当前位置:文档之家› 荧光分析法基本概念

荧光分析法基本概念

荧光分析法基本概念
荧光分析法基本概念

紫外可见吸收光谱一紫外吸收光谱分析

基于物质对200-800nm光谱区辐射的吸收特性而建立起来的分析测定方法称为紫外-可见吸收光谱法或紫外-可见分光光度法。它属于分子吸收光谱,是由于分子内电子跃迁而产生的光谱。

二紫外光谱的产生

物质分子的能量具有量子化的特征(即物质分子的能量具有不连续的特征)。一个分子有一系列能级,其中包括许多电子能级,分子振动能级以及分子转动能级。分子吸收特定的波长的光而产生吸收光谱

分子的紫外吸收光谱是由于分子中价电子的跃迁而产生的,从化学键的性质上考虑,与电子光谱有关的主要是三种电子:(1)形成单键的σ电子;(2)形成双键的π电子;(3)分子中非键电子即n电子。

化合物不同,所含的价电子类型不同,所产生的电子跃迁类型不同,根据分子轨道理论,分子中这三种电子能级的高低次序大致是:

(σ)<(π)<(n)<(π*)<(σ* )σ,π是成键轨道,n 是非键轨道,σ* ,π* 是反键轨道

由于电子能级间跃迁的同时总伴随有振动和转动能级间的跃迁。即电子光谱中总包含有振动能级和转动能级间跃迁产生的若干谱线而呈现宽谱带。

二紫外光谱的表示方法

紫外光谱图是由横坐标、纵坐标和吸收曲线组成的。

横坐标表示吸收光的波长,用nm(纳米)为单位。

纵坐标表示吸收光的吸收强度,可以用A(吸光度)、T(透射比或透光率或透过率)、1-T(吸收率)、?(吸收系数) 中的任何一个来表示。

吸收曲线表示化合物的紫外吸收情况。曲线最大吸收峰的横坐标为该吸收峰的位置,纵坐标为它的吸收强度。

四、紫外光谱中常用的几个术语

1.发色基团和助色基团

发色基团:是能导致化合物在紫外及可见光区产生吸收的基团,不论是否显示颜色都称为发色基团。一般不饱和的基团都是发色基团(C=C、C=O、N=N 、三键、苯环等)

助色基团:指那些本身不会使化合物分子产生颜色或者在紫外及可见光区不产生吸收的一些基团,但这些基团与发色基团相连时却能使发色基团的吸收带波长移向长波,同时

使吸收强度增加。助色基团通常是由含有孤对电子的元素所组成(-NH

2, -NR

2

, -OH ,

-OR , -Cl等),这些基团借助P-π共轭使发色基团增加共轭程度,从而使电子跃迁的能量下降。

2.红移、蓝移、增色效应和减色效应

由于有机化合物分子中引入了助色基团或其他发色基团而产生结构的改变、或者由于溶剂的影响使其紫外吸收带的最大吸收波长向长波方向移动的现象称为红移。与此相反,如果吸收带的最大吸收波长向短波方向移动,则称为蓝移。

由于化合物分子结构中引入取代基或受溶剂的影响,使吸收带的强度即摩尔吸光系数增大或减少的现象称为增色效应或减色效应、

分子荧光分析法

一、荧光的产生

物质分子的能级包括一系列电子能级、振动能级和转动能级。分子吸收能量后,从基态最低振动能级跃迁到第一电子激发态或更高电子激发态的不同振动能级(这一过程速度很快,大约10-15s),成为激发单重态分子。激发态分子不稳定,可以通过以下几种途径释放能量返回基态

1. 振动驰豫

这一过程只能发生在同一电子能级内,即分子通过碰撞以热的形式损失部分能量,从

较高振动能级下降到该电子能级的最低振动能级上。由于这一部分能量以热的形式释放,而不是以光辐射形式发出,故振动驰豫属于无辐射跃迁。

2. 内转换

即激发态分子将多余的能量转变为热能,从较高电子能级降至较低的电子能级。内转换也属于无辐射跃迁

3. 系间窜跃

有些物质的激发态分子通过振动驰豫和内转换下降到第一电子激发态的最低振动能级后,有可能经过另一个无辐射跃迁转移至激发三重态,这一过程伴随着自旋方向的改变,称为系间窜跃。对于大多数物质,系间窜跃是禁阻的。如果分子中有重原子(如I、Br等)存在,由于自旋-轨道的强偶合作用,电子自旋方向可以改变,系间窜跃就变得容易了

4. 磷光

经系间窜跃的分子再通过振动驰豫降至激发三重态的最低振动能级,停留一段时间(10-4~10 s,称作磷光寿命),然后以光辐射形式放出能量返回到基态各振动能级,这时发出的光称为磷光(phosphorescence)。由于激发三重态能量比激发单重态最低振动能级能量低,故磷光辐射的能量比荧光更小,即磷光的波长比荧光更长。

5. 荧光

较高激发态分子经无辐射跃迁降至第一电子激发单重态的最低振动能级后,仍不稳定,停留较短时间后(约10-8 s,称作荧光寿命),以光辐射形式放出能量,回到基态各振动能级,这时所发射的光称为荧光。当然也可以无辐射跃迁形式返回基态

二、激发光谱和荧光光谱

荧光检测

光源发出的紫外可见光通过激发单色器分出不同波长的激发光,照射到样品溶液上,激发样品产生荧光。样品发出的荧光为宽带光谱,需通过发射单色器分光后再进入检测器,检测不同发射波长下的荧光强度F。由于激发光不可能完全被吸收,可透过溶液,为了防止透射光对荧光测定的干扰,常在与激发光垂直的方向检测荧光(因荧光是向各个方向发射的)。

激发光谱与荧光发射光谱的形成

任何荧光物质,都具有两种特征光谱,即激发光谱(excitation spectrum)和荧光发射光谱(fluorescence emission spectrum)。

1. 激发光谱

保持荧光发射波长不变(即固定发射单色器),依次改变激发光波长(即调节激发单色器),测定不同波长的激发光激发下得到的荧光强度F(即激发光波长扫描)。然后以激发光波长为横坐标,以荧光强度F为纵坐标作图,就可得到该荧光物质的激发光谱。

激发光谱上荧光强度最大值所对应的波长就是最大激发波长,是激发荧光最灵敏的波长。物质的激发光谱与它的吸收光谱相似,所不同的是纵坐标。

2. 荧光光谱

荧光光谱,又称发射光谱。保持激发光波长不变(即固定激发单色器),依次改变荧光发射波长,测定样品在不同波长处发射的荧光强度F。以发射波长为横坐标,以荧光强

度F为纵坐标作图,得到荧光发射光谱。荧光发射光谱上荧光强度最大值所对应的波长就是最大发射波长

发射光谱与激发光谱的关系

1.发射光谱形状与激发光波长无关由于荧光是分子从第一电子激发态的最低振动能级返回到基态的各振动能级时释放的光辐射,与分子被激发至哪一个电子激发态无关。

2.发射光谱比激发光谱波长为长

由于分子吸收激发光被激发至较高激发态后,先经无辐射跃迁(振动驰豫、内转换)损失掉一部分能量,到达第一电子激发态的最低振动能级,再由此发出荧光。因此,荧光发射能量比激发光能量低,发射光谱波长比激发光波长长。

3.镜像对称

对于高度对称的有机分子,其荧光发射光谱与吸收光谱呈镜像对称关系。

解释:能级结构相似性

荧光为第一电子激发单重态的最低振动能级跃迁到基态的各个振动能级而形成,即其形状与基态振动能级分布有关。

激发光谱是由基态最低振动能级跃迁到第一电子激发单重态的各个振动能级而形成,即其形状与第一电子激发单重态的振动能级分布有关。由于激发态和基态的振动能级分布具有相似性,因而呈镜像对称。

三、影响荧光产生及荧光强度的因素

1.物质产生荧光的必要条件

一种物质能否发荧光以及荧光强度的高低,与它的分子结构及所处的环境密切相关。能够发射荧光的物质都应同时具备两个条件:

1. 物质分子必须有强的紫外吸收(有?~?*跃迁);

2. 物质具有较高的荧光效率(fluorescence efficiency)。荧光效率也称

荧光量子产率,用?f 表示。

可见,凡是使k F增加,使其它去活化常数降低的因素均可增加荧光量子产率。通常,k F由分子结构决定(内因),而其它参数则由化学环境和结构共同决定。

2.影响荧光及其强度的因素

跃迁类型:如上所述,物质必须在紫外可见区有强吸收和高荧光效率才能产生荧光。具有?—?* 跃迁的分子才有强吸收。?—?* 跃迁的?大。

共轭效应:大多数能产生荧光的物质都含有芳香环或杂环,具有共轭的?~?* 跃迁。其共轭程度愈大,荧光效率也愈大,且最大激发和发射波长都向长波长方向移动,如苯、萘、蒽三种物质。

刚性平面结构:当荧光分子共轭程度相同时,分子的刚性和共平面性越大,荧光效率越大。

荧光物质(荧光素)非荧光物质(酚酞)

芴(Ф=1.0)联苯(Ф=0.2)

有些物质本身不发荧光或荧光较弱,但和金属离子形成配合物后,如果刚性和共平面性增加,就可以发荧光或增强荧光。如8-羟基喹啉是弱荧光物质,与Mg2+、Al3+等金属离子形成的配合物的荧光增强,利用这一特点可以间接测定金属离子。

8-羟基喹啉 8-羟基喹啉-铝

取代基团

荧光分子上的各种取代基对分子的荧光光谱和荧光强度都有很大影响。给电子取代基

如—NH

2、—OH、—OCH

3

、—CN、—NHR、—NR

2

等,能增加分子的π电子共轭程度,使荧光

效率提高。而-COOH、—NO

2

、—C=O、—F、—Cl等吸电子取代基,可减弱分子π电子共轭

性,使荧光减弱甚至熄灭。还有一类取代基则对荧光的影响不明显,如—R、—SO

3H、—NH

3

等。

苯萘蒽维生素A

205nm286nm356nm327nm

278nm321nm404nm510nm ?0.110.290.36

温度

温度对被测溶液的荧光强度有明显的影响。当温度升高时,介质粘度减小,分子运动加快,分子间碰撞几率增加,从而使分子无辐射跃迁增加,荧光效率降低。故降低温度有利于提高荧光效率及荧光强度。

由于荧光仪器光源的光强度大、温度较高,容易引起溶液温度升高,加之分析过程中室温可能发生变化,从而导致荧光强度改变。另外,有些荧光物质的溶液在激发光较长时间的照射下,还会发生光分解,使荧光强度下降。因此,试样不应长时间受光照射,只在测定荧光强度时才打开光闸,其余时间应关闭。在较高档的荧光分光光度计中,样品室四周设有冷却水套或配有恒温装置,以使溶液的温度在测定过程中保持恒定。

溶剂:同一种荧光物质在不同的溶剂中,其荧光光谱的位置和荧光强度可能会有一定的差别,尤其是那些分子中含有极性取代基的荧光物质,它们的荧光光谱易受溶剂的影响。

溶剂的影响可以分为一般溶剂效应和特殊溶剂效应。一般溶剂效应是指溶剂极性的影响。通常情况下,随着溶剂极性增大,?~?* 跃迁所需的能量差?E减小,跃迁几率增加,从而使荧光波长长移,荧光强度增大。

一般而言,探针激发态的偶极矩大于基态偶极矩,当荧光基团被激发后,溶剂的偶极子在激发态的荧光基团的周围重新定向而降低激发态的能量,溶剂的极性越大,荧光团激发态能量降低的越多,因而从激发态跃迁回基态时发射的能量越低,发射的波长就越长

特殊溶剂效应是指溶剂与荧光物质形成化合物,或溶剂使荧光物质的电离状态改变,使荧光峰的波长和荧光强度都发生较大变化。如在萘胺的乙醇溶液中加入盐酸,随着溶液中盐

酸浓度的增加,萘胺的—NH

2基逐渐被—NH

3

Cl基所代替,而—NH

3

Cl基对萘环特征频率的影

响小于—NH

2

,因此溶液的荧光光谱趋近于萘的荧光光谱。

pH值:溶液的酸度(pH值)对荧光物质的影响可以分两个方面:

1.若荧光物质本身是弱酸或弱碱时,溶液pH值改变,物质分子和其离子间的平衡也随之发生变化,而不同形体具有其各自特定的荧光光谱和荧光效率。例如苯胺

无荧光(离子形式)蓝色荧光(分子形式)无荧光(离子形式)

2. 对于金属离子与有机试剂生成的荧光配合物,溶液pH值的改变会影响配合物的组成,从而影响它们的荧光性质。例如Ga3+离子与邻-二羟基偶氮苯,在pH3~4的溶液中形成1:1配合物,能产生荧光。而在pH6~7的溶液中,则形成1?2的配合物,不产生荧光。

总之,溶液pH值对荧光物质的荧光光谱、荧光效率及荧光强度均有影响。需通过条件实验找出pH与荧光强度的关系,确定最适宜的pH范围,以提高分析的灵敏度和准确度。Fluorescence signaling mechanisms

荧光响应机理

1 Photoinduced electron transfer,PET

典型的光诱导电子(Photoinduced electron transfer,PET)转移体系是由包含电子给体的受体部分R(receptor),通过间隔基S(spacer,-CH2-)和荧光团F(fluorophore)相连而构成的。其中荧光团部分是能吸收光和荧光发射的场所,受体部分则用来结合客体,这两部分被间隔基隔开,又靠间隔基相连而成一个分子,构成了一个在选择性识别客体的同时又给出光信号变化的超分子体系。

PET mechanism

Fig.1 The principle of guest recognition by PET fluorescent molecular probe PET荧光分子探针中,荧光团与受体单元之间存在着光诱导电子转移,对荧光有非常强的淬灭作用,通常是电子从供体转移到激发态荧光团(还原型PET)。因此在未结合客体之前,探针分子不发射荧光,或荧光很弱。一旦受体与客体相结合,光诱导电子转移作用受到抑制,甚至被完全阻断,荧光团就会发射荧光

解释

Fig.2 Frontier orbital energy diagrams illustrating the mechanism of PET

当电子给体被激发时,引入的电子受体就可作为淬灭剂,通过LUMO轨道的电子转移,引起荧光淬灭。

Fig.2 Frontier orbital energy diagrams illustrating the mechanism of PET

当电子受体被激发时,引入的电子给体就可作为淬灭剂,通过HOMO轨道的电子转移,引起荧光淬灭。

PET应用到传感器上需要的条件:

一、传感器分子中要包含一个荧光团,其应具有高的量子产率;

二、还应包含电子给体(Electron Donor),可以发生向荧光团的 PET 过程;

三、当结合目标分子(或离子)后,会引发或抑制电子给体与电子受体间的光诱导电子转移,引起荧光团荧光猝灭或荧光恢复,实现信号报告目的。

基于PET过程的阴离子识别与传感

选择性识别HPO

4

-的荧光传感器

此分子为首例利用PET

机理识别阴离子的荧光分子传感器。其以蒽为荧光团,多胺阳离子

为阴离子的识别位点。在进行阴离子识别前,先对多胺进行部分质子化,残留一个自由氨

基作为荧光团蒽的猝灭剂。当HPO

4

2?的加入后,其羟基与残余氨基孤对电子结合后,阻断了PET的发生,可使蒽荧光得到恢复,表现为受体分子荧光显着增强,实现在在pH = 6 的水

中选择性识别磷酸氢根离子(HPO

4

2? )。

PET过程被阻断

选择性识别CH

3

COO-的荧光传感器

受体分子以硫脲盐类为阴离子识别位点,荧光团为萘。在激发态时,会发生从萘向硫脲盐方向的PET过程,致使萘的荧光被猝灭,在乙腈中,阴离子如AcO?与硫脲盐以静电吸引和多重氢键协同作用结合后,提高了硫脲盐的还原电位,阻断了PET的发生,荧光强度显

PET

着增强,可实现在水中识别HPO

42?和AcO?,其与HPO

4

2?形成2:1的配合物。

选择性识别Hg离子-的荧光传感器

受体分子3是选择性识别Hg2+的PET传感器。萘酰亚胺是分子3的荧光团, 2,6-二胺甲基吡啶上的氮原子既是荧光团的猝灭基又是金属离子的结合位点,其半刚性结构可增强与金属离子结合的选择性。在pH=6.98的HCl-Tris缓冲溶液中受体自身的荧光较弱,荧光量子产率为0.007,过渡金属离子中的Zn2+、Cd2+、Ag+和Pb2+均能使3的荧光不同程度的增强(Φ/Φ0 < 3),唯有Hg2+使其的荧光增强17倍,其它金属离子的加入并不影响3的荧光行为。受体分子中的羟基可增加分子的水溶性,可实现水相中的Hg2+选择性识别

选择性识别Hg2+的荧光传感器

PET

同样为选择性识别Hg2+的荧光传感器,受体4以荧光素为荧光团,同时在受体中引入硫原子以增加与Hg2+的结合能力。在pH = 7的缓冲溶液中,受体4存在从苯胺到荧光素的PET 过程,荧光量子产率仅为0.04。随着Hg2+的加入,苯胺到荧光素的PET过程被抑制,受体的荧光强度增加5倍,光谱略有红移。干扰实验表明除Cu2+外,其它金属离子的存在对Hg2+的检测并不干扰。

2 F?rster Resonance Energy Transfer,FRET

荧光共振能量转移(F?rster resonance energy transfer,FRET)是指在两个不同的荧光团中,如果一个荧光团(Doner)的发射光谱和另一个荧光团(Aceptor)的吸收光谱有一定的重叠,当这两个荧光团间的距离合适时(一般小于100?),就可以观察到荧光能量由供体向受体转移的现象,即用供体的激发波长激发时,可观察到受体的荧光发射。进一步讲,就是

在供体的激发状态下由一对偶极子介导的能量从供体向受体转移的过程。此过程没有光子的参与,所以是非辐射性的。

影响共振能量转移效率的因素

一、供体的发射光谱与受体的吸收光谱重叠程度

二、供体与受体间的距离

按照F?rster’s理论

三、供体与受体的跃迁偶极的相对取向

识别F-,HPO4-的荧光传感器

受体分子7未结合阴离子时存在从芘(能量供体)到 2,3-二吡咯-喹喔啉(能量受体)的共振能量转移,以 325nm(芘的吸收带)激发,观察到位于 495nm的2,3-二吡咯-喹喔啉

2?)的加入,2,3-二吡咯-喹喔啉的荧光强度减弱,的强荧光发射峰。随着阴离子(F?或 HPO

4

且其吸收光谱也发生变化,表明 FRET 过程受到抑制。通过对比实验,发现跟单独的 2,3-二吡咯-喹喔啉相比,受体7 通过FRET进行传感的灵敏度有所提高。

选择性识别Al3+的荧光传感器

受体分子8利用结合前后供体的发射光谱与受体的吸收光谱重叠程度的不同,从而选择性进行Al3+的传感。分子中邻羟基苯基三唑自身不发荧光,与Al3+结合后荧光有所增强(尽管仍很弱),但其发射光谱与香豆素343的吸收光谱重叠程度大为增加,能量转移效率提高,达到信号放大之目的。在甲醇-水(1:1)的pH 5.0缓冲溶液中,以350 nm光激发受体8(邻羟基苯基三唑的吸收峰), Al3+的加入使香豆素343的荧光增强7倍,检测限为50 nM,

其它金属离子除Cu2+和Fe3+使受体8荧光猝灭外,对测定无影响。

3.激基缔合物(excimer)

如果两个相同的荧光团(主要是多环芳烃)之间的距离和位置合适,当其中一个荧光团被激发以后就会和另外一个处于基态的荧光团形成激基缔合物(excimer),其荧光发射光谱的特征表现是原来单体的发射峰减弱或者消失,取而代之的是一个新的、强而宽的、长波长的无振动精细结构发射峰。由于形成这种激基缔合物需要激发态分子与基态分子达到“碰撞”距离约3.5?,因此荧光团间的距离是激基缔合物形成和破坏的关键

利用各种分子间作用力改变两个荧光团之间的距离和取向,如用结合客体前后单体/激基缔合物的荧光光谱变化就能够表达客体被识别的信息。萘、蒽、芘等荧光团由于具有较长的激发单线态寿命,易形成激基复合物,常常用于此类探针的设计中。

激基缔合物的形成过程受扩散控制,因此单体浓度与溶剂粘度是缔合物形成过程中的决定因素。当单体溶于烷烃溶剂且浓度低于10?5mol /L时,通常观测到的为单体荧光。若受体分子中有两相同的荧光团,其相对距离与受体和客体的结合有关,如受体分子结合上客体后,分子构型发生变化,促进激基缔合物的形成(图 6)或破坏了单体本身的激基缔合物结构,因此可通过单体与 excimer 间的荧光强度比值来进行客体的识别。

图6. 客体与受体分子结合后促进激基缔合物的形成

基于monomer/excimer的阴离子识别与传感

分子以胍基为阴离子识别位点,芘为信号报告基团,在甲醇中,其只发射单体的荧光,随着焦磷酸根离子的加入,导致单体荧光猝灭和excimer荧光的形成和增强,原因在于焦磷酸根离子与受体发生自组装作用。其它阴离子无此现象,因而该受体可选择性地识别焦磷

酸根离子

作为磷酸根离子传感器,此分子采用了与上例相反的传感模式。它采用钳型结构,以酰胺键为识别位点,可选择性地识别磷酸根离子。在四氢呋喃中发射双重荧光,长波长的excimer 荧光被认为来自不同侧链的芘分子间的激发态相互作用。磷酸根离子的加入与酰胺NH氢键结合,改变了分子构型,使芘分子间距离增大,导致excimer荧光减弱,单体荧光增强。识别Zn2+的荧光传感器巧妙地应用变构原理。在受体分子中,金属配体(-NH

)与荧光团(芘

2

基)处于六元环结构的稳定的平伏键构象结构中。未结合阳离子时分子的荧光主要为单体荧光; Zn2+的加入,诱使-NH2采取直立键构象,使之构象发生翻转,荧光团芘也只能以直立键方式分处上下两端,促进excimer的形成,导致excimer荧光增强,单体荧光猝灭。与前一分子相反,此分子在未结合阳离子时,分子中的两个芘基彼此靠近、重叠,主要发射 excimer长波长荧光,阳离子(Hg2+)与之配合后改变芘基的空间位置,破坏之前的excimer结构,所以观测到受体分子单体荧光增强,而excimer荧光被猝灭。该受体对Hg2+的选择性很好,而对其他金属阳离子的响应很弱。

更多excimer探针

4.Intramolecular Charge Transfer,ICT

当直接连有供电子基(通常是氨基)的荧光团和一个吸电子基共轭连接时,在光的激发下,分子内就会发生从电子供体到电子受体的电荷转移。典型分子内电荷转移荧光分子探针就是荧光团上连有强的吸电子基和供电子基的推-拉电子体系。

ICT荧光分子探针的受体往往是推-拉电子体系整体中的一部分,相反,当荧光团上的受体在吸电子基团一端,也就是说,在推拉电子体系中拉电子的一端时,和客体结合后,会增

大体系推拉电子的能力,增大电子的流动性,吸收光谱红移,摩尔消光系数增大。原理上,荧光光谱的位移和吸收光谱的位移方向一致。除了光谱的变化外,也能观察到荧光量子产率和荧光寿命的变化。所有这些光物理性能的变化决定于客体的大小和电荷多少。

当荧光团上的受体(如氨基)在供电子基团一端时,和客体结合后会减少这个供电子基团的供电能力,从而导致体系共轭程度降低,吸收光谱蓝移,并伴随着摩尔消光系数的减小。当荧光团上的受体在吸电子基团一端,也就是说,在推拉电子体系中拉电子的一端时,和客体结合后,会增大体系推拉电子的能力,增大电子的流动性,吸收光谱红移,摩尔消光系数增大。

问题:分子处于激发态为什么会发生电子转移而导致正负电荷分离呢?

这是由分子激发态的性质决定的。首先,激发态的分子较基态具有更大的反应活性,体现在其氧化电位下降和还原电位提高,因此易于发生电子的得失,为电子转移提供条件。其次,当电子给体与电子受体位于分子内的共轭体系中时,无论是给体被激发或是受体被激发,都会诱导从电子给体到受体的电子转移过程。随着电子转移的进行,分子内会发生正负电荷的分离,表现为分子偶极距的增大。

处于激发态上的分子内电荷转移态分子是不稳定的,具有正负电荷复合趋向而回到基态,要是这个过程为辐射跃迁,就会伴随 ICT荧光发射。分子电荷转移态的稳定性受外界环境的影响较大,凡是能稳定正负电荷分离的因素将会降低电荷转移态的能量,导致 ICT荧光光谱红移(例如溶剂效应),反之则会导致ICT光谱蓝移

氮杂冠醚有着双重身份:既是推拉电子体系中的电子给体,又是探针分子中的识别基团。当冠醚与Ca2+络合时,由于金属离子的拉电子效应,降低了氮杂冠醚中氮原子的供电子能

力,因此其吸收光谱发生较大的蓝移。荧光光谱也发生蓝移,但比吸收光谱蓝移得幅度要小。这是由于光诱导电荷转移减少了冠醚上氮原子的电子云密度,这个氮原子由于极化变为非配位原子。因此,光激发诱导冠醚上氮原子和金属离子之间的作用减弱或消失,从而使荧光光谱发生较小的蓝移。

加入Cd2+后,体系的颜色从绿色变为蓝色,而且荧光发射波长发生蓝移(531nm到487nm),这是由于Cd2+直接与分子结构中的-NH结合,减弱了-NH的供电子能力;而加入Zn2+后,体系的颜色从绿色变为黄色,而且荧光发射波长发生红移(531 nm到538 nm)。实验进一步研究pH滴定 Zn2+配合物的图谱,结果表明此结构中的-NH基团首先要脱去质子,才能与Zn2+配合,从而导致分子结构-NH的供电子能力增强。这两种相反的ICT过程使之能够选择性的测定Cd2+和Zn2+。

分子中含有两个供电子基团-NH-和两个吸电子基团-C=O,受光激发,-NH-上的电子向-C=O 转移,形成ICT过程。在乙醇水溶液(乙醇:水=4:6)中加入Cu2+,体系的最大荧光发射波长蓝移50 (从525 nm到475 nm)。而且随着Cu2+浓度的增加,475nm处的荧光发射逐渐增强,525 nm处的荧光强度逐渐降低,两处的荧光发射强度比值与Cu2+浓度呈线性相关。

加入Cd2+后,体系的颜色从绿色变为蓝色,而且荧光发射波长发生蓝移(531nm到487nm),这是由于Cd2+直接与分子结构中的-NH结合,减弱了-NH的供电子能力;而加入Zn2+后,体系的颜色从绿色变为黄色,而且荧光发射波长发生红移(531 nm到538 nm)。实验进一步研究pH滴定Zn2+配合物的图谱,结果表明此结构中的-NH基团首先要脱去质子,才能与Zn2+配合,从而导致分子结构-NH的供电子能力增强。这两种相反的ICT过程使之能够选择性的测定Cd2+和Zn2+。

Twisted Intramolccular Charge Transfer,TICT

在荧光寿命期间,与发色团单键相连的助色团(通常是与发色团相连的氨基)会发生分子内的扭转,使得构像发生了变化;另有一种是以双键相连的,旋转后构型发生了变化。旋转的动力来源于电子激发后受体(aceeptor)的吸电性,扭转后的电子云分布将更加有利于系统的稳定,这种扭转将有利于电荷的完全分离。所形成的激发态称为TICT态,是完全的电荷分离。

Principle of twisted intramolecular charge transfer,TICT

在NMC5 和JULCN 分子中,氨氮原子被固定在苯环平面上,仅观察到 LE 荧光;而在 CBQ 和MMD 分子中,二甲氨基平面被固定与芳环平面垂直或因邻位甲基的空间位阻使其扭转而与芳环平面几乎垂直,仅观察到 CT 荧光。

基于TICT机理的离子传感

5.Excited-State Intramolecular Proton Transfer,ESIPT

含有分子内氢键的分子,光激发时其质子酸性提高,易于发生质子转移。可发生分子内激发态质子转移的物质一般含羟基或氨基,受光激发时,质子从羟基或氨基转移至邻近的与之形成氢键的原子上(一般能形成五元环或六元环,距离不超过2?),由之前的醇式结构转变成酮式结构。

由于光激发所形成的酮式异构体只在激发态时(而不是基态)较原醇式结构稳定,故光异构体的荧光较原分子的荧光位于长波长处

ESIPT mechanism for benzazole dyes

在pH为7.2的缓冲溶液中荧光峰位于460nm,Zn2+加入后,使其荧光蓝移至405nm,这是由

荧光分析法检测原理及应用举例

1 荧光定义 某些化学物质从外界吸收并储存能量而进入激发态,当其从激发态回到基态时,过剩的能量以电磁辐射的形式放射出去即发光,称之为荧光。可产生荧光的分子或原子在接受能量后引起发光,供能一旦停止,荧光现象随之消失。 2 荧光分类 由化学反应引起的荧光称为化学荧光,由光激发引起的荧光称为光致荧光,课题主要研究光致荧光。按产生荧光的基本微粒不同,荧光可分为原子荧光、X 射线荧光和分子荧光,课题主要研究分子荧光。 3 光致荧光机理 某一波长的光照射在分子上,分子对此光有吸收作用,光能量被分子所吸收,分子具有的能量使分子的能级由最低的基态能级上升至较高的各个激发态的不同振动能级,称为跃迁。分子在各个激发态处于不稳定的状态,并随时在激发态的不同振动能级下降至基态,在下降过程中,分子产生发光现象,此过程为释放能量的过程,即为光致荧光的机理。光致荧光的过程按照时间顺序可分为以下几部分。 分子受激发过程 在波长为10~400nm的紫外区或390~780nm的可见光区,光具有较高的能量,当某一特征波长的光照射分子时,是的分子会吸收此特征波长的光能量,能量由光传递到分子上,此过程为分子受激发过程。分子中的电子会出现跃迁过程,在稳定的基态向不稳定的激发态跃迁。跃迁所需要的能量为跃迁前后两个能级的能量差,即为吸收光的能量。分子跃迁至不稳定的激发态中即为电子激发态分子。 在电子激发态中,存在多重态。多重态表示为2S+1。S为0或1,它表示电子在自转过程中,具有的角动量的代数和。S=0表示所有电子自旋的角动量代数和为0,即所有电子都是自旋配对的,那么2S+1=1,电子所处的激发态为单重态, 用S i 表示,由此可推出,S 即为基态的单重态,S 1 为第一跃迁能级激发态的单重 态,S 2 为第二跃迁能级激发态的单重态。S=1表示电子的自旋方向不能配对,说明电子在跃迁过程中自旋方向有变化,存在不配对的电子为2个,2S+1=3,电子 在激发态中位于第三振动能级,称为三重态,用T i 来表示,T 1 即为第一激发态中 的三重态,T 2 即为第二激发态中的三重态,以此类推。

荧光分析法基本概念

紫外可见吸收光谱一紫外吸收光谱分析 基于物质对200-800nm光谱区辐射的吸收特性而建立起来的分析测定方法称为紫外-可见吸收光谱法或紫外-可见分光光度法。它属于分子吸收光谱,是由于分子内电子跃迁而产生的光谱。 紫外光谱的产生 物质分子的能量具有量子化的特征(即物质分子的能量具有不连续的特征) 。一个分子有一系列能级,其中包括许多电子能级,分子振动能级以及分子转动能级。分子吸收特定的波长的光而产生吸收光谱 分子的紫外吸收光谱是由于分子中价电子的跃迁而产生的,从化学键的性质上考虑,与电子光谱有关的主要是三种电子: (1)形成单键的c电子;(2)形成双键的n电子;(3) 分子中非键电子即n电子。 化合物不同,所含的价电子类型不同,所产生的电子跃迁类型不同,根据分子轨道理论,分子中这三种电子能级的高低次序大致是: (c)v(n)v( n) v(n * )v( c * ) c,冗是成键轨道,n是非键轨道, c* , n *是反键轨道 由于电子能级间跃迁的同时总伴随有振动和转动能级间的跃迁。即电子光谱中总包含 有振动能级和转动能级间跃迁产生的若干谱线而呈现宽谱带。

紫外光谱的表示方法

紫外光谱图是由横坐标、纵坐标和吸收曲线组成的 横坐标表示吸收光的波长,用nm (纳米)为单位。 纵坐标表示吸收光的吸收强度,可以用 A (吸光度)、T (透射比或透光率或透过率)、 1-T (吸收率)、?(吸收系数)中的任何一个来表示。 吸收曲线表示化合物的紫外吸收情况。曲线最大吸收峰的横坐标为该吸收峰的位置, 纵坐标为它的吸收强度。 250 A /nm 翠腔的紫外光谨图 四、紫外光 谱中常用的几个术语 1. 发色基团和助色基团 发色基团:是能导致化合物在紫外及可见光区产 生吸收的基团,不论是否显示颜色 都称为发色基团。一般不饱和的基团都是发色基团( C=C C=O N=N 、三键、苯环等) 200 300

电子荧光板制作方法

电子手写荧光板制作原理:MTC(纳米亮子管)安装在导光板边框上,在导光板上写字,MTC(纳米亮子管)照射上后发光,成本主要在导光板和电源上,导光板尺寸和导光率不同价格就有差别。 组成:导光板、LED数码节能灯管、边框、电源适配器、进口荧光笔等 产品采用光谱分析原理与采用导光板所形成的背光模组,组合多种多样的外框材料而制成的一种多功能的新型广告载体。 导光板简介 导光板设计原理源于Note Book的液晶显示屏,是将线光源转变为面光源的高科技产品。导光板是以光学级玻璃板为基材,运用LCD 显示屏和笔记本电脑的背光模组技术,透过导光点的全高透光率,经电脑对导光点设计使导光板光线折射成面光源均光状态制造成型。产品采用光谱分析原理与脉冲激光技术相结合并在恒温、恒湿、无尘的环境条件下制作而成,具有超薄超亮、导光均匀、节能环保、无暗区、安装维修简单快捷等鲜明特点。 LED数码节能灯管简介 随着高油价时代来临,以及全球变暖问题日益严重,近来节能及减少CO2排放的相关话题持续升温。电价的持续高涨促使各种省电方法纷纷出笼。其中,以能大幅节省功耗的LED照明取代传统荧光灯功效最为显著,全球各地也力推LED照明,从辅助照明到主要照明,甚至是道路路灯。随着LED组件品质及转换效率相关技术的突破,LED

取代传统荧光灯的趋势愈发明显,业界专家多认为在未来三至五年内,LED将成为照明主流。 LED是英文light emitting diode(发光二极管)的缩写,它的基本结构是一块电致发光的半导体材料,置于一个有引线的架子上,然后四周用环氧树脂密封,起到保护内部芯线的作用,所以LED的抗震性能好。消耗能量较同光效的白炽灯减少80%。 导光板工作原理图示: 荧光板,分高亮和炫彩2种,高亮为单色光,字的亮度高,分为快闪、慢闪、常亮等几种调光模式,适用于较亮的环境;炫彩为多色

简述影响荧光效率的主要因素

1.简述影响荧光效率的主要因素。 答:(1)分子结构的影响:发荧光的物质中都含有共轭双键的强吸收基团,共轭体系越大,荧光效率越高;分子的刚性平面结构利于荧光的产生;取代基对荧光物质的荧光特征和强度有很大影响,给电子取代基可使荧光增强,吸电子取代基使荧光减弱;重原子效应使荧光减弱。(2)环境因素的影响:溶剂的极性对荧光物质的荧光强度产生影响,溶剂的极性越强,荧光强度越大;温度对溶液荧光强度影响明显,对于大多数荧光物质,升高温度会使非辐射跃迁引起的荧光的效率降低;溶液pH值对含有酸性或碱性取代基团的芳香族化合物的荧光性质有影响;表面活性剂的存在会使荧光效率增强;顺磁性物质如溶液中溶解氧的存在会使荧光效率降低。 2.试从原理和仪器两方面比较荧光分析法、磷光分析法和化学发光分析法。 答:(1)在原理方面:荧光分析法和磷光分析法测定的荧光和磷光是光致发光,均是物质的基态分子吸收一定波长范围的光辐射激发至单重激发态,测量的是由激发态回到基态产生的二次辐射,不同的是荧光分析法测定的是从单重激发态向基态跃迁产生的辐射,磷光分析法测定的是单重激发态先过渡到三重激发态,再由三重激发态向基态跃迁产生的辐射,二者所需的激发能是光辐射能。而化学发光分析法测定的是化学反应物或反应产物受反应释放的化学能激发而产生的光辐射,所需的激发能是化学能。 (2)在仪器方面:荧光分析和磷光分析所用仪器相似,都由光源、激发单色器、液槽、发射单色器、检测器和放大显示器组成。由于在分析原理上的差别,磷光分析仪器有些特殊部件,如试样室、磷光镜等。而化学发光分析法所用仪器不同,它不需要光源,但有反应器和反应池及化学反应需要的恒温装置,还有与荧光和磷光分析仪器相同的液槽、单色器、检测器等。 3.如何区别荧光和磷光?其依据是什么? 答:为了区别磷光和荧光,常采用一种叫磷光镜的机械切光装置,利用荧光和磷光寿命的差异消除荧光干扰或将磷光和荧光分辨开。 4.采取哪些措施可使磷光物质在室温下有较大的磷光效率? 答:(1)在试液中加入表面活性剂,;(2)将被分析物吸附在固体的表面。 5.化学发光反应要满足哪些条件? 答:(1)能快速地释放出足够的能量;(2)反应途径有利于激发态产物的形成;(3)激发态分子能够以辐射跃迁的方式返回基态,或能够将其能量转移给可以产生辐射跃迁的其它分子。 6.简述流动注射式化学发光分析法及其特点。 答:流动注射分析是一种自动化溶液分析技术,它是基于把一定体积的液体试样注射到一个连续流动着的载流中,试样在流动过程中分散、反应,并被载流带到检测器中,再连续记录其光强、吸光度、电极电位等物理参数。其特点是,具有很高的灵敏度和很好的精密度。1.谱线自吸对光谱定量分析有何影响? 答:在光谱定量分析中,自吸现象的出现,将严重影响谱线的强度,限制可分析的含量范围。2.激发光源的作用是什么?对其性能有何具体要求? 答:激发光源的作用是提供试样蒸发、解离和激发所需要的能量,并产生辐射信号;对激发光源的要求是:激发能力强,灵敏度高,稳定性好,结构简单,操作方便,使用安全。

荧光分析法练习题82675

第十二章荧光分析法(药学) 一、A型题 1.若需测定生物试样中的微量氨基酸应选用下述哪种分析方法()。 A、荧光光度法 B、磷光光度法 C、化学发光法 D、X荧光光谱法 E、原子荧光光谱法 答案:A 2.分子荧光分析比紫外-可见分光光度法选择性高的原因是()。 A、分子荧光光谱为线状光谱,而分子吸收光谱为带状光谱 B、能发射荧光的物质比较少 C、荧光波长比相应的吸收波长稍长 D、荧光光度计有两个单色器,可以更好地消除组分间的相互干扰 E、分子荧光分析线性范围更宽 答案:B 3荧光量子效率是指()。 A、荧光强度与吸收光强度之比 B、发射荧光的量子数与吸收激发光的量子数之比 C、发射荧光的分子数与物质的总分子数之比 D、激发态的分子数与基态的分子数之比 E、物质的总分子数与吸收激发光的分子数之比 答案:B 4.激发光波长和强度固定后,荧光强度与荧光波长的关系曲线称为()。 A、吸收光谱 B、激发光谱

C、荧光光谱 D、工作曲线 E、标准工作曲线 答案:C 5.荧光波长固定后,荧光强度与激发光波长的关系曲线称为()。 A、吸收光谱 B、激发光谱 C、荧光光谱 D、工作曲线 E、标准工作曲线 答案:B 6.一种物质能否发出荧光主要取决于()。 A、分子结构 B、激发光的波长 C、温度 D、溶剂的极性 E、激发光的强度 答案:A 7.下列结构中荧光效率最高的物质是()。 A、苯酚 B、苯 C、硝基苯 D、苯甲酸 E、碘苯 答案:A

8.下列因素会导致荧光效率下降的有()。 A、激发光强度下降 B、溶剂极性变小 C、温度下降 D、溶剂中含有卤素离子 E、激发光强度增大 答案:D 9.为使荧光强度和荧光物质溶液的浓度成正比,必须使()。 A、激发光足够强 B、吸光系数足够大 C、试液浓度足够稀 D、仪器灵敏度足够高 E、仪器选择性足够好 答案:C 10.在测定物质的荧光强度时,荧光标准溶液的作用是()。 A、用做调整仪器的零点 B、用做参比溶液 C、用做定量标准 D、用做荧光测定的标度 E、以上都不是 答案:D 11.荧光分光光度计与分光光度计的主要区别在于()。 A、光源 B、光路 C、单色器 D、检测器

分子荧光分析法基本原理

分子荧光分析法基本原理 一. 分子荧光的发生过程 (一)分子的激发态——单线激发态和三线激发态 大多数分子含有偶数电子,在基态时,这些电子成对地存在于各个原子或分子轨道中,成对自旋,方向相反,电子净自旋等于零:S=?+(-?)=0,其多重性M=2S+1=1 (M 为磁量子数),因此,分子是抗(反)磁性的,其能级不受外界磁场影响而分裂,称“单线态”; 图1 单线基态(A)、单线激发态(B)和三线激发态(C) 当基态分子的一个成对电子吸收光辐射后,被激发跃迁到能量较高的轨道上,通常它的自旋方向不改变,即 ?S=0,则激发态仍是单线态,即“单线(重)激发态”; 如果电子在跃迁过程中,还伴随着自旋方向的改变,这时便具有两个自旋不配对的电子,电子净自旋不等于零,而等于1: S=1/2+1/2=1 其多重性: M=2S+1=3 即分子在磁场中受到影响而产生能级分裂,这种受激态称为“三线(重)激发态”; “三线激发态” 比“单线激发态” 能量稍低。但由于电子自旋方向的改变在光谱学上一般是禁阻的,即跃迁几率非常小,只相当于单线态→单线态过程的 10-6~10-7。 (二)分子去活化过程及荧光的发生: (一个分子的外层电子能级包括S0(基态)和各激发态S1,S2,…..,T1…..,每个电子能级又包括一系列能量非常接近的振动能级) 处于激发态的分子不稳定,在较短的时间内可通过不同途径释放多余的能量(辐射或非辐射跃迁)回到激态,这个过程称为“去活化过程”,这些途径为: 1. 振动弛豫:在溶液中,处于激发态的溶质分子与溶剂分子间发生碰撞,把一部分能量以热的形式迅速传递给溶剂分子(环境),在10-11~10-13 秒时间回到同一电子激发态的最低振动能级,这一过程称为振动弛豫。

浅谈荧光笔的工作原理

浅谈荧光笔的工作原理 北京大学药学院秦蒙蒙我第一次接触荧光估计是在幼儿园之前吧,那次奶奶带我去姑姑家探亲,晚上在客房里睡觉的时候,我半夜醒来,看到有双发着幽幽绿光的眼睛盯着我,当时就吓的大哭起来了。后来才知道,那是玩具熊发荧光的眼睛。对于现在而言,我接触最多的关于荧光的东西恐怕非荧光笔莫属了。 那些红的、黄的、绿的、蓝的笔画在书本上的墨字上面非但不会遮挡文字反而会使这些文字更加的显眼,是被涂抹的地方仿佛能发出淡淡的光晕,这便是荧光笔的优点了。 荧光笔顾名思义就是利用荧光来工作的笔,那么,为什么一直小小的笔写出来的字就能发出荧光呢?原来,在制造荧光笔的过程中,人们在颜料中加入能被紫外线激发的可见荧光化(络)合物。我们先来看一下有关电子的跃迁的知识。电子跃迁的形式主要有3中(如下图),一种是电子的能级跃迁,电子的这种跃迁需要很高的能量来激发,主要是靠紫外光、可见光等能量较高的光来激发,电子对光子的吸收是量子化的,即要多少取多少,不能填补或剩余。能级跃迁是电子能量变化的最主要的因素;另外的两种是分子的振动和转动,这两种形式对分子能量的影响较小,只能吸收较少的能量,因而所需的激发光一般来说是红外区的光。从电子跃迁的角度来讲,这种化合物吸收了与它本身特征频率相同的光线以后,原子中的某些电子从基态中的最低振动能级跃迁到较高的某些振动能级(如下图)。电子在同类分子或其他分子中撞击,消耗了相当的能量,从而下降到第一电子激发态中的最低振动能级,这一过程中并无光的辐射,但当电子由最低振动能级下降到基态中的某些不同的能级时(如下图),会发出比原来吸收的频率低、波长长的一种光,这就是荧光。

黑光灯的原理

黑光灯的原理? 今天在沈阳展会中看到一款摄像头,名字为黑光灯摄像头,当时感觉不明白,而销售人员也不讲解,后来考虑了一下并查找了一些文章,写了下面的文章,供大家参考! 黑光灯看上去就好像普通的荧光灯或者白炽灯泡,但它们有些地方是完全不同的。这种灯在夜总会,科学博物馆,游乐园,青少年的睡房和其它地方都可以见到,但对大多数人来说是陌生的。接下来,我们会找出它的工作原理。而且还会看一下为什么黑光灯会一些物体发光和黑光灯一些有趣的应用。 传统黑光灯设计和荧光灯的比较只是有几个重要的更改。荧光灯是由电流通过充满惰性气体的管和少量的水银而产生光。当通电的时,水银原子以可见光子形式发出能量。它们发出一些可见光子,但大部分是以紫外线波长范围发出的光子。紫外线光波长太过短所以我们看不到。荧光灯必须把这种能量转化为可见光。为了达到目的,就在管的外部采用了磷涂层。 磷是一种可以发光的物质,当一个光子撞击一个磷原子时,其中一个磷电子就会跳到一个更高的能量位置,从而引起原子振动和创造热。当电子回落到它的原始正常位置,它就会以其它光子形式释放出能量。这个光子的能量少于原始光子的能量,因为一部分能量在加热时损失了。荧光灯是以可见光谱发出光的,黑光灯都是以同样原理工作。实际上黑光灯有两种不同类型,但它们基本上的工作原理是一样的。管状黑光灯是用了不同类型的磷涂层,这个涂层吸收有害短波UV-B和UV-C光并且发出UV-A光(和荧光灯中的磷吸收紫外光并发出可见光的同样基本方式)黑玻璃管本身阻塞大部分见光,所以最后只有良性的长波UV-A光和一些蓝光和蓝紫色光通过。白炽黑光灯泡和普通的灯泡很相似,但它使用了滤光器来吸收来自加热灯丝的光。除了红外和UV-A光(还有极少量可见光)外其它的都吸收了。这两种灯的设计,发出的紫外光与不同的外部磷产生反应就正如荧光灯内的紫外光与磷涂层产生反应的一样只要有紫外光照射到它们,外部的磷就会发光。 为什么会发光

荧光分析法在生物领域的应用于发展

荧光分析法在生物领域的应用于发展摘要:本文对荧光分析法在检测细胞活性,测定生物样品,推断生物成虫日龄,研究生 物群落动态的应用与进展进行了综述与分析。并就其包含的不同方法进行一一介绍,展望了荧光分析法技术在生物领域中的应用前景。 关键词:荧光分析法生物领域应用发展 引言:利用某些物质被紫外光照射后所发生的能反映出该物质特性的荧光,可以进行定性或定量分析的方法。当照射停止后,如化合物的发射在10-9秒钟内停止,则称荧光超过此限度即称为磷光。特点:灵敏度更高10-10-10-12g/ml,应用不如UV广泛。SO2分子受特定光照射后处于激发态的SO2分子返回基态时发出荧光, 其荧光强度与SO2呈线性关系, 从而可测出气体浓度。当检测仪器系统确定后,荧光总光强I与SO2浓度的之间的关系可表示为:I=KC 在稳定的条件下,这些参数也随之确定,k可视为常数。因此,式I=kC 表示的紫外荧光光强I与样气的浓度C成线性关系。这是紫外荧光法进行定量检测的重要依据。 荧光色谱法相关内容 1.荧光色谱法的近期发展状况 (1)近10年来,由于微量分析的需要迅速增加,灵敏度高选择性强的荧光分析法日益受到重视。有关文献数量猛增,内容也从一般仪器及分析方法介绍发展到高精度、高灵敏度、自动化、多用途的新仪器新技术研究。荧光分析对象从以无机样品为主发展到以有机及生化样品为主,并从成分分析向化学结构、化学形式、微观分析、空间分布等状态分析发展,应用遍及各个领域。荧光光谱图册也陆续出版,美国费城Sadtler研究实验室自1974年起出版标准荧光光谱图及各专用荧光光谱图(如药物)。荧光分析法的应用范围与发射光谱法、火焰光度法、质谱法等相仿,成为一种重要的仪器分析方法。 (2)荧光分析法在纳米生物分析中的应用巨大。纳米荧光探针、纳米生物传感器等纳米生物分析材料器件的特性及其在生物分析中的应用。对发光量子点、复合型荧光纳米粒子和具有光学活性的金属纳米粒子作为生物分子的标记探针取得了成果。 2.荧光分析法基本原理分子角度 分子的激发态,单线激发态和三线激发态 大多数分子含有偶数电子,在基态时,这些电子成对地存在于各个原子或分子轨道中,成对自旋,方向相反,电子净自旋等于零:S=?+(-?)=0,其多重性M=2S+1=1 (M 为磁量子数),因此,分子是抗(反)磁性的,其能级不受外界磁场影响而分裂,称“单线态”

论荧光的应用

论荧光的应用 制浆造纸学院10轻2班韩旭刚1010421223 摘要:荧光,又作“萤光”,是指一种光致发光的冷发光现象。当某种常温物质经某种波长的入射光(通常是紫外线或X射线)照射,吸收光能后进入激发态,并且立即退激发并发出比入射光的的波长长的出射光(通常波长在可见光波段);而且一旦停止入射光,发光现象也随之立即消失。具有这种性质的出射光就被称之为荧光。在日常生活中,人们通常广义地把各种微弱的光亮都称为荧光,而不去仔细追究和区分其发光原理。 正文: 1.1原理 测荧光一定要有仪器。通常用来检测物质所含荧光量的仪器我们称之为荧光分光光度计荧光分光光度计是用于扫描液相荧光标记物所发出的荧光光谱的一种仪器。其能提供包括激发光谱、发射光谱以及荧光强度、量子产率、荧光寿命、荧光偏振等许多物理参数,从各个角度反映了分子的成键和结构情况。通过对这些参数的测定, 不但可以做一般的定量分析, 而且还可以推断分子在各种环境下的构象变化, 从而阐明分子结构与功能之间的关系。荧光分光光度计的激发波长扫描范围一般是190~650nm,发射波长扫描范围是200~800nm。可用于液体、固体样品(如凝胶条)的光谱扫描。 由高压汞灯或氙灯发出的紫外光和蓝紫光经滤光片照射到样品池中,激发样品中的荧光物质发出荧光,荧光经过滤过和反射后,被光电倍增管所接受,然后以图或数字的形式显示出来。物质荧光的产生是由在通常状况下处于基态的物质分子吸收激发光后变为激发态, 这些处于激发态的分子是不稳定的,在返回基态的过程中将一部分的能量又以光的形式放出,从而产生荧光.不同物质由于分子结构的不同,其激发态能级的分布具有各自不同的特征,这种特征反映在荧光上表现为各种物质都有其特征荧光激发和发射光谱;,因此可以用荧光激发和发射光谱的不同来定性地进行物质的鉴定。在溶液中,当荧光物质的浓度较低时,其荧光强度与该物质的浓度通常有良好的正比关系,即IF=KC,利用这种关系可以进行荧光物质的定量分析,与紫外-可见分光光度法类似,荧光分析通常也采用标准曲线法进行 1.2用途 1.2.1生化和医疗 荧光在生化和医药领域有着广泛的应用。人们可以通过化学反应把具有荧光性的化学基团粘到生物大分子上,然后通过观察示踪基团发出的荧光来灵敏地探测这些生物大分子。 用于对DNA进行自动测序的链末端终止法:在原初的方法中,需要对DNA的引物端进行荧光标记,以便在测序凝胶板上确定DNA色带的位置。在改进的方法中,对作为链终止剂的4种双脱氧核苷酸(ddTBP)分别进行荧光标记,电泳结束后不同长度的DNA分子彼此分开,经紫外线照射,4种被标记的双脱氧核苷酸发出不同波长的荧光。通过分析荧光的光谱便可以分辨出DNA的序列。DNA探测:溴化乙啶是一种荧光染料,当它在溶液中自由改变构型时,只能发出很弱的荧光;当它嵌入核酸双链的碱基对之间与DNA分子结合后,便可以发出很强的荧光。因此在凝胶电泳中,一般加入溴化乙啶对DNA染色。DNA微阵列(生物芯片):需要对基因组探针进行荧光标记,最后通过荧光信号确定靶标序列。免疫学中的免疫荧光检查法:对抗体进行荧光标记,

四川大学仪器分析第八章-分子发光分析法答案讲课教案

四川大学仪器分析第八章-分子发光分析法 答案

第八章分子发光分析法 基本要求:了解荧光的产生和影响荧光强度的因素, 掌握分子荧光光谱法的定量关系和应用特点, 重点:荧光光谱法的定量关系、应用特点。 难点:荧光的产生和影响荧光强度的因素。 参考学时:3学时 作业参考答案 1.简述荧光法产生的基本原理。具有什么样结构的物质最容易发荧光? 答:物质受电磁辐射激发后,被激发的分子从第一电子激发单重态的最低振动能级回到基态而发射荧光,基于测量化合物的荧光而建立起来的分析方法即为荧光分析法。 芳香族化合物、带有平面刚性结构的化合物、带稠环结构的化合物容易发荧光。 2.解释下列名词:单重态、三重态、荧光、振动弛豫、内转换、外转换、失 活、系间窜跃、荧光量子产率、激发光谱、荧光光谱 答:单重态:电子自旋都配对的分子的电子状态称为单重态。 三重态:有两个电子自旋不配对而同方向的状态。 荧光:受光激发的分子从第一激发单重态(S1)的最低振动能级回到基态(S0)所发出的辐射; 振动弛豫:由于分子间的碰撞,振动激发态分子由同一电子能级中的较高振动能级失活至较低振动能级,多余的振动能以热的形式失去的过程。 内转换:在相同激发多重态的两个电子能级间,电子由高能级以无辐射跃迁方式进到较低能级的分子内过程。 外转换:激发态分子与溶剂或其他溶质间的相互作用和能量转换而使荧光或磷光强度减弱甚至消失的过程。 失活:激发态分子不稳定,他要以辐射跃迁或无辐射跃迁的方式回到基态,这就是激发态分子的失活。 系间窜跃:激发态分子的电子自旋发生倒转而使分子的多重态发生变化的无辐射跃迁过程。 荧光量子产率:表示物质分子发射荧光的能力。荧光量子产率=发射荧光的分子数/激发态的分子数=发射的光子数/吸收的光子数 激发光谱:在荧光最强的波长处测量随激发光波长的改变而变化的荧光强度,将荧光强度对激发光波长作图,即得到激发光谱,实际为荧光物质的吸收光谱。 荧光光谱:如果将激发光的波长固定在最大激发波长处,测量不同荧光波长处荧光的强度,将荧光强度对荧光波长作图便得到荧光光谱(或称发射光谱)。

著作一:荧光分析法 (第三版)许金钩 王尊本 主编

有机化学 1.David A. Evans,* Daniel Seidel, Magnus Rueping, Hon Wai Lam, Jared T. Shaw, and C. Wade Downey, A New Copper Acetate-Bis(oxazoline)-Catalyzed, Enantioselective Henry Reaction, J. AM. CHEM. SOC. 2003, 125, 12692-12693. 2. Brian D. Dangel and Robin Pol,Catalysis by Amino Acid-Derived Tetracoordinate Complexes: Enantioselective Addition of Dialkylzincs to Aliphatic and Aromatic Aldehydes, Org. Lett. 2007, 2, 300 3. 3. Benjamin List, Proline-catalyzed asymmetric reactions, Tetrahedron, 2002, 58, 5573. 4. Vishnu Maya, Monika Raj, and Vinod K. Singh, Highly Enantioselective Organocatalytic Direct Aldol Reaction in an Aqueous Medium, Org. Lett. 2007, 9, 2593. 5. Sanzhong Luo, Jiuyuan Li, Hui Xu, Long Zhang, and Jin-Pei Cheng, Chiral Amine-Polyoxometalate Hybrids as Highly Efficient and Recoverable Asymmetric Enamine Catalysts, Org. Lett. 2007, 9, 3675. 6. Xiao-Ying Xu, Yan-Zhao Wang, and Liu-Zhu Gong, Design of Organocatalysts for Asymmetric Direct Syn-Aldol Reactions, Org. Lett. 2007, 9, 424 7. 7. Jung Woon Yang, Maria T. Hechavarria Fonseca, Nicola Vignola, and Benjamin List, Metal-Free, Organocatalytic Asymmetric Transfer Hydrogenation of a,b-Unsaturated Aldehydes, Angew. Chem. Int. Ed. 2005, 44, 108–110. 8. Giuseppe Bartoli, Massimo Bartolacci, Marcella Bosco, et. al., The Michael Addition of Indoles to r,a-Unsaturated Ketones Catalyzed by CeCl3a7H2O-NaI Combination Supported on Silica Gel, J. Org. Chem. 2003, 68, 4594-4597. 9. Jayasree Seayad, Abdul Majeed Seayad, and Benjamin List, Catalytic Asymmetric Pictet-Spengler Reaction, J. AM. CHEM. SOC. 2006, 128, 1086-1087. 10. Jingjun Yin, Matthew P. Rainka, Xiao-Xiang Zhang, and Stephen L. Buchwald, A Highly Active Suzuki Catalyst for the Synthesis of Sterically Hindered Biaryls: Novel Ligand Coordination, J. AM. CHEM. SOC. 9 VOL. 124, NO. 7, 2002 1162. 11. Ulf M. Lindstro¨m, Stereoselective Organic Reactions in Water, Chem. Rev. 2002, 102, 2751-2772 .

荧光分析法基本概念

紫外可见吸收光谱 一紫外吸收光谱分析 基于物质对200-800nm光谱区辐射的吸收特性而建立起来的分析测定方法称为紫外-可见吸收光谱法或紫外-可见分光光度法。它属于分子吸收光谱,就是由于分子内电子跃迁而产生的光谱。 二紫外光谱的产生 物质分子的能量具有量子化的特征(即物质分子的能量具有不连续的特征)。一个分子有一系列能级,其中包括许多电子能级,分子振动能级以及分子转动能级。分子吸收特定的波长的光而产生吸收光谱分子的紫外吸收光谱就是由于分子中价电子的跃迁而产生的,从化学键的性质上考虑,与电子光谱有关的主要就是三种电子: (1)形成单键的σ电子;(2)形成双键的π电子;(3) 分子中非键电子即n电子。 化合物不同,所含的价电子类型不同,所产生的电子跃迁类型不同,根据分子轨道理论,分子中这三种电子能级的高低次序大致就是: (σ)<(π)<(n)<(π*)<( σ* ) σ,π就是成键轨道,n 就是非键轨道,σ* ,π* 就是反键轨道 由于电子能级间跃迁的同时总伴随有振动与转动能级间的跃迁。即电子光谱中总包含有振动能级与转动能级间跃迁产生的若干谱线而呈现宽谱带。 二紫外光谱的表示方法 紫外光谱图就是由横坐标、纵坐标与吸收曲线组成的。 横坐标表示吸收光的波长,用nm(纳米)为单位。

纵坐标表示吸收光的吸收强度,可以用A(吸光度)、T(透射比或透光率或透过率)、1-T(吸收率)、 (吸收系数) 中的任何一个来表示。 吸收曲线表示化合物的紫外吸收情况。曲线最大吸收峰的横坐标为该吸收峰的位置,纵坐标为它的吸收强度。 四、紫外光谱中常用的几个术语

1、发色基团与助色基团 发色基团:就是能导致化合物在紫外及可见光区产生吸收的基团,不论就是否显示颜色都称为发色基团。一般不饱与的基团都就是发色基团(C=C、C=O、N=N 、三键、苯环等) 助色基团:指那些本身不会使化合物分子产生颜色或者在紫外及可见光区不产生吸收的一些基团,但这些基团与发色基团相连时却能使发色基团的吸收带波长移向长波,同时使吸收强度增加。助色基团通常就是由含有孤对电子的元素所组成(-NH2, -NR2, -OH , -OR , -Cl等),这些基团借助P-π共轭使发色基团增加共轭程度,从而使电子跃迁的能量下降。 2.红移、蓝移、增色效应与减色效应 由于有机化合物分子中引入了助色基团或其她发色基团而产生结构的改变、或者由于溶剂的影响使其紫外吸收带的最大吸收波长向长波方向移动的现象称为红移。与此相反,如果吸收带的最大吸收波长向短波方向移动,则称为蓝移。 由于化合物分子结构中引入取代基或受溶剂的影响,使吸收带的强度即摩尔吸光系数增大或减少的现象称为增色效应或减色效应、分子荧光分析法 一、荧光的产生 物质分子的能级包括一系列电子能级、振动能级与转动能级。分子吸收能量后,从基态最低振动能级跃迁到第一电子激发态或更高电子激发态的不同振动能级(这一过程速度很快,大约10-15s),成为激发单重

荧光光谱法

荧光分析法测定维生素B2 一、实验目的 1.学习与掌握荧光光度分析法测定维生素B2的基本原理与方法; 2.熟悉荧光分光光度计的结构及使用方法; 3、学习掌握固体及液体试样的荧光测试方法。 二、实验原理 当用一种波长的光照射某种物质时,这种物质会在极短的时间内,发射出一种比照射光波长较长的光,这种发射出来的光就叫做荧光。当照射光停止照射时,荧光也随之很快地消失。利用某些物质被紫外光照射后所产生的、能够反映出该物质特性的荧光,以进行该物质的定性分析与定量分析,称为荧光分析。 实验证明,荧光通常发生于具有刚性平面的л-电子共轭体系分子中。随着л-电子共轭度与分子平面度的增大,荧光也就越容易产生。因此几乎所有对分析化学有用的荧光体系都含有一个以上的芳香基团,芳环数越多,荧光愈强。能发荧光的纯无机物很少,通常就是利用有机配位体与金属离子形成荧光络合物进行无机离子的分析。 图1.荧光分光光度计的结构原理图

荧光分光光度计工作原理(图1)可简述为:光源发出的光束经激发单色器色散,提取所需波长单色光照射于样品上,由样品发出的荧光经发射单色器色散后照射于检测器上,检测器把荧光强度信号转变为电信号并经放大器放大后,由信号显示系统显示或者记录。 荧光光谱包括激发光谱与发射光谱两种。激发光谱就是就是指发射单色器波长固定,而激发单色器进行波长扫描所得到的荧光强度随激发光波长变化的曲线。荧光发射光谱就是指激发单色器波长固定,发射单色器进行波长扫描所得到的荧光强度随发射光波长变化的曲线。一般所说的荧光光谱实际上仅指荧光发射光谱。这一光谱为分析指出了最佳的发射波长。 荧光定性定量分析与紫外可见吸收光谱法相似。定性时,就是将实验测得样品的荧光激发光谱与荧光发射光谱与标准荧光光谱图进行比较来鉴定样品成分,一般荧光定性的依据就是荧光光谱峰的个数、位置、相对强度及轮廓。 定量分析时,一般以激发光谱最大峰值波长为激发光波长,以荧光发射光谱最大峰值波长为发射波长,测量样品的荧光强度。对同一物质而言,荧光强度F 与该物质的浓度c 有以下的关系: F = 2、303Фf I0 a b c ⑴ Фf-荧光过程的量子效率; a-荧光分子的吸收系数; I0-入射光强度; b-试液的吸收光程。 在I0 与b 不变时,2、303Фf I0 a b为常数,则⑴式可以表示为 F=Kc ⑵ ⑵即可作为荧光定量检测的依据。 图2 VB2的结构式

荧光分析法

荧光分析法 一、基本原理 某些物质的分子能吸收能量而发射出荧光,根据荧光的光谱和荧光强度,对物质进行定性或定量的方法,称为荧光分析法(fluorescence analysis)。 荧光分析法具有灵敏度高、选择性强、需样量少和方法简便等优点,它的测定下限通常比分光光度法低2~4个数量级,在生化分析中的应用较广泛。 在室温下分子大都处在基态的最低振动能级,当受到光的照射时,便吸收与它的特征频率相一致的光线,其中某些电子由原来的基态能级跃迁到第一电子激发态或更高电子激发态中的各个不同振动能级,这就是在分光光度法中所述的吸光现象。跃迁到较高能级的分子,很快(约10-8s)因碰撞而以热的形式损失部分能量,由所处的激发态能级下降到第一电子激发态的最低振动能级,能量的这种转移形式,称为无辐射跃迁。由第一电子激发态的最低振动能级下降到基态的任何振动能级,并以光的形式放出它们所吸收的能量,这种光便称为荧光。 荧光分析法是测定物质吸收了一定频率的光以后,物质本身所发射的光的强度。物质吸收的光,称为激发光;物质受激后所发射的光,称为发射光或荧光。如果将激发光用单色器分光后,连续测定相应的荧光的强度所得到的曲线,称为该荧光物质的激发光谱(excitation spectrum)。实际上荧光物质的激发光谱就是它的吸收光谱。在激发光谱中最大吸收处的波长处,固定波长和强度,检测物质所发射的荧光的波长和强度,所得到的曲线称为该物质的荧光发射光谱,简称荧光光谱(fluorescence spectrum)。在建立荧光分析法时,需根据荧光光谱来选择适当的测定波长。激发光谱和荧光光谱是荧光物质定性的依据。 对于某一荧光物质的稀溶液,在一定波长和一定强度的入射光照射下,当液层的厚度不变时,所发生的荧光强度和该溶液的浓度成正比,这是荧光定量分析的基础。荧光物质的线性范围一般在0.00005-100微克/ml,当荧光物质溶液的吸光度小于或等于0.05时荧光强度和浓度才成线性关系。当高浓度时,由于自粹灭和自吸收使荧光强度和浓度不呈线性关系,发生负偏差。因此分析时注意在校正曲线的线性范围内进行。 二、荧光仪的主要部件 测定荧光可用荧光计和荧光分光光度计,二者的结构复杂程度不同,但其基本结构是相似的。由光源发出的光,经单色器让特征波长的激发光通过,照射到液槽使荧光物质发射出荧光,经第二个单色器让待测物质所产生的特征波长荧光通过,照射到检测器产生光电流,经放大后以指针指示或用记录仪记录其信号。 仪器的主要部件如下: 1.光源:发射紫外区和可见区的激发光,一般常用的为溴钨灯和供蒸汽灯,以及氙弧灯。 2.单色器:仪器共有两个单色器,作用分别是滤去非特征波长的激发光,和滤去非特征波长荧光的杂散光。 3.液槽:用来盛放待测溶液。 4.检测器:检测待测物质所发射的荧光信号。 三、荧光分析法的定性和定量 (一)定性分析 荧光物质特性的光谱包括激发光谱和荧光光谱两种。在分光光度法中,被测物质只有一种特征的吸收光谱,而荧光分析法能测出两种特征光谱,因此,鉴定物质的可靠性较强。当然,必须在标准品对照下进行定性。 (二)定量测定 荧光分析法的定量测定方法较多,可分为直接测定法和间接测定法两类。 1、直接测定法:

四川大学仪器分析第八章分子发光分析法答案

第八章分子发光分析法 基本要求:了解荧光的产生和影响荧光强度的因素, 掌握分子荧光光谱法的定量关系和应用特点, 重点:荧光光谱法的定量关系、应用特点。 难点:荧光的产生和影响荧光强度的因素。 参考学时:3学时 作业参考答案 1.简述荧光法产生的基本原理。具有什么样结构的物质最容易发荧光 答:物质受电磁辐射激发后,被激发的分子从第一电子激发单重态的最低振动能级回到基态而发射荧光,基于测量化合物的荧光而建立起来的分析方法即为荧光分析法。 芳香族化合物、带有平面刚性结构的化合物、带稠环结构的化合物容易发荧光。 2.解释下列名词:单重态、三重态、荧光、振动弛豫、内转换、外转换、失活、系间窜跃、 荧光量子产率、激发光谱、荧光光谱 答:单重态:电子自旋都配对的分子的电子状态称为单重态。 三重态:有两个电子自旋不配对而同方向的状态。 荧光:受光激发的分子从第一激发单重态(S1)的最低振动能级回到基态(S0)所发出的辐射; 振动弛豫:由于分子间的碰撞,振动激发态分子由同一电子能级中的较高振动能级失活至较低振动能级,多余的振动能以热的形式失去的过程。 内转换:在相同激发多重态的两个电子能级间,电子由高能级以无辐射跃迁方式进到较低能级的分子内过程。 外转换:激发态分子与溶剂或其他溶质间的相互作用和能量转换而使荧光或磷光强度减弱甚至消失的过程。 失活:激发态分子不稳定,他要以辐射跃迁或无辐射跃迁的方式回到基态,这就是激发态分子的失活。 系间窜跃:激发态分子的电子自旋发生倒转而使分子的多重态发生变化的无辐射跃迁过程。 荧光量子产率:表示物质分子发射荧光的能力。荧光量子产率=发射荧光的分子数/激发态的分子数=发射的光子数/吸收的光子数 激发光谱:在荧光最强的波长处测量随激发光波长的改变而变化的荧光强度,将荧光强度对激发光波长作图,即得到激发光谱,实际为荧光物质的吸收光谱。 荧光光谱:如果将激发光的波长固定在最大激发波长处,测量不同荧光波长处荧光的强度,将荧光强度对荧光波长作图便得到荧光光谱(或称发射光谱)。 3.溶液中,溶剂的极性、pH值及温度是如何影响荧光强度的。 答:溶剂的影响:随着溶剂极性增加,荧光物质的n—π*跃迁能量增大,π—π*跃迁的能量降低,从而导致荧光强度增加,荧光波长红移。溶剂若能和荧光物质形成氢键或使荧光物质的电离状态改变,会使荧光强度、荧光波长改变。含重原子的溶剂(碘乙烷、四

(完整版)荧光分析法习题参考答案

荧光分析法 思考题和习题 1.如何区别荧光、磷光、瑞利光和拉曼光?如何减少散射光对荧光测定的干扰? 荧光:是某些物质吸收一定的紫外光或可见光后,基态分子跃迁到激发单线态的各个不同能级,然后经过振动弛豫回到第一激发态的最低振动能级,在发射光子后,分子跃迁回基态的各个不同振动能级。这时分子发射的光称为荧光。荧光的波长比原来照射的紫外光的波长更长。 磷光:是有些物质的激发分子通过振动弛豫下降到第一激发态的最低振动能层后,经过体系间跨越至激发三重态的高振动能层上,再通过振动弛豫降至三重态的最低振动能层,然后发出光辐射跃迁至基态的各个振动能层.这种光辐射称为磷光。磷光的波长比荧光更长。 瑞利光:光子和物质分子发生弹性碰撞时.不发生能量的交换,仅是光子运动的方向发生改变,这种散射光叫做瑞利光,其波长和入射光相同。 拉曼光:光子和物质分子发生非弹性碰撞时,在光子运动方向发生改变的同时,光子与物质分子发生能量交换,使光于能量发生改变。当光子将部分能量转给物质分子时,光子能量减少,波长比入射光更长;当光子从物质分子得到能量时,光子能量增加,波氏比入射光为短。这两种光均称为拉曼光。 为了消除瑞利光散射的影响,荧光的测量通常在与激发光成直角的方向上进行,并通过调节荧光计的狭缝宽度来消除 为消除拉曼光的影响可选择适当的溶剂和选用合适的激发光波长 2.何谓荧光效率?具有哪些分子结构的物质有较高的荧光效率? 荧光效率又称荧光量子效率,是物质发射荧光的量子数和所吸收的激发光量子数的比值称,用Ψf表示。 以下分子结构的物质有较高的荧光效率: (1)长共轭结构:如含有芳香环或杂环的物质。 (2)分子的刚性和共平面性:分子的刚性和共平面性越大,荧光效率就越大,并且荧光波长产生长移。 (3)取代基:能增加分子的π电子共轭程度的取代基,常使荧光效率提高,荧光长移,如-NH2、-OH、-OCH3、-CN等。 3.哪些因素会影响荧光波长和强度? (1)温度:物质的荧光随温度降低而增强。 (2)溶剂:一般情况下,荧光波长随着溶剂极性的增大而长移,荧光强度也有增强。溶剂如能与溶质分子形成稳定氢键,荧光强度减弱。 (3)pH:荧光物质本身是弱酸或弱碱时,溶液的pH对该荧光物质的荧光强度有较大影响。 (4)荧光熄灭剂:荧光熄灭是指荧光物质分子与溶剂分子或溶质分子的相互作用引起荧光强度降低或荧光强度与浓度不呈线性关系的现象。 (5)散射光的干扰:包括瑞利光和拉曼光对荧光测定有干扰。 4.请设计两种方法测定溶液Al3+的含量。(一种化学分析方法,一种仪器分析方法) 配位滴定:利用铝与EDTA的配位反应进行滴定分析,因铝与EDTA的反应速率比较缓慢,而且铝对指示剂有封蔽作用,因此铝的测定一般用EDTA作为标准溶液,返滴定法或置换滴定法测定。 仪器分析法:利作铝离子与有机试剂如桑色素组成能发荧光的配合物,通过检测配合物的荧光强度以来测定铝离子的含量。另可采用原子吸收分光光度法或原子发射光谱法进行测定。

仪器分析简答题

仪器分析基本原理1、简述仪器分析的一般流程。一个完整的仪器分析流程应包括取样、样品的预处理(溶样、分 离、提纯和制备)、仪器测定、数据处理、结果表达、提供分析报告、对结果进行研究和解释等过程。 2、比较标准加入法与标准曲线法的优缺点。标准曲线法的优点是大批量样品测定非常方便。缺点是:对个别样品测定仍需配制标准系列,手续比较麻烦,特别是遇到组成复杂的样品测定,标准样的组成难以与其相近,基体效应差别较大,测定的准确度欠佳。标准加入法的优点是可最大限度地消除基体干扰,对成分复杂的少量样品测定和低含量成分分析,准确度较高;缺点是不能消除背景吸收,对批量样品测定手续太繁,不宜采用。 3、简述吸收光谱与发射光谱之间的差异。发射光谱:给样品以能量,比如原子发射光谱,原子外层电子由基态到激发态,处于激发态电子不稳定,会以光辐射的形式是放出能量,而回到基态或较低的能级。得到线状光谱。吸收光谱:用一定波长的光照射样品,样品会吸收一部分光,照射前后就有光强度的变化,记录这种变化得到的是吸收光谱,如分子、原子吸收光谱. 区别:发射光谱是指样品本身产生的光谱被检测器接收。比如ICP,样品本身被激发,然后回到基态,发射出特征光谱。发射光谱一般没有光源,如果有光源那也是作为波长确认之用。在测定时该光源也肯定处于关闭状态。吸收光谱是光源发射的光谱被样品吸收了一部分,剩下的那部分光谱被检测器接收。比如原子吸收光谱,空心阴极灯发出的光谱被样品吸收了一部分,检测器则接收剩余的那部分。吸收光谱都有光源,测定时光源始终工作,并且光源、样品、检测器在一直线(中间反射镜不算)。紫外-可见分析技术 1、简述影响紫外可见吸收光谱的因素。(1)温度:在室温范围内,温度对吸收光谱的影响不大。在低温时,吸收强度有所增大;在高温时,谱带变宽,谱带精细结构消失。(2)溶剂:由于紫外光谱的测定大多数在溶液中进行,而溶剂的不同将会使吸收带的位置及吸收曲线的形态有较大的影响。所以在测定物质的吸收光谱时,一定要注明所用的溶剂。一般来说,极性溶剂会造成π-π﹡跃迁吸收带发生红移,而使n-σ﹡跃迁发生蓝移。非极性溶剂对上述跃迁影响不太明显。(3)pH值:很多化合物都具有酸性或碱性可解离基团,在不同的pH值的溶液中,分子的解离形式可能发生变化。其吸收峰的形状、吸收峰的位置、吸收强度等都有可能发生变化。(4)仪器的狭缝宽度:狭缝宽度越大,光的单色性越差,吸收光谱的细微结构就可能消失。 2、简述紫外光谱法在有机化合物分析中的应用,试举例说明。紫外可见光谱一般有以下几个应用:定性分析,定量分析,异构体判断,纯度检查。定性分析:判断共轭关系及某些官能团。如在(200-400nm)之间无吸收峰,说明该未知物无共轭关系,且不会是醛、酮,很可能是一个饱和化合物。定量分析:用于测定物质的浓度和含量。异构体判断:乙酰乙酸乙酯存在酮-烯醇互变异构体。酮式没有共轭双键,在204nm处有弱吸收;烯醇式有共轭双键,在245nm处有强吸收。故可根据它们的紫外吸收光谱可判断其存在与否。纯度检查:例如,如果一化合物在紫外区没有吸收峰,而其中杂质有较强的吸收,就可方便检测出该化合物的痕量杂质。 3、简述紫外可见吸收光谱波长范围的划分,并指出“UV”所表示的范围。紫外可见光谱区是在4-800nm的电磁波,其中4-400nm的电磁辐射称为紫外区,它又分为两段:4-200nm为远紫外区,200-400nm的电磁波为近紫外区,而波长在400-800nm的电磁波为可见光区。 4、简述紫外可见分光光度计的结构。光源:光源是提供入射光的装置。单色器:是一种把来自光源的复合光分解为单色光,并分离出所需要波段光束的装置。吸收池:又称样品池、参比池或比色皿。检测器:其作用是检测光信号,将光信号转变为电信号。信号显示系统:配有微机,可对光谱仪进行操作控制,并进行数据处理。 荧光分析技术 1、简述荧光分析法的特点,其中物质产生荧光所必须具备的条件。荧光法的主要特点是灵敏度高和选择性强。分子产生荧光必须具备两个条件:(1)物质分子必须具有能吸收一定频率紫外光的特定结构;(2)物质分子吸收了特征频率的辐射能之后,必须具有较高的荧光效率。荧光效率大,

相关主题
文本预览
相关文档 最新文档