当前位置:文档之家› 染色体带纹及命名

染色体带纹及命名

染色体带纹及命名
染色体带纹及命名

染色体带纹及命名

人类染色体是以几届国际会议的结果予以命名的(1960的Denver会议,1963年的伦敦会议,1966年的芝加哥会议,1975年巴黎会议,1977年stockholm会议,1994年Memphis会议)。1995年细胞遗传学标准委员会修改了自1985到1991年所发表的文件,把他们编撰成一个册子,名为《人类细胞遗传学国际命名体制》,常简称ISCN1995。

显带是一类分带技术,是一种方法学。是把染色体标本经过特殊处理后染色,使染色体有深、浅或明、暗的区别带。这里我们介绍几种常出现在文献中的带型。

G带:也叫G显带,这是临床上最常用的显带方法。用胰酶,缓冲液处理中期染色体标本均可显带。G带的特性是显带方法简单恒定,带型稳定,保存时间长。

Q带:用喹吖因染料染中期染色体标本可出现一种特征性黄光亮暗带型,一般富含

AT-DNA区段表现为亮带,富含GC-DNA区段黄光较暗,常用于人类Y染色体长臂的观察。临床上较少用,不能长久保存。

C带:这种方法将结构异染色质和高度重复的DNA区域染色。在人类染色体上这些区域位于着丝粒和Y染色体上。常用于某一科题的研究。

R带:带型与G带相近,常用于染色体末端的研究。

一般常作的G带技术在人类染色体的单倍体中仅能观察到320条带纹,这对于一些染色体细微结构异常的识别是不够的。近年来,另加某些药物如胸腺嘧啶核苷、BrdU等阻止染色体收缩,并用有丝分裂抑制剂秋水仙素或秋水酰胺低浓度短时间处理,结果就能得大量晚前期、前中期和早中期的有丝分裂图象。这样在人类染色体的单倍体带纹数可增加到400条、550条和850条,甚至可达1200~2000条之多。这对于进一步研究较细小的染色体缺陷和基因定位,具有重大意义。

对染色体带型的识别和命名是从染色体上的着丝粒开始的。在显带染色体标本上,一条染色体被着丝粒分为短臂(p)和长臂(q);两臂均由一系列染色深和染色浅的带所构成,不存在带间区。不论在长臂或短臂中,都可以依照明显的形态特征(如着丝粒、明显的深染带或浅染带)

作界标,分为几个区。每区中可以包括若干个带。区和带以号序命名,从着丝粒两侧的带开始,

作为第1区第1号带,向两臂远端延伸,依次编为2区、3区等第一区内也依次编为1号带、2号带……例如,课本中第六章第三节小字中1号染色体的短臂(p)包括三个区:1区有3条带,2区有2条带,3区有6条带长臂(q)包括4个区:1区有2条带,2区有5条带,3区有2条带,4区有4条带。定为界标的染色带就作为下一个区的1号带。每一个染色体带的命名,由连续书写的符号组成。例如,1q32表示为第1号染色体长臂的第3区2号带。如果一个带又分成若干亚带(即高分辨带),则在带号之后加小数点,再书写亚带的编号。亚带也由着丝粒向远端依次编号,如1p36.2表示第1号染色体短臂的第3区6号带中的第2号亚带。如果亚带又再细分,则在原亚带编号后再加数字,不需再加标点,例如1p36.21。请注意这些数字并非十进位的字,只是带型符号。

染色体核型命名如下:正常男性为46,XY,正常女性为46,XX.21三体综合征(唐氏综合征)由于有一条额外的21号染色体(21三体),核型命名为男性47,XY,21+;女性命名为47,XX,21+.染色体易位也可导致21三体综合征,典型的14/21平衡易位携带者母亲写为45,XX,t(14q;21q).易位染色体分别来自14q和21q (在该染色体上,q为长臂),短臂(p)已丢失.短臂缺失的5号染色体(又称为5p缺失综合征),女性的核型为46,XX,5p-.

染色体的每个臂被分成1~4个主要区,依染色体长度而定.每条条带无论染色阳性或阴性,都有一个序号.序号随距离着丝点的距离增加而增加.如,1q23指1号染色体(1),长臂(q),第二区(2)位于该区的第三条带(3),如下图。

常见的核型描述方式:

核型描述

46,XY 正常女性染色体

47,XX,+21 女性,21三体综合征

47,XY,+21/46,XY 男性,21三体细胞和正常细胞的镶嵌体

46,XY,del(4)(p14)男性,第4号染色体短臂末端缺失,缺失的断裂点发生在短臂的p14带上

46,XX,dup(5p)女性,第5号染色体短臂片段重复

45,XY,-13,-15,t(13q;14q)男性,第13号染色体的罗伯逊平衡易位,核型显示正常的第13号和第14号染色体缺失

46,XY,t(11;22)(q23;q22)男性,第11号与第22号染色体之间相互平衡易位;断裂点在第11号染色体长臂的q23区带和第22号染色体长臂的q22区带上

46,XX,inv(3)(p21;q13)第3号染色体的倒位,从p21延伸至q13;由于它包含着丝粒,所以是周着丝粒倒位

46,X,r(X)女性,有一个正常的X染色体和一个环状X染色体

46,X,i(xq)女性,有一个正常的X染色体,和一个X染色体长臂的等臂染色体

将一个染色体组的全部染色体逐条按其特征画下来,再按长短、形态等特征排列起来的图称为核型模式图,它代表一个物种的核型模式。

由于许多物种的各个染色体靠普通的制片染色方法不易精确地识别和区分,1968年以来发展起来的显带技术,即用各种特殊的处理和染色方法使各条染色体显示出各自的横纹特征(带型)的方法成为研究核型的有力工具。

核型及其各种带型是动物、植物、真菌在染色体水平上的表型。研究和比较各种动物、植物、真菌的核型和带型有助于对各个种、属、科的亲缘关系作出判断,揭示核型的进化过程和机制。此外,核型的研究又和人类自身利害密切相关,它的数目和结构的改变往往给人类带来遗传性疾病──染色体病;肿瘤细胞的核型分析已被应用于肿瘤的临床诊断、预后及药物疗效的观察;通过培养后的淋巴细胞或皮肤成纤维细胞的核型分析,可以对人的染色体病进行诊断,而对培养后的羊水中的胎儿脱屑细胞或胎盘绒毛膜细胞的核型分析则可用于对胎儿的性别和染色体病的产前诊断。

历史核型一词首先由苏联学者T.A.列维茨基和JI.杰洛涅等在20世纪20年代提出。1952年美国细胞学家徐道觉首先采用低渗处理技术使细胞内的染色体分散而便于观察,以后秋水仙素的应用使增殖中的细胞停止于中期,从而便于获得大量供观察的中期分裂相,植物凝血素(简称PHA)刺激白细胞分裂的发现使以血培养方法观察动物与人的染色体成为可能。随着各种培养、制片、染色技术的改进使核型的研究进入了蓬勃发展的新阶段。1956年瑞典细胞遗传学家庄有兴等报告了人的染色体数是46而不是过去认为的48。1959年以后在人类中发现越来越多的各种各样的染色体异常。1960年4月在美国丹佛市召开的国际学术会议上对人的染色体分群和命名的术语、符号、方法等作了统一规定,在第五次国际人类遗传学会议上产生的人类染色体命名常务委员会又于1977年专门召开了会议进行修订,会后公布了《人类细胞遗传学命名国际体制(ISCN)(1978)》。1981年该委员会又公布了《人类细胞遗传学高分辨显带命名国际体制》,在1977年所制订的中期染色体带型命名规定的基础上提出了高分辨的晚前期和早中期染色体带型命名规

定和模式图。这些规定目前为世界各国学者所普遍采用。

方法核型研究所用的材料或是自然条件下活体中正在旺盛分裂的细胞(如植物的根尖、嫩叶、茎尖等细胞,以及动物的胚胎细胞、骨髓细胞、睾丸中的精原细胞等)或是离体培养的旺盛分裂的细胞。植物

细胞一般不经低渗处理,如需经低渗处理则需用酶溶去细胞壁。动物细胞则往往经低渗处理后再行固定、染色。

常用的显带技术所显示的带有Q带、G带、C带、R带、T带等。Q带技术即喹吖因荧光染色技术,是1968年瑞典细胞化学家T.O.卡斯珀松建立的,所显示的是中期染色体经氮芥喹吖因或双盐酸喹吖因染色后在紫外线照射下所呈现的明亮的荧光带,这些区带相当于DNA分子中A:T碱基对成分丰富的部分。G 带即吉姆萨带,是将处于分裂中期的细胞经过胰酶或碱、热、尿素、去污剂等处理后再经吉姆萨染料染色后所呈现的区带。C 带又称着丝粒异染色质带,是着丝粒邻近的异染色质部分。C带技术是M.L.帕多等于1970年建立的。R带由 B.迪特里约于1971年所首创,是中期染色体不经盐酸水解或胰酶处理,只在磷酸缓冲液中保温处理后就用吉姆萨等染料染色后所呈现的区带,也是G带染色后的带间不着色区,所以又称反带。T带又称端粒带,是染色体的端粒部位经吖啶橙染色后所呈现的区带,典型的T带呈绿色,由B.迪特里约1973年首先报道。染色体银染法系用硝酸银(AgNO3)使染色体上的核仁形成区部位呈现黑色的一种特殊染色法。1975年以来,美国细胞遗传学家J.J.尤尼斯等又建立了高分辨显带法,方法是先用氨甲喋呤使细胞分裂同步化,然后用秋水酰胺进行短时间的处理,使出现大量晚前期和早中期的分裂相。在这样处理过的人的早中期细胞的染色体组中可以看到555~842条带。在晚前期细胞中可以看到843~1256条带,而已往在中期染色体上只能观察到320~554条带。后来又用放线菌素D作用于DNA合成后期(G2期)的细胞以阻碍染色体浓缩时特殊蛋白质与染色体的结合,从而使染色体更为细长,使所显示的带纹多达5000条。这样就可以更精确地观察染色体的各种变异,甚至在各种生物的正常个体细胞中也可以看到染色体的各种区带的宽窄、位置等存在着一些变化,这些变化称带的多态现象。

人类染色体命名符号与核型式《人类细胞遗传学命名国际体制(ISCN)(1978)》中的命名符号:

A、B、C、D、E、F、G染色体群的符号

1~22常染色体的顺序号

X、Y性染色体

/ 嵌合体或异源嵌合体的不同细胞系之间的分隔

符号

+ 增加

- 丢失

→从→到

:断裂

∷断裂和重接

( )( )内为结构改变的染色体

?染色体或其结构的鉴别有疑问

;在涉及两个以上染色体的结构重排中用来分隔

染色体或染色体区段的符号

=总数为

()用于区别同源染色体

* 作为×号用,其前是母本,其后是父本。

AⅠ(first meiotic anaphase)减数分裂Ⅰ后期

AⅡ(second meiotic anaphase) 减数分裂Ⅱ后期ace(acentric fragment) 无着丝粒断片

b(break) 断裂

cen(centromere) 着丝粒

chi(chimera) 异源嵌合体

cs(chromosome) 染色体

ct(chromatid) 染色单体

cx(complex) (染色体)群

del(deletion) 缺失

der(derivative chromosome) 衍生染色体

dia(diakinesis) 浓缩期

dic(dicentric) 双着丝粒

dip(diplotene) 双线(期)

dir(direct) 直接(分裂)

dis(distal) 远端

dit(dictyotene) 核网(期)

dmin(double minute) 双微小体

dup(duplication) 重复

e(exchange) 互换

end(endoreduplication) 内复制

f(fragment) 断片

fem(female) 女性

g(gap) 裂隙

h(secondary constriction) 副缢痕(或次缢痕)i(isochromosome) 等臂染色体

ins(insertion) 插入

inv(inversion) 倒位

lep(leptotene)细线(期)

MⅠ(first meiotic metaphase) 减数分裂Ⅰ中期

MⅡ(second meiotic metaphase) 减数分裂Ⅱ中期mal(male) 男性

mar(marker chromosome) 标记染色体

mat(maternal origin) 来自母亲

med(median) 中央

min(minute) 微小体

mn(modal number) 众数

mos(mosaic) 嵌合体

oom(oogonial metaphase) 卵原细胞中期

p(short arm of chromosome) 染色体短臂

PⅠ(first meiotic prophase) 减数分裂Ⅰ前期pac(pachytene) 粗线(期)

pat(paternal origin) 来自父亲

pcc(premature chromosome condensation)染色体提前浓缩

Ph(Philadelphia chromosome) 费城染色体

prx(proximal) 近端

psu(pseudo) 假

prz(pulverization) 粉碎

q(long arm of chromosome)染色体长臂

qr(qua lriradial) 四射体

r(ring chromosome) 环状染色体

rcp(reciprocal) 相互(易位)

rea(rearrangement) 重排

rec(recombinant chromosome) 重组染色体

rob(Robertsonian translocation) 罗伯逊易位

s(satellite) 随体

SCE(sister chromatid exchange)姐妹染色单体互换

sdl(sub-line,side line) 亚系、旁系

sl(stem line) 干系

spm(spermatogonial metaphase) 精原细胞中期t(translocation) 易位

tan(tandem translocation) 衔接易位

ter(terminal,end of chromosome) 末端、染色体端部

tr(triradial) 三射体

tri(tricentric) 三着丝粒

var(variable chromosome region) 染色体可变区

xma(ta)[chiasma(ta)]交叉

zyg(zygotene) 偶线(期)

在用核型式描述一个核型时,第一项是染色体总数(包括性染色体),然后是一个逗号,最后是性染色体。下面是一些核型式的举例:

46,XX正常女性;

46,XY正常男性;

45,X特纳氏综合征(Turner's syndrome);

47,XXY克氏综合征(Klinefelter's syndrome);

47,XY,+21男性21三体;

46,XY,1q+ 具46条染色体的男性,第1号染色体长臂

延长;

chi46,XX/46,XY具有XX和XY细胞系的异源嵌合体;

46,XX,t(Xq+;16q-) 具46条染色体的女性,X染色体

长臂与第16号染色体短臂之间相互易位(X染色体

长臂延长,16号染色体短臂缺失);

46,XX,del(1) (pter→q21∷q31→qter) 具有46条染

色体的女性,1号染色体长臂上1q21和1q31带间断裂

和重接,这些带间的片段缺失。

染色体的形态结构

(一)染色体的形态结构 体细胞的染色体是46个,23个,其中22对是常染色体,一对是性染色体。男性一对XY,女性为XX。染色体的形态随着细胞周期的不同而有所改变,在光学显微镜下所看到的染色体是细胞分裂中期染色体(metaphase chromsome)。 每个染色体含有两条染色单体,呈赤道状彼此分离,只有着丝粒处相连。根据着丝粒的位置分为三种类型,中部着丝粒型,亚中部着丝 粒和端着丝粒型(图21-1)。 图21-1正常人体细胞的三种染色体 1.中部着丝点染色体;2.近中部着丝点染色体;3.近端部着丝点染色体 1.非显带染色体特征分为七组 A组(1~3):为最大的具中部着丝粒染色体,这组染色体相互间很易区别。第1号和第2号染色体大小相似,唯第2号染色体为近中部着丝粒染色体。第3号染色体较1、2号染色体小,为中部着丝粒染色体。 B组(4~5):为大的具中部着丝粒染色体。2对染色体之间在形态和长度上较难区别。 C组(6~12号和X):为中等大小的具中部或近中部着丝粒染色体。这组染色体较难区分,其中第6、7、11号和X染色体为中部着丝粒染色体,第8、9、10和12号染色体为近中部着丝粒染色体。女性为2个X染色体。男性只有1个X染色体。 D组(13~15号):为中等大小的具近端着丝粒染色体。在其短臂上有随体。与他组染色体有明显区别。但3对染色体之间较难区别。 E组(16~18号):为小的具中部或近中部着丝粒染色体。第16号染色体为中部着丝粒染色体,第17号和18号染色体为近中部着丝 粒染色体。不过,着丝粒位置第18号较第17号染色体更近端部。 F组(19~20号):为更小的中部着丝粒染色体。2对染色体之间,形态上很难区别。

实验十人类染色体g显带技术及g带核型分析

实验十人类染色体G显带技术及G带核型分析 实验目的 1、初步掌握染色体G带标本的制备技术。 2、了解人类染色体的G显带的带型特征。 实验用品 1、材料:常规方法制备的中期人类染色体标本(标本片龄不超过30天为宜)。 2、器材:显微镜、恒温培养箱、烤箱、恒温水浴箱、冰箱、染色缸、小镊子、玻片架、香柏油、二甲苯、擦镜纸、吸水纸。 3、试剂:%胰蛋白酶溶液、%EDTA溶液、胰蛋白酶一EDTA混合液、%生理盐水、蒸馏水、Giemsa原液、Giemsa稀释液、1/15mol /L磷酸缓冲液。 实验原理 人们将用各种不同的方法,以及用不同的染料处理染色体标本后,使每条染色体上出现明暗相间,或深浅不同带纹的技术称为显带技术(banding technique)。本世纪70年代以来,显带技术得到了很大发展,且在众多的显带技术中(Q带、G带、C带、R带、T带),G带是目前被广泛应用的一种带型。因为它主要是被Giemsa染料染色后而显带,故称之为G显带技术,其所显示的带纹分布在整个染色体上。 研究发现,人染色体标本经胰蛋白酶、Na0H、柠檬酸盐或尿素等试剂处理后,再用Giemsa 染色,可使每条染色体上显示出深浅交替的横纹,这就是染色体的G带。每条染色体都有其较为恒定的带纹特征,所以G显带后,可以较为准确的识别每条染色体,并可发现染色体上较细微的结构畸变。关于G显带的机理目前有多种说法,例如,Lee等(1973)认为染色体上与DNA结合疏松的组蛋白易被胰蛋白酶分解掉,染色后这些区段成为浅带,而那些组蛋白和DNA结合牢固的区段可被染成深带。有人认为,染色体显带现象是染色体本身存在着带的结构。比如用相差显微镜观察未染色的染色体时,就能直接观察到带的存在。用特殊方法处理后,再用染料染色,则带更加清楚,随显带方法不同,显出来的带特点也不一样,说明带的出现又与染料特异结合有关。一般认为,易着色的阳性带为含有AT多的染色体节段,相反,含GC多的染色体段则不易着色。总的来说,G显带的机理还未搞清。 内容与方法 一、人类染色体G显带标本制备 1、胰蛋白酶法 ①将常规制备的人染色体玻片标本(未染色的白片)置70℃烤箱中处理2小时,然后转入37℃培养箱中备用,一般在第3~7天进行显带。 ②取%的胰蛋白酶原液加生理盐水至50ml,配成%的工作液并用NaHCO3调pH值至7左右。 ③将配好的胰蛋白酶工作液放入37℃水浴箱中预热。 ④将玻片标本浸入胰蛋白酶中,不断摆动使胰蛋白酶的作用均匀,处理1~2分钟(精确的时间自行摸索)。 ⑤立即取出玻片,放入生理盐水中漂洗两次。 ⑥染色。将标本浸入37℃预温的Giemsa染液(1:10的Giemsa原液和的磷酸缓冲液)

人类染色体的识别及核型分析

生命与环境科学学院实验报告 实验课名称遗传学实验实验名称人类染色体的识别及核型分析成绩______________ 姓名王大锤实验报告系列年级学号组别一时间2015.温度6℃ 实验原理及目的 实验目的 1、学习并掌握染色体核型的分析方法; 2、熟悉人类染色体的特征; 3、了解人类染色体结构畸变的表示方法。 实验原理 1.染色体组型(核型)的基本含义 含义:生物体细胞所有可测定的染色体表型特征的总称。 包括:染色体的总数,染色体组的数量,每个染色体组内染色体基数,每条染色体的形态、长度、着丝粒的位置,随体或次缢痕等。 染色体组型是物种特有的染色体信息之一,具有很高的稳定性和再现性。 2.人类染色体特征 Denver体制 1960年,在美国Denver市召开了第一届国际遗传学会议,讨论并确定正常人核型(karyotype)的基本特点即Denver体制,成为识别人类各种染色体病的基础。 3.染色体显带标本 显带技术(banding technique):用各种不同方法,以及用不同染料处理染色体标本后,每条染色体上出现明暗相间或深浅不同带纹的技术。 每条染色体带纹相对固定,可用于鉴别。 显带技术种类:Q带、G带、C带、R带、T带. G带是目前被广泛应用的一种带型。主要是被Giemsa染色后而显带,故称之为G显带技术,其所显示的带纹分布在整个染色体上。 4.遗传学中一些常用于对染色体和核型分析的指标描述 界标(landmark):稳定、明显标记的指标.包括末端、着丝粒和带. 区(region):两相邻界标之间. 带(band):着色处.(浅、深;亮、暗). 臂(arm):p、q 实验材料、仪器及试剂 1.人类染色体标本——非显带标本和显带标本 2.直尺,剪刀,计算机等。 实验步骤 ①染色体制片 制片方法:植物染色体——压片法(酸解、酶解) 动物染色体——滴片法(骨髓细胞、外周血细胞)标本种类:非显带染色体;显带染色体 图片要求:染色体分散;数目全;形态好 ②选择最佳图象拍照 ③测量、计算 ④配对 ⑤剪贴 ⑥排列 排列原则:从大到小;短臂向上;着丝粒在一条线上;性染色体单排。

实验四__人类染色体的识别与核型分析

实验四人类染色体的识别与核型分析 一、实验目的 1.学习染色体核型的分析方法; 2.了解人类染色体的特征。 二、实验原理 1.染色体组型(核型)是指生物体细胞所有可测定的染色体表型特征的总称。包括:染色体的总数,染色体组的数目,组内染色体基数,每条染色体的形态、长度、着丝粒的位置,随体或次缢痕等。染色体组型是物种特有的染色体信息之一,具有很高的稳定性和再现性。组型分析能进行染色体分组外,还能对染色体的各种特征做出定量和定性的描述,是研究染色体的基本手段之一。利用这一方法可以鉴别染色体结构变异、染色体数目变异,同时也是研究物种的起源、遗传与进化,细胞遗传学,现代分类学的重要手段。 2.人类的单倍体染色体组(n=23)上约有30000-40000个结构基因。平均每条染色体上有上千个基因。各染色体上的基因都有严格的排列顺序,各基因间的毗邻关系也是较为恒定的。人类的24种染色体形成了24个基因连锁群,所以,染色体上发生任何数目异常、甚至是微小的结构变异,都必将导致许多获某些基因的增加或减少,从而产生临床效应。染色体异常常表现为具有多种畸形的综合征,称为染色体综合征,其症状表现为多发畸形、智力低下和生长发育异常,此外还可看到一些特征性皮肤纹理改变。染色体畸变还将导致胎儿死产或流产。染色体病已成为临床上较常见的危害较为严重的病种之一,染色体病的检查、诊断已经成为临床实验室检查的重要内容。 1960年,在美国Denver市召开了第一届国际遗传学会议,讨论并确定正常人核型(karyotype)的基本特点即Denver体制,并成为识别人类各种染色体病的基础。按照Denver 体制,将待测细胞的染色体进行分析和确定是否正常,以及异常特点即为核型分析。人类染色体分组及形态特征见表1。 表1 人类染色体分组及形态特征(非显带标本) A组:1-3号,可以区分。1号,最大,M,长臂近侧有一次缢痕;2号,较大,SM;3号,较大,比1号染色体段1/3-1/4)。 B组:4-5号,体积较大,SM,短臂相对较短,两者不容易区分。 C组:6-12,X。中等大小,SM,较难区分。6、7、8、11和X染色体的着丝粒略近中央,短臂相对较长,9、10、12染色体的着丝粒偏离中央。9号染色体长臂有较大次缢痕。

人类染色体组型分析-实验报告

【实验题目】 染色体组型分析 【实验目的】 1. 掌握染色体组型分析的各种数据指标。 2. 学习染色体组型分析的基本方法。 3.对照标准图型,学习识别人体各对染色体的带型特征。 4.初步掌握人体染色体组型带型分析方法。 5.了解染色体组型与带型分析的意义。 【实验材料与用品】 1.器材:直尺、剪刀、胶水、计算器、白纸 2.材料:人体细胞染色体放大图 【实验原理】 染色体组型又称核型,是指将动物、植物、真菌等的某一个体或某一分类群(亚种、种、属等)的体细胞内的整套染色体,按它们相对恒定的特征排列起来的图像。核型模式图是指将一个染色体组的全部染色体逐个按其特征绘制下来,再按长短、形态等特征排列起来的图像。 (一)描述染色体的四个参数: 1.相对长度= 每条染色体长度 单倍常染色体之和+X 2.臂指数= 长臂的长度 q 短臂的长度 p 为了更准确地区别亚中部和亚端部着丝粒染色体,1964年Levan 提出了划分标准: ① 1.0-1.7之间,为中部着丝粒染色体(M ) ② 1.7-3.0之间,为亚中部着丝粒染色体(SM ) ③ 3.0-7.0之间,为压端部着丝粒染色体(ST ) ④ 7.0以上,为端部着丝粒染色体(T ) ×100 (相对长度可以用来表示每条染色体的长度) ×100 (臂指数可以用来确定臂的长度)

3.着丝粒指数 = 短臂的长度 p ×100 (着丝粒指数可以决定着丝粒的相对位置)染色体全长 p+q 按Levan划分标准: ① 50.0-37.5之间为M ② 37.5-25.0之间为SM ③ 25.0-12.5之间为ST ④ 12.5-0.0之间为T 4.染色体臂数(NF):根据着丝粒的位置来确定。 a.端着丝粒染色体(T),NF=1; b.中部、亚中部、亚端部着丝粒染色体(M,SM,ST),NF=2。 (二)人类体细胞染色体的分类标准及其主要特征 染色体组型及分群依据:主要根据染色体的相对长度,着丝粒的位置,其次是臂的长短,以及次级缢痕或随体的有无等方面。 分组排队原则:着丝粒类型相同,相对长度相近的分一组;同一组的按染色体长短顺序配对 排列;各指数相同的染色体配为一对;可根据随体的有无进行配对;将染色体按长短排队, 短臂向上。 染色体组型图的应用

染色体带纹及命名

染色体带纹及命名 人类染色体是以几届国际会议的结果予以命名的(1960的Denver会议,1963年的伦敦会议,1966年的芝加哥会议,1975年巴黎会议,1977年stockholm会议,1994年Memphis会议)。1995年细胞遗传学标准委员会修改了自1985到1991年所发表的文件,把他们编撰成一个册子,名为《人类细胞遗传学国际命名体制》,常简称ISCN1995。 显带是一类分带技术,是一种方法学。是把染色体标本经过特殊处理后染色,使染色体有深、浅或明、暗的区别带。这里我们介绍几种常出现在文献中的带型。 G带:也叫G显带,这是临床上最常用的显带方法。用胰酶,缓冲液处理中期染色体标本均可显带。G带的特性是显带方法简单恒定,带型稳定,保存时间长。 Q带:用喹吖因染料染中期染色体标本可出现一种特征性黄光亮暗带型,一般富含 AT-DNA区段表现为亮带,富含GC-DNA区段黄光较暗,常用于人类Y染色体长臂的观察。临床上较少用,不能长久保存。 C带:这种方法将结构异染色质和高度重复的DNA区域染色。在人类染色体上这些区域位于着丝粒和Y染色体上。常用于某一科题的研究。 R带:带型与G带相近,常用于染色体末端的研究。 一般常作的G带技术在人类染色体的单倍体中仅能观察到320条带纹,这对于一些染色体细微结构异常的识别是不够的。近年来,另加某些药物如胸腺嘧啶核苷、BrdU等阻止染色体收缩,并用有丝分裂抑制剂秋水仙素或秋水酰胺低浓度短时间处理,结果就能得大量晚前期、前中期和早中期的有丝分裂图象。这样在人类染色体的单倍体带纹数可增加到400条、550条和850条,甚至可达1200~2000条之多。这对于进一步研究较细小的染色体缺陷和基因定位,具有重大意义。 对染色体带型的识别和命名是从染色体上的着丝粒开始的。在显带染色体标本上,一条染色体被着丝粒分为短臂(p)和长臂(q);两臂均由一系列染色深和染色浅的带所构成,不存在带间区。不论在长臂或短臂中,都可以依照明显的形态特征(如着丝粒、明显的深染带或浅染带) 作界标,分为几个区。每区中可以包括若干个带。区和带以号序命名,从着丝粒两侧的带开始,

人类染色体图及各带特点(R显带)

R带染色体的识别 正常中国人体细胞的R带带型特点和Dutrillaux提 供的R带带型基本在一致 1号 p:近端2个中等着色带,远端1条特别宽的深着色带,通常由3条带融合而成,约占1∕2长,二者之间为一宽的浅染区;q:中央一个浅染区将q分成大致相等的两部分。每一部分个由2-3条中等色带组成;着丝粒和次缢痕为阴性节段。 2号 p:3-4着色程度不同的带。自内向外逐渐加深;q:近端和远端各有2-3条中等着色带,中间为宽的淡然区,其中央可见1条窄的浅染带。 3号 p:中央1条渗着色带,远端一条窄的中等着色带,其余均淡染区;q:中央偏内侧处1条深着色带,远端1条窄的中等着色带,两者间的淡染区较p的淡染区宽; 着丝粒及其上下方为阴性节段。 4号 p近端着丝粒处1条中等着色带,末端1条深着色带,其间为淡染区;q:除远端1条窄的中等着色带外,其余均淡染有的可见4条宽窄不一的深染带。 5号 p:近端1条中等着色带,远端1条深着色带;q:近端1条中等着色带,远端3条深着色带,其内侧两带常常融合,末端带稍浅。 6号 p:近端1条宽的深着色带,远端1条窄的中等着色带;q:近端为浅染区,中央有1条窄的中等着色带,远端1条稍宽的深着色带。 7号 p:近端和中央各有1条中等着色带,远端一条深着色带,其间为淡染区;q:3条分布大致均匀的深着色带。近端和远端的带较宽,中间的带较窄。8号 p:2条中等着色带;q:远端一条深着色带,其上方约1∕3处1条窄的浅着色带,其余均淡染。

9号 p:近端一条深着色带,其余均淡染;q:中央和远端各1条深着色带,常互相融合;着丝粒区为阴性节段。10号 p:2条均匀分布的中等着色带:q:3条均匀分布的深着色带,常融合在一起,近着丝粒处1条窄的中等着色带。 11号 p:近端和远端1条中等着色带,中间为染区;q:近端和远端各1条深着色带,近端者比远端者宽而深,中间为宽阔的淡染区。 12号 p:近端和远端1条窄的中等着色带,中间为淡染区区;q:中央1个宽阔的淡染区将近端和远端的2个深着色带分开,远端者比进端者宽且深。 13号 p:随体不定着色;q:近端2条深着色带,常融合,远端1条中等着色带,中间为淡染区。 14号 p:随体不定着色;q:近端为浅染区,远端可见2条分布均匀的深着色带。 15号 p:随体不定着色;q: 中央1条窄的淡染带将q分成近端和远端两个宽的深着色区。 16号 p:全部深染;q:中央和远端个各1条深着色带,常融合在一起;着丝粒区为阴性节段。 17号 p:全部深染;q:近端和远端各1条深着色带,中间为窄的淡染区。 18号 p:近端为浅染区,远端1条窄的中等着色带;q :中央一条窄的中等着色带将宽阔的浅染区分成上下两部分。 19号 p:全部为1个深着色带;q:1个与p相仿的深着色带;着丝粒区为阴性节段。 20号 p:近端1条窄的中等着色带,其余均淡染;q:全部为一个宽的深着色带。 21号 p:随体不定着色;q:近端浅染,远端1个窄的中等着色带。 22号 p:随体不定着色;q:全部为1个宽的深染色带。 X p:近端为1个深着色带,远端为1个中等着色带:q:近端1个窄的中等着色带,远端2-3个窄的中等着色带,中间为浅染区。 Y p:全部为中等着色带;q:全部为浅染区。且自内向外逐渐变浅。

人类染色体的故事

谁在管理我们的基因?——小RNA 此帖转载自《大科技·科学之谜》的网站,此刊作品允许自由转载 在细胞这样小小的空间里,成千上万的基因会不会为了各自的利益像我们人类社会一样发生无限多的矛盾、冲突呢?在这成千上万的基因开关程序中,每一次错误的操作都会导致生物病变或者畸形的恶果,那么,由谁来控制、协调这些基因的活动呢?在那个基因充斥的小小社会里,的确需要一种精确而高效的管理者。现在,人们终于知道,这个管理者来自生命世界里最神秘的一个家族。这个家族曾经臭名昭著。 杀死2000多万人的凶手 1918年,第一次世界大战终于在满目疮痍中结束。这场历时四年的战乱,使1000多万人丧生,更多的人流离失所,人们热切期盼着即将来临的和平与宁静生活。但是,这个小小的期望并没有慷慨地马上来到,一场更大规模的灾难的幽灵,在人们的欢颜尚未尽情展露时,已经悄然到来,即使第一次世界大战的死亡幽灵与之相比也相形见绌。 这个幽灵首先是从美国堪萨斯州的范斯顿军营降临人间的。1918年3月11日的午餐前,军营中一位士兵感到发烧、嗓子疼和头疼,部队医院的医生认为他患了普通感冒。然而,接下来出现了出人意料的混乱:午餐过后不久,100多名士兵都出现了相似的症状。几天之后,这个军营里出现了500多名这种“感冒”病人。 在随后的几个月里,这种“感冒”通过空气飞沫传播,其踪迹很快传遍了美国大地,随后又走出国门流传到了西班牙,并在全球开始蔓延。西班牙没有美国那么幸运,被这场流感夺去了800多万人的生命,是死亡人数最多的国家,所以这次流感也就得名“西班牙流感”。西班牙流感非常狠毒,以往的普通流感只是容易杀死年老体衰的老人和儿童,但这次它把死亡的阴影也投向了20岁到40岁的青壮年人。仅仅数月,“西班牙流感”在地球上像横扫过了一场飓风一样,来得突然去得也快,只是顺便带走了大约2000万到4000万人的宝贵生命,并且使美国人的平均寿命下降了整整10年。 这场令人类无法揣度的灾难,使人们不愿意相信是大自然的暴行,而更愿意怀疑是德国人的细菌战,或者是芥子毒气引起的。但是,这种怀疑在1997年被科学证实是错误的,灾难的罪魁祸首就是大自然制造的一种看起来很脆弱的RNA。美国军事病理研究所的病理学家陶本·伯杰领导的研究小组,研究了当年美国军营里死于感冒的21岁士兵的肺部样本,找到了一些流感病毒的遗传物质碎片,它们是纯粹的RNA。2001年,澳大利亚的科学家吉布斯在陶本伯杰的基础上进一步研究发现,造成1918年全球流感大流行的原因,是由于猪流感病毒的一段RNA“跳”到了人类普通流感病毒的RNA中,重新组成了毒力巨无霸的新种RNA流感病毒。这些崭新的病毒RNA一进入我们的人体细胞,马上将人类的基因指令关闭或篡改,以便完全为它们制造病毒装备和传宗接代服务,而人类原有的旧抵抗系统面对这个陌生的敌人在这么短的时间内竟毫无对策,最后只能听凭人的生命系统能量耗竭而崩溃。 RNA家族的传奇故事

植物染色体分带技术

八)植物染色体 Giemsa 分带技术 一、实验目的 ( 1 )通过实验,掌握植物染色体 Giemsa 分带技术和方法。 ( 2 )学习染色体带型分析方法。 二、实验原理 植物染色体 Giemsa 分带技术是本世纪 70 年代以来兴起的一项细胞技术,它已广泛用于植物细咆学、细胞遗传学、植物分类学、物种起源、染色体工程、植物育种等方面研究。显带原理是借助于特殊的处理程序后,进行 Giemsa 染色。使染色体某些结构成分发生特异反应而出现深浅不同的带纹;从而使核型分析中更准确地识别染色体的每个成员以及其结构变异。通过改变 Giemsa 分带处理程序可产生不同带型,因此有 C 带、 G 带、 N 带、 Q 带、 T 带等不同技术。 C 带 ( 组成异染色质带 ) : C 带技术是应用最广泛的技术,它主要显示着丝粒、端粒,核仁组成区域或染色体臂上某些部位的组成异染色质而产生相应的着丝粒带、端粒带,核仁组成区带,中间带等,这些带可以在一条染色体上同时出现,也可以只有其中的一条或几条带。 G 带 (Giemsa 带 ) :显示染色粒, G 带分布干染色体的全部长度上,以深浅相间的横纹形式出现。也有入认为 G 带显示的是染色体本身固有的结构, G 带能清楚地反映染色体的纵向分化,能提供较多的鉴别标志,因此, G 带是分带技术中最有价值的一种,目前 G 带技术在我国处于领先地位。 R 带 ( 反带 ) :与 G 带相反的染色带。由于处理程序不同,染色体在同一部位, G 带染色深处 R 带染色浅处,反之, G 带染色浅处 R 带染色深处。 N 带:专一地显示出核仁组织区。 T 带:专一地显示出端粒区域。 以上几种带型在植物上应用最多的为 C 带和 G 带.本次实验介绍 G 带分带技术 三、实验材料 (1) 大麦 ( Hordeum spp. 2n = 14) 的种子; (2) 普通小麦 ( Triticum spp. 2n = 42) 的种子; (3) 蚕豆 (V icia faba 2n = 12) 的种干; (4) 洋葱 ( Allium cepa 2n = 16) 、大蒜 ( Allinmcepa fistulosum 2n = 16) 的鳞茎。 以上材料可任选一种。 四、实验器具和药品 1 .器具培养箱、恒温水浴锅,分析天平、小台称 ( 200g ) 、量筒 (50ml 、 100ml 、 1000ml 、 l0ml) 、烧杯 (200ml) 、容量瓶 ( 1000m 1) 、棕色试剂瓶 (200ml) 、滴瓶、染色缸、载玻片、盖玻片.显微镜、显微照相及冲洗放大设备、剪刀、镊子、刀片、滤纸、玻璃板、牙签、切片盒. 2 .药品 Giemsa 母液、磷酸缓冲液、氯化钠、柠檬酸钠、甲醇、乙醇、冰醋酸、氢氧化钡、秋水仙素 ( 或对二氯苯 ) 、α—溴萘、纤维素酶、胰蛋白酶、醋酸洋红、 45 %醋酸等。五、实验步骤 G 带显示的是染色体自身固有结构,能否显示出来.与染色体的处理技术密切相关,因此, G 带技术要求比 C 带严格。目前 G 带已在许多植物上成功显示,但其中稳定性、重复性高的是玉米 G 带技术。 G 带技术沉程较多,其中最为先进的是武汉大学生物系宋运淳等的 ASG 技术(醋酸— 2XSSC , Giemsa) ,染色体标本的制作是用去壁低渗火焰干燥法进行的。其流程如下: (1) 发根:将玉米材料在室温下 (25 —27 ℃ ) 发根,待根长到 0.5 -1.5cm 时,转入 6 -8 ℃ 左右低温下处理 20 — 40 小时。 (2) 预处理:切取根尖分生组织 0.2mm 用新配制的饱和α—溴萘28 ℃ 下预处理 3 小时。 (3) 低渗:用 0.075mol / LKCl 室温下处理 30 分钟。

染色体核型分析系列之三大技术介绍

染色体核型分析三大技术介绍 ·概念 是细胞遗传学研究的基本方法,是研究物种演化、分类以及染色体结构、形态与功能之间关系所不可缺少的重要手段。经行核型分析后,可以根据染色体结构和数目的变异来判断生物的病因。染色体核型分析技术,传统上是观察染色体形态。但随着新技术的发现与应用,染色体核型分析三大技术包括:GRQ带技术、荧光原位杂交技术、光谱核型分析技术。 ·三大技术介绍 一、GRQ带技术 人类染色体用Giemsa染料染色呈均质状,但是如果染色体经过变性和(或)酶消化等不同处理后,再染色可呈现一系列深浅交替的带纹,这些带纹图形称为染色体带型。显带技术就是通过特殊的染色方法使染色体的不同区域着色,使染色体在光镜下呈现出明暗相间的带纹。每个染色体都有特定的带纹,甚至每个染色体的长臂和短臂都有特异性。根据染色体的不同带型,可以更细致而可靠地识别染色体的个性。染色体特定的带型发生变化,则表示该染色体的结构发生了改变。一般染色体显带技术有G显带(最常用),Q显带和R显带等。 百奥赛图提供的小鼠染色体核型分析服务,就是利用Giemsa染色法,对染色体染色后进行显带分析,保证基因敲除小鼠在染色体水平阶段没有发生变异,从而确保基因敲除小鼠可以正常繁殖。

二、荧光原位杂交技术 荧光原位杂交(fluorescenceinsituhybridization,FISH)是在20世纪80年代末在放射性原位杂交技术的基础上发展起来的一种非放射性分子细胞遗传技术,以荧光标记取代同位素标记而形成的一种新的原位杂交方法,探针首先与某种介导分子结合,杂交后再通过免疫细胞化学过程连接上荧光染料。FISH的基本原理是将DNA(或RNA)探针用特殊的核苷酸分子标记,然后将探针直接杂交到染色体或DNA 纤维切片上,再用与荧光素分子耦联的单克隆抗体与探针分子特异性结合,来检测DNA序列在染色体或DNA纤维切片上的定性、定位、相对定量分析,可判断单个碱基突变。此时,一个染色体核型,即为一个碱基。近年来,采用荧光原位杂交技术,将荧光素标记的探针进行染色体核型特定位点的检测和标记,可以精确地检测染色体上DNA链中,单个碱基的突变,从而大大提高了染色体核型分析的精度。 三、光谱核型分析技术 SKY(spectralkaryotying)光谱染色体自动核型分析是一项显微图像处理技术,SKY通过光谱干涉仪,由高品质CCD获取每一个像素的干涉图像,形成一个三维的数据库并得到每个像素的光程差与强度间的对应曲线,该曲线经傅立叶变换之后得到该像素的光谱,再经由软件分析之后用分类色来显示图像或将光谱数据转换成相应的红绿蓝信号后以常规方式显示。

植物染色体常规分析技术

第一章植物染色体常规分析技术 染色体由DNA和组蛋白构成,不仅是生物,包括植物,的遗传信息载体,起到调节基因活动和有性后代重组频率的作用,而且还控制着真核生物的育性。因此无论是在植物遗传育种,还是在植物系统进化领域,染色体研究技术都是重要手段之一。此外该技术还是染色体分带、基因和基因组原位杂交技术的基础。也就是说染色体常规分析技术是生物学研究的基本技术之一,学习掌握该技术是学生将来从事科学研究工作的必要知识储备。 仪器设备、试剂及其他用品 明视野显微镜(每人一台);水浴锅一个;控温培养箱一台;载玻片,盖玻片若干(清水洗过,70%酒精保存备用,用前纱布擦干);纱布,滤纸若干;钟表镊子, 铅笔(未销),双面刮胡刀片各一个;500ml烧杯(或广口瓶)若干只;培养皿若干(最好直径90mm);小药瓶或1.5ml 塑料离心管若干。 对二氯代苯饱和水溶液;0.002M八羟基喹啉;改良石炭酸品红;1mol/L盐酸;0.1mol/L盐酸;45%乙酸; 材料 玉米、燕麦、小麦、蚕豆种子,洋葱、大葱鳞茎或种子,最好当年产。或者自己准备其他感兴趣的材料,如校园及周围环境中采集和市场购买,要有一定数量,至少几百颗。有意向后及时与老师联系,了解你预备的种子是否适合用于实验,因有些种子存在休眠,短时间不能萌发。实验流程 1 种子和鳞茎根尖的培养 种子培养前首先进行种子筛选,去除空瘪和霉变者以及杂质,保留饱满种子,10至30倍自来水浸泡24小时。取培养皿内垫湿滤纸,将浸泡后的种子铺于培养皿内,注意滤纸表面不要有流动水,种子量要适当,不要太多而互相堆积在一起,室温培养即可。每天流水洗一次,培养过程中如发现有霉烂种子及时清除以免影响种子萌发。 鳞茎培养采用水培。取烧杯一只盛满自来水,将鳞茎外部干皮和鳞茎盘底部残留泥土及根去掉,洗净,坐于烧杯口上,使底部浸泡水中。 虽然是染色体分析实验,一定不要忽略材料培养,要提供具体材料以理想的培养条件。只有根尖生长旺盛,才可能获得具有高比例分裂细胞的根尖,这是得到满意中期分裂相的前提。一般质量好的根尖为乳白色,可见大量根毛。 2 预处理 所谓预处理是指使用化学试剂和物理方法(如低温)抑制细胞纺锤体微管的形成和活动,保证更多的细胞处于有丝分裂中期,同时使染色体缩短变粗利于观察。待根尖伸长约1厘米,取根尖或在小种子情况下,如小麦,连带种子置小药瓶内对二氯代苯饱和溶液中处理3-6小时。注意环境温度不要过高以免产生药物毒害作用。还要注意不要盖瓶盖,保证材料呼吸所需氧气供应。如果处理时间较长,如超过5小时,应该间隔一定时间摇晃小药瓶以增加溶液中的溶解氧。 3 固定 固定就是在化学试剂的作用下使细胞内染色体结构保持不变。染色体制片常用的固定剂为卡诺固定液。方法很简单,倾去预处理液,加卡诺固定液[95%(或100%)酒精:冰乙酸=3:1]固定过夜。常温下材料在固定液可以保存一周左右,冰箱冷藏可以保存一个月左右。保存时间过长,压片时染色体粘连而不易分散。 4 解离 解离的作用是使根尖分生组织的细胞易于分散。一般是将材料从固定液中取出装入小瓶或离心管中,蒸馏水洗一次,加入1mol/L盐酸,放入事先预热到60℃的水浴锅中,保持5至10分钟取出,用吸管吸出解离液,加入蒸馏水洗一次,加45%醋酸软化。 5 染色和压片 染色和压片的目的是使细胞中的染色体着色并分散开以利于染色体形态结构的观察。截取

人类染色体G显带示意图 口诀

人类染色体G显带示意图 口诀: 一秃二蛇三蝶飘四像鞭炮五黑腰 六号p似小白脸七上八下九两条 十号q三深带好十一低来十二高 十三四五一个样着色深带一二一 十六深带连着点十七深带跑得远 十八人小肚子大十九中间一点腰 二十头重脚轻二十一像葫芦瓢 二十二两两一点Y黑脚,Xpq一担挑 1号染色体(中央) p近侧1/2有两条宽阔和浓染的深带,远端有3-4条较窄较淡的带。长臂有5条深带,中央有一条最亮最深的带。q的次溢痕深染。 2号染色体(亚中) p有间隔较均匀的4条深带,中间的两条稍靠近。着丝粒染色很浅。长臂根据标本的质量可间6-8条深带。 3号染色体(中央) p和q中部色浅是3号染色体的特点。p近着丝粒区通常有两条深带。远端可见3条,中间的一条最宽最浓。q臂近端可见两条深带,中间一条明显的浅带,远侧有4-5条深带。 4号染色体(亚中) p有1-2条深带,q有均匀分布的4条深带,在较好的标本还可以分出较好的更多的带纹。 5号染色体(亚中) p有1-2条深带,q中段有3条深带(有时为1条),远端有1-2条深带。6号染色体(亚中) p中段为一明显宽阔的浅带,这是6号染色体的特征。远端和近端各有一条深带,后者紧邻着丝粒。在质量较好的标本可细分q有6条深带。 7号染色体(亚中) p上有3条深带,末端一条较宽且色深,有如“瓶盖”,q有3条明显的深带,远端一条较浅,且可分为两条。 8号染色体(亚中)最后一条深带宽浓粗壮 p的两条深带被一条浅带隔开,最后一条深带宽浓,粗壮,这是8号染色体的特征,q的3-5条带,近侧段内带和末端较浅的一条带常不明显 9号染色体(亚中)苗条 p有3条深带,远侧的两条深带有时融为一条。q有2条较亮的间隔均匀的深带,远端的一条有时一分为二,次溢痕不着色,长度变异大,但可用c带等选择性染色。 10号染色体(亚中)第一条宽浓 p中段有1-2条深带,q有间隔基本均匀的3条深带。远端2条相距较近。近侧的一条着色最深。 11号染色体(亚中)着丝粒可能染色 p中央有一宽阔的深带有时再分出较窄的一条。着丝粒可能染色。q近着丝粒有

实验十 人类染色体G显带技术及G带核型分析

实验目的 1、初步掌握染色体G带标本的制备技术。 2、了解人类染色体的G显带的带型特征。 实验用品 1、材料:常规方法制备的中期人类染色体标本(标本片龄不超过30天为宜)。 2、器材:显微镜、恒温培养箱、烤箱、恒温水浴箱、冰箱、染色缸、小镊子、玻片架、香柏油、二甲苯、擦镜纸、吸水纸。 3、试剂:%胰蛋白酶溶液、%EDTA溶液、胰蛋白酶一EDTA混合液、%生理盐水、蒸馏水、Giemsa原液、Giemsa稀释液、1/15mol /L磷酸缓冲液。 实验原理 人们将用各种不同的方法,以及用不同的染料处理染色体标本后,使每条染色体上出现明暗相间,或深浅不同带纹的技术称为显带技术(banding technique)。本世纪70年代以来,显带技术得到了很大发展,且在众多的显带技术中(Q带、G带、C带、R带、T带),G带是目前被广泛应用的一种带型。因为它主要是被Giemsa染料染色后而显带,故称之为G显带技术,其所显示的带纹分布在整个染色体上。 研究发现,人染色体标本经胰蛋白酶、Na0H、柠檬酸盐或尿素等试剂处理后,再用Giemsa 染色,可使每条染色体上显示出深浅交替的横纹,这就是染色体的G带。每条染色体都有其较为恒定的带纹特征,所以G显带后,可以较为准确的识别每条染色体,并可发现染色体上较细微的结构畸变。关于G显带的机理目前有多种说法,例如,Lee等(1973)认为染色体上与DNA结合疏松的组蛋白易被胰蛋白酶分解掉,染色后这些区段成为浅带,而那些组蛋白和DNA结合牢固的区段可被染成深带。有人认为,染色体显带现象是染色体本身存在着带的结构。比如用相差显微镜观察未染色的染色体时,就能直接观察到带的存在。用特殊方法处理后,再用染料染色,则带更加清楚,随显带方法不同,显出来的带特点也不一样,说明带的出现又与染料特异结合有关。一般认为,易着色的阳性带为含有AT多的染色体节段,相反,含GC多的染色体段则不易着色。总的来说,G显带的机理还未搞清。 内容与方法 一、人类染色体G显带标本制备 1、胰蛋白酶法 ①将常规制备的人染色体玻片标本(未染色的白片)置70℃烤箱中处理2小时,然后转入37℃培养箱中备用,一般在第3~7天进行显带。 ②取%的胰蛋白酶原液加生理盐水至50ml,配成%的工作液并用NaHCO3调pH值至7左右。 ③将配好的胰蛋白酶工作液放入37℃水浴箱中预热。 ④将玻片标本浸入胰蛋白酶中,不断摆动使胰蛋白酶的作用均匀,处理1~2分钟(精确的时间自行摸索)。 ⑤立即取出玻片,放入生理盐水中漂洗两次。 ⑥染色。将标本浸入37℃预温的Giemsa染液(1:10的Giemsa原液和的磷酸缓冲液)中染色10分钟左右。

第九章 人类染色体

第九章人类染色体 一、教学大纲要求 1.掌握人类染色体的结构形态、类型和数目; 2.掌握人类非显带核型和G显带核型分析及描述方法;3.掌握染色体多态性概念及其在医学研究中的应用;4.熟悉细胞分裂过程中染色体的传递; 5.熟悉性染色质xx假说; 6.了解人类细胞遗传学研究方法和进展。 二、习题 (一)A型选择题 1.真核细胞中染色体主要是由____组成。 A.DNA和RNA B.DNA和组蛋白质 C.RNA和蛋白质 D.核酸和非组蛋白质 E.组蛋白和非组蛋白 2.染色质和染色体是 A.同一物质在细胞的不同时期的两种不同的存在形式B.不同物质在细胞的不同时期的两种不同的存在形式C.同一物质在细胞的同一时期的不同表现 D.不同物质在细胞的同一时期的不同表现

E.两者的组成和结构完全不同 3.异染色质是间期细胞核中 A.螺旋化程度高,有转录活性的染色质 B.螺旋化程度低,有转录活性的染色质 C.螺旋化程度高,无转录活性的染色质 D.螺旋化程度低,无转录活性的染色质 E.以上都不是 4.常染色质是间期细胞核中 A.螺旋化程度高,有转录活性的染色质 B.螺旋化程度低,有转录活性的染色质 C.螺旋化程度高,无转录活性的染色质 D.螺旋化程度低,无转录活性的染色质 E.螺旋化程度低,很少有转录活性的染色质 5.经检测发现,某个体的细胞核中有2个X小体,表明该个体一个体细胞中有____条X染色体。 A.1B. 2C.3D. 4E.5 6.根据ISCN,人类C组染色体数目为 A.7对 B.6对

C.7对+X染色体 D.6对+X染色体 E.以上都不是 7.胞增殖周期是 A.从一次细胞分裂结束开始,到下一次细胞分裂结束时为止所经历的全过程 B.从一次细胞分裂开始,到下一次细胞分裂结束为止所经历的全过程 C.从一次细胞分裂结束开始,到下一次细胞分裂开始时为止所经历的全过程 D.从一次细胞分裂开始,到下一次细胞分裂开始为止所经历的全过程 E.从一次细胞分裂开始,到细胞分裂结束为止所经历的全过程 8.减数分裂和有丝分裂的相同点是 A.细胞中染色体数目都不变 B.都有同源染色体的分离 C.都有DNA复制 D.都有同源染色体的联会 E.都有同源染色体之间的交叉 9.生殖细胞发生过程中单分体出现在 A.减数分裂前期Ⅱ B.减数分裂中期Ⅱ C.减数分裂后期Ⅰ

实验十 人类染色体G显带技术及G带核型分析

实验十人类染色体G显带技术及G带核型分析实验目的 1、初步掌握染色体G带标本的制备技术。 2、了解人类染色体的G显带的带型特征。 实验用品 1、材料:常规方法制备的中期人类染色体标本(标本片龄不超过30天为宜)。 2、器材:显微镜、恒温培养箱、烤箱、恒温水浴箱、冰箱、染色缸、小镊子、玻片架、香柏油、二甲苯、擦镜纸、吸水纸。 3、试剂:0.125%胰蛋白酶溶液、0.02%EDTA溶液、胰蛋白酶一EDTA混合液、0.85%生理盐水、蒸馏水、Giemsa原液、Giemsa稀释液、1/15mol /L磷酸缓冲液。 实验原理 人们将用各种不同的方法,以及用不同的染料处理染色体标本后,使每条染色体上出现明暗相间,或深浅不同带纹的技术称为显带技术(banding technique)。本世纪70年代以来,显带技术得到了很大发展,且在众多的显带技术中(Q带、G带、C带、R带、T 带),G带是目前被广泛应用的一种带型。因为它主要是被Giemsa染料染色后而显带,故称之为G显带技术,其所显示的带纹分布在整个染色体上。 研究发现,人染色体标本经胰蛋白酶、Na0H、柠檬酸盐或尿素等试剂处理后,再用Giemsa染色,可使每条染色体上显示出深浅交替的横纹,这就是染色体的G带。每条染色体都有其较为恒定的带纹特征,所以G显带后,可以较为准确的识别每条染色体,并可发现染色体上较细微的结构畸变。关于G显带的机理目前有多种说法,例如,Lee等(1973)认为染色体上与DNA结合疏松的组蛋白易被胰蛋白酶分解掉,染色后这些区段成为浅带,而那些组蛋白和DNA结合牢固的区段可被染成深带。有人认为,染色体显带现象是染色体本身存在着带的结构。比如用相差显微镜观察未染色的染色体时,就能直接观察到带的存在。用特殊方法处理后,再用染料染色,则带更加清楚,随显带方法不同,显出来的带特点也不一样,说明带的出现又与染料特异结合有关。一般认为,易着色的阳性带为含有AT多的染色体节段,相反,含GC多的染色体段则不易着色。总的来说,G显带的机理还未搞清。 内容与方法 一、人类染色体G显带标本制备 1、胰蛋白酶法 ①将常规制备的人染色体玻片标本(未染色的白片)置70℃烤箱中处理2小时,然后转入37℃培养箱中备用,一般在第3~7天进行显带。 ②取 2.5%的胰蛋白酶原液 2.5ml加生理盐水至50ml,配成0.125%的工作液并用NaHCO3调pH值至7左右。 ③将配好的胰蛋白酶工作液放入37℃水浴箱中预热。 ④将玻片标本浸入胰蛋白酶中,不断摆动使胰蛋白酶的作用均匀,处理1~2分钟(精确的时间自行摸索)。 ⑤立即取出玻片,放入生理盐水中漂洗两次。 ⑥染色。将标本浸入37℃预温的Giemsa染液(1:10的Giemsa原液和pH6.8的磷酸缓

染色体显带技术和带型分析

实验三染色体显带技术和带型分析 一、实验目的 学习和掌握植物染色体Giemsa显带技术和带型分析方法,进一步鉴别植物染色体组和染色体结构。 二、实验原理 对植物有丝分裂中期染色体进行酶解,酸、碱、盐等处理,再经染色后,染色体可清楚地显示出很多条深浅、宽窄不同的染色带。各染色体上染色带的数目、部位、宽窄、深浅、相对稳定,为鉴别染色体的形态提供依据,也为细胞遗传学和染色体工程提供新的研究手段。 植物染色体显带技术包括荧光分带和Giemsa(吉姆萨)分带两大类。在植物染色体显带上最常用的是Giemsa分带技术,其中C带和N带较为常用。C带的形成认为是高度重复序列的DNA(异染色质)经酸碱变性和复性处理后,易于复性,而低重复序列和单一序列DNA(常染色质)不复性,经Giemsa染色后呈现深浅不同的染色反应。这种差异反映染色体结构的差异。 三、实验材料 洋葱、蚕豆、大麦、黄麻的根尖。 四、实验仪器及用具 多媒体系统(附显微演示),显微镜(附摄影装置),半异体致冷器,冰箱,恒温水浴锅,电子天平,液态氮装置,容量瓶,试剂瓶烧杯,染色缸,载玻片,盖玻片,剪刀,镊子,玻璃板,滤纸,标签,铅笔 五、药品和试剂 冰醋酸,无水酒精,甲醇,盐酸,柠檬酸钠,氢氧化钡,氯化钠,磷酸二氢钠,磷酸二氢钾,磷酸氢二钠,甘油,Giemsa粉剂,果胶酶,纤维素酶 试剂1:Giemsa液:0.5克Giemsa,33ml甘油,33ml甲醇,用少量甘油将Giemsa粉末研磨至无颗粒,剩余甘油分次洗涤至棕色瓶内,置56℃恒温2h,加入甲醇,过滤后保存于棕色瓶中。 试剂2 :5%氢氧化钡:5gBa(OH)2加入100ml沸蒸馏水中溶解后过滤,冷却至18-28℃。 试剂3:2×SSC溶液:0.3M氯化钠+0.3M柠檬酸钠。 试剂4:1M NaH2PO4溶液。

人类染色体G显带

1p短臂近侧1/2有两条宽阔和浓染的深带,远端有3-4条较窄较淡的带。长臂有5条深带,中央有一条最亮最深的带。q长臂的次溢痕深染。 2号染色体(亚中) p有间隔较均匀的4条深带,中间的两条稍靠近。着丝粒染色很浅。长臂根据标本的质量可间6-8条深带。 3号染色体(中央) p和q中部色浅是3号染色体的特点。p近着丝粒区通常有两条深带。远端可见3条,中间的一条最宽最浓。q臂近端可见两条深带,中间一条明显的浅带,远侧有4-5条深带。 1号染色体: 着丝粒和次缢痕染色深。 短臂——近侧段和中段各有一条深带,其中段深带稍宽,在处理较好的标本上,远侧段可显出3~4条淡染的深带。此臂分为3区,近侧的深带为2区1号带,中段深带为3区1号带。 长臂——次缢痕紧贴着丝粒,染色浓。其近侧为一宽的浅带,中段和远侧段各有两条深带,以中段第2深带染色较浓,中段两条深带稍靠近。此臂分为4个区,次缢痕远侧的浅带为2区1号带,中段第2深带为3区1号带,远侧段第3深带为4区1号带。 长臂——可见6-7条深带, 此臂分为3个区,第2和第 3深带之间的浅带为2区1 号带,第4和第5深带之间 为3区1号带。 短臂——可见4条深带,中段 的两条深带稍靠近。此臂分为 两个区, 中段第2、3深带之间的浅带为2区1号带。 明显宽阔的 浅带 着丝粒染色 浓。 长臂——一般在近侧段和远侧段各有一条较宽的深带。在处理较好的标本上,远侧段的深带可分为3条深带,此臂分为两个区,中段浅带为2区1号带。 短臂——一般在近侧段可见两条深带,远侧段可见3条深带,其中远侧段近端部的一条较窄,且着色较淡,这是区别3号染色体短臂的显著特征。此臂分为2个区,中段浅带为2区1号带。 明显宽阔的浅带

各号染色体G带特征

第1号染色体:短臂的近侧部一半有二个深带,但中部的深带较宽,在处理较好的标本上,远侧段可见3~4条浅染的深带。长臂的次缢痕紧贴着丝粒,着色甚深。且是多态性的。近侧部为一窄的浅带,中段和远侧段各有二条深带。 短臂远侧的一半几乎为浅染区;其二是深染的次缢痕位于长臂且紧靠着丝粒。 第2号染色体:短臂可见4条深带,中段的两条深带稍靠近些,;长臂可见4~7条带,接近着丝粒的1/3区段的着色甚浅,其余的远侧区段上,带纹分布较均匀,。 第3号染色体:两臂近似对称,形似“蝴蝶”为该染色体的独有特征,着丝粒及附近区段的着色相当深。短臂的近侧部可见二条深带,远侧部可见三条深带,且中间的一条着色更深,而近端部的一条带较窄,着色也浅,这是鉴别第3号染色体的主要特征。长臂的近侧部和远侧部一般各有一条较宽的深带。在优良的标本上,近侧部的深带可划分为2个区。长臂2区4带~2区6带的宽度明显大于短臂2区2带~2区4带,这是鉴别长臂与短臂之又一重要特征。 第4号染色体:它比第5染色体着色更均匀,且着色更深。短臂上只有一个区,其上有1~2条深带;长臂可见均匀分布的4条深带,质量优良的标本中,近中段的二条带又各划分为二条深带。。 第5号染色体:短臂上大多呈现一条深带,此臂也为1个区;长臂的近侧部为一深带,中段可见三条深带,远侧部可见1~2条深带,其中末端的一条深带着色更浓。 区别B组中的这二对染色体并不十分困难。鉴别的要点是:①第4染色体长臂上的深带分布得比第5染色体均匀;②在显带不太好的情况下,第4染色体的q12带始终是明显的,而第5染色体的q13带一般并不显现;③有时第5染色体的3区4带很明显,而第4染色体的3区2带和4带却不显现。 第6号染色体:短臂近侧部有一着色浅的宽带,这一宽带的远侧部为一着色深的带,而其近侧部也为一深带,它紧靠着丝粒。在较好的标本上,远侧部深带又可分成二个带。长臂可有5~6条深带,近侧的一条紧贴着丝粒。远侧末端的一条深带窄而且着色较浅。该染色体两个臂的近着丝粒区和整个长臂(除端粒以外),着色均很深。 第7号染色体:着丝粒染色甚深。短臂上有2~3条深带,处于中部的那条带通常着色很浅,有时不明显,远侧端的那条带着色很深,宛如“并盖”,为一末端带。这一特征对于鉴别7染色体最有价值。长臂可见三条明显的深带,近侧部和中部的二条带着色深,带型也较宽。第8号染色体:外形使人感到它的带纹较为模糊。短臂上一般可见到二条着色较深的带而远侧部的2区2带比近侧部的1区2带着色较深些,这恰好与第10染色体短臂上出现二条带的情形相反。长臂上几条深带的界限不清楚,一般为3~4条,近侧部的深带即便出现,着色也是不深的;可是远侧部的深带(2区3带)则始终是引人注目的。 第9号染色体:其外形奇特,着丝粒深染。短臂可见二条深带,有时它们融合为一条较宽的带。长臂上有二条明显的深带,次缢痕通常不着色且往往是多态性的;在有些标本上呈现出特有的狭长而扭曲的“颈部区”。 第10号染色体:着丝粒着色深。短臂上大多不现明显的深带;在较好的标本上,在短臂上可现二条深带,但远侧部的那条带(1区4带)比近侧部的带(1区2带)着色要浅。此臂只有一个区;长臂上有明显的三条深带;与第8染色体不同,近侧部的深带(2区1带)着色更深些;另二条深带较为靠近。这些是使它与第8染色体相区别的另一些特征。 第11号染色体:它与第12染色体甚相似,着丝粒均为深染。短臂的近中部可见二条深带(有时融合为一条),着丝粒指数明显大于第12染色体。长臂的近中部有二条深带,在近侧部的深带与着丝粒之间为一相当宽大的浅带,它比第12染色体上相应的浅带要宽得多。在较好的标本上,在远侧端尚可见到一条着色浅的带。 第12号染色体:从外表看,这一对染色体似乎比第11染色体埸宽阔些,但着丝粒指数则是

相关主题
文本预览
相关文档 最新文档