当前位置:文档之家› 国外页岩气井水力压裂裂缝监测技术进展_贾利春

国外页岩气井水力压裂裂缝监测技术进展_贾利春

国外页岩气井水力压裂裂缝监测技术进展_贾利春
国外页岩气井水力压裂裂缝监测技术进展_贾利春

HAL压裂裂缝监测技术说明

哈里伯顿压裂裂缝微地震监测说明 2015年4月

1.微地震数据采集方式 井下微地震裂缝监测理论源于研究天然地震的地震学,主要为利用在水力压裂过程中储层岩石被破坏会产生岩石的错动(微地震)来监测裂缝形态的技术。井下微地震监测法将三分量地震检波器(图1),以大级距的排列方式,多级布放在压裂井旁的一个或多个邻井的井底中(图2)。三分量微地震检波器在压裂井的邻井有两种放置方式:一种是放置在邻井中的压裂目的层以上,用于邻井压裂目的层已射孔生产情况,由于收集微地震信号的检波器非常灵敏;为防止监测井内的液体流动对监测造成井内噪音,必须在射孔段之上下入桥塞封隔储层,然后将检波器仪器串下入到桥塞之上的位置。另一种方法是将检波器放置在邻井中的压裂目的层位置上,这种情况检波器和水力裂缝都位于相同的深度和储层,此时声波传播距离最近、需要穿过的储层最少,属于最佳的观测位置,这种方式用于邻井的目的层未实施射孔生产的情况。 图1 三分量地震检波器

图2 三分量地震检波器下井施工现场 图3显示一个由5级检波器组成的仪器串在压裂井的邻井下入的两种布局方式:图中左边表示邻井已射孔的情况下,射孔段以上经过桥塞封堵,检波器仪器串放置在该井的目的层以上;图中右边表示邻井为新井的情况下,目的层未实施射孔,检波器仪器串放置在该井的压裂目的层位置上。井下微地震压裂测试使用的三分量检波器系统检波器以多级、变级距的方式,通过普通7-芯铠装电缆或铠装光缆放置在压裂井的邻井中。哈里伯顿使用采样速率为0.25ms的光缆检波器采集系统采集和传输数据。常规的电缆一方面数据传输速率低,另一方面对于低频震动信号易受电磁波的干扰大。采用铠装光纤进行数据传输不但传输速度快,并且允许连续记录高频事件,提高了对微小微地震事件的探测能力同时 对微地震事件的定位更加准确,监测到的裂缝形态数据最为可靠。 图3 多级检波器系统在邻井的两种放置方式 另外,由于检波器非常灵敏,井筒中的油气流动会很大程度的影响监测微地震事件的 信噪比,如果监测井为已经射孔的生产井,需要在射孔段以上20米的位置下入桥塞,检

压裂技术详解

压裂技术详解 第一节压裂设备 1.压裂车: 压裂车是压裂的主要设备,它的作用是向井内注入高压、大排量的压裂液,将地层压开,把支撑剂挤入裂缝。压裂车主要由运载、动力、传动、泵体等四大件组成。压裂泵是压裂车的工作主机。现场施工对压裂车的技术性能要求很高,压裂车必须具有压力高、排量大、耐腐蚀、抗磨损性强等特点。 2.混砂车: 混砂车的作用是按一定的比例和程序混砂,并把混砂液供给压裂车。它的结构主要由传动、供液和输砂系统三部分组成。 3.平衡车: 平衡车的作用是保持封隔器上下的压差在一定的范围内,保护封隔器和套管。另外,当施工中出现砂堵、砂卡等事故时,平衡车还可以立即进行反洗或反压井,排除故障。 4.仪表车: 仪表车的作用是在压裂施工远距离遥控压裂车和混砂车,采集和显示施工参数,进行实时数据采集、施工监测及裂缝模拟并对施工的全过程进行分析。

5.管汇车: 管汇车的作用是运输管汇,如;高压三通、四通、单流阀、控制阀等。第二节压裂施工基本程序 1.循环: 将压裂液由液罐车打到压裂车再返回液罐车。循环路线是液罐车-混砂车-压裂泵-高压管汇-液罐车,旨在检查压裂泵上水情况以及管线连接情况。循环时要逐车逐档进行,以出口排液正常为合格。 2.试压: 关死井口总闸,对地面高压管线、井口、连接丝扣、油壬等憋压30-40Mpa,保持2-3min不刺不漏为合格。 3.试挤: 试压合格后,打开总闸门,用1-2台压裂车将试剂液挤入油层,直到压力稳定为止。目的是检查井下管柱及井下工具是否正常,掌握油水的吸水能力。 4.压裂: 在试挤压力和排量稳定后,同时启动全部车辆向井内注入压裂液,使井底压力迅速升高,当井底压力超过地层破裂压力时,地层就会形成裂缝。5.支撑剂: 开始混砂比要小,当判断砂子已进入裂缝,相应提高混砂比。 6.替挤:

高煤级煤储层水力压裂裂缝扩展模型研究_张小东

第42卷第4期 中国矿业大学学报 Vol.42No.42013年7月 Journal of China University of Mining &Technology Jul.2013高煤级煤储层水力压裂裂缝扩展模型研究 张小东1,2,张 鹏1,刘 浩1,苗书雷1 (1.河南理工大学能源科学与工程学院,河南焦作 454003; 2.中国矿业大学煤炭资源与安全开采国家重点实验室,北京 100083) 摘要:为了研究煤层气井水力压裂后的裂缝扩展规律,以沁水盆地南部煤层气井为例,基于区内煤储层的物性特征和水力压裂工程实践,根据水力压裂原理,采用数值分析的方法,探讨了研究区的煤层气井水力压裂后的裂缝形态与裂缝展布规律,提出了研究区煤层气井压裂过程中的综合滤失系数计算方法,构建了高煤级煤储层水力压裂的裂缝扩展模型,并进行了验证.研究结果表明:区内煤层气井压裂后形成的裂缝一般扩展到顶底板的泥岩中,且以垂直缝为主,裂缝形态符合KGD模型.区内常规压裂井的裂缝长为47.8~177.0m,平均90.6m.裂缝缝宽为0.013~0.049m,平均0.028m.模型计算结果与实测值、生产实践较为吻合. 关键词:高煤级煤;水力压裂;滤失系数;裂缝扩展模型 中图分类号:P 618.1文献标志码:A文章编号:1000-1964(2013)04-0573-07 Fracture extended model under hydraulic fracturing engineering for high rank coal reservoirs ZHANG Xiao-dong1,2,ZHANG Peng1,LIU Hao1,MIAO Shu-lei 1 (1.School of Energy Science and Engineering,Henan Polytechnic University,Jiaozuo 454003,China; 2.State Key Laboratory of Coal Resource and Safety Mining, China University of Mining &Technology,Beijing 100083,China) Abstract:In order to study the extended law of coal-bed gas well after hydraulic fracturing,this study took coal-bed gas well of Qinshui basin as a case in point.Based on the physics char-acteristics of coal reservoirs as well as the engineering practice of hydraulic fracturing,this re-search used the hydraulic fracturing principle and numerical analysis to investigate the fracturemorphology and fracture extended law of coal-bed gas well after hydraulic fracturing,and pro-pose the computing method of comprehensive filtration coefficient in the process of fracturing.Besides,this study also established fracture extended model for high rank coal reservoirs dur-ing hydraulic fracturing practice,and this model was further verified.The results show that:the fractures formed by hydraulic fracturing often extend to mudstone located in the roof andthe floor of coal seam,and the fractures are mainly vertical ones;the shapes of fractures con-form to KGD model;the fractures’lengths of normal hydraulic fracturing well vary from 47.8m to 177.0m,with an average of 90.6m;and the fractures’widths range from 0.013mto0.049m,and with an average of 0.028m.By the comparison,the calculation results obtainedin the paper fit well with the field measured value and the actual production practice. Key words:high rank coal reservoir;hydraulic fracturing;filtration coefficient;fracture exten- 收稿日期:2012-08-21 基金项目:国家自然科学基金项目(41072113);中国矿业大学煤炭资源与安全开采国家重点实验室开放基金项目(SKLCRSM10KFB01) 通信作者:张小东(1971-),男,河南省温县人,副教授,工学博士,从事煤地球化学、煤层气地质与工程方面的研究. E-mail:z_wenfeng@163.com Tel:0391-3987901

煤矿井下水力压裂技术的发展现状与前景

龙源期刊网 https://www.doczj.com/doc/30216511.html, 煤矿井下水力压裂技术的发展现状与前景 作者:郭晨 来源:《科学与财富》2016年第07期 摘要:我国煤炭安全生产形势依然严峻,增加煤层透气性、进行有效瓦斯抽放迫在眉 睫。水力压裂技术是目前增加煤层透气性最有效的方法之一,文章从水力压裂机理、封孔技术、工艺设备发展三方面,综述了我国井下煤层水力压裂技术的发展和应用前景。 关键词:水力压裂;煤层;增透;发展现状 基金项目:重庆科技学院研究生科技创新计划项目,编号:YKJCX2014047 目前我国煤炭行业的安全形势依然严峻,由于煤层透气性低、瓦斯难以有效抽放导致的瓦斯突出、爆炸等事故屡见不鲜,造成了巨大的人员伤亡和经济损失,因此,加强瓦斯抽放、增加煤层透气性势在必行。水力压裂技术已成为增加煤层透气性最有效方法之一,本文通过介绍水力压裂机理、封孔技术及工艺设备的研究现状,指出水力压裂技术研究的必要性与可行性,以期为工程应用提供参考。 1.水力压裂机理研究 水力压裂技术1947年始于美国,起初主要用于低渗透油、气田的开发中,在地面水力压裂方面的研究仅仅局限在石油、油气藏以及地热资源的地面钻井开采过程中[1]。前苏联科学 家在20世纪60年代开始在卡拉甘达和顿巴斯矿区进行井下水力压裂的试验研究[2]。目前针对井下煤层水力压裂增透技术的研究已取得了明显发展,国内学者郭启文、张文勇等经过试验与现场应用研究了煤层的压裂分解机理,指出水力压裂技术只能够在煤层内产生很少的裂缝,并会在裂缝周围产生应力集中区[3],存在一定局限性。李安启等将理论与实践相结合,研究了 煤层性质对水力裂缝的影响,还在煤层压裂裂缝监测基础上提出了煤层水力裂缝的几何模型。 在水力压裂机理方面的研究,国内外学者对水力压裂在油气系统地面钻井压裂、煤炭行业井下增加煤层透气性方面都进行了较为深入的研究,但其压裂机理方面仍存在一定分歧,不能很好的控制水力压裂的效果。随着我国煤炭安全生产逐步发展和穿煤隧道等工程的逐步建设,水力压裂技术将大范围推广应用,因此加强水力压裂技术理论研究势在必行。 2.压裂钻孔封孔技术研究 煤层水力压裂钻孔封孔是有效实施水力压裂技术的关键,而封孔质量的好坏取决于两个主要因素:①封孔材料,需要选择性能良好、价格适中、易于操作的材料;②封孔的长度,封孔长度太短会导致高压水的渗漏,太长会造成人力、材料、时间的浪费。因此,要使水力压裂技术能够有效开展,必须在选取“物美价廉”的封孔材料的同时,研究材料承载能力与封孔长度之

页岩储层水力压裂裂缝扩展模拟进展_潘林华 (1)

收稿日期:20131204;改回日期:20140519 基金项目:国家自然科学基金“页岩气储层低频脉冲水力压裂增渗机理研究”(51304258);“863计划”页岩气勘探开发新技术“页岩气压裂裂缝微地震监测技术研究” (2013AA064503)作者简介:潘林华(1982-), 男,工程师,2006年毕业于中国石油大学(北京)土木工程专业,2013年毕业于该校油气田开发工程专业,获博士学位,现主要从事岩石力学、地应力和压裂裂缝起裂和扩展等方面的研究工作。 DOI :10.3969/j.issn.1006-6535.2014.04.001 页岩储层水力压裂裂缝扩展模拟进展 潘林华 1,2,3 ,程礼军1,2,3,陆朝晖1,2,3 ,岳 锋 1,2,3 (1.国土资源部页岩气资源勘查重点实验室重庆地质矿产研究院,重庆400042;2.重庆市页岩气资源与勘查工程技术研究中心 重庆地质矿产研究院,重庆400042; 3.油气资源与探测国家重点实验室 重庆页岩气研究中心,重庆400042) 摘要:页岩储层低孔低渗,水平井多级压裂、重复压裂和多井同步压裂为主要的增产措施,压裂缝扩展和展布对于页岩压裂设计和施工、裂缝监测、产能评价至关重要。对大量相关文献进行了调研和分析,得出以下结论:①水力压裂室内实验是评价页岩复杂裂缝形态最直接的方法,但难以真实地模拟实际储层条件下的水力压裂过程;②扩展有限元、边界元、非常规裂缝扩展模型、离散化缝网模型、混合有限元法及解析和半解析模型为页岩气常用的复杂裂缝扩展模拟方法,但各种方法都有其优缺点和适用性,需要进一步改进和完善才能真实地模拟页岩复杂裂缝扩展;③天然裂缝分布和水平主应力差共同决定页岩复杂裂缝网络的形成,天然裂缝与水平最大主应力方向角度越小、水平主应力差越大,复杂裂缝网络形成难度越大;天然裂缝与水平最大主应力方向的角度越大、水平主应力差越小,越容易形成复杂裂缝网络。研究结果可以为页岩储层缝网压裂裂缝扩展模拟和水力压裂优化设计提供借鉴。 关键词:页岩气;水平井;水力压裂;压裂技术;裂缝扩展;室内实验;数值模拟中图分类号:TE357 文献标识码:A 文章编号:1006-6535(2014)04-0001-06 引言 页岩储层孔隙度、 渗透率极低,给页岩气的经济高效开发带来了极大的困难和挑战,长水平井段钻井和多段大排量水力压裂施工是页岩气开发的关键和核心技术 [1-2] ,能最大程度地增加压裂裂缝 的改造体积和表面积,最终达到提高产量和采收率的目的。页岩储层脆性大,天然裂缝和水平层理发育,压裂过程中容易发生剪切滑移和张性破坏 [3] , 压裂裂缝不再是单一对称的两翼缝,可能形成复杂的网状裂缝,给页岩水力压裂设计、裂缝监测及解释、压后产能预测等带来诸多不便。压裂裂缝的展布特征和裂缝形态可以通过室内实验和数值模拟方法进行评价。笔者广泛调研了目前页岩储层水平井压裂技术、复杂裂缝室内实验模拟和数值模拟方法的现状,分析了各种页岩水力压裂技术及压裂裂缝模拟方法的优缺点,对后续页岩储层水平井水 力压裂技术的选择以及压裂设计具有指导意义。 1页岩储层水力压裂技术 页岩储层水力压裂是个复杂的系统工程,用液 量大、施工车组多、耗时长、资金耗费量大。页岩储层水力压裂涉及压裂设计、压裂工艺选择、压裂液选择与配置、压裂设备和井下工具选择、压裂裂缝监测等问题,需要进行系统的考虑和处理。1.1 页岩储层水平井多级压裂技术 水平井多级压裂技术是页岩储层开发的关键技术,长水平井段、多级水力压裂使页岩储层能够形成多条压裂裂缝,可以增大页岩储层与井筒的渗流通道[4] 。目前常见的页岩水平井压裂主要有4 种。 (1)水平井多级可钻式桥塞封隔分段压裂技术 [5-6] 。该技术是国内外常用的页岩储层水力压

王39-0211井压裂裂缝监测

长庆油田 王39-0211井压裂裂缝监测解释报告 井别:采油井 现场施工:张杰 解释:张博 审核: 西安华中石油科技有限公司 二○一〇年八月

王39-0211井压裂裂缝监测 前言 压裂裂缝监测有多种方法:示踪剂方法、电位法、地倾斜方法等等。微地震裂缝监测方法能够实现实时监测,控制范围大,适应面广,近年来在国际上是应用最多的一种监测方法。微地震人工裂缝监测能够即时得到裂缝的长度、方位、高度和产状,这对于确定油水井的驱替模式和井位布置、优化井网、确定二次/三次采油和压裂处理的潜在区域等具有积极指导作用,同时能够根据油藏特性和经济条件优化最佳的实际裂缝长度、根据作业能力、储层裂缝扩展特征确定最佳的井间行距和布井密度,因此该方法在各油田得到了广泛的推广。 压裂裂缝监测解释结果完全依据现场监测资料,可以定量给出裂缝方位、最大高度、最大长度及倾向。在能够部署全包络网络的情况下,裂缝方位误差小于8°,长度误差小于15%,高度误差小于30%,倾向误差小于5°。 2010年8月8日我们监测了王39-0211井的水力压裂过程,该井压裂层位为长611-2,压裂深度为1434-1441.5米,压裂层段中部深度对应垂深为1227米。 1.王39-0211井人工裂缝监测结果 王39-0211井位移较大,因此在实际监测施工时,我们围绕压裂层段中深点在地面的投影部署监测台网,实际台站的坐标如表1-1所示。 表1-1.王39-0211井监测台站的坐标

图1-1. 王39-0211井监测结果平面图 图1-1中,每个格的尺寸为100米;水平轴东西向,向东为正;竖直轴沿南北向,向北为正。从实测平面图可以看出,主裂缝条带走向为北东向;西翼裂缝左旋明显。过井口存在一条北西西接近东西向的支缝;东翼裂缝远端有较小支缝存在。 表1-2. 王39-0211井人工裂缝监测结果参数表 表1-2是依据现场数据的后分析结果。尺度是最大尺度;方位是所有微地震点的统

水平井段内多裂缝压裂用暂堵剂评价报告

企业简介 东方宝麟科技发展(北京)有限公司,是国内独资石油专业技术服务公司,主要从事石油技术研发、现场服务与咨询业务,特色业务包括油藏增产措施、水平井建井优化、油气田开发经济评价及开发决策。著名压裂大师Michael J. Economides和美国两院院士Christine A.Ehlig-Economides为公司董事及高级技术顾问,并与美国A&M大学和休斯顿大学是战略合作伙伴关系。 公司拥有裂缝性储层缝网压裂技术、非常规气藏(致密气、页岩气)体积压裂技术、低伤害胶塞控制压裂技术、CO2清洁压裂液技术、可降解纤维压裂液技术、超高温清洁压裂液技术、水平井段内多裂缝体积压裂技术、多井同步压裂技术等多项特色技术,公司还承担或参与体积压裂改造技术的理论研究、软件开发、压裂液体系研发、工艺创新等国内前沿先进压裂成套技术的科研工作。目前公司在国内的主要客户有中国石油、中国石化、中海油、延长石油所属的各大油气田。

●技术原理 裸眼水平井段内多裂缝控制技术是应用专用水溶性暂堵剂在压裂中暂堵前次缝或已加砂缝,从而造出新的裂缝。 控制技术的实施方法是在施工过程中实时地向地层中加入控制剂,该剂为粘弹性的固体小颗粒,遵循流体向阻力最小方向流动的原则,控制剂颗粒进入地层中的裂缝或高渗透层,在高渗透带产生滤饼桥堵,可以形成高于裂缝破裂压力的压差值,使后续工作液不能向裂缝和高渗透带进入,从而压裂液进入高应力区或新裂缝层,促使新缝的产生和支撑剂的铺置变化。产生桥堵的控制剂在施工完成后溶于地层水或压裂液,不对地层产生污染。 针对不同储层特性、不同封堵控制的作用,经过拟合计算确定不同的有效用量。通过特殊工艺技术,可实现支撑剂均匀分布在裂缝中、控制裂缝延伸有效长度、实现多裂缝的形成、实现裂缝转向等。 在一定的用量范围内(相对小剂量),可以使支撑剂均匀分布在裂缝中; 在一定的用量范围内(相对中剂量),可以控制裂缝的有效缝长; 在一定的用量范围内(相对大剂量),在加砂中或二次加砂前,可以形成多裂缝; 在一定的用量范围内(相对大剂量),可以形成新的裂缝,在地应力决定条件下,可以使裂缝方向发生变化。 ●技术特点 强度高:具有很高的承压能力; 形成滤饼:在地层可以形成滤饼,封堵率高,封堵效果好; 可溶性好:在压裂液中可以完全溶解,不造成新的伤害; 有利于返排:内含F表面活性剂,有利于助排; 方法操作简单:投入方法简单,不会给压裂设备带来新的负担; 时间可控:所需的压力和封堵时间,可以通过应用量剂大小、成分组成、颗

国内水力压裂技术现状

280 水力压裂技术又称水力裂解技术,是开采页岩气时普遍采用的方法,先多用于石油开采和天然气开采之中,其原理时利用水压将岩石层压裂,从而形成人工裂缝,然后让裂缝延伸到储油层或者储气层,从而提高油气层中流体流动能力,然后通过配套技术使石油天然气在采油井中流动,从而被开采出来。这项技术具有非常广泛的应用前景,可以有效的促进油气井增产。 1?水力压裂技术的出现和发展 水力压裂技术是1947年在美国堪萨斯州实验成功的一项技术,其大规模利用是出现在1998年,在美国开采页岩气的时候,作为一项新的技术使用,而这项技术的运用,使美国美国页岩气开发的进程和效率大大加快。 水力压裂技术在中国的研究和开发开始于二十世纪五十年代,而大庆油田于1973年开始大规模使用这项技术,迄今已有30年历史。而随着时代的发展,中国的压裂技术已经有了长足进步,已经非常接近国际先进水平。而在技术方面,由于不断引进和开发相关的裂缝模拟软件等,通过多次的实验研究,在很大程度上实现了裂缝的仿真模拟。而相应的技术也使用在了低渗透油气田的改造工作中,并且在中高渗透性油田也有广泛应用。这项技术在低渗透油田的应用技术已经非常接近国际水平,相比较差距非常小。 2?水力压裂技术的发展现状 随着时代的发展,水力压裂技术也随之不断发展,逐渐成为一项成熟的开采技术。而这项技术具有一定的进步性,主要表现在以下方面: (1)从单井到整体的优化。最开始的时候,由于受技术限制,水力压裂技术只能针对一口井来使用,难以考虑到整体的效益。而随着技术的逐渐成熟,这项技术可以广泛的运用到整个油藏之中,可以对整个油藏进行优化设计,实现油藏的有效合理开发。 (2)在低渗透油藏的开发运用。由于受各种因素的影响,低渗透油藏大都难以有效的开发利用,虽然在各项新技术的使用下得到了一定得好转,但是低渗透油藏的开发依旧是举步维艰。而水力压裂技术的日益成熟,很大程度上改善了这一状况。通过综合考虑水利裂缝的位置和导油能力,使用水力压裂技术使油藏的流体流动能力进一步增强,从而实现低渗透油藏的最大程度的开采利用。 (3)水力裂缝的模型逐渐从二维转变为拟三维。水力裂缝的拟三维模型可以适用于各种不同的地层,可以非常真实的模拟水力压裂的过程,可以更好的更为直观的预测和观测水力压裂的使用进度,更好的对水力压裂过程进行控制,不但提高了效率,还可以在很大程度上节约成本。 (4)水力压裂规模扩大。随着技术的成熟和配套设施的完善,水力压裂的作业规模也随之变大,从最初的几立方米到现在几十甚至上百立方米,在很大程度上提高了效率,也提高了低渗透油藏的采油率,实现了油藏的有效利用,因而成为开采作业中非常重要的技术之一。 3?水力压裂技术的发展方向和前景 水力压裂技术具有广阔的发展前景,因为随着石油资源的逐年开采,低渗透油藏广泛出现,水力压裂技术之外的技术虽然可以一定程度上改善低渗透油藏难以开采的现状,但是随着时代的发展,水力压裂技术逐渐广泛使用在低渗透油藏之中,使低渗透油藏的开采效率大大增加。 (1)在低渗透油藏重复压裂促进采油率。主要的发展研究方向主要是加强对油藏状况的研究,建立科学的压裂模型,还要做到实时监测水力裂缝,对裂缝进度进行模拟和控制,其次利用高排量和大输砂量的泵注设备,进行注入作业,从而实现低渗透油藏的有效开发。 (2)做好拟三维化模型向全三维化模型的转换,全三维化模型可以非常有效的、更为直观的模拟和观测地下裂缝的进度,可以非常有效的控制水力压裂技术的科学使用。还要做好油气藏模拟技术的研发,配合三维化模型,更好的观测和了解油藏状态,从而做出合理的高效的开采计划。 (3)针对传统的水力压裂技术会出现污染地下水的问题,可以在无水压裂液体系做出研究,实现高能气体压裂技术和高速通道压裂技术等新技术的开发和利用,实现提高开采效率和环境保护的双赢。 有水压裂到无水压裂,从直井压裂到水平井分段压裂,从常规的压裂技术到现在的体积改造技术,压裂技术不断进步的同时,为人类带来了丰富的油气资源。而随着油藏开发,大量低渗透油藏的出现,给水力压裂技术的使用带来了广阔的空间,因而水力压裂技术拥有非常好的发展前景。 4?结束语 水力压裂技术是油气开发中所需要的非常重要的配套技术,而水力压裂技术和开采开发之间的结合,很大程度上提高了采油效率,降低了成本,在很大程度上提高了开采水平,使低渗透油藏得以稳定生产。而我国在这一技术上进行了大量投入,从研究人员和设施上,为技术的发展提供了很好的支持。而这一技术的逐步发展,在很大程度上提高了我国油气的开发效率,也很大程度改善了我国的石油供应紧张的现状,为我国的可持续发展做出了重大贡献,而作为油气开发的重要技术,水力压裂技术也会进一步发展,实现更高效率的油气开采。 国内水力压裂技术现状 续震?1,2 卢鹏?1,3? 1.西安石油大学 陕西 西安 710000 2. 延长油田股份有限公司杏子川采油厂 陕西 延安 717400 3.延长油田股份有限公司下寺湾采油厂 陕西 延安 716100 摘要:最早的水力压裂技术出现于1947年,而现代使用的水力压裂技术则是1998年首次使用。这项技术的出现,是油气井增产出现了新的希望,帮助石油开采取得了很好的技术成就和经济效益,从而使这项技术在我国石油开采上广泛应用,并取得了很好的成果。本文针对我国水力压裂技术的现状和发展前景做出研究。 关键词:水力压裂?现状?前景

定向水力压裂裂隙扩展动态特征分析及其应用_徐幼平

第21卷第7期2011年7月中国安全科学学报 China Safety Science Journal Vol.21No.7 Jul.2011 定向水力压裂裂隙扩展动态特征分析及其应用* 徐幼平1,2林柏泉1,2教授翟成1,2副教授李贤忠1,2孙鑫1,2李全贵1,2(1中国矿业大学煤炭资源与安全开采国家重点实验室,江苏徐州221116 2中国矿业大学安全工程学院,江苏徐州221116) 学科分类与代码:6203070(安全系统工程)中图分类号:X936文献标志码:A 基金项目:国家自然科学基金资助(51074161);国家重点基础研究发展计划资助(2011CB201205)。 煤炭资源与安全开采国家重点实验室自主研究课题(SKLCRSM08X03); 国家科技支撑计划项目(2007BAK00168-1)。 【摘要】为减少煤矿井下水力压裂卸压盲区,扩大压裂影响范围,提高卸压增透效果,在分析水力压裂起裂机理和裂隙发展特征的基础上,提出定向水力压裂技术,分析定向水力压裂过程中煤体的裂隙发展分布规律,并利用RFPA2D-Flow软件模拟了压裂的起裂、扩展和延伸过程,对定向压裂与非定向压裂的效果进行了比较。最后将定向水力压裂技术在平煤集团十二矿己 15 -31010工作面进行了现场应用,得出在27MPa的水压下,单孔压裂有效影响半径达6m;单孔瓦斯抽放平均浓度较未压裂时提高80%,平均流量上升了382%,取得了显著的效果,具有良好的推广应用价值。 【关键词】穿层;定向水力压裂;卸压增透;RFPA2D-Flow软件;声发射 Analysis on Dynamic Characteristics of Cracks Extension in Directional Hydraulic Fracturing and Its Application XU You-ping1,2LIN Bai-quan1,2ZHAI Cheng1,2LI Xian-zhong1,2SUN Xin1,2LI Quan-gui1,2(1State Key Laboratory of Coal Resources&Mine Safety,China University of Mining&Technology,Xuzhou Jiangsu221116,China2School of Safety Engineering,China University of Mining&Technology,Xuzhou Jiangsu221116,China) Abstract:In order to reduce roof-floor blind area of hydrofracture in underground mines,expand influ-enced range of fracturing,and improve the effect of hydrofracture,a directional hydraulic fracturing tech-nique was proposed on the basis of analyzing the mechanism of crack initiation and the characteristics of fracture development.And the process of crack starting,extending and elongating was simulated with RFPA2D-Flow.The effect of directional hydraulic fracturing and the effect of non-directional hydraulic frac- turing were compared.Finally the directional hydraulic fracturing technique was applied in the F 15 -31010 mining workface of the Twelfth Coal of Pingdingshan Coal Mining Group.The results show that single drill-hole fracturing effective radius rises to6m under the pressure of27MPa,and the average concentration of single-drillhole gas drainage promotes80%,average flow up382%than that it is not fractured.All these suggest that the technology obtains remarkable effect,and has a high application value. Key words:cross layer;directional hydraulic fracturing;pressure relief and permeability increase; RFPA2D-Flow software;acoustic emission *文章编号:1003-3033(2011)07-0104-07;收稿日期:2011-04-20;修稿日期:2011-05-20

水力压裂技术新进展

万方数据

万方数据

万方数据

64江汉石油职工大学学报 8压裂实时监控技术 实时监控和监测技术,是通过在施工现场实时地测定压裂液、支撑剂和施工参数,模拟水力裂缝几何形状的发展,随时修改施工方案,以获得最优的支撑裂缝和最佳的经济效益。 (1)施工参数监控,包括排量、泵压、砂比等由仪表车直接显示和控制。 (2)压裂质量监测:分别监测混砂车出、人口压裂液(携砂液)的流变性、温度、pH值等参数,对压裂液流变性,特别是加人各种添加剂后的性能以及携砂能力进行定量分析,常用的仪器为范氏系列粘度计,并在模拟剪切和地层温度条件下模拟整个施工过程。对于延缓硼交联压裂液和延缓释放破胶剂体系,矿场实时监测更为重要。 (3)实时压力分析:根据测定的施工参数和压裂液参数用三维压裂模拟器预测井口或井底压力,并与实际值进行拟合,预测施工压力变化(泵注和闭合期间)和裂缝几何形状。主要用途如下: ①识别井筒附近的摩阻影响(射孔和井筒附近裂缝的弯曲),并能定性判断其主要影响因素,判断井筒附近脱砂的可能性; ②评价压裂设计可信程度:如果施工压力与矿场实时预测压力相吻合,则设计的裂缝几何形状是可信的; ③预测砂堵的可能性; ④确定产生的水力裂缝几何形状I ⑤提供施工过程的图像和动画信息。 矿场实时分析随着便携式计算机的发展,在矿场上得到了广泛应用,除GRI外,其它石油公司也都相继研制和发展了这套系统。在实际应用中.经常与小型压裂测试分析结合应用。 9FASTFrac压裂管柱 贝克石油工具公司新近开发出一种连续油管压裂系统一FA刚下rac压裂管柱,用于对先前未处理到的层位进行选择性的增产措施,从而获得比常规压裂更高效、更经济的压裂效果。应用该技术能一趟管柱实现多层隔离与措施。从而降低了修井作业成本,节省了完并时间。由于该连续油管传送系统能保证高比重压井液不接触生产层,使完井和增产措施均不造成油井伤害,从而快速实现生产优化。FAsTFrac工具与Auto—J系统组成一个整体,Auto—J系统的作用是保证连续油管将压裂管柱送入或从井筒中起出。措施时,上部封隔元件和下部封隔元件能隔离一个或多个生产层。一旦第一次措施完毕,系统就复位并重新设置,下入另一个生产层。无论是FA跚下rac封隔器和桥塞系统,还是固定跨式双封隔器系统均能对过去遗漏的小型袋状油气藏实施经济高效的增产措施。 10新型CKFRAQ压裂充填系统 贝克石油工具公司新近研制成功新型CKFRAQ系统,该系统由多个高性能井下工具组件组成,尤其适用于极高流速和高砂比条件下。在应用软件的辅助下,CKFRAQ系统可以对压裂充填作业(用陶瓷支撑剂)中的泵的排量和容量进行优化,同时还可以将卡泵和套管腐蚀风险降至最低。经过大量模拟和小规模室内实验,该工具被应用于现场。人们还通过小规模室内试验,对工具转向孔的几何形状进行了评估,目的是找出哪种几何形状的转向孔遭遇的腐蚀最轻。此外,还进行了样机试验,以确保尽可能地延长套管的使用寿命。 贝克石油工具公司称,从毁坏性对比试验中可以看出,CKFRAQ系统的各种性能都胜过其它竞争产品。 今后的发展方向: (1)随着水力压裂施工的要求越来越高,压裂液和支撑剂的性能也需越来越高,因此必须加强高性能压裂液和支撑剂的研究与开发。 (2)开展有效的裂缝检测技术研究。目前压裂后裂缝的检测技术仍然是水力压裂技术的一个薄弱环节,国内外采用的检测方法虽然取得了一定的成效,但还有很大的局限性,还需要进一步的研究。 (3)在中高渗透地层中应用端部脱砂压裂技术,扩大水力压裂技术的应用范围。 (4)发展矿场实时监测和分析技术,提高施工的成功率和有效率。 [参考文献] [1]F.GUEKuru等著.冯敬编译,一种适用于低渗透浅层油藏的压裂方法[J].特种油气藏,2004(6).[2]吴信荣,彭裕生编,压裂液、破胶剂技术及其应用[M].北京:石油工业出版社,2003,9. [3]马新仿,张士诚.水力压裂技术的发展现状[J].河南石油,2002(1). [4]PaulWKte,JohnD.Harkrider,FractureStimulationOpti删功tioninaMatureWaterfloodRedevelopment,《JPlr》,January,2003. [5]shyapoberskyJ,chudnovsky.Areviewofrecentdevel—opmentinfracturemechanics诵thpetroleumengineer—ingapplications,SPE28074。1994.(下转第67页)  万方数据

水力压裂综述

文献综述 前言 水力压裂是油田增产一项重要技术措施。由地面以超过地层吸收能力的排量高压泵组将液体注入井中,此时,在井底附近便会蹩起压力,当蹩气的压力超过井壁附近地层的最小地应力和岩石抗张强度时,在地层中便会形成裂缝。随之带有支撑剂的液体泵入缝中,裂缝不断向前延伸,这样,在地层中形成了具有一定长度、宽度及高度的填砂裂缝。由于压裂形成的裂缝提高了产油层导流能力,使油气能够畅流入井内,从而起到了增产增注的作用。 为了完成水力压裂设计,在地层中造成增产效果的裂缝,需要了解与造缝有关的地应力、井筒压力、破裂压力等分布与大小。这些因素控制着裂缝的几何尺寸,同时对与地面与井下设备的选择有关。同时,用于水力压裂的压裂液的性能、数量,支撑剂的排布情况关系到裂缝的几何尺寸,压裂技术-端部脱砂技术,对提高压裂效果起到很大作用,这些因素关系到能否达到油田增产的目的,需要进行详细研究。在建立适当的裂缝扩展模型的基础上,实现现场实际生产情况的模拟研究,对进一步优化水力压裂参数,提高压裂经济实用性起到很大作用。 这项油田增产措施自发展以来,得到国内外广泛采用,并且经不断的开发试验,已取得很大成效。 水力压裂技术的发展过程 水力压裂技术自 1947 年美国堪萨斯州进行的的第一次试验成功以来,至今近已有60余年历史。它作为油井的主要增产措施,正日益受到世界各国石油单位的重视及采用 ,其发展过程大致可分以下几个阶段: 60 年代中期以前 ,各国石油公司的工作者们的研究工作已适应浅层的水平裂缝为主,此时的我国主要致力于油井解堵工作并开展了小型压裂试验。 60 年代中期以后 ,随着产层加深 ,从事此项事业的工作者以研究垂直裂缝为主。已达成解堵和增产的目的。这一时期 ,我国发展了滑套式分层压裂配套技术。 70 年代 ,工作进入到改造致密气层的大型水力压裂阶段。我国在分层压裂技术的基础上 ,发展了蜡球选择性压裂工艺 ,以及化学堵水与压裂配套的综合

暂堵压裂技术服务方案样本

八、技术服务方案 一. 暂堵重复压裂技术原理及特点 暂堵技术简介位于鄂尔多斯盆地陕北地区延长油藏大多数储油层都属于特低渗透、低压、低产油藏, 油层物性特别差, 非均质性很强, 油井自然产能也就相当低了。为了提高采收率, 绝大多数油井都进行过压裂改造, 可是由于各种原因, 油井产量还是下降的特别快, 油井依然处于低产低效的状态。因此, 为了达到进一步提高油井产量的目的, 我们必须做到以下两个方面的工作: 一、针对性的选择有开发前景的油井进行二次或者多次压裂改造, 以至于提高油井的单井产能; 二、由于我们在注水开发过程中, 注入水总是沿着老裂缝方向水窜, 导致大部分进行过压裂改造过的老井含水上升特别快, 水驱波及效率特别低。针对这部分老井, 如果还是采用常规重复压裂方法进行延伸老裂缝, 难以达到提高采收率的目的。为了探索这一部分老井的行之有效的增产改造措施, 我公司借鉴了国内许多其它大油田的暂堵重复压裂的成功的现场试验经验, 近两年来进行了多次油井暂堵压裂改造措施试验。现场施工结果表明: 在压裂施工前先挤入暂堵剂后, 人工裂缝压力再次上升的现象很明显, 部分老油井经过暂堵施工后, 其加沙压力大幅度上升, 暂堵重复压裂后, 产油量大幅度上升。为了确保有效的封堵老裂缝压开新裂缝, 并保持裂缝有较高的导流能力, 达到有较长时间的稳产期。该技术成果的成功研究与应用, 不但能够提高油井的单井 产量, 而且能够提高整个区块的开采力度, 从而为保持油田的增产稳产提供保障, 可取得可观的经济效益和社会效益。

堵老裂缝压新裂缝重复压裂技术, 即研究一种高强度的裂缝堵剂封堵原有裂缝, 当堵剂泵入井内后有选择性的进入并封堵原有裂缝, 但不能渗入地层孔隙而堵塞岩石孔隙, 同时在井筒周围能够有效地封堵射孔孔眼; 然后采用定向射孔技术重新射孔, 以保证重复压裂时使裂缝转向, 也即形成新的裂缝; 从而采出最小主应力方向或接近最小主应力方向泄油面积的油气, 实现控水增油。 水力压裂是低渗透油气藏改造的主要技术之一, 但经过水力压裂后的油气井, 在生产一段时间后, 会由于诸多原因导致压裂失效。另外, 还有些压裂作业实施后对产层造成污染, 也会使压裂打不到预期效果。对这类油气井, 想要增加产能, 多数必须采取重复压裂进行改造。 暂堵压裂技术主要用来解决油层中油水关系复杂、微裂缝十分发育的层位。注水油田经过一段时间的开采后, 大多数低渗透油层已处于高含水状态, 老裂缝控制的原油已接近全部采出, 裂缝成了主要出水通道, 但某些井在现有开采条件下尚控制有一定的剩余可采储量, 为了控水增油, 充分发挥油井的生产潜能, 我们采用暂堵重复压裂技术, 其实质是采用一种封堵剂有选择性地进入并有效封堵原有压裂裂缝和射孔孔眼, 再在新孔眼中进行压裂开新缝; 或部分封堵老裂缝, 在老裂缝封面再开新裂缝, 从而提供新的油流通道, 以保障重复压裂时使裂缝改向, 形成新的裂缝, 从而采出最小应力方向或接近最小主应力方向泄油面积的原油, 实现控水增油。 暂堵重复压裂技术就是重新构建泄油裂缝体系, 为提高油井的产量提供了一种技术手段, 最终的采油效果与所构建的新裂缝体系方向, 裂

水平井压裂裂缝起裂与扩展

水平井压裂裂缝起裂与扩展 引言: 通过国内外研究人员实践表明:由于水平井具有单井产量高、穿透度大、泄油面积大、油气储量利用率高及能避开障碍与环境复杂的区域等特点。对于低渗透油藏、薄差储层油藏、储量较小的边际油藏以及稠油油气藏等,水平井压裂是这类油藏最佳的开采方式。最近一段时期,随着学者们的不断研究以及钻井完井等工艺技术水平的提高,水平井开发技术成为人们开发低渗透油田的研究重点并被广泛应用。 水平井与垂直井、普通定向井的裂缝起裂机理都有明显区别。水平井自身存在复杂性与特殊性,钻遇地层环境比较复杂,水力裂缝在发生破裂时所需的起裂压力比垂直井的破裂压力高得多,通常会发生裂缝不张开,导致压裂失败。深入研究水平井裂缝起裂机理,找出合理的起裂规律是水平井压裂施工成功前提保障。 第1章水平井井壁上的应力状态 水力压裂时裂缝的形成主要是决定于井壁的应力状态。一般认为:当井壁上出现有一个超过岩石抗拉强度的拉伸应力时,井壁便开始破裂。 1.1 由于地应力所产生的井壁应力 地应力是由地壳岩层的重力场或即上覆地层压力及地质构造应力场所组成的。一般可认为, 地应力中的一个主应力是垂直于地壳表面的,其余两个主应力则是水平的。如果只考虑上覆地层载荷引起的重力作用(即不存在地质构造运动力),且认为地下岩石处于纯弹性状态,可将初始的地应力分解为垂道方向的正主应力σz和两个相等的水平方向的正主应力σx入和σy。 式中 h-底层的埋藏深度; ρ-上覆岩层的平均容重,其理论值可取。00231kg/cm3; μ-岩石的泊松比。

在有些构造运动活跃的地区会出现异常大的侧应力(水平应力) , 井且在通常的情况下三个原地主应力是不相等的。设取压应力的符号为正, 拉应力为负, 三个主应力分别表示为σ1,σ2和σ3 (σ1>σ2>σ3>0) , 根据地质构造形成时的受力特点, 正断层、逆断层和平推断层发育的区域里, 三个主应力的方向是不相同的(图1)。 图1 不同断层发育地区的顶应力分布情况 休伯特考虑到多数岩石的内摩擦角都接近于30°这个事实, 认为在正断层发育地区, 最大主应力σ1等于有效的上覆压力,最小水平主应力σ3最大的可能是等于1/3上覆压力;在逆断层发育的地区,最小主应力σ3等于有效的上覆压力, 而最大水平主应力σ1顶多会等于3倍的上覆压力; 而在平推断层活跃的区域里, 有效的上覆压力则为中一间主应力。 由于地壳中的岩层可视为弹性半无限体, 井壁上的应力状态可简化为平面向题来分析。如果两个水平方向的压缩地应力不相等(设为σ1>σ2> o ),可把井眼看成是在互相垂道的方向上分别作用有σ1和σ2两个压缩外应力的弹性平板中的一个小圆孔(图2 ),孔壁上的应力就相当于井壁上的水平应力。而井壁上的垂直应力分量仍可视为σz=ρh,为上覆岩层的压力。

相关主题
文本预览
相关文档 最新文档