当前位置:文档之家› 数值分析法 曲线拟合法插值建模法

数值分析法 曲线拟合法插值建模法

数值分析法  曲线拟合法插值建模法
数值分析法  曲线拟合法插值建模法

数值分析法

相关知识

在生产和科学实验中,自变量x 与因变量y 间的函数关系()y f x =有时不能写出解析表达式,而只能得到函数在若干点的函数值或导数值,或者表达式过于复杂而需要较大的计算量。当要求知道其它点的函数值时,需要估计函数值在该点的值。

为了完成这样的任务,需要构造一个比较简单的函数()y x ?=,使函数在观测点的值等于已知的值,或使函数在该点的导数值等于已知的值,寻找这样的函数()y x ?=有很多方法。根据测量数据的类型有以下两类处理观测数据的方法。

(1)测量值是准确的,没有误差,一般用插值。 (2)测量值与真实值有误差,一般用曲线拟合。

曲线拟合法

已知离散点上的数据集1122{(,),(,),,(,)}n n x y x y x y ,即已知在点集12{,,,}n x x x 上的函数值12{,,,}n y y y ,构造一个解析函数(其图形为一曲线)使()f x 在原离散点

i x 上尽可能接近给定的i y 值,这一过程称为曲线拟合。

曲线拟合的一般步骤是先根据实验数据,结合相关定律,将要寻求的最恰当的拟合曲线方程形式预测出来,再用其他的数学方法确定经验公式中的参数。

对于事先给定的一组数据,确定经验公式一般可分为三步进行:

(1)、确定经验公式的形式:根据系统和测定的数据的特点,并参照已知图形的特点确定经验公式的形式。

(2)、确定经验公式中的待定系数:计算待定系数的方法有许多常用的法有图示法、均值法、差分法、最小二乘法、插值法等。

(3)、检验:求出经验公式后,还要将测定的数据与用经验公式求出的理论

数据作比较,验证经验公式的正确性,必要时还要修正经验公式。

关于确定经验公式的形式,可从以下几个方面入手:

(1)、利用已知的结论确定经验公式形式,如由已知的胡克定律可以确定在一定条件下,弹性体的应变与应力呈线性关系等。

(2)、从分析实验数据的特点入手,将之与已知形式的函数图形相对照,确定经验公式的形式。

(3)、描点作图法:将已知的点用光滑的曲线连接起来,寻找曲线的形式。

(4)、多项式近似、线性插值或样条插值等。多项式近似是工程中十分常见的方法,它首先需要确定多项式的次数,一般可以用差分法、差商法来估计。

<一>、差分方程法

<1>、差分方程:差分方程反映的是关于离散变量的取值与变化规律。通过建立一个或几个离散变量取值所满足的平衡关系,从而建立差分方程。

(1)、说明:差分方程就是针对要解决的目标,引入系统或过程中的离散变量,根据实际背景的规律、性质、平衡关系,建立离散变量所满足的平衡关系等式,从而建立差分方程。通过求出和分析方程的解,或者分析得到方程解的特别性质(平衡性、稳定性、渐近性、振动性、周期性等),从而把握这个离散变量的变化过程的规律,进一步再结合其他分析,得到原问题的解。

(2)、应用:差分方程模型有着广泛的应用。实际上,连续变量可以用离散变量来近似和逼近,从而微分方程模型就可以近似于某个差分方程模型。差分方程模型有着非常广泛的实际背景。在经济金融保险领域、生物种群的数量结构规律分析、疾病和病虫害的控制与防治、遗传规律的研究等许许多多的方面都有着非常重要的作用。可以这样讲,只要牵涉到关于变量的规律、性质,就可以适当地用差分方程模型来表现与分析求解。

<2>、基本知识: 基本概念 1、 差分算子:

设数列{}n x ,定义差分算子n n n x x x -=??+1:为n x 在n 处的向前差分,而1--=?n n n x x x 为n x 在n 处的向后差分。(以后我们都是指向前差分),可见n x ?是n 的函数。

从而可以进一步定义n x ?的差分:

n n x x 2)(?=??

称之为在n 处的二阶差分,它反映的是的增量的增量。 类似可定义在n 处的k 阶差分为:

))((1n k n k x x -??=?

2、 差分算子 、不变算子、平移算子:

记n n n n x Ix x Ex ==+,1,称E 为平移算子,I 为不变算子 。

则有:n n n n x I E Ix Ex x )(-=-=? I E -=?∴ 由上述关系可得:

i n k

i i

k i k n i

k

i i

k i

k n k

n k

x C x E C x I E x +=-=-∑∑-=-=-=?0

0)1()

1()( (1)

这表明n x 在n 处的k 阶差分由n x 在k n n n ++....1,,处的取值所线性决定。 反之,

由 n n n x x x -=?+1 得 n n n x x x ?+=+1: n n n n x x x x +-=?++1222,得:n n n n x x x x 2122?++-=++,

这个关系表明:第n+2项可以用前两项以及相邻三项增量的增量来表现和计算。

即一个数列的任意一项都可以用其前面的k 项和包括这项在内的k+1 项增量的增量的增量……..第k 层增量所构成。

……..

,)1(1

k n i n k i i

k i

k n k

x x C x ++-=-+-=

?∑

得: n k i n k i i

k i

k k n x x C x ?+--=+-=-+∑1

)

1( (2)

可以看出:k n x +可以由n k n n x x x ??,...,,的线性组合表示出来

3、 差分方程:

由n x 以及它的差分所构成的方程

),...,,,(1

n k n n n k x x x n f x -??=? (3)

称之为k 阶差分方程。 由(1)式可知(3)式可化为:

),...,,,(11-+++=k n n n k n x x x n F x (4)

故(4)也称为k 阶差分方程(反映的是未知数列n x 任意一项与其前,前面k 项之间的关系)。

由(1)和(2)可知,(3)和(4)是等价的,我们经常用的差分方程的形式是(4)式。

4、 差分方程的解与有关概念:

(1)、如果n x 使k 阶差分方程(4)对所有的n 成立,则称n x 为方程(4)的解。 (2)、如果-

=x x n (-

x 为常数)是(4)的解,即

),...,,(-

--=x x n F x

则称-

=x x n 为(4)的平衡解或叫平衡点。平衡解可能 不只一个。平衡解的基本意义是:设n x 是(4)的解,考虑n x 的变化性

态,其中之一是极限状况,如果x x n n =∞

→lim ,则方程(4)两边取极限(x 就存在在这里面),应当有 ),...,,(-

--=x x n F x

(3)、如果(4)的解n x 使得-

-x x n 既不是最终正的,也不是最终负的,则称n x 为关于平衡点-

x 是振动解。

(4)、如果令:-

-=x x y n n ,则方程(4)会变成

)

,...,,(1-++=k n n k n y y n G y

(5)

则 0=y 成为(5)的平衡点。

(5)、如果(5)的所有解是关于0=y 振动的,则称k 阶差分方程 (5)是振动方程。如果(5)的所有解是关于0=y 非振动的,则称k 阶差分方程(5)是非振动方程。

(6)、如果(5)有解n y ,使得对任意大的y N 有:

>≥n N n y Sup y

则称n y 为正则解。(即不会从某项后全为零)

(7)、如果方程(4)的解n x 使得-

→=x x Lim n n ,则称n x 为稳定解。

5、差分算子的若干性质

(1)n n n n

y x y x ?+?=+?βαβα)(.)(

(2))

(1

)(1n n n n n

n n n y x x y y y y x ?-?=?+

(3)

n n n n n n y x x y y x ?+?=?+1)(

(4)

∑∑==+++?+-=?b

a

k k

k a b

a

k a b b k k y x y x y x x y

111

(5)∑=?=+?==n

i i

i

n n

n

n

x C x I x E x 0

000)( 6、Z 变换:

定义:对于数列n x ,定义复数级数

∑∞

=-=

=0

)()(k k

k n z x x Z z X (6) 这是关于z 洛朗级数。它的收敛域是:21R z R <<,其中2R 可以为∞,1R 可以为0。 称)(n x Z 为n x 的z -变换。

由复变函数展开成洛朗级数的唯一性可知:z 变换是一一对应的,从而有逆变换,记为:

))((1

z X Z x n -= (7)

z 变换是研究数列的有效工具 。 z 变换的若干重要性质:

(1)线性性:

)()()(n n n n y Z x Z y x Z βαβα+=+

(2)平移性质: ])([)(1

0∑-=-+-=N k k

k N

N n z x z X z x Z

z 变换举例:

(1)???≠=∞=0

,00,)(n n n δ, 则∑∞

==--=?==00

1)

1()())((k k k

k z z k n Z δδ

(2)???<≥=0

,00,1)(k k n u ,则∑∑∞=∞

=-->-===00,1,1)())((k k k

k z z z z z k u n u Z (3)设,)(n

a n f =则∑∞

=->>-=

=0

,0,,)(k k

k n

a a z a

z z

z a a Z (4)设

,!1)(n n f =则0,!

1

)!1(01>==∑∞=-z e z k n Z k z k

<3>、差分方程常用解法与性质分析: 1、常系数线性差分方程的解 方程

)(...110n b x a x a x a n k k n k n =+++-++ (8)

其中k a a a ,...,,10为常数,称方程(8)为常系数线性方程。 又称方程

0...110=+++-++n k k n k n x a x a x a (9)

为方程(8)对应的齐次方程。 如果(9)有形如

n

n x λ

=的解,带入方程中可得:

0 (11)

10=++++--k k k k

a a a a λλλ (10)

称方程(10)为方程(8)、(9)的特征方程。 显然,如果能求出(10)的根,则可以得到(9)的解。 基本结果如下:

(1)、若(10)有k 个不同的实根,则(9)有通解:

n

k

k n n n c c c x λλλ+++=...2211,

(2)、若(10)有m 重根λ,则通解中有构成项:

n m m n

c n c c λ

)...(1

21--

--+++ (3)、若(10)有一对单复根

β

αλi ±=,令:

?

ρλi e

±=,αβ

?βαρarctan ,2

2

=+=,

则(9)的通解中有构成项:

n c n c n

n

?ρ?ρsin cos 21-

-

+

(4)、若有m 重复根:βαλi ±=,φρλi e ±=,则(9)的通项中有构成项:

n n c n c c n n

c n c c n m m m m n

m m ?ρ?ρs i n )...(cos )...(12211

21--

-++--

-+++++++

综上所述,由于方程(10)恰有k 个根,从而构成方程 (9)的通解中必有k 个独立的任意常数。通解可记为:-

n x

如果能得到方程(8)的一个特解:

*

n

x ,则(8)必有通解:

=n x -

n x +*

n

x (11)

(8)的特解可通过待定系数法来确定。

例如:如果)(),()(n p n p b n b m m n =为n 的多项式,则当b 不是特征根时,可设成形如)(n q b m n 形式的特解,其中)(n q m 为m 次多项式;如果b 是r 重根时,可设特解:r n n b )(n q m ,将其代入(8)中确定出系数即可。 2、差分方程的z 变换解法:

对差分方程两边关于n x 取Z 变换,利用n x 的Z 变换F (z )来表示出k n x +的Z 变换,然后通过解代数方程求出F (z ),并把F(z)在z=0的解析圆环域中展开成洛朗级数,其系数就是所要求的n x

例1 设差分方程1,0,0231012===++++x x x x x n n n ,求n x

解:解法1:特征方程为0232

=++λλ,有根:2,121-=-=λλ

故:n

n n c c x )2()1(2

1-+-=为方程的解。 由条件1,010==x x 得:n

n n x )2()1(---=

解法2:设F (z )=Z(n x ),方程两边取变换可得:

0)(2))((3)1

.)((0102=+-+--z F x z F z z

x x z F z

由条件1,010==x x 得2

3)(2++=z z z

z F

由F (z ) 在2>z 中解析,有

∑∑∑∞

=∞=-∞

=--=---=+

-+=+-+=000)21()1(2)1(1)1(211

111)2

111(

)(k k k k k k k k

k k

z z z z

z z z z z F 所以,n

n n x )2()1(---=

3、二阶线性差分方程组 设=)(n z )(n y x n

,)(

d

c b

a A =,形成向量方程组

)()1(n Az n z =+

(12) 则:

)1()1(z A n z n =+ (13)

(13)即为(12)的解。

为了具体求出解(13),需要求出n A ,这可以用高等代数的方法计算。常用的方法有:

(1)如果A 为正规矩阵,则A 必可相似于对角矩阵,对角线上的元素就是A

的特征值,相似变换矩阵由

A

的特征向量构成:

)1()()1(,,111z p p n z p p A p p A n n n Λ=+∴Λ=Λ=---。

(2)将A 分解成ηξξη,,/,=A 为列向量,则有 A A n n n .)(.......).(1//.//-===ηξηξηξηξηξ 从而,)1(.)()1()1(1/Az z A n z n n -==+ηξ

(3)或者将A 相似于约旦标准形的形式,通过讨论A 的特征值的性态,找出n A 的内在构造规律,进而分析解)(n z 的变化规律,获得它的基本性质。 4、关于差分方程稳定性的几个结果

(1)k 阶常系数线性差分方程(8)的解稳定的充分必要条件是它对应的特征方程(10)所有的 特征根k i i ...2,1,=λ满足1

)(1n n x f x =+ (14)

(14)的平衡点-

x 由方程)(-

-=x f x 决定, 将)(n x f 在点-

x 处展开为泰勒形式:

)())(()(/-

--+-=x f x x x f x f n n (15)

故有:1)(/

<-

x f 时,(14)的解-

x 是稳定的,

1)(/

>-

x f 时,方程(14)的平衡点-x 是不稳定的。

<二>、最小二乘拟合

在物理实验中经常要观测两个有函数关系的物理量。根据两个量的许多组观测数据来确定它们的函数曲线,这就是实验数据处理中的曲线拟合问题。这类问题通常有两种情况:一种是两个观测量x与y之间的函数形式已知,但一些参数未知,需要确定未知参数的最佳估计值;另一种是x与y之间的函数形式还不知道,需要找出它们之间的经验公式。后一种情况常假设x与y之间的关系是一个待定的多项式,多项式系数就是待定的未知参数,从而可采用类似于前一种情况的处理方法。

一、最小二乘法原理

在两个观测量中,往往总有一个量精度比另一个高得多,为简单起见把精度较高的观测量看作没有误差,并把这个观测量选作x,而把所有的误差只认为是y的误差。设x和y的函数关系由理论公式

y=f(x;c1,c2,……c m)(0-0-1)给出,其中c1,c2,……c m是m个要通过实验确定的参数。对于每组观测数据(x i,y i)i=1,2,……,N。都对应于xy平面上一个点。若不存在测量误差,则这些数据点都准确落在理论曲线上。只要选取m组测量值代入式(0-0-1),便得到方程组

y i=f(x;c1,c2,……c m)

(0-0-2)式中i=1,2,……,m.求m个方程的联立解即得m个参数的数值。显然N

在N>m 的情况下,式(0-0-2)成为矛盾方程组,不能直接用解方程的方法求得m 个参数值,只能用曲线拟合的方法来处理。设测量中不存在着系统误差,或者说已经修正,则y 的观测值y i 围绕着期望值 摆动,其分布为正态分布,则y i 的概率密度为

()()[]??????????--=

2

2

212,......,,;exp 21i m i i i i c c c x f y y p σσπ,

式中i σ是分布的标准误差。为简便起见,下面用C 代表(c 1,c 2,……c m )。

考虑各次测量是相互独立的,故观测值(y 1,y 2,……c N )的似然函数

(

)

()[]???

???????--=

∑=N i i i N N C x f y L 12

221;21exp ...21σσσσπ.

取似然函数L 最大来估计参数C ,应使

()[]min

;1

1

2

2=-∑=N

i i i

i

C x f y

σ (0-0-3)

取最小值:对于y 的分布不限于正态分布来说,式(0-0-3)称为最小二乘法准则。若为正态分布的情况,则最大似然法与最小二乘法是一致的。因权重

因子2

/1i i σω=,故式(0-0-3)表明,用最小二乘法来估计参数,要求各测量值

y i 的偏差的加权平方和为最小。

根据式(0-0-3)的要求,应有

()[]()

m k C x f y c c

c N

i i i i

k

,...,2,10

;1?12

2

==-??

==∑σ

从而得到方程组

()[]()()m k C C x f C x f y c c N

i k i i i ,...,2,10;;1?12

==??-==∑σ (0-0-4)

解方程组(0-0-4),即得m 个参数的估计值m c c c ?,...,?,?21,从而得到拟合的曲线方程()m c c c

x f ?,...,?,?;21。 然而,对拟合的结果还应给予合理的评价。若y i 服从正态分布,可引入拟合的x 2量,

()[]

=-=N

i i i i

C x f y x 1

2

2

2

;1

σ

(0-0-5)

把参数估计()m c c c c ?,...,?,??21=代入上式并比较式(0-0-3),便得到最

小的x 2值

()[]∑

=-=N

i i i i

c

x f y x

1

2

22min

?;1

σ

(0-0-6)

可以证明,2

min x 服从自由度v =N-m 的x 2分布,由此可对拟合结果作x 2检验。

由x

2

分布得知,随机变量2min x 的期望值为N-m 。如果由式(0-0-6)计算出2

min

x 接近N-m (例如m N x -≤2

min ),则认为拟合结果是可接受的;如果

22min >--m N x ,则认为拟合结果与观测值有显著的矛盾。

二、直线的最小二乘拟合

曲线拟合中最基本和最常用的是直线拟合。设x 和y 之间的函数关系由直线方程

y =a 0+a 1x (0-0-7)

给出。式中有两个待定参数,a 0代表截距,a 1代表斜率。对于等精度测量所得到的N 组数据(x i ,y i ),i =1,2……,N ,x i 值被认为是准确的,所有的误差只联系着y i 。下面利用最小二乘法把观测数据拟合为直线。

1.直线参数的估计

前面指出,用最小二乘法估计参数时,要求观测值y i 的偏差的加权平方和

为最小。对于等精度观测值的直线拟合来说,由式(0-0-3)可使

()[]

a

a N

i i i

x a a

y ?1

210

==∑+- (0-0-8)

最小即对参数a (代表a 0,a 1)最佳估计,要求观测值y i 的偏差的平方和为最小。

根据式(0-0-8)的要求,应有

()[]

(),0??21

10?1

210

=---=+-??

∑∑===N

i i i a

a N

i i i

x a a

y x a a

y a

()[]().0??21

10?1

2

101=---=+-??∑∑===N

i i i a

a N i i

i x a a

y x a a y a

整理后得到正规方程组

?????=+=+∑∑∑∑∑.??,??21010i i i i i i y x x a x a y x a N a

解正规方程组便可求得直线参数a 0和a 1的最佳估计值0?a

和1?a 。即 ()()()()()()2220?∑∑∑∑∑∑--=

i

i

i

i i

i

i

x x N y x x y x a

(0-0-10)

()()(

)

()()

2

2

1?∑∑∑∑∑--=i

i

i

i i i x x N

y x y x N a

(0-0-11)

2.拟合结果的偏差

由于直线参数的估计值0?a

和1?a 是根据有误差的观测数据点计算出来的,它们不可避免地存在着偏差。同时,各个观测数据点不是都准确地落地拟合线上面的,观测值y i 与对应于拟合直线上的i y

?这之间也就有偏差。 首先讨论测量值y i 的标准差S 。考虑式(0-0-6),因等精度测量值y i 所有

的i σ都相同,可用y i 的标准偏差S 来估计,故该式在等精度测量值的直线拟合中应表示为

()[].??11

2

102

2min

∑=+-=N

i i x a a y S

x

(0-0-12)

已知测量值服从正态分布时,2

min x 服从自由度v =N-2的x 2分布,其期望值

()[

].

2??11

2

102

2

min

-=+-=∑=N x a a y S

x

N

i i i

由此可得y i 的标准偏差

()[].??212

1

10∑=+--=

N

i i i x a a y N S (0-0-13)

这个表示式不难理解,它与贝塞尔公式是一致的,只不过这里计算S 时受

到两参数0?a

和1?a 估计式的约束,故自由度变为N-2罢了。 式(0-0-13)所表示的S 值又称为拟合直线的标准偏差,它是检验拟合结果是否有效的重要标志。如果xy 平面上作两条与拟合直线平行的直线

,??,??1010S x a a

y S x a a

y ++=''-+=' 如图0-0-1所示,则全部观测数据点(x i ,y i )的分布,约有68.3%的点落

在这两条直线之间的范围内。

图0-0-1 拟合直线两侧数据点的分布

下面讨论拟合参数偏差,由式(0-0-10)和(0-0-11)可见,直线拟合的

两个参数估计值0?a

和1?a 是y i 的函数。因为假定x I 是精确的,所有测量误差只有y i 有关,故两个估计参数的标准偏差可利用不确定度传递公式求得,即

.?;?2

112

1010

∑∑==????

????=

???

? ????=N

i i

a N

i i a S y a S S y a

S

把式(0-0-10)与(0-0-11)分别代入上两式,便可计算得

()()

;

2

22

0∑∑∑-=i

i

i a x x N

x S

S (0-0-14)

()()

.

2

21∑∑-=i

i

a x x N

N

S

S (0-0-15)

三、相关系数及其显著性检验

当我们把观测数据点(x i ,y i )作直线拟合时,还不大了解x 与y 之间线性关系的密切程度。为此要用相关系数ρ(x ,y )来判断。其定义已由式(0-0-12)给出,现改写为另一种形式,并改用r 表示相关系数,得

()()

()()2

/122?

?

????-?---=

∑∑∑i i i i i

i i

y x x x y y x x

r (0-0-16)

式中x 和y 分别为x 和y 的算术平均值。r 值范围介于-1与+1之间,即-1≤r ≤1。当r>0时直线的斜率为正,称正相关;当r<0时直线的斜率为负,称负相关。当|r|=1时全部数据点(x i ,y i )都落在拟合直线上。若r =0则x 与y 之间完全不相关。r 值愈接近±1则它们之间的线性关系愈密切。

插值法建模

<一>、拉格朗日插值多项式 1 、基函数

要求通过),(,),,(),,(1100n n y x y x y x 共n+1个节点的插值多项式)(x P n ,可以通过求方程组

???????++++=++++=++++=n

n n n n n

n n n

n x a x a x a a y x a x a x a a y x a x a x a a y

22101212110102020100 的解n a a a ,,,10 得到。但这样不但计算复杂,且难于得到)(x P n 的简单表达式。 考虑简单的插值问题:设函数在区间[a ,b ]上n +1个互异节点n x x x ,,,10 的函数值为

??

?≠===,,

0,

1i j i

j y ij j δ (j = 0, 1, …, n )

求插值多项式)(x l i ,满足条件

ij

i x l δ=)( j = 0, 1, …, n ; i = 0, 1, …, n

由上式知,n i i x x x x x ,,,,,,1110 +-是)(x l i =1的根,且)(x l i ∈n H ,可令

i i A x l =)())...()()...()((1110n i i x x x x x x x x x x -----+-

再由)(x l i =1得

))...()()...()((1

1110n i i i i i i i i x x x x x x x x x x A +----=

+-

于是

))...()()...()(()

)...()()...()(()(11101110n i i i i i i i n i i i x x x x x x x x x x x x x x x x x x x x x l ----------=

+-+-

n+1个n 次多项式)(,),(),(10x l x l x l n 称为以为n x x x ,,,10 节点的n 次插值基函数。

n=1时的一次基函数为

,

)(101

0x x x x x l --=

10

1)(x x x x x l --=

n=2时的二次基函数为

))(()

)(()())(()

)(()())(()

)(()(120210221012012010210x x x x x x x x x l x x x x x x x x x l x x x x x x x x x l ----=

----=

----=

2、 拉格朗日插值多项式

现在考虑一般的插值问题:设函数在区间[a,b ]上n+1个互异节点n x x x ,...,10上的函数值分别为n y y y ,...,,10,求n 次插值多项式)(x p n

,满足条件 ,)(j j n y x p = j=0,1,…n

∑==+++=n

i i i n n n x l y x l y x l y x l y x L 0

1100)

()(...)()()((5.2.3)

其中)(),...,(),(10x l x l x l n 为以n x x x ,...,10为节点的n 次插值基函数,则)(x L n 是一次数不超过n

的多项式,且满足

j j n y x L =)(, j=0,1,…,

n

再由插值多项式的唯一性,得

)()(x L x p n n =

式(5.2.3)表示的插值多项式称为拉格朗日(Lagrange )插值多项式。特别地,n=1 时称为线性插值(图5-4(a )),n=2时称为抛物插值或二次插值(图5-4(b

))。

值得注意的是,插值基函数)(),...,(),(10x l x l x l n 仅由插值节点n x x x , (10)

定,与被插函数f(x)无关。因此,若以 n x

x x ,...,10

为插值节点对函数f(x)≡1作 插值多项式,则由式(5.2.3)立即得到基函数的一个性质

∑=n

i i x l 0

)

(

≡1

还应注意,对于插值节点n x x x ,...,10,只要求它们互异,与大小次序无关。

5-4

例1 已知y=x ,0x =4,1x =9,用线性插值求7

的近似值。 解 0y =2,1y =3,基函数分别为

)

4(51

494)(),9(51944)(10-=--=--=--=x x x l x x x l

插值多项式为

)6(51

)

4(5

1

3)9(512)()()(11001+=-?+--?=+=x x x x l y x l y x L

所以

6

.2513

)7(71==≈L

数值计算方法比较

有限差分方法(FDM:Finite Difference Method)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。有限差分法主要集中在依赖于时间的问题(双曲型和抛物型方程)。有限差分法方面的经典文献有Richtmeyer & Morton的《Difference Methods for Initial-Value Problems》;R. LeVeque《Finite Difference Method for Differential Equations》;《Numerical Methods for C onservation Laws》。 注:差分格式: (1)从格式的精度来划分,有一阶格式、二阶格式和高阶格式。 (2)从差分的空间形式来考虑,可分为中心格式和逆风格式。 (3)考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。 目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。 构造差分的方法: 构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。 有限差分法的不足:由于采用的是直交网格,因此较难适应区域形状的任意性,而且区分不出场函数在区域中的轻重缓急之差异,缺乏统一有效的处理自然边值条件和内边值条件的方法,难以构造高精度(指收敛阶)差分格式,除非允许差分方程联系更多的节点(这又进一步增加处理边值条件韵困难)。另外它还有编制不出通用程序的困难。 有限差分法的优点:该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念 直观,表达简单,精度可选而且在一个时间步内,对于一个给定点来说其相关的空间点只是 与该相邻的几点,而不是全部的空间点。是发展较早且比较成熟的数值方法 广义差分法(有限体积法)(GDM:Generalized Difference Method):1953年,Mac—Neal 利用积分插值法(也称积分均衡法)建立了三角网格上的差分格 式,这就是以后通称的不规划网格上的差分法.这种方法的几何误差小,特别是给出了处理自然边值条件(及内边值条件)的有效方法,堪称差分法的一大进步。1978年,李荣华利用有限元空间和对偶单元上特征函数的推广——局部Taylor展式的公项,将积分插值法改写成广义Galerkin法形式,从而将不规则网格差分法推广为广义差分法.其基本思路是,将计算区域划分为一系列不重复的控制体积,并使每个网格点周围有

插值与数据拟合模型

第二讲 插值与数据拟合模型 函数插值与曲线拟合都是要根据一组数据构造一个函数作为近似,由于近似的要求不同,二者的数学方法上是完全不同的。而面对一个实际问题,究竟用插值还是拟合,有时容易确定,有时则并不明显。 在数学建模过程中,常常需要确定一个变量依存于另一个或更多的变量的关系,即函数。但实际上确定函数的形式(线性形式、乘法形式、幂指形式或其它形式)时往往没有先验的依据。只能在收集的实际数据的基础上对若干合乎理论的形式进行试验,从中选择一个最能拟合有关数据,即最有可能反映实际问题的函数形式,这就是数据拟合问题。 一、插值方法简介 插值问题的提法是,已知1+n 个节点n j y x j j ,,2,1,0),,( =,其中j x 互不相同,不妨设b x x x a n =<<<= 10,求任一插值点)(*j x x ≠处的插值*y 。),(j j y x 可以看成是由某个函数)(x g y =产生的,g 的解析表达式可能十分复杂,或不存在封闭形式。也可以未知。 求解的基本思路是,构造一个相对简单的函数)(x f y =,使f 通过全部节点,即),,2,1,0()(n j y x f j j ==,再由)(x f 计算插值,即*)(*x f y =。 1.拉格朗日多项式插值 插值多项式 从理论和计算的角度看,多项式是最简单的函数,设)(x f 是n 次多项式,记作 0111)(a x a x a x a x L n n n n n ++++=-- (1) 对于节点),(j j y x 应有 n j y x L j j n ,,2,1,0,)( == (2) 为了确定插值多项式)(x L n 中的系数011,,,,a a a a n n -,将(1)代入(2),有 ???????=++++=++++=++++---n n n n n n n n n n n n n n n n y a x a x a x a y a x a x a x a y a x a x a x a 01110111110001010 (3) 记 T n T n n n n n n n n n n y y y Y a a a A x x x x x x X ),,,(,),,,(,11110011111 100 ==?????? ? ??=---- 方程组(3)简写成 Y XA = (4) 注意X det 是Vandermonde 行列式,利用行列式性质可得 ∏≤<≤-= n k j j k x x X 0)(det 因j x 互不相同,故0det ≠X ,于是方程(4)中A 有唯一解,即根据1+n 个节点可以确定唯一的n 次插值多项式。 拉格朗日插值多项式 实际上比较方便的做法不是解方程(4)求A ,而是先构造一组基函数: n i x x x x x x x x x x x x x x x x x l n i i i i i i n i i i ,,2,1,0,) ())(()()())(()()(110110 =--------=+-+- (5) )(x l i 是n 次多项式,满足

插值与拟合(使用插值还是拟合)

利用matlab实现插值与拟合实验 张体强1026222 张影 晁亚敏 [摘要]:在测绘学中,无论是图形处理,还是地形图处理等,大多离不开插值与拟合的应用,根据插值与拟合原理,构造出插值和拟合函数,理解其原理,并在matlab平台下,实现一维插值,二维插值运算,实现多项式拟合,非线性拟合等,并在此基础上,联系自己所学专业,分析其生活中特殊例子,提出问题,建立模型,编写程序,以至于深刻理解插值与拟合的作用。 [关键字]: 测绘学插值多项式拟合非线性拟合 [ Abstract]: in surveying and mapping, whether the graphics processing, or topographic map processing and so on, are inseparable from the interpolation and fitting application, according to the interpolation and fitting theory, construct the fitting and interpolation function, understanding its principle, and MATLAB platform, achieve one-dimensional interpolation, two-dimensional interpolation, polynomial fitting, non-linear fitting, and on this basis, to contact their studies, analysis of their living in a special example, put forward the question, modeling, programming, so that a deep understanding of interpolation and fitting function. [ Key words]: Surveying and mapping interpolation polynomial fitting nonlinear

插值法和拟合实验报告(数值计算)

插值法和拟合实验报告 一、 实验目的 1.通过进行不同类型的插值,比较各种插值的效果,明确各种插值的优越性; 2.通过比较不同次数的多项式拟合效果,了解多项式拟合的原理; 3.利用matlab 编程,学会matlab 命令; 4.掌握拉格朗日插值法; 5.掌握多项式拟合的特点和方法。 二、 实验题目 1.、插值法实验 将区间[-5,5]10等分,对下列函数分别计算插值节点 k x 的值,进行不同类型 的插值,作出插值函数的图形并与)(x f y =的图形进行比较: ;11)(2x x f += ;a r c t a n )(x x f = .1)(42 x x x f += (1) 做拉格朗日插值; (2) 做分段线性插值; (3) 做三次样条插值. 2、拟合实验 给定数据点如下表所示: 分别对上述数据作三次多项式和五次多项式拟合,并求平方误差,作出离散函数 ),(i i y x 和拟合函数的图形。 三、 实验原理 1.、插值法实验

∏∑∏∏∏∑∑≠==≠=≠=≠=+-==--= =-= ==-=-=----==++==j i j j i i i i i n i i n n j i j j n j i j j i i n j i j j n i i i n i i n n n o i n i i n x x x x x y x l x L x x c n i x x c x x x c x x x x x x x x c y x l x L y x l y x l y x l x L ,00 ,0,0,01100 00 )(l )()() (1 ,1,0, 1)()(l ) ()())(()()()()()()()(, 故, 得 再由,设 2、拟合实验

数值分析插值算法源程序

#include #include float f(float x) //计算ex的值 { return (exp(x)); } float g(float x) //计算根号x的值 { return (pow(x,0.5)); } void linerity () //线性插值 { float px,x; float x0,x1; printf("请输入x0,x1的值\n"); scanf("%f,%f",&x0,&x1); printf("请输入x的值: "); scanf("%f",&x); px=(x-x1)/(x0-x1)*f(x0)+(x-x0)/(x1-x0)*f(x1); printf("f(%f)=%f \n",x,px); } void second () //二次插值 { float x0,x1,x2,x,px; x0=0; x1=0.5; x2=2; printf("请输入x的值:"); scanf("%f",&x); px=((x-x1)*(x-x2))/((x0-x1)*(x0-x2))*f(x0)+((x-x0)*(x-x2))/((x1-x0)*(x1-x2))*f(x1)+((x-x0)* (x-x1))/((x2-x0)*(x2-x1))*f(x2);

printf("f(%f)=%f\n",x,px); } void Hermite () //Hermite插值 { int i,k,n=2; int flag1=0; printf("Hermite插值多项式H5(x)="); for(i=0;i<=n;i++) { int flag=0; flag1++; if(flag1==1) { printf("y%d[1-2(x-x%d)*(",i,i); } else { printf("+y%d[1-2(x-x%d)*(",i,i); } for(k=0;k<=n;k++) { if(k!=i) { flag++; if(flag==1) { printf("(1/x%d-x%d)",i,k); } else { printf("+(1/x%d-x%d)",i,k);

数值分析实验插值与拟合

《数值分析》课程实验一:插值与拟合 一、实验目的 1. 理解插值的基本原理,掌握多项式插值的概念、存在唯一性; 2. 编写MA TLAB 程序实现Lagrange 插值和Newton 插值,验证Runge 现象; 3. 通过比较不同次数的多项式拟合效果,理解多项式拟合的基本原理; 4. 编写MA TLAB 程序实现最小二乘多项式曲线拟合。 二、实验内容 1. 用Lagrange 插值和Newton 插值找经过点(-3, -1), (0, 2), (3, -2), (6, 10)的三次插值公式,并编写MATLAB 程序绘制出三次插值公式的图形。 2. 设 ]5,5[,11 )(2 -∈+= x x x f 如果用等距节点x i = -5 + 10i /n (i = 0, 1, 2, …, n )上的Lagrange 插值多项式L n (x )去逼近它。不妨取n = 5和n = 10,编写MATLAB 程序绘制出L 5(x )和L 10(x )的图像。 (2) 编写MA TLAB 程序绘制出曲线拟合图。 三、实验步骤 1. (1) Lagrange 插值法:在线性空间P n 中找到满足条件: ?? ?≠===j i j i x l ij j i , 0,, 1)(δ 的一组基函数{}n i i x l 0)(=,l i (x )的表达式为 ∏ ≠==--= n i j j j i j i n i x x x x x l ,0),,1,0()( 有了基函数{}n i i x l 0)(=,n 次插值多项式就可表示为 ∑==n i i i n x l y x L 0 )()( (2) Newton 插值法:设x 0, x 1, …, x n 是一组互异的节点,y i = f (x i ) (i = 0, 1, 2, …, n ),f (x )在处的n 阶差商定义为

(完整版)Matlab学习系列13.数据插值与拟合

13. 数据插值与拟合 实际中,通常需要处理实验或测量得到的离散数据(点)。插值与拟合方法就是要通过离散数据去确定一个近似函数(曲线或曲面),使其与已知数据有较高的拟合精度。 1.如果要求近似函数经过所已知的所有数据点,此时称为插值问 题(不需要函数表达式)。 2.如果不要求近似函数经过所有数据点,而是要求它能较好地反 映数据变化规律,称为数据拟合(必须有函数表达式)。 插值与拟合都是根据实际中一组已知数据来构造一个能够反映数据变化规律的近似函数。区别是:【插值】不一定得到近似函数的表达形式,仅通过插值方法找到未知点对应的值。【拟合】要求得到一个具体的近似函数的表达式。 因此,当数据量不够,但已知已有数据可信,需要补充数据,此时用【插值】。当数据基本够用,需要寻找因果变量之间的数量关系(推断出表达式),进而对未知的情形作预测,此时用【拟合】。

一、数据插值 根据选用不同类型的插值函数,逼近的效果就不同,一般有:(1)拉格朗日插值(lagrange插值) (2)分段线性插值 (3)Hermite (4)三次样条插值 Matlab 插值函数实现: (1)interp1( ) 一维插值 (2)intep2( ) 二维插值 (3)interp3( ) 三维插值 (4)intern( ) n维插值 1.一维插值(自变量是1维数据) 语法:yi = interp1(x0, y0, xi, ‘method’) 其中,x0, y0为原离散数据(x0为自变量,y0为因变量);xi为需要插值的节点,method为插值方法。 注:(1)要求x0是单调的,xi不超过x0的范围; (2)插值方法有‘nearest’——最邻近插值;‘linear’——线性插值;‘spline’——三次样条插值;‘cubic’——三次插值;

数学建模案例分析插值与拟合方法建模1数据插值方法及应用

第十章 插值与拟合方法建模 在生产实际中,常常要处理由实验或测量所得到的一批离散数据,插值与拟合方法就是要通过这些数据去确定某一类已经函数的参数,或寻求某个近似函数使之与已知数据有较高的拟合精度。插值与拟合的方法很多,这里主要介绍线性插值方法、多项式插值方法和样条插值方法,以及最小二乘拟合方法在实际问题中的应用。相应的理论和算法是数值分析的内容,这里不作详细介绍,请参阅有关的书籍。 §1 数据插值方法及应用 在生产实践和科学研究中,常常有这样的问题:由实验或测量得到变量间的一批离散样点,要求由此建立变量之间的函数关系或得到样点之外的数据。与此有关的一类问题是当原始数据 ),(,),,(),,(1100n n y x y x y x 精度较高,要求确定一个初等函数)(x P y =(一般用多项式或分段 多项式函数)通过已知各数据点(节点),即n i x P y i i ,,1,0,)( ==,或要求得函数在另外一些点(插值点)处的数值,这便是插值问题。 1、分段线性插值 这是最通俗的一种方法,直观上就是将各数据点用折线连接起来。如果 b x x x a n =<<<= 10 那么分段线性插值公式为 n i x x x y x x x x y x x x x x P i i i i i i i i i i ,,2,1,,)(11 1 11 =≤<--+--= ----- 可以证明,当分点足够细时,分段线性插值是收敛的。其缺点是不能形成一条光滑曲线。 例1、已知欧洲一个国家的地图,为了算出它的国土面积,对地图作了如下测量:以由西向东方向为x 轴,由南向北方向为y 轴,选择方便的原点,并将从最西边界点到最东边界点在x 轴上的区间适当的分为若干段,在每个分点的y 方向测出南边界点和北边界点的y 坐标y1和y2,这样就得到下表的数据(单位:mm )。

matlab中插值拟合与查表

MATLAB中的插值、拟合与查表 插值法是实用的数值方法,是函数逼近的重要方法。在生产和科学实验中,自变量x与因变量y的函数y = f(x)的关系式有时不能直接写出表达式,而只能得到函数在若干个点的函数值或导数值。当要求知道观测点之外的函数值时,需要估计函数值在该点的值。 如何根据观测点的值,构造一个比较简单的函数y=φ(x),使函数在观测点的值等于已知的数值或导数值。用简单函数y=φ(x)在点x处的值来估计未知函数y=f(x)在x点的值。寻找这样的函数φ(x),办法是很多的。φ(x)可以是一个代数多项式,或是三角多项式,也可以是有理分式;φ(x)可以是任意光滑(任意阶导数连续)的函数或是分段函数。函数类的不同,自然地有不同的逼近效果。在许多应用中,通常要用一个解析函数(一、二元函数)来描述观测数据。 根据测量数据的类型: 1.测量值是准确的,没有误差。 2.测量值与真实值有误差。 这时对应地有两种处理观测数据方法: 1.插值或曲线拟合。 2.回归分析(假定数据测量是精确时,一般用插值法,否则用曲线拟合)。 MATLAB中提供了众多的数据处理命令。有插值命令,有拟合命令,有查表命令。 2.2.1 插值命令 命令1 interp1 功能一维数据插值(表格查找)。该命令对数据点之间计算内插值。它找出一元函数f(x)在中间点的数值。其中函数f(x)由所给数据决定。各个参量之间的关系示意图为图2-14。 格式 yi = interp1(x,Y,xi) %返回插值向量yi,每一元素对应于参量xi,同时由向量x 与Y的内插值决定。参量x指定数据Y的点。若Y为一矩阵,则按Y的每列计算。yi是阶数为length(xi)*size(Y,2)的输出矩阵。 yi = interp1(Y,xi) %假定x=1:N,其中N为向量Y的长度,或者为矩阵Y的行数。 yi = interp1(x,Y,xi,method) %用指定的算法计算插值: ’nearest’:最近邻点插值,直接完成计算;

实验四 插值法与曲线拟合

计算方法实验报告 专业班级:医学信息工程一班姓名:陈小芳学号:201612203501002 实验成绩: 1.【实验题目】 插值法与曲线拟合 2.【实验目的】 3.【实验内容】 4. 【实验要求】

5. 【源程序(带注释)】 (1)拉格朗日插值 #include #include #include #include #include #define n 4 //插值节点的最大下标 main() { double x1[n+1]={0.4,0.55,0.65,0.8,0.9}; double y1[n+1]={0.4175,0.57815,0.69657,0.88811,1.02652}; double Lagrange(double x1[n+1],double y1[n+1],float t); int m,k;float x,y;float X;double z; printf("\n The number of the interpolation points is m ="); //输入插值点的个数 while(!scanf("%d",&m)) { fflush(stdin); printf("\n输入错误,请重新输入:\n"); printf("\n The number of the interpolation points is m ="); } for(k=1;k<=m;k++) { printf("\ninput X%d=",k); while(!scanf("%f",&X)) { fflush(stdin); printf("\n输入错误,请重新输入:\n"); printf("\ninput X%d=",k); } z=Lagrange(x1,y1,X); printf("P(%f)=%f\n",X,z); } getch(); return (0); } double Lagrange(double x[n+1],double y[n+1],float X) { int i,j;

数值分析常用的插值方法

数值分析报告 班级: 专业: 流水号: 学号: 姓名:

常用的插值方法 序言 在离散数据的基础上补插连续函数,使得这条连续曲线通过全部给定的离散数据点。插值是离散函数逼近的重要方法,利用它可通过函数在有限个点处的取值状况,估算出函数在其他点处的近似值。 早在6世纪,中国的刘焯已将等距二次插值用于天文计算。17世纪之后,牛顿、拉格朗日分别讨论了等距和非等距的一般插值公式。在近代,插值法仍然是数据处理和编制函数表的常用工具,又是数值积分、数值微分、非线性方程求根和微分方程数值解法的重要基础,许多求解计算公式都是以插值为基础导出的。 插值问题的提法是:假定区间[a,b〕上的实值函数f(x)在该区间上n+1个互不相同点x0,x1……x n处的值是f(x0),……f(x n),要求估算f(x)在[a,b〕中某点的值。其做法是:在事先选定的一个由简单函数构成的有n+1个参数C0, C1,……C n的函数类Φ(C0,C1,……C n)中求出满足条件P(x i)=f(x i)(i=0,1,……n)的函数P(x),并以P(x)作为f(x)的估值。此处f(x)称为被插值函数,x0,x1,……xn 称为插值结(节)点,Φ(C0,C1,……C n)称为插值函数类,上面等式称为插值条件,Φ(C0,……C n)中满足上式的函数称为插值函数,R(x)=f(x)-P(x)称为插值余项。

求解这类问题,它有很多种插值法,其中以拉格朗日(Lagrange)插值和牛顿(Newton)插值为代表的多项式插值最有特点,常用的插值还有Hermit 插值,分段插值和样条插值。 一.拉格朗日插值 1.问题提出: 已知函数()y f x =在n+1个点01,,,n x x x L 上的函数值01,,,n y y y L ,求任意一点 x '的函数值()f x '。 说明:函数()y f x =可能是未知的;也可能是已知的,但它比较复杂,很难计算其函数值()f x '。 2.解决方法: 构造一个n 次代数多项式函数()n P x 来替代未知(或复杂)函数()y f x =,则 用()n P x '作为函数值()f x '的近似值。 设()2012n n n P x a a x a x a x =++++L ,构造()n P x 即是确定n+1个多项式的系数 012,,,,n a a a a L 。 3.构造()n P x 的依据: 当多项式函数()n P x 也同时过已知的n+1个点时,我们可以认为多项式函数 ()n P x 逼近于原来的函数()f x 。根据这个条件,可以写出非齐次线性方程组: 20102000 20112111 2012n n n n n n n n n n a a x a x a x y a a x a x a x y a a x a x a x y ?++++=?++++=?? ? ?++++=?L L L L L 其系数矩阵的行列式D 为范德萌行列式: ()20 0021110 2111n n i j n i j n n n n x x x x x x D x x x x x ≥>≥= = -∏L L M M M M L

数值计算方法复习题2

习题二 1. 已知 ,求的二次值多项式。 2. 令 解:; ,介于x和0,1决定的区 间内;,当时。 的数表,分别用线性插值与二次插值求 3. 给出函数 ,试利用拉格朗日余项定理写出以为节点的三次 4. 设 插值多项式。 ,求及的值。1,0 5. 已知 6. 根据如下函数值表求四次牛顿插值多项式,并用其计算 , 的如下函数值表,解答下列问题(1)试列出相应 7. 已知函数 的差分表;(2)分别写出牛顿向前插值公式和牛顿向后插值公式。 解:向前插值公式

向后插值公式 8. 下表为概率积分 的数据表,试问:1)时, 积分 在各点的数据(取五位有效数 9. 利用 字),求方程 在0.3和0.4之间的根的近似值。0.3376489 10. 依据表10中数据,求三次埃尔米特插值多项式。 11. 依据数表11 项式。 上给出的等距节点函数表,用分段线性插值求 12. 在 的近似值,要使截断误差不超过 取? 13. 将区间 分成n等分,求在上的分段三次埃尔米 特插值多项式,并估计截断误差。 14、给定的数值表

用线性插值与二次插值计算ln0.54的近似值并估计误差限 解:仍可使用n=1及n=2的Lagrange插值或Newton插值,并应用误差估计。线性插值时,用0.5及0.6两点,用Newton插值 误差限 ,因,故 二次插值时,用0.5,0.6,0.7三点,作二次Newton插值 误差限, 故 15、在-4≤x≤4上给出的等距节点函数表,若用二次插值法 求的近似值,要使误差不超过,函数表的步长h应取多少? 解:用误差估计式, 令因 得

16、若,求和 解:由均差与导数关系 于是 17、若互异,求 的值,这里p≤n+1. 解:,由均差对称性 可知当有 而当P=n+1时 于是得 18、求证 解:只要按差分定义直接展开得 19、已知的函数表

matlab实现插值法和曲线拟合电子教案

m a t l a b实现插值法和 曲线拟合

插值法和曲线拟合 电子科技大学 摘要:理解拉格朗日多项式插值、分段线性插值、牛顿前插,曲线拟合,用matlab编程求解函数,用插值法和分段线性插值求解同一函数,比较插值余项;用牛顿前插公式计算函数,计算函数值;对于曲线拟 合,用不同曲线拟合数据。 关键字:拉格朗日插值多项式;分段线性插值;牛顿前插;曲线拟合 引言: 在数学物理方程中,当给定数据是不同散点时,无法确定函数表达式,求解函数就需要很大的计算量,我们有多种方法对给定的表格函数进行求解,我们这里,利用插值法和曲线拟合对函数进行求解,进一步了解函数性质,两种方法各有利弊,适合我们进行不同的散点函数求解。 正文: 一、插值法和分段线性插值 1拉格朗日多项式原理 对某个多项式函数,已知有给定的k + 1个取值点: 其中对应着自变量的位置,而对应着函数在这个位置的取值。 假设任意两个不同的x j都互不相同,那么应用拉格朗日插值公式所得到的拉格朗日插值多项式为: 其中每个为拉格朗日基本多项式(或称插值基函数),其表达式为: [3] 拉格朗日基本多项式的特点是在上取值为1,在其它的点 上取值为0。 2分段线性插值原理 给定区间[a,b], 将其分割成a=x 0

试验二 插值法与数据拟合

试验二 插值法 一、 实验目的 (1) 学会Lagrange 插值和牛顿插值等基本插值方法; (2) 讨论插值的Runge 现象,掌握分段线性插值方法 (3) 学会Matlab 提供的插值函数的使用方法,会用这些函数解决实际问题。 二、 实验要求 (1) 按照题目要求完成实验内容; (2) 写出相应的Matlab 程序; (3) 给出实验结果(可以用表格展示实验结果); (4) 分析和讨论实验结果并提出可能的优化实验。 (5) 写出实验报告。 三、 实验步骤 1、用编好的Lagrange 插值法程序计算书本P66 的例1、用牛顿插值法计算P77的例1。 2、已知函数在下列各点的值为: 试用 4 次牛顿插值多项式4()P x 对数据进行插值,根据 {(,),0.20.08,0,1,2, ,10i i i x y x i i =+=} ,画出图形。 3、在区间[-1,1]上分别取10,2n =用两组等距节点对龙格函数 2 1 (),(11)125f x x x = -≤≤+作多项式插值,对不同n 值,分别画出插值函数及()f x 的图 形。 4、下列数据点的插值 可以得到平方根函数的近似,在区间[0,64]上作图。

(1)用这9个点作8次多项式插值 8() L x。

附:试验报告格式样本(正式报告这行可删除) 佛山科学技术学院 实 验 报 告 课程名称 数值分析 实验项目 插值法 专业班级 姓名 学号 指导教师 成 绩 日 期 月 日 一、实验目的 1、学会Lagrange 插值、牛顿插值和 分段线性插值等基本插值方法; 2、讨论插值的Runge 现象,掌握分段线性插值方法 3、学会Matlab 提供的插值函数的使用方法,会用这些函数解决实际问题。 二、实验原理 1、拉格朗日插值多项式 2、牛顿插值多项式 3、分段线性插值 三、实验步骤 1、用MA TLAB 编写独立的拉格朗日插值多项式函数 2、用MA TLAB 编写独立的牛顿插值多项式函数 3、利用编写好的函数计算本章P66例1、P77例1的结果并比较。 4、已知函数在下列各点的值为: 试用 4 次牛顿插值多项式4()P x 对数据进行插值,根据 {(,),0.20.08,0,1,2, ,10i i i x y x i i =+=} ,画出图形。

插值法与数据拟合法

第七讲插值方法与数据拟合 § 7.1 引言 在工程和科学实验中,常常需要从一组实验观测数据(x i , y i ) (i= 1, 2, …, n) 揭示自变量x与因变量y 之间的关系,一般可以用一个近似的函数关系式y = f (x) 来表示。函数f (x) 的产生办法因观测数据与要求的不同而异,通常可采用两种方法:插值与数据拟合。 § 7.1.1 插值方法 1.引例1 已经测得在北纬32.3?海洋不同深度处的温度如下表: 根据这些数据,我们希望能合理地估计出其它深度(如500米、600米、1000米…)处的水温。 解决这个问题,可以通过构造一个与给定数据相适应的函数来解决,这是一个被称为插值的问题。 2.插值问题的基本提法 对于给定的函数表 其中f (x) 在区间[a, b] 上连续,x0,x1,…,x n为[a, b] 上n + 1个互不相同的点,要求在一个性质优良、便于计算的函数类{P(x)} 中,选出一个使 P(x i ) = y i,i= 0, 1, …, n(7.1.1) 成立的函数P(x) 作为 f (x) 的近似,这就是最基本的插值问题(见图7.1.1)。 为便于叙述,通常称区间[a, b] 为插值区间,称点x0,x1,…,x n为插值节点,称函数类{P(x)} 为插值函数类,称式(7.1.1) 为插值条件,称函数P(x) 为插值函数,称f (x) 为被插函数。求插值函数P(x) 的方法称为插值法。 § 7.1.2 数据拟合 1.引例2 在某化学反应中,已知生成物的浓度与时间有关。今测得一组数据如下: 根据这些数据,我们希望寻找一个y = f (t) 的近似表达式(如建立浓度y与时间t之间的经验公式等)。从几何上看,就是希望根据给定的一组点(1, 4.00),…,(16, 10.60),求函数y = f (t) 的图象的一条拟合曲

数值分析拉格朗日插值法.doc

``````````````````````````````````````````` 数值分析拉格朗日插值法 拉格朗日插值的算法设计及应用 【摘要】 本文简介拉格朗日插值,它的算法及程序和拉格朗日在实际生活中的运用。运用了拉格朗日插值的公式,以及它在MATLAB 中的算法程序,并用具体例子说明。拉格朗日插值在很多方面都可以运用,具有很高的应用价值。 【关键词】 拉格朗日;插值;公式;算法程序;应用;科学。 一、绪论 约瑟夫·拉格朗日(Joseph Louis Lagrange),法国数学家、物理学家。他在数学、力学和天文学三个学科领域中都有历史性的贡献,其中尤以数学方面的成就最为突出。拉格朗日对流体运动的理论也有重要贡献,提出了描述流体运动的拉格朗日方法。数据建模有两大方法:一类是插值方法,另一类是拟合函数一般的说,插值法比较适合数据准确或数据量小的情形。然而Lagrange 插值有很多种,1阶,2阶,…n 阶。我们可以利用拉格朗日插值求方程,根据它的程序求原方程的图像。下面我具体介绍分析一下拉格朗日插值的算法设计及应用。 二、正文 1、基本概念 已知函数y=f(x)在若干点i x 的函数值i y =()i x f (i=0,1,???,n )一个差值问题就是求一“简单”的函数p(x):p(i x )=i y ,i=0,1,???,n, (1) 则p(x)为f(x)的插值函数,而f(x)为被插值函数会插值原函数,0x ,1x ,2x ,...,n x 为插值节点,式(1)为插值条件,如果对固定点-x 求f(-x )数值解,我们称- x 为一个插值节点,f(-x )≈p(-x )称为-x 点的插值,当-x ∈[min(0x ,1x ,2x ,...,n x ),max(0x ,1x ,2x ,...,n x )]

数值计算方法教案_插值方法

复习: 1.数值计算方法的含义 2.误差及误差限 3.误差与有效数字 4.数值计算中应注意的问题 第二章 插值方法 一.插值的含义 问题提出: 已知函数()y f x =在n+1个点01,,,n x x x 上的函数值01,,,n y y y ,求任意一点x '的函数值()f x '。 说明:函数()y f x =可能是未知的;也可能是已知的,但它比较复杂,很难计算其函数值()f x '。 解决方法: 构造一个简单函数()P x 来替代未知(或复杂)函数()y f x =,则用()P x '作为函数值 ()f x '的近似值。 二、泰勒(Taylor )插值 1.问题提出: 已知复杂函数()y f x =在0x 点的函数值()0f x ,求0x 附近另一点0x h +的函数值 ()0f x h +。 2.解决方法: 构造一个代数多项式函数()n P x ,使得()n P x 与()f x 在0x x =点充分逼近。 泰勒多项式为: ()()()()()()()()()200000002!! n n n f x f x P x f x f x x x x x x x n '''=+-+-++- 显然,()n P x 与()f x 在0x x =点,具有相同的i 阶导数值(i=0,1,…,n )。 3.几何意义为:

()n P x 与()f x 都过点()()00,x f x ; ()n P x 与()f x 在点()()00,x f x 处的切线重合; ()n P x 与()f x 在点()()00,x f x 处具有相同的凹凸性; 其几何意义可以由下图描述,显然函数()3f x 能相对较好地在0x 点逼近()f x 。 4.误差分析(泰勒余项定理): ()()()()()()1 101! n n n f P x f x x x n ξ++-=-+,其中ξ在0x 与x 之间。 5.举例: 已知函数()f x =() 115f 。 分析:本题理解为,已知“复杂”函数()f x =0x =100点的函数值为()010f x =,求0x 的附近一点0x +15的函数值()015f x +。 解: (1)构造1次泰勒多项式函数()1P x :()()()()1000P x f x f x x x '=+-。 其中()()010010f x f ==,()1 212 f x x -'=,()()0110020f x f ''==,则有: ()150.05P x x =+ 故有()()111511510.75f P ≈= 误差分析: ()()()()2 1 1151151151002! f P f ξ''-=-

数据插值与数据拟合

数据插值与数据拟合 1、一维数据插值: y=interp1(x0,y0,x,’method’) ‘method’共有四种方法选择: ‘nearest’ 最近点插值法取较近点的值 ‘linear’线性插值法用直线连接数据点 ‘spline’样条插值法用三次样条曲线通过数据点 ‘cubic’立方插值法用三次曲线通过数据点 例:对,,用个节点(等分)作上述四种插值,用m=21个插值点(等分)作图比较结果; 练习: 根据程序washu.可得,x=0:3的193个数据,即对应得y值,现在将 x=0:56图形形状不变 从而得到x=1:56的对应的y值,并且比较分析,哪一种插值效果好 2、 数据拟合 P=polyfit(x,y,n)返回系数从高到低 polyval(p,x) 例、在化工生产中获得的氯气的等级随生产时间下降。假定在时,与之间有如下形式的非线性模型: 现收集了44组数据: 80.49160.43280.41 80.49180.46280.40 100.48180.45300.40 100.47200.42300.40 100.48200.42300.38 100.47200.43320.41 120.46200.41320.40 120.46220.41340.40 120.45220.40360.41 120.43240.42360.38

140.45240.40380.40 140.43240.40380.40 140.43260.41400.39 160.44260.40420.39 160.43260.41 要求利用该数据求的值,以确定模型。 练习 问题1: N P K 施肥量(kg/ha) 产量 (t/ha) 施肥量 (kg/ha) 产量 (t/ha) 施肥量 (kg/ha) 产量 (t/ha) 0 34 67 101 135 202 259 336 404 47115.18 21.36 25.72 32.29 34.03 39.45 43.15 43.46 40.83 30.75 24 49 73 98 147 196 245 294 342 33.46 32.47 36.06 37.96 41.04 40.09 41.26 42.17 40.36 42.73 47 93 140 186 279 372 465 558 651 18.98 27.35 34.86 38.52 38.44 37.73 38.43 43.87 42.77 46.22 (1)将上面第一个表中以施肥量为自变量n,产量为函数y,用最小二乘法拟合函数,输出a1,b1,c1的值,给出拟合误差R^2,并进行图形比较(2) 将上面第二个表中以施肥量为自变量p,产量为函数y,用最小二乘法拟合函数,输出a,b的值,给出拟合误差R^2,并进行图形比较 (3) 将上面第三个表中以施肥量为自变量k,产量为函数y,用最小二乘法拟合函数,输出a3,b3,c3的值,给出拟合误差R^2,并进行图形比较Quadratic: Compound:

数值分析实验插值与拟合

《数值分析》课程实验一:插值与拟合 一、实验目的 1. 理解插值的基本原理,掌握多项式插值的概念、存在唯一性; 2. 编写MATLAB 程序实现Lagrange 插值和Newton 插值,验证Runge 现象; 3. 通过比较不同次数的多项式拟合效果,理解多项式拟合的基本原理; 4. 编写MATLAB 程序实现最小二乘多项式曲线拟合。 二、实验内容 1. 用Lagrange 插值和Newton 插值找经过点(-3, -1), (0, 2), (3, -2), (6, 10)的三次插值公式,并编写MATLAB 程序绘制出三次插值公式的图形。 2. 设 ]5,5[,11 )(2 -∈+= x x x f 如果用等距节点x i = -5 + 10i /n (i = 0, 1, 2, …, n )上的Lagrange 插值多项式L n (x )去逼近它。不妨取n = 5和n = 10,编写MATLAB 程序绘制出L 5(x )和L 10(x )的图像。 3. 在某冶炼过程中,根据统计数据的含碳量与时间关系如下表,试求含碳量与时间t 的拟合曲线。

(1) 用最小二乘法进行曲线拟合; (2) 编写MATLAB 程序绘制出曲线拟合图。 三、实验步骤 1. (1) Lagrange 插值法:在线性空间P n 中找到满足条件: ?? ?≠===j i j i x l ij j i , 0,, 1)(δ 的一组基函数{}n i i x l 0)(=,l i (x )的表达式为 ∏ ≠==--= n i j j j i j i n i x x x x x l ,0),,1,0()( 有了基函数{}n i i x l 0)(=,n 次插值多项式就可表示为 ∑==n i i i n x l y x L 0)()( (2) Newton 插值法:设x 0, x 1, …, x n 是一组互异的节点,y i = f (x i ) (i = 0, 1, 2, …, n ),f (x )在处的n 阶差商定义为 1102110] ,,,[],,,[],,,[x x x x x f x x x f x x x f n n n n --= - 则n 次多项式 ) ())(](,,[) )(](,,[)](,[)()(11010102100100----++--+-+=n n n x x x x x x x x x f x x x x x x x f x x x x f x f x N 差商表的构造过程:

相关主题
文本预览