当前位置:文档之家› 二色散光谱法(CD)在天然产物绝对构型测定中的应用

二色散光谱法(CD)在天然产物绝对构型测定中的应用

二色散光谱法(CD)在天然产物绝对构型测定中的应用
二色散光谱法(CD)在天然产物绝对构型测定中的应用

荧光和磷光

第七章分子发光分析 一.教学内容 1.荧光和磷光分析法的基本原理(光谱的产生、各种光谱的特征、光谱与化合物结构的关系、强度及影响因素等) 2.荧光和磷光仪器 3.荧光、磷光分析法的特点及大致应用 4.化学发光的基本原理、发光类型、仪器及大致应用 二.重点与难点 1.分子的去激发过程及荧光、磷光的发射 2.荧光、磷光的发射与物质结构的关系 3.各种光谱的特征、区别与联系 4.荧光(磷光)强度表达式的意义及影响因素 三.教学要求 1.基本掌握荧光和磷光发射的原理及与物质结构的关系 2.了解各种光谱的绘制方法、特征与联系 3.掌握强度表达式的意义、影响因素及适应性 4.掌握荧光、磷光仪器的组件、工作流程及异同点 5.基本了解化学发光分析法的原理、发光类型、仪器、特点及大致应用 6.了解荧光、磷光分析的大致应用 第一节分子荧光和磷光分析 一、基本原理 (一)荧光和磷光的产生

在电磁辐射基础中,已经简单地讨论过荧光及磷光的产生机理。这里将根据分子结构理论,将进一步讨论。 处于分子基态单重态中的电子对,其自旋方向相反,当其中一个电子被激发时,通常跃迁至第一激发态单重态轨道上,也可能跃迁至能级更高的单重态上。这种跃迁是符合光谱选律的,如果跃迁至第一激发三重态轨道上,则属于禁阻跃迁。单重态与三重态的区别在于电子自旋方向不同,激发三重态具有较低能级。在单重激发态中,两个电子平行自旋,单重态分子具有抗磁性,其激发态的平均寿命大约为10-8s,而三重态分子具有顺磁性,其激发态的平均寿命为10-4~ 1s以上(通常用S和T分别表示单重态和三重态)。处于激发态的电子,通常以辐射跃迁方式或无辐射跃迁方式再回到基态。辐射跃迁主要涉及到荧光、延迟荧光或磷光的发射;无辐射跃迁则是指以热的形式辐射其多余的能量,包括振动弛豫(VR)、内部转移(IR)、系间窜跃(IX)及外部转移(EC)等,各种跃迁方式发生的可能性及程度,与荧光物质本身的结构及激发时的物理和化学环境等因素有关。 下面结合荧光和磷光的产生过程,进一步说明各种能量传递方式在其中所起的作用。设处于基态单重态中的电子吸收波长为λ1和λ2的辐射光之后,分别激发至第二单重态S2及第一单重态S1。

红外图谱分析方法大全

红外光谱图解析 一、分析红外谱图 (1)首先依据谱图推出化合物碳架类型,根据分子式计算不饱和度。 公式:不饱和度=F+1+(T-O)/2 其中: F:化合价为4价的原子个数(主要是C原子); T:化合价为3价的原子个数(主要是N原子); O:化合价为1价的原子个数(主要是H原子)。 F、T、O分别是英文4,3 1的首字母,这样记起来就不会忘了 举个例子:例如苯(C6H6),不饱和度=6+1+(0-6)/2=4,3个双键加一个环,正好为4个不饱和度。 (2)分析3300~2800cm^-1区域C-H伸缩振动吸收,以3000 cm^-1为界,高于3000cm^-1为不饱和碳C-H伸缩振动吸收,有可能为烯、炔、芳香化合物吗,而低于3000cm^-1一般为饱和C-H伸缩振动吸收。 (3)若在稍高于3000cm^-1有吸收,则应在2250~1450cm^-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中: 炔—2200~2100 cm^-1 烯—1680~1640 cm^-1 芳环—1600、1580、1500、1450 cm^-1 若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650cm^-1的频区,以确定取代基个数和位置(顺反,邻、间、对)。 (4)碳骨架类型确定后,再依据其他官能团,如C=O,O-H,C-N 等特征吸收来判定化合物的官能团。 (5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820、2720和1750~1700cm^-1的三个峰,说明醛基的存在。解析的过程基本就是这样吧,至于制样以及红外谱图软件的使用,一般的有机实验书上都有比较详细的介绍的。 二、记住常见常用的健值 1.烷烃 3000-2850 cm-1C-H伸缩振动 1465-1340 cm-1C-H弯曲振动 一般饱和烃C-H伸缩均在3000 cm-1以下,接近3000 cm-1的频率吸收。 2.烯烃 3100~3010 cm-1烯烃C-H伸缩 1675~1640 cm-1C=C伸缩 烯烃C-H面外弯曲振动(1000~675cm^1)。 3.炔烃 2250~2100 cm-1C≡C伸缩振动 3300 cm-1附近炔烃C-H伸缩振动 4.芳烃 3100~3000 cm-1芳环上C-H伸缩振动 1600~1450 cm-1C=C 骨架振动 880~680 cm-1C-H面外弯曲振动) 芳香化合物重要特征:一般在1600,1580,1500和1450 cm-1可能出现强度不等的4

红外光谱总结

第2章红外光谱 通常红外光谱(infrared spectroscopy, IR)就是指波长2~25 μm的吸收光谱(即中红外区),这段波长范围反映出分子中原子间的振动与变角运动。分子在振动的同时还会发生转动运动,虽然分子的转动所涉及的能量变化较小,处在远红外区域,但转动运动影响振动的偶极矩变化,因而在红外光谱区实际所测的谱图就是分子的振动与转动运动的加与表现,因此红外光谱又称为分子振转光谱。 红外光谱可以应用于化合物分子结构的测定、未知物鉴定以及混合物成分分析。 2、1 红外光谱的基本原理 2、1、1 红外吸收光谱 1、当一束具有连续波长的红外光通过物质,物质分子中某个基团的振动频率或转动频率与红外光的频率一样时,分子就吸收能量由原来的基态振(转)动能级跃迁到能量较高的振(转)动能级,分子吸收红外辐射后发生振动与转动能级的跃迁,该处波长的光就被物质吸收。 波谱区近红外光中红外光远红外光 波长/m 0、75~2、5 2、5~50 50~1000 波数/cm-113333~4000 4000~200 200~10 跃迁类型分子振动分子转动 中红外区:绝大多数有机与无机化合物的基频吸收所在,主要就是振动能级的跃迁; 远红外区:分子纯转动能级跃迁及晶体的晶格振动。 3、波数()单位就是cm-1。波长与波数的关系就是: 4、胡克定律: 其中:——折合质量,,单位为kg; ——化学键力常数,与化学键的键能呈正比,单位为N·m-1; ——波数; ——真空中的光速。 (1)因为,红外频率。 (2)与碳原子城建的其她原子,随着其原子质量的增大,折合质量也增大,则红外波数减小。 (3)与氢原子相连的化学键的折合质量都小,红外吸收在高波数区。 (4)弯曲振动比伸缩振动容易,弯曲振动的K均较小,故弯曲振动吸收在低波数区。 5、光谱选律:原子与分子与电磁波作用发生能级跃迁就是要服从一定的规律的,这些规律由量子化学解释。量子化学解得与体系振动量子数(v)相对应的体系能量(E)为: (v = 0, 1, 2, 3…) 简谐振动光谱选律为:,即跃迁必须在相邻震动能级之间进行。

汞光谱色散

图1 汞光谱得色散 摘要:复色光分解为单色光而形成得光谱现象叫做光得色散。色散可以利用分光计与三棱镜作为“色 散系统”得仪器来实现。复色光进入三棱镜后,由于它对各种频率得光具有不同得折射率,各种色光得传播方向有不同程度得偏折,因而在离开棱镜时就各自分散,形成光谱。本实验就是利用分光计与三棱镜将汞光分散形成光谱。来测出汞光通过三棱镜得折射率,来研究汞光得光谱。了解分光计得结构,学习调节分光计。用最小偏向角法测玻璃得折射率,研究汞光谱得色散现象及折射率与频率得关系。 关键词:汞光 色散 光谱 三棱镜 偏折 让汞光射到棱镜上,光线经过棱镜折射以后就在另一侧面得白纸屏上形成一天彩色得光带,其颜色得排列就是靠近棱镜顶角端就是黄光(1),靠近底边得一条就是紫光,中间依次就是黄光(2)、绿光、蓝紫光,这样得光带叫光谱,光谱中每一种色光不能再分解出其她光色,称它为单色光。由单色光混合而成得光叫复合光,自然界中得太阳光、白炽灯与日光灯发出得光都就是复色光。在光照到物体上时,一部分被物体反射,一部分光被物体吸收。如果物体就是透明得,还有一部分透过物体。不同物体,对不同颜色得反射、吸收与透过得情况不同,因此呈不同得色彩。光波都有一定得频率,光得颜色就是由光波得频率决定得,在可见光区域,红光频率最小,紫光得频率最大,各种频率得光在真空中传播得速度都相同、等于。但就是不同频率得单色光,在介质中中传播时由于受介质得作用,传播速度都比在真空中得速度小,并且速度大小互不相同,红光速度大,紫光得传播速度小。因此介质对红光得折射率小,对紫光得折射率大。当不同色光以相同得入射角射到三棱镜上,红光得偏折最小,它在光谱中处在靠近顶角得一端。紫光频率大,在介质中得折射率大,在光谱中也就排列在最靠近棱镜底边得一端。 理论依据: (1)测量玻璃材料折射率得理论依据 如图1所示,三角形ABC 表示三棱镜得主截面,AB 与AC 就是透光面(又称为折射面)。设有一束单色光LD 入射到棱镜得AB 面上,经过两次折射后从AC 面沿ER 方向射出。入射线LD 与出射线ER 间得夹角δ称为偏向角。 对于给定得棱镜来说,顶角 就是固定得。可知,δ随i 1与 i 4而变化。其中,i 4与i 3、i 2、i 1依次相关,由折射率决定。因此,i 4就是i 1得函数。归结到底,偏向角δ也就仅随i 1变化。由实验中可以观察到,当i 1变化时,δ有一极小值,称为最小偏向角δmin 。于就 是,棱镜对该单色光得折射率为 可知,实验上只要测得三棱镜得顶角与某单色光通过三棱镜后所对应得最小偏向角,则该单色光在玻

红外光谱分析(2020年10月整理).pdf

红外光谱分析 序言 二十世纪初叶,Coblentz发表了一百多个有机化合物的红外光谱图,给有机化学家提供了鉴别未知化合物的有力手段。到四十年代红外光谱技术得到了广泛的研究和应用。当今红外光谱仪的分辨率越来越高,检测范围扩展到10000-200cm-1,样品量少至微克级。红外光谱提供的某些信息简捷可靠,检测样品中有无羰基及属于哪一类(酸酐、酯、酮或醛)是其他光谱技术难以替代的。因此,对从事有机化合物为研究对象的化学工作者来说,红外光谱学是必需熟悉和掌握的一门重要光谱知识。 一、基本原理 1、基本知识 光是一种电磁波。可根据电磁波的波长范围分成不同类型的光谱,它们各自反映出物质的不同类型的运动形式。表1列出这些电磁波的波长,其所在区域的光谱名称,以及对应的运动形式。

红外光谱研究的内容涉及的是分子运动,因此称之为分子光谱。 通常红外光谱系指2-25μ之间的吸收光谱,常用的为中红外区4000-650cm-1(2.5-15.4μ)或4000-400cm-1。 这段波长范围反映出分子中原子间的振动和变角振动,分子在振动运动的同时还存在转动运动。在红外光谱区实际所测得的图谱是分子的振动与转动运动的加合表现,即所谓振转光谱。 每一化合物都有其特有的光谱,因此使我们有可能通过红外光谱对化合物作出鉴别。 红外光谱所用的单位波长μ,波数cm-1。光学中的一个基本公式是λυ= C,式中λ为波长,υ为频率,C为光速(3×1010cm/s)。设υ为 波数,其含义是单位长度(1cm)中所含的波的个数,并应具有以下关系:波数(cm-1)=104/波长(μ) 波长和波数都被用于表示红外光谱的吸收位置,即红外光谱图的横坐标。目前倾向于普遍采用波数为单位,而在图谱上方标以对应的波长值。红外光谱图的纵坐标反映的是吸收强度,一般以透过率(T%)表示。 2、红外光谱的几种振动形式 主要的基本可以分为两大类:伸缩振动和弯曲振动。 (1)伸缩振动(υ) 沿着键轴方向伸或缩的振动,存在对称与非对称两种类型。它的吸收频率相对在高波数区。 (2)弯曲振动(δ) 包括面内、面外弯曲振动,变角振动,摇摆振动等。它的吸收频率相对在低波数区。 4000cm-1(高) 400cm-1(低)

汞光谱色散报告

大学物理实验设计性实验 实验目的: 1.进一步掌握分光计的调整技术,学习用分光观察棱镜光谱 2.握用分光仪测量棱镜的顶角的方法 3.握用最小偏向角法测量棱镜的折射率 4.会用分光仪观察光谱,研究光的色散 实验仪器: 分光仪、平面镜、三棱镜、高压汞灯 摘要:根据…..做了….结果… 关键词:色散最小偏向角 原理: 平行光从棱镜的一个折射面,如AB面入射,经过两次折射后从折射面AC出射,LD是入射光线,ER是岀射光线,σ是这两条光线的夹角,称为偏向角。实验中发现,改变入射角i1时,偏向角σ也随之改变。当入射角i1等于岀射角i4时,偏向角有最小值,称为最小偏向角,记为σm。可以证明,样品的折射率与最小偏向角有如下 关系: n= sin (A+ σm)/(sinA/2) 只要测出顶角A和最小偏向角σm,便可求出n,顶角A的理论值60.但因工艺水平的限制,顶角A的实际值会有所偏离,一般不应以理论

值带入。 数据与数据处理: σ =1/2[ (Φ左- Φ左′)+(Φ右-Φ右′) ] σ =1/nΣσi n= sin(θ+σi)/sin(θ /2) f= v/ λ

σ=1/2[∣Φ左- Φ左′∣+∣Φ右-Φ右′∣] =1/2[∣214°10 ′- 265°20 ′∣+ ∣34°12 ′- 85°14 ′∣] =51°12′ σ=1/2[∣Φ左- Φ左′∣+∣Φ右-Φ右′∣] =1/2[∣214°11 ′- 265°18 ′∣+ ∣34°10 ′- 85°15 ′∣] =51°6′ 因此黄光1最小偏向角= 51°6′+ 51°12′=51°9 ′ 同理可得 δ=51°9′ 黄色(1)谱线的最小偏向角min δ=51°1.3′ 黄色(2)谱线的最小偏向角min 绿色谱线的最小偏向角=51°27.5′ 蓝紫色谱线的最小偏向角=53°26′ 绿色谱线的最小偏向角=51°27.5′ 蓝紫色谱线的最小偏向角=53°26′ 三棱镜对于不同光谱的折射率 黄光1 n1=1.6497 黄光2 n2=1.6485 绿光n3=1.6528 蓝紫光n4=1.6719 f= v/ λ 黄光1 f=v/λ=3×10^8/(579×10^11)= 5.18×10^11 黄光2 f=v/λ=3×10^8/(579×10^11)= 5.20×10^11 绿光1 f=v/λ=3×10^8/(579×10^11)= 5.49×10^11 蓝紫光1 f=v/λ=3×10^8/(579×10^11)= 6.89×10^11 结论: 参考文献 【1】李学慧大学物理实验【M】高等数学出版社 2005年6月 P88~P95 【2】吴强光学【M】科学出版社 2006年 70~78 【3】刘劲松物理光学与基础光学【M】西安电子科技大学出版社 295~322 【4】梁宝社大学物理实验北京理工大学出版社【M】2006年8月 110~115 【5】申德稀有金属的光谱研究【J】中国光学与应用光学文摘 2008 22(2)

红外光谱谱图质量影响因素汇总

红外光谱谱图质量影响因素汇总 1、扫描次数对红外谱图的影响:傅里叶变换红外光谱仪测量物质的光谱时, 检测器在接受样品光谱信号的同时也接受了噪声信号, 输出的光谱既包括样品的信号也包括噪声信号。 信噪比:与扫描次数的平方成正比。增加扫描次数可以减少噪声、增加谱图的光滑性。 2、扫描速度对红外谱图的影响:扫描速度减慢, 检测器接收能量增加; 反之, 扫描速度加快, 检测器接收能量减小。当测量信号小时( 包括使用某些附件时) 应降低动镜移动速度, 而在需要快速测量时,提高速度。扫描速度降低, 对操作环境要求更高, 因此应选择适当的值。 采用某一动镜移动速度下的背景, 测定不同扫描速度下样品的吸收谱图, 随扫描速度的加快, 谱图基线向上位移。用透射谱图表示时,趋势相反。所以在实验中测量背景的扫描速度与测量样品的扫描速度要一致。 3、分辨率对红外谱图的影响:红外光谱的分辨率等于最大光程差的倒数, 是由干涉仪动镜移动的距离决定的, 确切地说是由光程差计算出来的。分辨率提高可改善峰形, 但达到一定数值后, 再提高分辨率峰形变化不大, 反而噪声增加。分辨率降低可提高光谱的信噪比, 降低水汽吸收峰的影响, 使谱图的光滑性增加。 样品对红外光的吸收与样品的吸光系数有关,如果样品对红光外有很强的吸收, 就需要用较高的分辨率以获得较丰富的光谱信息;如果样品对红光外有较弱的吸收, 就必须降低光谱的分辨率、提高扫描次数以便得到较好的信噪比。 4、数据处理对红外谱图质量的影: (1)平滑处理:红外光谱实验中谱图常常不光滑,影响谱图质量。不光滑的原因除了样品吸潮以外还有环境的潮湿和噪声。平滑是减少来自各方面因素所产生的噪声信号, 但实际是降低了分辨率, 会影响峰位和峰强, 在定量分析时需特别注意。 (2)基线校正:在溴化钾压片制样中由于颗粒研磨得不够细或者不够均匀, 压出的锭片不够透明而出现红外光散射, 所以不管是用透射法测得的红外光谱,还是用反射法测得的光谱, 其光谱基线不可能在零基线上, 使光谱的基线出现漂移和倾斜现象。需要基线校正时,首先判断引起基线变化的原因, 能否进行校正。基线校正后会影响峰面积, 定量分析要慎重。 (3)样品量的控制对谱图的影响:在红外光谱实验中, 固体粉末样品不能直接压片, 必须用稀释剂稀释、研磨后才能压片。稀释剂溴化钾与样品的比例非常重要, 样品太少不行,样品太多则信息太丰富而特征峰不突出, 造成分析困难或吸收峰成平顶。对于白色样品或吸光系数小的样品, 稀释剂溴化钾与样品的比例是100:1; 对于有色样品或吸光系数大的样品稀释剂溴化钾与样品的比例是150:1。 5、影响吸收谱带的因素还有分子外和分子内的因素:如溶剂不同, 振动频率不同, 溶剂的极性不同, 介电常数不同, 引起溶质分子振动频率不同, 因为溶剂的极性会引起溶剂和溶 质的缔合, 从而改变吸收带的频率和强度。氢键的形成使振动频率向低波数移动、谱带加宽和强度增强(分子间氢键可以用稀释的办法消除, 分子内氢键不随溶液的浓度而改变)。 6、影响吸收谱带的其他因素还有:共轭效应、张力效应、诱导效应和振动耦合

汞光谱的色散--论文

图1 汞光谱的色散 辽宁科技大学 电子与信息工程学院 测控技术与仪器10级 摘要:复色光分解为单色光而形成的光谱现象叫做光的色散。色散可以利用分光计和三棱镜作为“色 散系统”的仪器来实现。复色光进入三棱镜后,由于它对各种频率的光具有不同的折射率,各种色光的传播方向有不同程度的偏折,因而在离开棱镜时就各自分散,形成光谱。本实验是利用分光计和三棱镜将汞光分散形成光谱。来测出汞光通过三棱镜的折射率,来研究汞光的光谱。了解分光计的结构,学习调节分光计。用最小偏向角法测玻璃的折射率,研究汞光谱的色散现象及折射率与频率的关系。 关键词:汞光 色散 光谱 三棱镜 偏折 让汞光射到棱镜上,光线经过棱镜折射以后就在另一侧面的白纸屏上形成一天彩色的光带,其颜色的排列是靠近棱镜顶角端是黄光(1),靠近底边的一条是紫光,中间依次是黄光(2)、绿光、蓝紫光,这样的光带叫光谱,光谱中每一种色光不能再分解出其他光色,称它为单色光。由单色光混合而成的光叫复合光,自然界中的太阳光、白炽灯和日光灯发出的光都是复色光。在光照到物体上时,一部分被物体反射,一部分光被物体吸收。如果物体是透明的,还有一部分透过物体。不同物体,对不同颜色的反射、吸收和透过的情况不同,因此呈不同的色彩。光波都有一定的频率,光的颜色是由光波的频率决定的,在可见光区域,红光频率最小,紫光的频率最大,各种频率的光在真空中传播的速度都相同、等于。但是不同频率的单色光,在介质中中传播时由于受介质的作用,传播速度都比在真空中的速度小,并且速度大小互不相同,红光速度大,紫光的传播速度小。因此介质对红光的折射率小,对紫光的折射率大。当不同色光以相同的入射角射到三棱镜上,红光的偏折最小,它在光谱中处在靠近顶角的一端。紫光频率大,在介质中的折射率大,在光谱中也就排列在最靠近棱镜底边的一端。 理论依据: (1)测量玻璃材料折射率的理论依据 如图1所示,三角形ABC 表示三棱镜的主截面,AB 和AC 是透光面(又称为折射面)。设有一束单色光LD 入射到棱镜的AB 面上,经过两次折射后从AC 面沿ER 方向射出。入射线LD 和出射线ER 间的夹角δ称为偏向角。

色散型红外光谱仪的原理

色散型红外光谱仪的原理可用图5—12说明之。从光源发出的红外辐射,分成二束,一束通过试样他,另一束通过参比他,然后进入单色器。在单色器内先通过以一定频率转动的扇形镜(斩光器),其作用与其它的双光束光度计一样,是周期地切割二束光,使试样光束和参比光束交替地进入单色器中的色散棱镜或光栅,最后进人检测器。随着扇形镜的转动,检测器就交替地接受这二束光。 假定从单色器发出的为某波数的单色光,而该单色光不被试样吸收,此时二束光的强度相等,检测器不产生交流信号;改变波数,若试样对该波数的光产生吸收,则二束光的强度有差异,此时就在检测器上产生一定频率的交流信号(其频率决定于斩光器的转动频率)。通过交流放大器放大,此信号即可通过伺服系统驱动参比光路上的光楔(光学衰减器)进行补偿,此时减弱参比光路的光强,使投射在检测器上的光强等于试样光路的光强。试样对某一波数的红外光吸收越多,光楔也就越多地遮住参比光路以使参比光强同样程度地减弱,使二束光重新处于平衡。试样对各种不同波数的红外辐射的吸收有多有少,参比光路上的光楔也相应地按比例移动以进行补偿。记录笔与光楔同步,因而光楔部位的改变相当于试样的透射比,它作为纵坐标直接被描绘在记录纸上。由于单色器内棱镜或光栅的转动,使单色光的波数连续地发生改变,并与记录纸的移动同步,这就是横坐标。这样在记录纸上就描绘出透射比T对波数(或波长)的红外光谱吸收曲线。 上例是双光束光学自动平衡系统的原理。也有采用双光束电学自动平衡系统来进行工作的仪器。这时不是采用光楔来使两束光达到平衡,而是测量两个电信号的比率。 由上述可见,红外光谱仪与紫外—可见分光光度计类似,也是由光源、单色

能量色散和波长色散X荧光光谱仪的区别

一.X射线荧光分析仪简介 X射线荧光分析仪是一种比较新型的可以对多元素进行快速同事测定的仪器。在X射线激发下,被测元素原子的内层电子发生能级跃迁而发出次级X射线(X-荧光)。波长和能量是从不同的角度来观察描述X射线所采用的两个物理量。波长色散型X射线荧光光谱仪(WD-XRF)。是用晶体分光而后由探测器接受经过衍射的特征X射线信号。如果分光晶体和控测器做同步运动,不断地改变衍射角,便可获得样品内各种元素所产生的特征X射线的波长及各个波长X射线的强度,可以据此进行特定分析和定量分析。该种仪器产生于50年代,由于可以对复杂体进行多组同事测定,受到关注,特别在地质部门,先后配置了这种仪器,分析速度显著提高,起了重要作用。随着科学技术的进步在60年代初发明了半导体探测仪器后,对X荧光进行能谱分析成为可能。能谱色散型X射线荧光光谱仪(ED-XRF),用X射线管产生原级X射线照射到样品上,所产生的特征X射线(荧光)这节进入SI(LI)探测器,便可以据此进行定性分析和定量分析,第一胎ED-XRF是1969年问世的。近几年来,由于商品ED-XRF仪器及仪表计算机软件的发展,功能完善,应用领域拓宽,其特点,优越性日益搜到认识,发展迅猛。 二.波长色散型X射线荧光光谱仪与能量色散型X射线荧光光谱仪的区别 虽然光波色散型(W D-XRF)X射线荧光光谱仪与能量色散型(ED-XRF)X射线荧光光谱仪同属于X射线荧光分析仪,它产生信号的方法相同,最后得到的波谱也极为相似,单由于采集数据的方式不同,WD-XRF(波谱)与WD-XRF(能谱)在原理和仪器结构上有所不同,功能也有区别。 (一)原理区别 X射线荧光光谱法,是用X射线管发出的初级线束辐照样品,激发各化学元素发出二次谱线(X-荧光)。波长色散型荧光光仪(WD-XRF)是用分光晶体将荧光光束色散后,测定各种元素的特征X射线波长和强度,从而测定各种元素的含量。而能量色散型荧光光仪(ED-XRF)是借组高分辨率敏感半导体检查仪器与多道分析器将未色散的X射线荧光按光子能量分离X色线光谱线,根据各元素能量的高低来测定各元素的量,由于原理的不同,故仪器结构也不同。 (二)结构区别 波长色散型荧光光谱仪(WD-XRF),一般由光源(X-射线管),样品室,分光晶体和检测系统等组成。为了准且测量衍射光束与入射光束的夹角,分光晶体系安装在一个精密的测角仪上,还需要一庞大而精密并复杂的机械运动装置。由于晶体的衍射,造成强度的损失,要求作为光源的X射线管的功率要大,一般为2-3千瓦,单X射线管的效率极低,只有1%的功率转化为X射线辐射功率,大部分电能均转化为而能产生高温,所以X射线管需要专门的冷却装置(水冷

色散型红外光谱仪的原理(活动za)

色散型红外光谱仪的原理可用图—说明之。从光源发出的红外辐射,分成二束,一束通过试样他,另一束通过参比他,然后进入单色器。在单色器内先通过以一定频率转动的扇形镜(斩光器),其作用与其它的双光束光度计一样,是周期地切割二束光,使试样光束和参比光束交替地进入单色器中的色散棱镜或光栅,最后进人检测器。随着扇形镜的转动,检测器就交替地接受这二束光。 假定从单色器发出的为某波数的单色光,而该单色光不被试样吸收,此时二束光的强度相等,检测器不产生交流信号。改变波数,若试样对该波数的光产生吸收,则二束光的强度有差异,此时就在检测器上产生一定频率的交流信号(其频率决定于斩光器的转动频率)。通过交流放大器放大,此信号即可通过伺服系统驱动参比光路上的光楔(光学衰减器)进行补偿,此时减弱参比光路的光强,使投射在检测器上的光强等于试样光路的光强。试样对某一波数的红外光吸收越多,光楔也就越多地遮住参比光路以使参比光强同样程度地减弱,使二束光重新处于平衡。试样对各种不同波数的红外辐射的吸收有多有少,参比光路上的光楔也相应地按比例移动以进行补偿。记录笔与光楔同步,因而光楔部位的改变相当于试样的透射比,它作为纵坐标直接被描绘在记录纸上。由于单色器内棱镜或光栅的转动,使单色光的波数连续地发生改变,并与记录纸的移动同步,这就是横坐标。这样在记录纸上就描绘出透射比对波数(或波长)的红外光谱吸收曲线。 上例是双光束光学自动平衡系统的原理。也有采用双光束电学自动平衡系统来进行工作的仪器。这时不是采用光楔来使两束光达到平衡,而是测量两个电信号的比率。 由上述可见,红外光谱仪与紫外—可见分光光度计类似,也是由光源、单色器、吸收池、检测器和记录系统等部分所组成。但由于红外光谱仪与紫外—可见分光光度计工作的波段范围不同,因此,光源、透光材料及检测器等都有很大的差异。现将中红外光谱仪的主要部件简要介绍如下。 .光源

第三章-红外吸收光谱分析

第三章红外吸收光谱分析 3.1概述 3.1.1红外吸收光谱的基本原理 红外吸收光谱法又称为分子振动转动光谱,属于分子光谱的范畴,是有机物结构分析的重要方法之一。当一定频率的红外光照射分子时,若分子中某个基团的振动频率和红外辐射的频率一致,两者产生共振,光的能量通过分子偶极矩的变化传递给分子,该基团就吸收了这个频率的红外光,产生振动能级跃迁;如果红外辐射的频率和分子中各基团的振动能级不一致,该频率的红外光将不被吸收。如果用频率连续变化的红外光照射某试样,分子将吸收某些频率的辐射,引起对应区域辐射强度的减弱,用仪器以吸收曲线的形式记录下来,就得到该试样的红外吸收光谱,稀溶液谱带的吸光度遵守Lambert-Beer定律。 图3-1为正辛烷的红外吸收光谱。红外谱图中的纵坐标为吸收强度,通常用透过率或吸光度表示,横坐标以波数或波长表示,两者互为倒数。图中的各个吸收谱带表示相应基团的振动频率。各种化合物分子结构不同,分子中各个基团的振动频率不同。其红外吸收光谱也不同,利用这一特性,可进行有机化合物的结构分析、定性鉴定和定量分析。 图3-1 正辛烷的红外光谱图 几乎所有的有机和无机化合物在红外光谱区均有吸收。除光学异构体,某些高分子量的高聚物以及一些同系物外,结构不同的两个化合物,它们的红外光谱一定不会相同。吸收谱带出现的频率位置是由分子振动能级决定,可以用经典力学(牛顿力学)的简正振动理论来说明。吸收谱带的强度则主要取决于振动过程中偶极矩的变化和能级跃迁的概率。也就是说,红外光谱中,吸收谱带的位置、形状和强度反映了分子结构的特点,而吸收谱带的吸收强度和分子组成或官能团的含量有关。

红外光谱的吸收

红外光谱的吸收

第六章红外吸收光谱法 基本要点: 1. 红外光谱分析基本原理; 2. 红外光谱与有机化合物结构; 3. 各类化合物的特征基团频率; 4. 红外光谱的应用; 5. 红外光谱仪. 学时安排:3学时 第一节概述 分子的振动能量比转动能量大,当发生振动能级跃迁时,不可避免地伴随有转动能级的跃迁,所以无法测量纯粹的振动光谱,而只能得到分子的振动-转动光谱,这种光谱称为红外吸收光谱。 红外吸收光谱也是一种分子吸收光谱。 当样品受到频率连续变化的红外光照射时,分子吸收了某些频率的辐射,并由其振动或转动运动引起偶极矩的净变化,产

生分子振动和转动能级从基态到激发态的跃迁,使相应于这些吸收区域的透射光强度减弱。记录红外光的百分透射比与波数或波长关系曲线,就得到红外光谱。 一、红外光区的划分 红外光谱在可见光区和微波光区之间,波长范围约为 0.75 ~ 1000μm,根据仪器技术和应用不同,习惯上又将红外光区分为三个区:近红外光区(0.75 ~ 2.5μm ),中红外光区(2.5 ~25μm ),远红外光区(25 ~ 1000μm )。 近红外光区(0.75 ~ 2.5μm ) 近红外光区的吸收带主要是由低能电子跃迁、含氢原子团(如O—H、N—H、C—H)伸缩振动的倍频吸收等产生的。该区的光谱可用来研究稀土和其它过渡金属离子的化合物,并适用于水、醇、某些高分子化合物以及含氢原子团化合物的定量分析。中红外光区(2.5 ~ 25μm ) 绝大多数有机化合物和无机离子的基频吸收带出现在该 光区。由于基频振动是红外光谱中吸收最强的振动,所以该区最适于进行红外光谱的定性和定量分析。同时,由于中红外光谱仪最为成熟、简单,而且目前已积累了该区大量的数据资料,因此它是应用极为广泛的光谱区。通常,中红外光谱法又简称为红外光谱法。 远红外光区(25 ~ 1000μm )该区的吸收带主要是由气体分子中的纯转动跃迁、 振动-转动跃迁、液体和固体中重原子的伸缩振动、某些变角振动、骨架振动以及晶体中的晶格振动所引起的。由于低频骨架振动能很灵敏地反映出结构变化,所以对异构体的研究特别方便。此外,还能用于金属有机化合物(包括络合物)、氢键、吸附现象的研究。但由于该光区能量弱,除非其它波长区间内没有合适的分析谱带,一般不在此范围内进行分析。 红外吸收光谱一般用T~ 曲线或T~ 波数曲线表示。纵坐标

汞光谱的色散

汞光谱的色散 辽宁科技大学 机械学院 机设14-6班 2015年6月 摘要: 复色光分解为单色光而形成光谱的现象叫做光的色散。色散可以利用棱镜或分光 计等作为“色散系统”的仪器来实现。复色光进入三棱镜后,由于它对各种频率的光具有不同折射率,各种色光的传播方向有不同程度的偏折,因而在离开棱镜时就各自分散,形成光谱。本实验是用分光计和将汞光分散成光谱,来测汞光通过三棱镜的折射率,来研究汞光的光谱。了解分光计的结构,学习调节分光计,用最小偏向法测玻璃折射率,研究汞光谱的色散现象及折射率与频率的关系。 关键词: 汞光、三棱镜、色散、偏折、光谱 原理:让汞光射在玻璃棱镜上,光经过棱镜折射以后就在另一侧面的白纸屏上形成一条彩 色光带其颜色排列是靠近棱镜顶角端是黄光1,靠近底边的一端是紫光,中间依次是黄光2、绿光、蓝紫光,这样的光带叫光谱。光谱中每一种色光不能再分解出其他色光,称它为单色光。有单色光混合而成的光叫复色光。自然界中的太阳光、白炽电灯和日光灯发出的光都是复色光.在光照到物体上时,一部分光被物体反射,一部分光被物体吸收。如果物体是透明的,还有一部分透过物体。不同物体,对不同颜色的反射、吸收和透过的情况不同,因此呈现不同的色彩。光波都有一定的频率,光的颜色是由光波的频率决定的,在可见光区域,红光频率最小,紫光的频率最大,各种频率的光在真空中传播的速度都相同,等于 3.0×108 m/s .但是不同频率的单色光,在介质中传播时由于受到介质的作用,传播速度都比在真空中的速度小,并且速度的大小互不相同.红光速度大,紫光的传播速度小,因此介质对红光的折射率小,对紫光的折率大.当不同色光以相同的入射角射到三棱镜上,红光发生的偏折最少,它在光谱中处在靠近顶角的一端.紫光的频率大,在介质中的折射率大,在光谱中也就排列在最靠近棱镜底边的一端。 理论依据: (原理图) C B A α I 1 L D I 2 I 4 R I 3 E F δ B C L D A E δ R

色散型红外光谱仪的原理精编版

色散型红外光谱仪的原 理精编版 MQS system office room 【MQS16H-TTMS2A-MQSS8Q8-MQSH16898】

色散型红外光谱仪的原理可用图5—12说明之。从光源发出的红外辐射,分成二束,一束通过试样他,另一束通过参比他,然后进入单色器。在单色器内先通过以一定频率转动的扇形镜(斩光器),其作用与其它的双光束光度计一样,是周期地切割二束光,使试样光束和参比光束交替地进入单色器中的色散棱镜或光栅,最后进人检测器。随着扇形镜的转动,检测器就交替地接受这二束光。 假定从单色器发出的为某波数的单色光,而该单色光不被试样吸收,此时二束光的强度相等,检测器不产生交流信号;改变波数,若试样对该波数的光产生吸收,则二束光的强度有差异,此时就在检测器上产生一定频率的交流信号(其频率决定于斩光器的转动频率)。通过交流放大器放大,此信号即可通过伺服系统驱动参比光路上的光楔(光学衰减器)进行补偿,此时减弱参比光路的光强,使投射在检测器上的光强等于试样光路的光强。试样对某一波数的红外光吸收越多,光楔也就越多地遮住参比光路以使参比光强同样程度地减弱,使二束光重新处于平衡。试样对各种不同波数的红外辐射的吸收有多有少,参比光路上的光楔也相应地按比例移动以进行补偿。记录笔与光楔同步,因而光楔部位的改变相当于试样的透射比,它作为纵坐标直接被描绘在记录纸上。由于单色器内棱镜或光栅的转动,使单色光的波数连续地发生改变,并与记录纸的移动同步,这就是横坐标。这样在记录纸上就描绘出透射比T对波数(或波长)的红外光谱吸收曲线。 上例是双光束光学自动平衡系统的原理。也有采用双光束电学自动平衡系统来进行工作的仪器。这时不是采用光楔来使两束光达到平衡,而是测量两个电信号的比率。 由上述可见,红外光谱仪与紫外—可见分光光度计类似,也是由光源、单色器、吸收池、检测器和记录系统等部分所组成。但由于红外光谱仪与紫外—可见分光光度计工作的波段范围不同,因此,光源、透光材料及检测器等都有很大的差异。现将中红外光谱仪的主要部件简要介绍如下。 1.光源 红外光谱仪中所用的光源通常是一种惰性固体,用电加热使之发射高强度连续红外辐射。常用的有能斯特灯和硅碳棒两种。 能斯特灯(Nernstglower)是由氧化锆、氧化钇和氧化钍烧结制成,是一直径为l~3mm,长约20~50mm的中空棒或实心棒,两端绕有铂丝作为导线。在室温下,它是非导体,但加热至800℃时就成为导体并具有负的电阻特性,因此,在工作之前,要由一辅助加热器进行预热。这种光源的优点是发出的光强度高,使用寿命可达6个月至一年,但机械强度差,稍受压或受扭就会损坏,经常开关也会缩短其寿命。

红外吸收光谱解析

红外吸收光谱法 第一节概述 一、红外光谱测定的优点 20世纪50年代初期,红外光谱仪问世,揭开了有机物结构鉴定的新篇章。到了50年代末期,已经积累了大量的红外光谱数据,到70年代中期,红外光谱法成为了有机结构鉴定的重要方法。红外光谱测定的优点: 1、任何气态、液态、固态样品都可以进行红外光谱的测定,这是核磁、质谱、紫外等仪器所不及的。 2、每种化合物均有红外吸收,又有机化合物的红外光谱可以获得丰富的信息。 3、常规红外光谱仪价格低廉,易于购置。 4、样品用量小。 二、红外波段的划分 σ=104/λ(λnm σcm-1) 红外波段范围又可以进一步分为远红外、中红外、近红外 波段波长nm 波数cm-1 近红外0.75~2.5 13300~4000 中红外 2.5~15.4 4000~650 远红外15.4~830 650~12 三、红外光谱的表示方法 红外光谱图多以波长λ(nm)或波数σ(cm-1)为横坐标,表示吸收峰的位置,多以透光率T%为纵坐标,表示吸收强度,此时图谱中的吸收“峰”,其实是向下的“谷”。一般吸收峰的强弱均以很强(ε大于200)、强(ε在75-200)、中(ε在25-75)、弱(ε在5-25)、很弱(ε小于5),这里的ε为表观摩尔吸收系数 红外光谱中吸收峰的强度可以用吸光度(A)或透过率T%表示。峰的强度遵守朗伯-比耳定律。吸光度与透过率关系为 A=lg( ) T1 所以在红外光谱中“谷”越深(T%小),吸光度越大,吸收强度越强。

第二节 红外吸收光谱的基本原理 一、分子的振动与红外吸收 任何物质的分子都是由原子通过化学键联结起来而组成的。分子中的原子与化学键都处于不断的运动中。它们的运动,除了原子外层价电子跃迁以外,还有分子中原子的振动和分子本身的转动。这些运动形式都可能吸收外界能量而引起能级的跃迁,每一个振动能级常包含有很多转动分能级,因此在分子发生振动能级跃迁时,不可避免的发生转动能级的跃迁,因此无法测得纯振动光谱,故通常所测得的光谱实际上是振动-转动光谱,简称振转光谱。 1、双原子分子的振动 分子的振动运动可近似地看成一些用弹簧连接着的小球的运动。以双原子分子为例,若把两原子间的化学键看成质量可以忽略不计的弹簧,长度为r (键长),两个原子分子量为m 1、m 2。如果把两个原子看成两个小球,则它们之间的伸缩振动可以近似的看成沿轴线方向的简谐振动,如图3—2。因此可以把双原子分子称为谐振子。这个体系的振动频率υ(以波数表示),由经典力学(虎克定律)可导出: C ——光速(3×108 m/s ) υ= K ——化学键的力常数(N/m ) μ——折合质量(kg ) μ= 如果力常数以N/m 为单位,折合质量μ以原子质量为单位,则上式可简化为 υ=130.2 双原子分子的振动频率取决于化学键的力常数和原子的质量,化学键越强,相对原子质量越小,振动频率越高。 H-Cl 2892.4 cm -1 C=C 1683 cm -1 C-H 2911.4 cm -1 C-C 1190 cm -1 同类原子组成的化学键(折合质量相同),力常数大的,基本振动频率就大。由于氢的原子质量最小,故含氢原子单键的基本振动频率都出现在中红外的高频率区。 2、多原子分子的振动 1πμ2c K m 1m 2m 1m2+ K μ

荧光和磷光的产生过程资料

学习资料 1.荧光和磷光的产生过程? 荧光:处于基态的分子吸收光子能量,跃迁至电子激发态,然后通过内转换和振动弛豫回到第一激发单重态的最低振动能级,最后跃迁回基态时发射的光 S0 激发态振动弛豫内转换振动弛豫发射荧光 磷光:处于基态的分子吸收光子能量,跃迁至电子激发态,然后通过内转换和振动弛豫和系间窜越到了第一激发三重态,最后回到基态时发射的光 S0 激发态振动弛豫内转换系间跨越振动弛豫发射荧光 2.激发光谱和发射光谱概念,有何异同? (1)激发光谱:固定发射光的波长,测量激发光的波长与发射光强度之间的关系(选择最佳激发波长) (2)发射光谱:固定激发波的波长,测定发射光强度与发射光波长的关系(选择最佳发射波长) 同:都是给样品能量使之发光测量发光强度 异:控制的变量不同。 3.化合物荧光与结构的关系? a.具有一定的荧光量子产率 b.具有合适的结构 如:大的共轭π键、刚性平面结构、最低的单重电子激发态为S1 为π* π型、取代基为给电子基团 4.荧光量子产率、荧光猝灭、系间跨越、振动弛豫? A.荧光量子产率Q:量子产率表示物质将吸收的光能转化为荧光的本领,是荧光物质发出光子数与吸收光子数的比值。 B.荧光猝灭:指荧光物质分子与溶剂分子之间相互作用,导致荧光强度下降的现象,荧光猝灭分为静态猝灭、动态猝灭等。 C.系间跨越:处于激发态分子的电子发生自旋反转而使分子的多重性发生变化的过程;分子由激发单重态跨越到激发三重态。 D.振动弛豫:同一电子能级内异热交换形式由高振动能级至地振动能级间的跃迁。 时间为10-12s 5.实时定量PCR与普通PCR的区别? 所谓实时荧光定量PCR技术[1],是指在PCR反应体系中加入荧光基团,利用荧光信号积累实时监测整个PCR进程,最后通过标准曲线对未知模板进行定量分析的方法。 实时荧光定量PCR技术是起点检测,实现了每一轮循环均检测一次荧光信号的强度,并记录在电脑软件之中,通过对每个样品Ct值的计算,根据标准曲线获得定量结果。具有重现性,误差小的特点。 传统PCR技术是终点检测,即PCR到达平台期后进行检测,而PCR经过对数期扩增到达平台期时,检测重现性极差。同一个模板在96孔PCR仪上做96次重复实验,所得结果有很大差异,因此无法直接从终点产物量推算出起始模板量。加入内标后,可部分消除终产物定量所造成的不准确性。但即使如此,传统的定量方法也都只能算作半定量、粗略定量的 仅供学习与参考

有机波谱学 红外光谱总结

总结 当一束具有连续波长的红外光通过物质,物质分子中某个基团的振动频率或转动频率和红外光的频率一样时,分子就吸收能量由原来的基态振(转)动能级跃迁到能量较高的振(转)动能级,分子吸收红外辐射后发生振动和转动能级的跃迁,该处波长的光就被物质吸收。所以,红外红外光谱光谱法实质上是一种根据分子内部原子间的相对振动和分子转动等信息来确定物质分子结构和鉴别化合物的 分析方法。将分子吸收红外光的情况用仪器记录下来,就得到红外光谱图。红外光谱图通常用波长(λ)或波数(σ)为横坐标,表示吸收峰的位置,用透光率(T%)或者吸光度(A)为纵坐标,表示吸收强度。 当外界电磁波照射分子时,如照射的电磁波的能量与分子的两能级差相等,该频率的电磁波就被该分子吸收,从而引起分子对应能级的跃迁,宏观表现为透射光强度变小。电磁波能量与分子两能级差相等为物质产生红外吸收光谱必须满足条件之一,这决定了吸收峰出现的位置。 红外吸收光谱产生的第二个条件是红外光与分子之间有偶合作用,为了满足这个条件,分子振动时其偶极矩必须发生变化。这实际上保证了红外光的能量能传递给分子,这种能量的传递是通过分子振动偶极矩的变化来实现的。并非所有的振动都会产生红外吸收,只有偶极矩发生变化的振动才能引起可观测的红外吸收,这种振动称为红外活性振动;偶极矩等于零的分子振动不能产生红外吸收,称为红外非活性振动。 分子的振动形式可以分为两大类:伸缩振动和弯曲振动。前者是指原子沿键轴方向的往复运动,振动过程中键长发生变化。后者是指原子垂直于化学键方向的振动。通常用不同的符号表示不同的振动形式,例如,伸缩振动可分为对称伸缩振动和反对称伸缩振动,分别用 Vs 和Vas 表示。弯曲振动可分为面内弯曲 振动(δ)和面外弯曲振动(γ)。从理论上来说,每一个基本振动都能吸收与 红外光谱仪其频率相同的红外光,在红外光谱图对应的位置上出现一个吸收峰。实际上有一些振动分子没有偶极矩变化是红外非活性的;另外有一些振动的频率

红外光谱图分析

红外识谱歌 红外可分远中近,中红特征指纹区,1300来分界,注意横轴划分异。看图要知红外仪,弄清物态液固气。样品来源制样法,物化性能多联系。识图先学饱和烃,三千以下看峰形。2960、2870是甲基,2930、2850亚甲峰。1470碳氢弯,1380甲基显。二个甲基同一碳,1380分二半。面内摇摆720,长链亚甲亦可辨。烯氢伸展过三千,排除倍频和卤烷。末端烯烃此峰强,只有一氢不明显。化合物,又键偏,~1650会出现。烯氢面外易变形,1000以下有强峰。910端基氢,再有一氢990。顺式二氢690,反式移至970;单氢出峰820,干扰顺式难确定。炔氢伸展三千三,峰强很大峰形尖。三键伸展二千二,炔氢摇摆六百八。芳烃呼吸很特征,1600~1430。1650~2000,取代方式区分明。900~650,面外弯曲定芳氢。五氢吸收有两峰,700和750;四氢只有750,二氢相邻830;间二取代出三峰,700、780,880处孤立氢醇酚羟基易缔合,三千三处有强峰。C-O伸展吸收大,伯仲叔醇位不同。1050伯醇显,1100乃是仲,1150叔醇在,1230才是酚。1110醚链伸,注意排除酯酸醇。若与π键紧相连,二个吸收要看准,1050对称峰,1250反对称。苯环若有甲氧基,碳氢伸展2820。次甲基二氧连苯环,930处有强峰,环氧乙烷有三峰,1260环振动,九百上下反对称,八百左右最特征。缩醛酮,特殊醚,1110非缩酮。酸酐也有C-O键,开链环酐有区别,开链强宽一千一,环酐移至1250。羰基伸展一千七,2720定醛基。吸电效应波数高,共轭则向低频移。张力促使振动快,环外双键可类比。二千五到三千三,羧酸氢键峰形宽,920,钝峰显,羧基可定二聚酸、酸酐千八来偶合,双峰60严相隔,链状酸酐高频强,环状酸酐高频弱。羧酸盐,偶合生,羰基伸缩出双峰,1600反对称,1400对称峰。1740酯羰基,何酸可看碳氧展。1180甲酸酯,1190是丙酸,1220乙酸酯,1250芳香酸。1600兔耳峰,常为邻苯二甲酸。氮氢伸展三千四,每氢一峰很分明。羰基伸展酰胺I,1660有强峰;N-H变形酰胺II,1600分伯仲。伯胺频高易重叠,仲酰固态1550;碳氮伸展酰胺III,1400强峰显。胺尖常有干扰见,N-H伸展三千三,叔胺无峰仲胺单,伯胺双峰小而尖。1600碳氢弯,芳香仲胺千五偏。八百左右面内摇,确定最好变成盐。伸展弯曲互靠近,伯胺盐三千强峰宽,仲胺盐、叔胺盐,2700上下可分辨,亚胺盐,更可怜,2000左右才可见。硝基伸缩吸收大,相连基团可弄清。1350、1500,分为对称反对称。氨基酸,成内盐,3100~2100峰形宽。1600、1400酸根展,1630、1510碳氢弯。盐酸盐,羧基显,钠盐蛋白三千三。矿物组成杂而乱,振动光谱远红端。钝盐类,较简单,吸收峰,少而宽。注意羟基水和铵,先记几种普通盐。1100是硫酸根,1380硝酸盐,1450碳酸根,一千左右看磷酸。硅酸盐,一峰宽,1000真壮 观。勤学苦练多实践,红外识谱不算难

相关主题
文本预览
相关文档 最新文档