体系的一个可能状态。这就是量子力学中的态叠加原理。态叠加原理的含义表示当粒子处于态1ψ和2ψ的线性叠加态ψ时,粒子是既处于态1ψ,又处于态2ψ。它反映了微观粒子的波粒二象性矛盾的统一。量子力学中这种态的叠加导致在叠加态下观测结果的不确定性。 4. 什么是定态?定态有什么性质? 答:体系处于某个波函数()()[]exp r t r iEt ψ ψ=-,所描写的状态时,能量具有确定值。这 种状态称为定态。定态的性质:(1)粒子在空间中的概率密度及概率流密度不随时间变化;(2)任何力学量(不显含时间)的平均值不随时间变化;(3)任何力学量(不显含时间)取各种可能测量值的概率分布也不随时间变化。 5. 简述力学量与力学量算符的关系? 答:算符是指作用在一个波函数上得出另一个函数的运算符号。量子力学中采用算符来表示微观粒子的力学量。如果量子力学中的力学量F 在经典力学中有相应的力学量,则表示这个力学

量子力学知识点小结

第一章 ⒈玻尔的量子化条件,索末菲的量子化条件。 ⒉黑体:能吸收射到其上的全部辐射的物体,这种物体就称为绝对黑体,简称黑体。 ⒎普朗克量子假说: 表述1:对于一定频率ν的辐射,物体只能以hν为能量单位吸收或发射电磁辐射。 表述2:物体吸收或发射电磁辐射时,只能以量子的方式进行,每个量子的能量为:ε=h ν。 表述3:物体吸收或发射电磁辐射时,只能以能量ε的整数倍来实现,即ε,2ε,3ε,…。 ⒏光电效应:光照射到金属上,有电子从金属上逸出的现象。这种电子称之为光电子。 ⒐光电效应有两个突出的特点: ①存在临界频率ν0:只有当光的频率大于一定值v0 时,才有光电子发射出来。若光频率小于该值时,则不论光强度多大,照射时间多长,都没有光电子产生。 ②光电子的能量只与光的频率有关,与光的强度无关。光的强度只决定光电子数目的多少。⒑爱因斯坦光量子假说: 光(电磁辐射)不仅在发射和吸收时以能量E= hν的微粒形式出现,而且以这种形式在空间以光速C 传播,这种粒子叫做光量子,或光子。爱因斯坦方程 ⒒光电效应机理: 当光射到金属表面上时,能量为E= hν的光子立刻被电子所吸收,电子把这能量的一部分用来克服金属表面对它的吸引,另一部分就是电子离开金属表面后的动能。 ⒓解释光电效应的两个典型特点: ①存在临界频率v0:由上式明显看出,当hν- W0≤0时,即ν≤ν0 = W0 / h时,电子不能脱出金属表面,从而没有光电子产生。 ②光电子动能只决定于光子的频率:上式表明光电子的能量只与光的频率ν有关,而与光的强度无关。 ⒔康普顿效应:高频率的X射线被轻元素如白蜡、石墨中的电子散射后出现的效应。 ⒕康普顿效应的实验规律: ①散射光中,除了原来X光的波长λ外,增加了一个新的波长为λ'的X光,且λ' >λ; ②波长增量Δλ=λ-λ随散射角增大而增大。 ⒖量子现象凡是普朗克常数h在其中起重要作用的现象 ⒗光具有微粒和波动的双重性质,这种性质称为光的波粒二象性

相关主题
文本预览
相关文档 最新文档