当前位置:文档之家› 矩阵与变换练习题

矩阵与变换练习题

矩阵与变换练习题
矩阵与变换练习题

矩阵与变换

编写:陈爱兵 审核:黄爱华

1.由曲线22

221x y 变换为曲线221812x y ,变换矩阵为____________; 2.已知矩阵31 cos60 sin 602

2,31sin60 cos60 22A B ,则先A 后B 的变换所对应的矩阵是

______________;

3.若81 1 10 10 1x ,则12

log x =__________; 4.若点22,A 在矩阵cos sin sin cos αααα

对应的变换作用下得到的点为(1,0),则α=________; 5.若矩阵 a b A c d 有两个不等的特征值,m n ,则22m n =___________;

6.在密码学中,常用二阶矩阵对信息进行加密。现在我们先将英文字母数字化1,2,,26a b z ,发送方要传递的信息是:come on 。双方约定的矩阵是5 1

7 3,

则发送的密码应该是_______________;

7.已知在矩阵M 的作用下点(1,2)A 变成了点(11,5)A ,点(3,1)B 变成了点(5,1)B ,点(,0)C x 变成了(,2)C y ,求矩阵M 并求,x y 的值。

8.若cos sin (R)sin cos x

θθθθθ,试求2()23f x x x 的最值。

9.已知矩阵(), 1,2x A f x B x x C a ,若A BC ,求函数()f x 在1,2上最小值。

10.已知矩阵A 对应的变换是先将某平面图形上的点的横坐标保持不变,纵坐标变为原来的2倍,再将所得图形绕原点按顺时针方向旋转90°。

⑴求矩阵A 及A 的逆矩阵B ;

⑵已知矩阵 3 32 4M

,求M 的特征值和特征向量; ⑶若81α

在矩阵B 的作用下变换为β,求50M β(运算结果用指数式表示)。

11.在直角坐标系中,已知△ABC 的顶点坐标为A(0,0),B(1,1),C(0,2),求△ABC 在矩阵MN 作用下变换所得到的图形的面积,这里矩阵0 10 1N=1 0 1 0M ,-????=?

???????。

12.发展与环境问题业已成为世人关注的焦点。为了定量分析污染与工业发展水平的关系,有人提出了以下工业增长模型:设0x 是某地区某年的污染水平(以空气或河湖水质的某种污染指数为测量单位),0y 是目前的工业发展水平(以某种工业发展指数为测算单位),把这一年作为起点(称做基年),记作0i =。如果以若干年(如5年)作为一周期,第i 个周期内的污染和工业发展水平记作i x 和i y ,那么模型可以写为11113,22i i i i i i x x y i N y x y ----=+?∈?

=+?。现已知基年0i =时的水平 17

α??

=????,试估计第10个周期内该地区的污染程度和工业发展水平,并作出评价。

【苏教版】高中数学选修4-2《矩阵与变换》.2.4 旋转变换

选修4-2矩阵与变换 2.2.4 旋转变换 编写人: 编号:005 学习目标 1、 理解可以用矩阵来表示平面中常见的几何变换。 2、 掌握旋转变换的几何意义及其矩阵表示。 学习过程: 一、预习: (一)阅读教材,解决下列问题: 问题1:P (x,y )绕原点逆时针旋转180o 得到P ’(x ’,y ’),称P ’为P 在此旋转 变换作用下的象。其结果为''x x y y ?=-?=-?,也可以表示为''00x x y y x y ?=-+??=?-?,即''x y ??????= 1001-????-????????y x =x y -????-??怎么算出来的? 归纳: 问题2:P (x,y )绕原点逆时针旋转300得到P ’(x ’,y ’),试完成以下任务①写出象P ’; ②写出这个旋转变换的方程组形式;③写出矩阵形式. 问题3:把问题2中的旋转300改为旋转α角,其结果又如何? 练习

1、在直角坐标系下,将每个点绕原点逆时针旋转120o 的旋转变换对应的二阶矩阵是 2、如果一种旋转变换对应的矩阵为二阶单位矩阵,则该旋转变换是 二、课堂训练: 例1.已知A(0,0),B(2,0),C(2,1),D(0,1),求矩形ABCD 绕原点逆时针旋转900后所得到的图形,并求出其顶点坐标,画出示意图. 例2、若△ABC 在矩阵M 对应的旋转变换作用下得到△A ′B ′C ′,其中A (0,0),B (1,3),C (0,2),A ′(0,0), C ′(-3,1),试求矩阵M 并求B ′的坐标. 练习: 1. 将向量?? ????=12a 绕原点按逆时针方向旋转4π得到向量b ,则向量b 的坐标为=______________. 2. 在某个旋转变换中,顺时针旋转 3 π所对应的变换矩阵为 ______. 三、课后巩固: 1. 曲线xy=1绕坐标原点逆时针旋转90°后得到的曲线方程是_____,变换对应的矩阵 是____.

2020高考矩阵与变换知识点基础与提高(含答案)

2020高考矩阵与变换知识点基础与提高(含答案) 主要考查二阶矩阵的基本运算,选修内容考的题目大都不难,同学们注意基本概念。 1求逆矩阵,注意2*2矩阵的乘法。 2利用矩阵求坐标式的方程。 (10上海 4)行列式6πcos 3πsin 6πsin 3π cos 的值是____________. 考点:行列式的运算法则 解析:考查行列式运算法则6πcos 3 πsin 6π sin 3πcos 02πcos 6πsin 3πsin 6πcos 3πcos ==-= 答案:0. (10福建 21)选修4-2:矩阵与变换 已知矩阵M =???? ??11b a ,??? ? ??=d c N 02,且???? ??-=0202MN , (Ⅰ)求实数a ,b ,c ,d 的值;(Ⅱ)求直线x y 3=在矩阵M 所对应的线性变换下的像的方程. 考点:矩阵的基本运算和线形变换 解析:(1)?? ????-=??????++=????????????=020*******d b bc ad c d c b a MN , 对应系数有???????-==-==????????=+-==+=1 212022022a d b c d b bc ad c ; (2)取x y 3=上一点()y x ,,设经过变换后对应点为()','y x ,则??????--=??????1111''y x ?? ????--=??????x y y x y x ,从而''x y =,所以经过变换后的图像方程为x y -=. 注意:本题相对基础,要求同学们对矩阵的基本运算方法,尤其是乘法 (09江苏 21)选修4-2:矩阵与变换 求矩阵?? ????=1223A 的逆矩阵. 考点:逆矩阵的求法,考查运算求解能力

矩阵合同变换

矩阵的合同变换 摘要:矩阵的合同变换是高等代数矩阵理论中,基本交换。在《高等代数》里,我们仅讨论简单而直接的变换,而矩阵的合同变换与矩阵相似变换,二次型等有着诸多相同性质和联系。 关键词:矩阵 秩 合同 对角化 定义1:如果矩阵A 可以经过一系列初等变换变成B ,则积A 与B 等价,记为A B ? 定义2:设A ,B 都是数域F 上的n 阶方阵,如果存在数域F 上的n 阶段可逆矩阵P 使得1B P Ap -=,则称A 和B 相似A B 定义3:设A ,B 都是数域F 上的n 阶矩阵,如果存在数域F 上的一个n 阶可逆矩阵P ,使得T P AP B = 那么就说,在数域F 上B 与A 合同。 以上三个定义,都具有自反性、传逆性、对称性、 性。 定理1:合同变换与相似变换都是等价变换 证明:仅证合同变换,相似变换完全相似 因为P 可逆,所以P 存在一系列初等矩阵的乘积,即12m P Q Q Q = 。 此时711T T T m n P Q Q Q -= 边为一系列初等矩阵的乘积 若111T T T T m n m B P AP Q Q Q AQ Q -== 则B 由A 经过一系列初等变换得到。所以 A B ?,从而知合同变换是等价变换。 定理2:合同变换与相似变换,不改变矩阵的秩 证明:由 知,合同变换与相似变换都是等价变换,所以不改变秩 定理3:相似矩阵有相同特征多项式 证明:共1A B B P AP -= 1||det ||del I B I P AP λλ--=- 又因为I λ为对称矩阵 所以11det ||||||I P AP P I A P λλ---=- 1||||||P I A P λ-=- ||I A λ=- 注①合同不一定有相同特征多项式 定理4:如果A 与B 都是n 阶实对称矩阵,且有相同特征根,则A 与B 相似且合同 论:设A ,B 为特征根均为12,n λλλ ,因为A 与B 实对称矩阵,所以则在n 阶正 矩阵,,Q P 使得 112[]Q AQ λλ-= 11[]n P BP λλ-= 从而有11Q AQ P BP --=

高考数学压轴专题人教版备战高考《矩阵与变换》知识点总复习附解析

【最新】单元《矩阵与变换》专题解析 一、15 1.已知函数cos 2()sin 2m x f x n x = 的图象过点( 12 π 和点2( ,2)3 π -. (1)求函数()f x 的最大值与最小值; (2)将函数()y f x =的图象向左平移(0)??π<<个单位后,得到函数()y g x =的图象;已知点(0,5)P ,若函数()y g x =的图象上存在点Q ,使得||3PQ =,求函数 ()y g x =图象的对称中心. 【答案】(1)()f x 的最大值为2,最小值为2-;(2)(,0)()24 k k Z ππ +∈. 【解析】 【分析】 (1)由行列式运算求出()f x ,由函数图象过两点,求出,m n ,得函数解析式,化函数式为一个角的一个三角函数式,可求得最值; (2)由图象变换写出()g x 表达式,它的最大值是2,因此要满足条件,只有(0,2)Q 在 ()g x 图象上,由此可求得?,结合余弦函数的性质可求得对称中心. 【详解】 (1)易知()sin 2cos 2f x m x n x =- ,则由条件,得sin cos 66 44sin cos 233m n m n ππππ?-=????-=-?? , 解得 1.m n = =- 故()2cos22sin(2)6 f x x x x π =+=+ . 故函数()f x 的最大值为2,最小值为 2.- (2)由(1)可知: ()()2sin(22)6 g x f x x π ??=+=++ . 于是,当且仅当(0,2)Q 在()y g x =的图象上时满足条件. (0)2sin(2)26g π?∴=+=. 由0?π<<,得.6 π ?= 故()2sin(2)2cos 22 g x x x π =+ =. 由22 x k =+ π π,得().24 k x k Z ππ = +∈ 于是,函数()y g x =图象的对称中心为:(,0)()24 k k Z ππ +∈. 【点睛】 本题考查行列式计算,考查两角和的正弦公式,图象平移变换,考查三角函数的性质,如最值、对称性等等.本题主要是考查知识点较多,但不难,本题属于中档题.

矩阵的合同变换

矩阵的合同变换

矩阵的合同变换 摘要:矩阵的合同变换是高等代数矩阵理论中,基本交换。在《高等代数》里,我们仅讨论简单而直接的变换,而矩阵的合同变换与矩阵相似变换,二次型等有着诸多相同性质和联系。 关键词:矩阵 秩 合同 对角化 定义1:如果矩阵A 可以经过一系列初等变换变成B ,则积A 与B 等价,记为A B ? 定义2:设A ,B 都是数域F 上的n 阶方阵,如果存在数域F 上的n 阶段可逆矩阵P 使得1B P Ap -=,则称A 和B 相似A B : 定义3:设A ,B 都是数域F 上的n 阶矩阵,如果存在数域F 上的一个n 阶可逆矩阵P ,使得 T P AP B = 那么就说,在数域F 上B 与A 合同。 以上三个定义,都具有自反性、传逆性、对 称性、 性。 定理1:合同变换与相似变换都是等价变换 证明:仅证合同变换,相似变换完全相似 因为P 可逆,所以P 存在一系列初等矩阵的乘积,即1 2 m P Q Q Q =L 。 此时7 11 T T T m n P Q Q Q -=L 边为一系列初等矩阵的乘积 若111T T T T m n m B P AP Q Q Q AQ Q -==L L 则B 由A 经过一系 列初等变换得到。所以A B ?,从而知合同变换是等价变换。 定理2:合同变换与相似变换,不改变矩阵

从而11 1 ()PQ QP ---= 又由于1 111()()()QP QP T QP P TQT ----= 1()T T QP P TQ -= T QQ = 1 QQ -= E = 1 QP -∴为正交矩阵 所以A B :且A B ? 定时5:两合同矩阵,若即PTAP B =,若A 为对称矩阵,则B 为对称阵,而两相似矩阵则不一定有些性质 证明:A B ?即T P AP B =,若对称阵,则T A A = ()T T T B P AP = T T P A P = T P AP = B = 所以B 边为对称阵 [注]:相似矩阵对此结论不具有一般性,它在什么情况下成立呢? 引理6:对称矩阵相似于对角阵?A 的每一个特征根λ有秩||I A n s λ-=-,S 为λ的重数.

高考数学1几种特殊的矩阵变换专题1

高考数学1几种特殊的矩阵变换专题1 2020.03 1,圆22 1x y +=在矩阵10102?????? ? ?对应的变换作用下的结果为 . 2,当兔子和狐狸处于同一栖息地时,忽略其他因素,只考虑兔子数量和狐狸数量的相互影响,为了简便起见,不妨做如下假设: (1)由于自然繁殖,兔子数每年增长10%,狐狸数每年减少15%; (2)由于狐狸吃兔子,兔子数每年减少狐狸数的0.15倍,狐狸数每年增加兔子数的0.1倍; (3)第n 年时,兔子数量n R 用表示,狐狸数量用n F 表示; (4)初始时刻(即第0年),兔子数量有1000=R 只,狐狸数量有300=F 只。 请用所学知识解决如下问题: (1)列出兔子与狐狸的生态模型; (2)求出n R 、n F 关于n 的关系式; (3)讨论当n 越来越大时,兔子与狐狸的数量是否能达到一个稳定的平衡状态,说明你的理由。 3,在一次抗洪抢险中,准备用射击的方法引爆从桥上游漂流而下的一巨大汽油罐.已知只有5发子弹备用,且首次命中只能使汽油流出,再次命 中才能引爆成功,每次射击命中率都是3 2 .,每次命中与否互相独立. (1) 求油罐被引爆的概率. (2) 如果引爆或子弹打光则停止射击,设射击次数为ξ,求ξ的分布列及ξ的数学期望 4,在空间四边形ABCD 中, AC 和BD 为对角线,G 为ABC ?的重心,E 是BD

上一点,3BE ED =,以{ },,AB AC AD u u u r u u u r u u u r 为基底,则GE =u u u r ___ 5,设M 是把坐标平面上的点的横坐标伸长到2倍,纵坐标伸长到3倍的 伸压变换. 求逆矩阵1M -以及椭圆22 149x y +=在1M -的作用下的新曲线的 方程. 6,已知变换A :平面上的点P (2,-1)、Q (-1,2)分别变换成点P 1(3,-4)、 Q 1(0,5) (1)求变换矩阵A ; (2)判断变换A 是否可逆,如果可逆,求矩阵A 的逆矩阵A -1;如不可逆,说明理由. 7,两个人射击,甲射击一次中靶概率是21,乙射击一次中靶概率是31 , (Ⅰ)两人各射击一次,中靶至少一次就算完成目标,则完成目标概率是多少? (Ⅱ)两人各射击2次,中靶至少3次就算完成目标,则完成目标的概率是多少? (Ⅲ)两人各射击5次,是否有99%的把握断定他们至少中靶一次? 8,如图,正方体ABCD -A 1B 1C 1D 1中,点E 是棱BC 的中点,点F 是棱CD 上的动点. (Ⅰ)试确定点F 的位置,使得D 1E ⊥平面AB 1F ; (Ⅱ)当D 1E ⊥平面AB 1F 时,求二面角C 1―EF ―A 的余弦值以及BA 1与面C 1EF 所成的角的大小.

高考数学压轴专题最新备战高考《矩阵与变换》知识点总复习有解析

【高中数学】数学《矩阵与变换》高考知识点 一、15 1.已知矩阵2101M ?? =? ??? (1)求矩阵M 的特征值及特征向量; (2)若21α??=? ?-?? r ,求3M αv . 【答案】(1)特征值为2;对应的特征向量为210α?? =???? u u r (2)91????-?? 【解析】 【分析】 (1)先根据特征值得定义列出特征多项式,令()0f λ=解方程可得特征值,再由特征值列出 方程组即可解得相应的特征向量;(2)由12ααα=+u u r u u r r 可得333 12M M M ααα=+u u r u u r r ,求解即 可. 【详解】 (1)矩阵M 的特征多项式为2 1 ()0 1 f λλλ--= -(2)(1)λλ=--, 令()0f λ=,得矩阵M 的特征值为1或2, 当1λ=,时由二元一次方程0 000x y x y --=?? +=? . 得0x y +=,令1x =,则1y =-, 所以特征值1λ=对应的特征向量为111α?-? =? ??? ; 当2λ=时,由二元一次方程00 00 x y x y -=?? +=?. 得0y =,令1x =, 所以特征值2λ=对应的特征向量为210α?? =???? u u r ; (2)1221ααα??==+??-??u u r u u r r Q , 333 12M M M ααα∴=+u u r u u r r 331212αα=+u u r u u r 311210????=+????-????91??=??-?? . 【点睛】 本题考查矩阵特征值与特征向量的计算,矩阵的乘法运算,属于基础题.

矩阵合同变换

矩阵的合同变换 摘要:矩阵的合同变换是高等代数矩阵理论中,基本交换。在《高等代数》里,我们仅讨论简单而直接的变换,而矩阵的合同变换与矩阵相似变换,二次型等有着诸多相同性质和联系。 关键词:矩阵 秩 合同 对角化 定义1:如果矩阵A 可以经过一系列初等变换变成B ,则积A 与B 等价,记为A B ? 定义2:设A ,B 都是数域F 上的n 阶方阵,如果存在数域F 上的n 阶段可逆矩阵P 使得1B P Ap -=,则称A 和B 相似A B 定义3:设A ,B 都是数域F 上的n 阶矩阵,如果存在数域F 上的一个n 阶可逆矩阵P ,使得T P AP B = 那么就说,在数域F 上B 与A 合同。 以上三个定义,都具有自反性、传逆性、对称性、 性。 定理1:合同变换与相似变换都是等价变换 证明:仅证合同变换,相似变换完全相似 因为P 可逆,所以P 存在一系列初等矩阵的乘积,即12 m P Q Q Q =。 此时71 1T T T m n P Q Q Q -=边为一系列初等矩阵的乘积 若111 T T T T m n m B P AP Q Q Q AQ Q -== 则B 由A 经过一系列初等变换得到。所以 A B ?,从而知合同变换是等价变换。 定理2:合同变换与相似变换,不改变矩阵的秩 证明:由 知,合同变换与相似变换都是等价变换,所以不改变秩 定理3:相似矩阵有相同特征多项式 证明:共1A B B P AP -= 1||det ||del I B I P AP λλ--=- 又因为I λ为对称矩阵 所以11det ||||||I P AP P I A P λλ---=-

《1.2.3 几类特殊的矩阵变换》教案新部编本1

教师学科教案[ 20 – 20 学年度第__学期] 任教学科:_____________ 任教年级:_____________ 任教老师:_____________ xx市实验学校

《1.2.3 几类特殊的矩阵变换》教案1 教学目标 1. 理解可以用矩阵来表示平面中常见的几何变换,掌握恒等、伸压、反射、旋转、投影、 切变变换的矩阵表示及其几何意义 2.理解二阶矩阵对应的几何变换是线性变换,了解单位矩阵 3.了解恒等、伸压、反射、旋转、投影、切变变换这六个变换之间的关系 教学重难点 了解并掌握几种特殊的矩阵变换,可以简单的运用。 教学过程 1.理解可以用矩阵来表示平面中常见的几何变换,掌握恒等、伸压、反射、旋转、投影、切变变换的矩阵表示及其几何意义 (1)一般地,对于平面向量变换T ,如果变换规则为T :?? ? ???y x →??????''y x =??????++dy cx by ax ,那么根据二阶矩阵与平面列向量在乘法规则可以改写为T :??? ???y x →??????''y x =??? ? ??d c b a ?? ????y x 的矩阵形式,反之亦然(a 、b 、c 、d ∈R) 由矩阵M确定的变换,通常记为T M ,根据变换的定义,它是平面内点集到自身的一个映射,平面内的一个图形它在T M ,的作用下得到一个新的图形. 在本节中研究的变换包括恒等变换、伸压变换、反射变换、旋转变换、投影变换、切变变换等六个变换. (2)由矩阵M=?? ? ???1001确定的变换T M 称为恒等变换,这时称矩阵M 为恒等变换矩 阵或单位矩阵,二阶单位矩阵一般记为E.平面是任何一点(向量)或图形,在恒等变换之下都把自己变为自己. (3)由矩阵M=??????100k 或M=?? ? ???k 001)0k (>确定的变换T M 称为(垂直)伸压变 换,这时称矩阵M=???? ??100k 或M=?? ????k 001伸压变换矩阵.

几类特殊线性变换及其二阶矩阵优秀教学设计

几类特殊线性变换及其二阶矩阵 【教学目标】 1.了解二阶矩阵的概念,线性变换与二阶矩阵之间的关系。 2.熟练运用旋转变换、反射变换、伸缩变换、投影变换、切变变换这五种变换的概念与矩阵表示解决具体问题。 3.亲历几类特殊线性变换的探索过程,体验分析归纳得出其二阶矩阵,进一步发展学生的探究、交流能力。 【教学重难点】 重点:掌握几类特殊线性变换及其二阶矩阵。 难点:旋转变换、反射变换、伸缩变换、投影变换、切变变换的实际应用。 【教学过程】 一、直接引入 师:今天这节课我们主要学习几类特殊线性变换及其二阶矩阵,这节课的主要内容有旋转变换、反射变换、伸缩变换、投影变换、切变变换,并且我们要掌握这些知识的具体应用,能熟练解决相关问题。 二、讲授新课 (1)教师引导学生在预习的基础上了解线性变换与二阶矩阵内容,形成初步感知。 (2)首先,我们先来学习线性变换及其相关概念,它的具体内容是: 在平面直角坐标系xoy 内,很多几何变换都具有下列形式:x ax by y cx dy '=+??'=+? ③; 其中系数a ,b ,c ,d 均为常数,我们把形如③的几何变换叫做线性变换。 ③式叫做这个线性变换的坐标变换公式。 (,)P x y '''是(,)P x y 在这个线性变换作用下的像。 像这样,由4个数a ,b ,c ,d 排成的正方形表a b c d ?? ???称为二阶矩阵。数a ,b ,c ,d 称为矩阵的元素 元素全为0的二阶矩阵0000?? ???称为零矩阵,简记为0。

矩阵1001?? ??? 称为二阶单位矩阵,记为E 它是如何在题目中应用的呢?我们通过一道例题来具体说明。 例:在直角坐标系xoy 内,将每个点绕原点O 按逆时针方向旋转30°的变换称为旋转角是30°的旋转变换。求点(1,0)A 在这个旋转变换作用下的像A '。 解析:教师板书。 (3)接着,我们再来看下旋转变换的概念,它的具体内容是: 在直角坐标系xOy 内的每个点绕原点O 按逆时针方向旋转α角的旋转变换(通常记为n R )的坐标变换公式:cos sin sin cos x x y y x y αααα'=-??'=+?,对应的二阶矩阵为:cos sin sin cos αααα-?? ??? 。 它是如何在题目中应用的呢?我们也通过一道例题来具体说明。 例:例:在直角坐标系xoy 内,将每个点绕原点O 按逆时针方向旋转30°的变换称为旋转角是30°的旋转变换,写出这个旋转变化的表达式。 解析:教师板书。 (4)接着,我们再来看下反射变换内容,它的具体内容是: 一般地,我们把平面上的任意一点P 变成它关于直线l 的对称点P '的线性变换叫做关于l 的反射。 它是如何在题目中应用的呢?我们也通过一道例题来具体说明。 例:在直角坐标系xoy 内,直线l 过原点,倾斜角为α。求关于直线l 的反射变换的坐标变换公式。 学生板书,教师纠正解答。 (5)接着,我们再来看下伸缩变换内容,它的具体内容是: 在直角坐标系xOy 内,将每个点的横坐标变为原来1k 倍,纵坐标变为原来的2k 倍,其中1k ,2k 均为非零常数,我们称这样的几何变换为伸缩变换。 它是如何在题目中应用的呢?我们也通过一道例题来具体说明。 例:直角坐标系xOy 内,将每一点的纵坐标变为原来的2倍,横坐标保持不变。 (1)试确定该伸缩变换的坐标变换公式及其对应的二阶矩阵。 (2)求点A (1,1)-在该伸缩变换作用下的像A ' 教师请同学上讲台解答,并纠正总结。

线性变换与矩阵地关系

线性变换与矩阵的关系 学院:数学与计算机科学学院 班级:2011级数学与应用数学 : 学号:

线性变换与矩阵的关系 (西北民族大学数学与应用数学专业, 730124) 指导教师 一、线性变换 定义1 设有两个非空集合V,U,若对于V中任一元素α,按照一定规则总有U中一个确定的元素β和它对应,则这个对应规则被称为从集合V到集合U的变换(或映射),记作β=T(α)或β=T α,( α∈V)。 设α∈V,T(α)= β,则说变换T把元素α变为β,β称为α在变换T下的象,α称为β在变换T下的源,V称为变换T的源集,象的全体所构成的集合称为象集,记作T(V)。即 T(V)={ β=T(α)|α∈V}, 显然T(V) ?U 注:变换的概念实际上是函数概念的推广。 定义2 设V n,U m分别是实数域R上的n维和m维线性空间,T是一个从V n到U m得变换,如果变换满足 (1)任给α1 ,α2∈V n,有T(α1+α2)=T(α1)+T(α2); (2)任给α∈V n,k∈R,都有 T(kα)=kT(α)。 那么,就称T为从V n到U m的线性变换。 说明:

○1线性变换就是保持线性组合的对应的变换。 ○2一般用黑体大写字母T,A,B,…代表现象变换,T(α)或Tα代表元 α在变换下的象。 ○3若U m=V n,则T是一个从线性空间V n到其自身的线性变换,称为线性空 V n中的线性变换。下面主要讨论线性空间V n中的线性变换。 二、线性变换的性质 设T是V n中的线性变换,则 (1)T(0)=0,T(-α)=-T(α); (2)若β=k1α1+k2α2+…+k mαm,则Tβ=k1Tα1+k2Tα2+…+k m Tα m; (3)若α1,…αm线性相关,则Tα1…Tαm亦线性相关; 注:讨论对线性无关的情形不一定成立。 (4)线性变换T的象集T(V n)是一个线性空间V n的子空间。 记S T={α|α∈V n,T α=0}称为线性变换T的核,S T是V n的子空间。 设V和W是数域F上的向量空间,而σ:V→W是一个线性映射。那么 (i)σ是满射Im(σ)=W; (ii)σ是单射Ker(σ)={0}

选修4-2 矩阵与变换 第一节 线性变换与二阶矩阵

第一节 线性变换与二阶矩阵 1.矩阵的相关概念 (1)由4个数a ,b ,c ,d 排成的正方形数表?????? a b c d 称为二阶矩阵,数a ,b ,c ,d 称为矩 阵的元素.在二阶矩阵中,横的叫行,从上到下依次称为矩阵的第一行、第二行;竖的叫列,从左到右依次称为矩阵的第一列、第二列.矩阵通常用大写的英文字母A ,B ,C ,…表示. (2)二阶矩阵?? ?? ?? 00 0称为零矩阵,简记为0,矩阵?? ?? ??1 00 1称为二阶单位矩阵,记作E 2. 2.矩阵的乘法 (1)行矩阵[]a 11a 12与列矩阵?? ?? ?? b 11b 21的乘法规则:为[]a 11a 12?? ? ? ?? b 11b 21=[]a 11×b 11+a 12×b 21. (2)二阶矩阵??????a 11 a 12a 21 a 22与列向量??????x 0y 0和乘法规则:??????a 11 a 12a 21 a 22??????x 0y 0=??????a 11×x 0+a 12×y 0a 21×x 0+a 22×y 0. (3)两个二阶矩阵相乘的结果仍然是一个矩阵,其乘法法则如下:

??????a 11 a 12a 21 a 22??????b 11 b 12b 21 b 22=???? ??a 11×b 11+a 12×b 21 a 11×b 12+a 12×b 22a 21×b 11+a 22×b 21 a 21×b 12+a 22×b 22. (4)两个二阶矩阵的乘法满足结合律,但不满足交换律和消去律 即(AB )C =A (BC ), AB ≠BA , 由AB =AC 不一定能推出B =C . 一般地两个矩阵只有当前一个矩阵的列数与后一个矩阵的行数相等时才能进行乘法运算. 3.线性变换的相关概念 (1)我们把形如???? ? x ′=ax +by y ′=cx +dy (*)的几何变换叫做线性变换,(*)式叫做这个线性变换的坐 标变换公式,P ′(x ′,y ′)是P (x ,y )在这个线性变换作用下的像. (2)对同一个直角坐标平面内的两个线性变换σ、ρ,如果对平面内任意一点P ,都有σ(P )=ρ(P ),则称这两个线性变换相等,简记为σ=ρ,设σ,ρ所对应的二阶矩阵分别为A ,B ,则A =B . 4.几种常见的线性变换 (1)由矩阵M =?? ?? ??1 00 1确定的变换T M 称为恒等变换, 这时称矩阵M 为恒等变换矩阵或单位矩阵,二阶单位矩阵一般记为E .平面是任何一点(向量)或图形,在恒等变换之下都把自己变为自己. (2)由矩阵M =???? ?? a 00 1或M =?? ?? ??1 00 k (k >0)确定的变换T M 称为(垂直)伸压变换,这时称矩 阵M =?? ?? ?? k 00 1或M =?? ?? ??1 00 k 伸压变换矩阵. 当M =?? ?? ??k 00 1时确定的变换将平面图形作沿x 轴方向伸长或压缩,当k >1时伸长,当 01时伸长,当 0

知识点总结 矩阵的初等变换与线性方程组

第三章 矩阵的初等变换与线性方程组 第一节 矩阵的初等变换 初等行变换 ()1()i j r r ?对调两行,记作。 ()20()i k r k ≠?以数乘以某一行的所有元素,记作。 ()3()i j k r kr +把某一行所有元素的倍加到另一行对应的元素上去,记作。 初等列变换:把初等行变换中的行变为列,即为初等列变换,所用记号是把“r ”换成“c ”。 扩展 矩阵的初等列变换与初等行变换统称为初等变换,初等变换的逆变换仍为初等变换, 且类型相同。 矩阵等价 A B A B 如果矩阵经有限次初等变换变成矩阵,就称矩阵与等价。 等价关系的性质 (1)反身性 A~A 2 A ~B , B ~A;()对称性若则 3 A ~B,B ~C, A ~C ()传递性若则。(课本P59) 行阶梯形矩阵:可画出一条阶梯线,线的下方全为零,每个台阶只有一行,台阶数即是非零行的行数阶梯线的竖线(每段竖线的长度为一行)后面的第一个元素为非零元,也是非零行的第一个非零元。 行最简形矩阵:行阶梯矩阵中非零行的第一个非零元为1,且这些非零元所在的列的其他元素都为0. 标准型:对行最简形矩阵再施以初等列变换,可以变换为形如r m n E O F O O ???= ???的矩阵,称为标准型。标准形矩阵是所有与矩阵A 等价的矩阵中形状最简单的矩阵。 初等变换的性质

设A 与B 为m ×n 矩阵,那么 (1);r A B m P PA B ?=:存在阶可逆矩阵,使 (2)~;c A B n Q AQ B ?=存在阶可逆矩阵,使 (3)P ;A B m P n Q AQ B ?=:存在阶可逆矩阵,及阶可逆矩阵,使 初等矩阵:由单位矩阵经过一次初等变换得到的方阵称为初等矩阵。 初等矩阵的性质 设A 是一个m ×n 矩阵,则 (1)对A 施行一次初等行变换,相当于在A 的左边乘以相应的m 阶初等矩阵; ~;r A B m P PA B ?=即存在阶可逆矩阵,使 (2)对A 施行一次初等列变换,相当于在A 的右边乘以相应的n 阶初等矩阵; 即~;c A B n Q AQ B ?=存在阶可逆矩阵,使 (3)~P ;A B m P n Q AQ B ?=存在阶可逆矩阵,及阶可逆矩阵,使 (4)方阵A 可逆的充分必要条件是存在有限个初等方阵1212,,,,l l P P P A PP P =L L 使。 (5)~r A A E 可逆的充分必要条件是。(课本P ? ) 初等变换的应用 (1)求逆矩阵:()1(|)|A E E A -????→初等行变换或1A E E A -????????→ ? ????? 初等列变换。 (2)求A -1B :A (,) ~ (,),r A B E P 即() 1(|)|A B E A B -??→行,则P =A -1B 。或1E A B BA -????????→ ? ????? 初等列变换. 第二节 矩阵的秩

【高考精品复习】选修4-2 矩阵与变换 矩阵与变换

【高考会这样考】 1.本部分高考命题的一个热点是矩阵变换与二阶矩阵的乘法运算,考题中多考查求平面图形在矩阵的对应变换作用下得到的新图形,进而研究新图形的性质. 2.本部分高考命题的另一个热点是逆矩阵,主要考查行列式的计算、逆矩阵的性质与求法以及借助矩阵解决二元一次方程组的求解问题. 【复习指导】 1.认真理解矩阵相等的概念,知道矩阵与矩阵的乘法的意义,并能熟练进行矩阵的乘法运算. 2.掌握几种常见的变换,了解其特点及矩阵表示,注意结合图形去理解和把握矩阵的几种变换. 3.熟练进行行列式的求值运算,会求矩阵的逆矩阵,并能利用逆矩阵解二元一次方程组. 基础梳理 1.乘法规则 (1)行矩阵[a 11 a 12]与列矩阵????b 11b 21 的乘法规则: [a 11 a 12]????b 11b 21=[a 11×b 11+a 12×b 21]. (2)二阶矩阵????a 11a 21 a 12a 22与列向量??? ?x 0y 0的乘法规则: ????a 11a 21 a 12a 22 ????x 0y 0=??? ?a 11×x 0+a 12×y 0a 21×x 0+a 22×y 0. (3)两个二阶矩阵相乘的结果仍然是一个矩阵,其乘法法则如下: ????a 11a 21 a 12a 22 ??? ?b 11b 21 b 12b 22= ????a 11×b 11+a 12×b 21a 21×b 11+a 22×b 21 a 11×b 12+a 12×b 22a 21×b 12+a 22×b 22 (4)两个二阶矩阵的乘法满足结合律,但不满足交换律和消去律.即(AB )C =

矩阵知识点归纳

矩阵知识点归纳 (一)二阶矩阵与变换 1.线性变换与二阶矩阵 在平面直角坐标系xOy 中,由? ??? ? x ′=ax +by ,y ′=cx +dy ,(其中a ,b ,c ,d 是常数)构成的变换称 为线性变换.由四个数a ,b ,c ,d 排成的正方形数表???? ? ?a b c d 称为二阶矩阵,其中a ,b ,c , d 称为矩阵的元素,矩阵通常用大写字母A ,B ,C ,…或(a ij )表示(其中i ,j 分别为元素a ij 所在的行和列). 2.矩阵的乘法 行矩阵[a 11a 12]与列矩阵??????b 11b 21的乘法规则为[a 11a 12]???? ??b 11b 21=[a 11b 11+a 12b 21],二阶矩阵??????a b c d 与列矩阵??????x y 的乘法规则为??????a b c d ??????x y =??????ax +by cx +dy .矩阵乘法满足结合律,不满足交换律和消去律. 3.几种常见的线性变换 (1)恒等变换矩阵M =???? ? ?1 00 1; (2)旋转变换R θ对应的矩阵是M =???? ?? cos θ -sin θsin θ cos θ; (3)反射变换要看关于哪条直线对称.例如若关于x 轴对称,则变换对应矩阵为M 1=??????1 00 -1;若关于y 轴对称,则变换对应矩阵为M 2=???? ?? -1 0 0 1;若关于坐标原点对称,则变换对应矩阵M 3=???? ?? -1 0 0 -1; (4)伸压变换对应的二阶矩阵M =???? ??k 1 00 k 2,表示将每个点的横坐标变为原来的k 1 倍,纵 坐标变为原来的k 2倍,k 1,k 2均为非零常数; (5)投影变换要看投影在什么直线上,例如关于x 轴的投影变换的矩阵为M =??????1 00 0; (6)切变变换要看沿什么方向平移,若沿x 轴平移|ky |个单位,则对应矩阵M =???? ? ?1 k 0 1, 若沿y 轴平移|kx |个单位,则对应矩阵M =???? ??1 0k 1.(其中k 为非零常数). 4.线性变换的基本性质 设向量α=??????x y ,规定实数λ与向量α的乘积λα=??????λx λy ;设向量α=??????x 1y 1,β=???? ??x 2y 2,规定向量α与β的和α+β=???? ?? x 1+x 2y 1+y 2. (1)设M 是一个二阶矩阵,α、β是平面上的任意两个向量,λ是一个任意实数,则①M (λα)=λMα,②M (α+β)=Mα+Mβ. (2)二阶矩阵对应的变换(线性变换)把平面上的直线变成直线(或一点).

矩阵的合同变换

矩阵的合同变换 摘要:矩阵的合同变换是高等代数矩阵理论中,基本交换。在《高等代数》里,我们仅讨论简单而直接的变换,而矩阵的合同变换与矩阵相似变换,二次型等有着诸多相同性质和联系。 关键词:矩阵 秩 合同 对角化 定义1:如果矩阵A 可以经过一系列初等变换变成B,则积A 与B 等价,记为A B ? 定义2:设A ,B 都是数域F 上的n阶方阵,如果存在数域F 上的n 阶段可逆矩阵P 使得1B P Ap -=,则称A 和B 相似A B 定义3:设A,B都是数域F上的n 阶矩阵,如果存在数域F 上的一个n阶可逆矩阵P,使得T P AP B = 那么就说,在数域F 上B 与A 合同。 以上三个定义,都具有自反性、传逆性、对称性、 性。 定理1:合同变换与相似变换都是等价变换 证明:仅证合同变换,相似变换完全相似 因为P 可逆,所以P 存在一系列初等矩阵的乘积,即12 m P Q Q Q =。 此时71 1T T T m n P Q Q Q -=边为一系列初等矩阵的乘积 若111 T T T T m n m B P AP Q Q Q AQ Q -== 则B 由A 经过一系列初等变换得到。所以A B ?, 从而知合同变换是等价变换。 定理2:合同变换与相似变换,不改变矩阵的秩 证明:由 知,合同变换与相似变换都是等价变换,所以不改变秩 定理3:相似矩阵有相同特征多项式 证明:共1A B B P AP -= 1||det ||del I B I P AP λλ--=- 又因为I λ为对称矩阵 所以11det ||||||I P AP P I A P λλ---=- ??? 1||||||P I A P λ-=- ? ||I A λ=- 注①合同不一定有相同特征多项式 定理4:如果A与B 都是n 阶实对称矩阵,且有相同特征根,则A 与B 相似且合同 论:设A ,B 为特征根均为12 ,n λλλ,因为A 与B 实对称矩阵,所以则在n 阶正 矩阵, ,Q P 使得 11 2[]Q AQ λλ-= 11[]n P BP λλ-= 从而有11Q AQ P BP --=

线性变换和矩阵.

§3 线性变换和矩阵 一、线性变换关于基的矩阵 设V 是数域P 上n 维线性空间.n εεε,,,21 V 的一组基,现在建立线性变换与 矩阵关系. 空间V 中任意一个向量ξ可以被基n εεε,,,21 线性表出,即有关系式 n n x x x εεεξ+++= 2211 (1) 其中系数是唯一确定的,它们就是ξ在这组基下的坐标.由于线性变换保持线性关系不变,因而在ξ的像A ξ与基的像A 1ε,A 2ε,…,A n ε之间也必然有相同的关系: A ξ=A (n n x x x εεε+++ 2211) =1x A (1ε)+2x A (2ε)+…+n x A (n ε) (2) 上式表明,如果知道了基n εεε,,,21 的像,那么线性空间中任意一个向量ξ 的像也就知道了,或者说 1. 设n εεε,,,21 是线性空间V 的一组基,如果线性变换?与?在这组基上 的作用相同,即 A i ε= B i ε, ,,,2,1n i = 那么A = B . 结论1的意义就是,一个线性变换完全被它在一组基上的作用所决定.下面指出,基向量的像却完全可以是任意的,也就是 2. 设n εεε,,,21 是线性空间V 的一组基,对于任意一组向量n ααα,,,21 一定有一个线性变换?使 A i ε=i α .,,2,1n i = 定理1 设n εεε,,,21 是线性空间V 的一组基,n ααα,,,21 是V 中任意n 个 向量.存在唯一的线性变换?使

A i ε=i α .,,2,1n i = 定义2 设n εεε,,,21 是数域P 上n 维线性空间V 的一组基,A 是V 中的一个 线性变换.基向量的像可以被基线性表出: ???????+++=+++=+++=. ,,22112222112212211111n nn n n n n n n n a a a A a a a A a a a A εεεεεεεεεεεε 用矩阵表示就是 A (n εεε,,,21 )=(A (1ε),A ?(2ε),…, A (n ε)) =A n ),,,(21εεε (5) 其中 ?????? ? ??=nn n n n n a a a a a a a a a A 2122221 11211 矩阵A 称为线性变换A 在基n εεε,,,21 下的矩阵. 例 1 设m εεε,,,21 是n )(m n >维线性空间V 的子空间W 的一组基,把它 扩充为V 的一组基n εεε,,,21 .指定线性变换A 如下 ???+====. ,,1,0,,,2,1,n m i A m i A i i i εεε 如此确定的线性变换A 称为子空间W 的一个投影.不难证明 A 2=A 投影A 在基n εεε,,,21 下的矩阵是

高中数学选修4-2矩阵与变换知识点复习课课件_苏教版

2.1.1 矩阵的概念 1.矩阵的概念,零矩阵,行矩阵,列矩阵; 2.矩阵的表示; 3.相等的矩阵; 2.1.2 二阶矩阵与平面列向量的乘法1.二阶矩阵与平面向量的乘法规则; 2.理解矩阵对应着向量集合到向量集合的映射; 3.待定系数法是由原象和象确定矩阵的常用方法. 2.1 2.1 二阶矩阵与平面向量 二阶矩阵与平面向量

1,3形如??????8090,6085??????23324m ???????的矩形数字(或字母)阵列称为矩阵.通常用大写黑体的拉丁字母A 、B 、C …表示,或者用(a ij )表示,其中i,j i,j 分别表示元素a ij ij 所在的行与列. 同一横排中按原来次序排列的一行数(或字母)叫做矩阵的行,同一竖排中按原来次序排列的一行数(或字母)叫做矩阵的列. 组成矩阵的每一个数(或字母)称为矩阵的元素。

13?????? 80906085??????23324m ???????21矩阵×22×矩阵23矩阵×0所有元素均为的矩阵叫做0矩阵. ,. 对于两个矩阵、的行数与列数分别相等,且对应位置上的元素也分别相和时,记等才相等作A B B A A B =

[][][]111112211111121111122121,规定: 行矩阵与列矩阵的乘法法则为 =b a a b b a a a b a b b ?????? ??×+×???? 01112212200110120111221220210220.x a a b b y x a x a y a a b b y b x b y ???????????? ×+×????????????×+×?????? 二阶矩阵与列向量的乘法规则为=

矩阵的合同变换之令狐文艳创作

矩阵的合同变换 令狐文艳 摘要:矩阵的合同变换是高等代数矩阵理论中,基本交换。在《高等代数》里,我们仅讨论简单而直接的变换,而矩阵的合同变换与矩阵相似变换,二次型等有着诸多相同性质和联系。 关键词:矩阵 秩 合同 对角化 定义1:如果矩阵A 可以经过一系列初等变换变成B ,则积A 与B 等价,记为A B ? 定义2:设A ,B 都是数域F 上的n 阶方阵,如果存在数域F 上的n 阶段可逆矩阵P 使得1B P Ap -=,则称A 和B 相似 A B 定义3:设A ,B 都是数域F 上的n 阶矩阵,如果存在数域F 上的一个n 阶可逆矩阵P ,使得T P AP B = 那么就说,在数域F 上B 与A 合同。 以上三个定义,都具有自反性、传逆性、对称性、 性。 定理1:合同变换与相似变换都是等价变换 证明:仅证合同变换,相似变换完全相似 因为P 可逆,所以P 存在一系列初等矩阵的乘积,即 12 m P Q Q Q =。 此时71 1T T T m n P Q Q Q -=边为一系列初等矩阵的乘积 若111 T T T T m n m B P AP Q Q Q AQ Q -== 则B 由A 经过一系列初等变 换得到。所以A B ?,从而知合同变换是等价变换。 定理2:合同变换与相似变换,不改变矩阵的秩 证明:由 知,合同变换与相似变换都是等价变换,所以不改变秩

定理3:相似矩阵有相同特征多项式 证明:共1A B B P AP -= 又因为I λ为对称矩阵 所以11det ||||||I P AP P I A P λλ---=- 注①合同不一定有相同特征多项式 定理4:如果A 与B 都是n 阶实对称矩阵,且有相同特征根,则A 与B 相似且合同 论:设A ,B 为特征根均为12,n λλλ,因为 A 与 B 实对称矩 阵,所以则在n 阶正 矩阵,,Q P 使得 从而有11Q AQ P BP --= 由11Q Q E PP E --== 从而有1111PQ QP PEP PP E ----=== 从而111()PQ QP ---= 又由于1111()()()QP QP T QP P TQT ----= 1QP -∴为正交矩阵 所以A B 且A B ? 定时5:两合同矩阵,若即PTAP B =,若A 为对称矩阵,则B 为对称阵,而两相似矩阵则不一定有些性质 证明:A B ?即T P AP B =,若对称阵,则T A A = 所以B 边为对称阵 [注]:相似矩阵对此结论不具有一般性,它在什么情况下成立呢? 引理6:对称矩阵相似于对角阵?A 的每一个特征根λ有秩||I A n s λ-=-,S 为λ的重数. 证明:任给对称的n 阶矩阵A 一个特征根λ,以其重数以秩||I A r λ-=,则 ||r n s n r s I A λ=-?-=?-1200 0n x x x ???????? ????=???? ?????? ??,线性无关的解向量个数为

相关主题
文本预览
相关文档 最新文档