当前位置:文档之家› 空间频率与空间滤波

空间频率与空间滤波

空间频率与空间滤波
空间频率与空间滤波

空间频谱与空间滤波

一, 实验背景:

阿贝成像原理认为:透镜成像过程可分为两步,第一步是通过物体衍射的光在系统的频谱面上形成空间频谱,这是衍射引起的“分频”作用;第二步是代表不同空间频率的各光束在像平面上相互叠加而形成物体的像,这是干涉引起的“合成”作用。这两步从本质上对应着两次傅里叶变换。如果这两次傅里叶变换完全理想,则像和物应完全一样。如果在频谱面上设置各种空间滤波器,当去频谱中某一频率的成分,则将明显地影响图像,此即为空间滤波。

二, 实验目的:

1, 掌握光具座上光学调整技术;

2, 掌握空间滤波的基本原理,理解成像过程中“分频” 与“合成”作用。

3, 掌握方向滤波,高通滤波,低通滤波等滤波技术,观察各种滤波器产生的滤波效果,加深对光学信息处理实质的认识。

三, 实验原理:

1, 傅立叶变换

近代光学中,对光的传播和成像过程用傅立叶变换来表达,形成了傅立叶光学,可以处理一些无法用经典光学理论解决的问题。傅立叶变换时处理振荡和波这类问题的有力工具。对振动和波的傅立叶分析一般在时域和频域中进行,而对光的传播与成像分析是在空间和倒数空间中进行的。不考虑时域,单色平面光波的表达式如下:

0()[()]f r Aexp i k r ?=?+ (1)

直角坐标系中,k 的方向余弦为(cos ,cos ,cos )αβγ,r 为(x ,y ,z )

2(cos cos ,cos )k r x y z παβγλ

?=+ (2) 波矢量的物理意义可以理解为平面波的空间频率,在x ,y ,z 方向上三个分量分别为

222cos , cos , cos x y z f f f π

π

π

αβγλλλ=== (3)

在傅立叶光学中,将物光作为一个输入函数(物函数),研究其经过具有傅立叶变换作用的光学元件后在接收面上得到的输出函数(像函数)。以物是平面图像为例,物函数g (x ,y )可以表示成一系列不同空间频率的单色平面波的线性叠加,即

(,)(,)exp[2()]x y x y x y g x y G f f i xf yf df df π∞

-∞

=+?? (4)

其中(,)x y G f f 被称为物函数的空间频谱函数。它可以

由物函数g (x ,y )求得,其关系式为

??∞

∞-+π-=dxdy y f x f i y x g f f G y x y x )](2exp[),(),( (5)

图1

(4)(5)式为傅立叶正变换与逆变换公式。在实验实现上,一个完善的薄透镜是一个二维付立叶变换运算器,对于放置在物方焦面上物,在象方焦面上所成象就是物的付立叶变换,即在象方焦面上得到是物函数的频谱(如图1)。

2, 光栅(空间周期性)物函数的傅立叶变换

光栅的物函数表达

??

???-+<<++≤≤+

=2)1(20221

)(b d n x b nd b nd x b nd x g (6) 频谱表达 )]2exp()2[exp(2)

2cos(x f i x f i G A G A x nf G A G A A n n n o o o n n n o o o π-+π+=π+=∑∑∞

(7)

其中f n =n/d ,即光栅的第n 级空间频谱, A 为垂直照射在光栅上的平面波振幅。A o G o 是零级衍射光,方括号内第一项为正衍射级,第二项为负衍射级,在空间频谱中它们分别为零频,正频和负频。

3, 阿贝成像原理

阿贝认为在相干平行光照射下,显微镜的成像可分为两个步骤。第一个步骤是通过物的衍射在物镜后焦面上形成一个初级干涉图;第二个步骤则为物镜后焦面上的初级干涉图复合为像(图1)。成像的这两个步骤本质上就是两次傅里叶变换。物的复振幅分布是g(x,y),可以证明在物镜的频谱面(后焦面)上的复振幅分布是g(x,y)的傅里叶变换(,)x y G f f 。所以第一个步骤起的作用就是把光场分布变为空间频率分布。而第二个步骤则是又一次傅里叶变换将(,)x y G f f 又还原到空间分布g ’(x ’,y ’)。物是空间不同频率的信息的集合,第一次付立叶变换是分频的过程,第二次付立叶逆变换是合频过程,形成新的不同频率的信息的集合—象.( 付立叶变换在物理上代表原函数—空间周期函数的频谱)。

如果这两次傅氏变换完全是理想的,信息在变换过程中没有损失,则像和物完全相似。 但由于透镜的孔径是有限的,总有一部分衍射角度较大的高次成分(高频信息)不能进入物 镜而被丢弃了。所以物所包含的超过一定空间频率的成分就不能包含在像上。如果高频信息没有到达像平面,则无论显微镜有多大的放大倍数,也不能在像平面上分辨这些细节。这是显微镜分辨率受到限制的根本原因。 图 2

g(x,y) (,)x y G f f g ’(x ’,y ’)

4,光学滤波与 调制

在光学信息处理中,依据傅立叶逆变换公式,通过改变频谱函数,就可改变象函数。在频谱面上人为地放置一些滤波器,以该变频谱面所需位置上的光振幅或位相,便可得到所需要的象函数。这个改变频谱函数的过程就是空间滤波。最简单的滤波器就是一些特殊形状的光阑(如图三)。

图3 常见的振幅型空间滤波器

四,实验仪器:

He-Ne激光器,扩束镜C,准直镜Lo,网格输入物,傅里叶变换透镜L1和L2,孔屏,白屏,干板架,网格,低频光栅(25线/mm),各种常见的滤波器等。

五,实验步骤:

1,按4f系统傅里叶变换光路依次加入光学元件,排好光路,在L1的前焦面放金属丝网格,在白屏上就呈现网格的傅里叶频谱。取下面的白屏,在面上就看到网格的像。

2,将4f系统光路改变成单透镜系统光路,观察频谱及所成的像。

3,单透镜系统光路中,将给出的几种形式的简单的滤波器,分别在频谱面上进行滤波,并详细记下实验现象。

六,实验现象及分析:

1,4f系统傅里叶变换光路中:Lo准直透镜的焦距是300mm,两个傅里叶变换透镜的焦距都是300mm。在准直镜和第一个傅里叶透镜之间放上金属丝网格,构成矩形光栅。再在两个傅里叶变换透镜中间的地方放上白屏,可以看到清晰地十字衍射图样。该图像时矩形衍射光栅的空间频谱。其中最中心的亮斑是零级衍射,所有光斑中空间频率低的靠中心,空间频率高的靠边缘。

若为光波波长,f为透镜焦距,Xf,Yf为后焦面(即频谱面)上任一点的位置坐标,

则(Xf,Yf)点对应的空间频率分别为Xf/f, Yf/ f.

有很多空间频谱是因为原来的物函数是一个矩形波,而矩形波通过傅里叶展开,会得到无穷多频率的正选函数的叠加。高频光相当于高频近似,所以越到高频,光越弱。

将白屏在两透镜之间来回移动,发现图像依旧为十字方格,但是很模糊,只有在透镜焦距处很清楚。这是因为对于第一个傅里叶变换透镜,经过金属网格丝后的衍射光,相当于一束束不同角度的平行入射光,射到透镜上时,聚焦在透镜后300mm处的频谱面上,所以在焦距上像是最清楚的。

将白屏移到第二个透镜后的像面上,得到的是金属网格的像。

2,在频谱面上设置各种滤波器:

(a)加上低通滤波器后,通低频,得到的像是一个处在圆心的亮斑。

(b)加上高通滤波器后,通高频,得到的像是一个中心为暗斑的亮环,光强被分布在了高频部分。

(c)加上十字方向滤波器后,通十字方向的空间频率,得到的图像是一个模糊的十字。

转换十字的方向,会在与傅里叶分析得到的空间频率垂直的方向上,得不到图像。

3,4f系统傅里叶变换光路的缺点是频谱位置不可调,缺乏灵活性。在单透镜系统傅里叶变换光路上,不安排准直镜,所以照明光束是一束发散光束。由书中所给公式,设计使物面与L的距离为s=590mm,扩束镜与透镜的距离为p=700mm,频谱面与透镜的距离为570mm。

在频谱面上放上白屏,观察到的图像,加上各种滤波器的影响,都和4f系统傅里叶变换光路里的现象一样。但是该光路的有点在于,调节透镜与扩束镜的距离及p,从而调节频谱面和像面的位置,并调节物像比例。为了使像不至过小,透镜不应离扩束镜太近。

七,参考文献:

《专业物理实验:光学部分》(华中科技大学物理学院)

《OPTICS》(Hecht)

空间频率滤波word版

空间频率滤波 空间频率滤波是在光学系统的空间频谱面上放置适当的滤波器,去掉(或有选择地通过)某些空间频率或改变它们的振幅和位相,使物体的图像按照人们的希望得到改善。它是信息光学中最基本、最典型的基础实验,是相干光学信息处理中的一种最简单的情况。 早在1873年,德国人阿贝(E.Abbe,1840~1905)在蔡司光学公司任职期间研究如何提高显微镜的分辨本领时,首次提出了二次衍射成像的理论。阿贝和波特 (A.B.Porter )分别于1893年和1906年以一系列实验证实了这一理论。1935年泽尼可(Zernike )提出了相衬显微镜的原理。这些早期的理论和实验其本质上都是一种空间滤波技术,是傅里叶光学的萌芽,为近代光学信息处理提供了深刻的启示。但由于它属于相干光学的范畴,在激光出现以前很难将它在实际中推广使用。1960年激光问世后,它才重新振兴起来,其相应的基础理论——“傅里叶光学”形成了一个新的光学分支。目前光信息处理技术已广泛应用到实际生产和生活各个领域中。 一、实验目的 1. 了解傅里叶光学基本理论的物理意义,加深对光学空间频率、空间频谱和空间频率滤波等概念的理解; 2. 验证阿贝成像原理,理解成像过程的物理实质——“分频”与“合成”过程,了解透镜孔径对显微镜分辨率的影响; 二、实验原理 1. 傅里叶光学变换 设有一个空间二维函数),(y x g ,其二维傅里叶变换为 dxdy y x i y x g G )](2exp[),(),(ηξπηξ+-=??∝∝- (1) 式中ηξ,分别为x,y 方向的空间频率,而),(y x g 则为),(ηξG 的傅里叶逆变换,即 ηξηξπηξd d y x i G y x g ??+=∝∝-)](2exp[),(),( (2) 式(2)表示,任意一个空间函数),(y x g 可表示为无穷多个基元函数)](2exp[y x i ηξπ+的线性迭加,),(ηξG 是相应于空间频率为ηξ,的基元函数的权重,

空间滤波实验

空间滤波实验 实验目的 1、加深傅立叶光学基本概念和理论的理解 2、了解空间滤波实验系统 3、验证阿贝二次成像理论 实验原理 空间滤波实验也称阿贝—波特实验,属于采用滤波方法来处理光学信息的技术,其理论基础是阿贝二次成像原理。阿贝(Ernst Abbe,1840-1905),德国科学家,曾在蔡司公司任职,1873年在研究如何提高显微镜的分辨本领时,他首次提出了一个与几何光学成像传统理论完全不同的成像概念。后来,阿贝本人1893年和波特于1906年用实验验证了阿贝成像理论。阿贝理论和上述两次实验可以看作是傅立越光学的开端。阿贝成像理论的核心是:相干照明下成像过程可分做两步,首先是物面上发出的光波在物镜后焦面上发生夫琅和费衍射,得到第一次衍射像;然后,该衍射像作为新的相干波源,由它发出的次波在像面上干涉而构成物体的像,称为第二次衍射像。因此,该理论也常被称为“阿贝二次衍射成像理论”。后人称其为阿贝成像原理(Abbe’ Principle of image of formation )。 图1是上述成像过程的示意图。其中物面()11,y x ,用相干平行光照明,在透镜后焦面即频谱面()22,y x 得到物的频谱,这是第一次成像过程,实际上是经过了一次傅立叶变换;由频谱()22,y x 而到像面()33,y x ,也是完成了一次夫琅和费衍射过程,等于又经过一次傅立叶变换。当像面取反射坐标时,后—次变换可视为傅立叶逆变换。经上述两次变换,像面上形成的是物体的像。 A B C P P 'A ' B ' C (x 2,y 2) (x 3,y 3) 图1 阿贝二次成像理论示意图 用频谱语言表达阿贝成像原理,那就是,第一步发生夫琅和费衍射,起“分频”作用,第二步发生干涉,起“合成”作用。这两个步骤本质上就是两次傅立叶变换。第一步“分频”是把物面光场的空间分布()y x g ,变为频谱面上的空间频率分布),(y x f f G 。第二步“合成”则是再作一次变换,又将),(y x f f G 还原到光场的空间()y x g ,。

低通滤波器实验报告

(科信学院) 信息与电气工程学院 电子电路仿真及设计CDIO三级项目 设计说明书 (2012/2013学年第二学期) 题目: ____低通滤波器设计____ _____ _____ _ 专业班级:通信工程 学生姓名: 学号: 指导教师: 设计周数:2周 2013年7月5日 题目: ____低通滤波器设计____ _____ _____ _ (1)

第一章、电源的设计 (2) 1.1实验原理: (2) 1.1.1设计原理连接图: (2) 1. 2电路图 (5) 第二章、振荡器的设计 (7) 2.1 实验原理 (7) 2.1.1 (7) 2.1.2定性分析 (7) 2.1.3定量分析 (8) 2.2电路参数确定 (10) 2.2.1确定R、C值 (10) 2.2.2 电路图 (10) 第三章、低通滤波器的设计 (12) 3.1芯片介绍 (12) 3.2巴特沃斯滤波器简介 (13) 3.2.1滤波器简介 (13) 3.2.2巴特沃斯滤波器的产生 (13) 3.2.3常用滤波器的性能指标 (14) 3.2.4实际滤波器的频率特性 (15) 3.3设计方案 (17) 3.3.1系统方案框图 (17) 3.3.2元件参数选择 (18) 3.4结果分析 (20) 3.5误差分析 (23) 第四章、课设总结 (24) 第一章、电源的设计 1.1实验原理: 1.1.1设计原理连接图:

整体电路由以下四部分构成: 电源变压器:将交流电网电压U1变为合适的交流电压U2。 整流电路:将交流电压U2变为脉动的直流电压U3。 滤波电路:将脉动直流电压U3转变为平滑的直流电压U4。 稳压电路:当电网电压波动及负载变化时,保持输出电压Uo的稳定。 1)变压器变压 220V交流电端子连一个降压变压器,把220V家用电压值降到9V左右。 2)整流电路 桥式整流电路巧妙的利用了二极管的单向导电性,将四个二极管分为两组,根据变压器次级电压的极性分别导通。见变压器次级电压的正极性端与负载电阻的上端相连,负极性端与负载的电阻的下端相连,使负载上始终可以得到一个单方向的脉动电压。单项桥式整流电路,具有输出电压高,变压器利用率高,脉动系数小。

数字图像处理实验报告:灰度变换与空间滤波(附带程序,不看后悔)

1.灰度变换与空间滤波 一种成熟的医学技术被用于检测电子显微镜生成的某类图像。为简化检测任务,技术决定采用数字图像处理技术。发现了如下问题:(1)明亮且孤立的点是不感兴趣的点;(2)清晰度不够,特别是边缘区域不明显;(3)一些图像的对比度不够;(4)技术人员发现某些关键的信息只在灰度值为I1-I2 的范围,因此,技术人员想保留I1-I2 区间范围的图像,将其余灰度值显示为黑色。(5)将处理后的I1-I2 范围内的图像,线性扩展到0-255 灰度,以适应于液晶显示器的显示。请结合本章的数字图像处理处理,帮助技术人员解决这些问题。 1.1 问题分析及多种方法提出 (1)明亮且孤立的点是不够感兴趣的点 对于明亮且孤立的点,其应为脉冲且灰度值为255(uint8)噪声,即盐噪声,为此,首先对下载的细胞图像增加盐噪声,再选择不同滤波方式进行滤除。 均值滤波:均值滤波是典型的线性滤波算法,它是指在图像上对目标像素给一个模板,该模板包括了其周围的临近像素(以目标像素为中心的周围8 个像素,构成一个滤波模板,即去掉目标像素本身),再用模板中的全体像素的平均值来代替原来像素值。 优点:速度快,实现简单; 缺点:均值滤波本身存在着固有的缺陷,即它不能很好地保护图像细节,在图像去噪的同时也破坏了图像的细节部分,从而使图像变得模糊,不能很好地去除噪声点。 其公式如下: 使用矩阵表示该滤波器则为: 中值滤波:

滤除盐噪声首选的方法应为中值滤波,中值滤波法是一种非线性平滑技术,它将每一像素点的灰度值设置为该点某邻域窗口内的所有像素点灰度值的中值。 其过程为: a、存储像素1,像素2 ....... 像素9 的值; b、对像素值进行排序操作; c、像素5 的值即为数组排序后的中值。优点:由于中值滤波本身为一种利用统计排序方法进行的非线性滤波方法,故可以滤除在排列矩阵两边分布的脉冲噪声,并较好的保留图像的细节信息。 缺点:当噪声密度较大时,使用中值滤波后,仍然会有较多的噪声点出现。自适应中值滤波: 自适应的中值滤波器也需要一个矩形的窗口S xy ,和常规中值滤波器不同的是这个窗口的大小会在滤波处理的过程中进行改变(增大)。需要注意的是,滤波器的输出是一个像素值,该值用来替换点(x, y)处的像素值,点(x, y)是滤波窗口的中心位置。 其涉及到以下几个参数: 其计算过程如下:

北航卡尔曼滤波课程-捷联惯导静基座初始对准实验

卡尔曼滤波实验报告 捷联惯导静基座初始对准实验 一、实验目的 ①掌握捷联惯导的构成和基本工作原理; ②掌握捷联惯导静基座对准的基本工作原理; ③了解捷联惯导静基座对准时的每个系统状态的可观测性; ④了解双位置对准时系统状态的可观测性的变化。 二、实验原理 选取状态变量为:[]T E N E N U x y x y z X V V δδεεε=ψψψ??,其

中导航坐标系选为东北天坐标系,E V δ为东向速度误差,N V δ为北向速度误差,E ψ为东向姿态误差角,N ψ为北向姿态误差角,U ψ为天向姿态误差角,x ?为东向加速度偏置,y ?为北向加速度偏置,x ε为东向陀螺漂移,y ε为北向陀螺漂移,z ε为天向陀螺漂移。则系统的状态模型为: X AX W =+ (1) 其中, 1112212211 12 1321222331323302sin 000002sin 000000000sin cos 0000sin 000000cos 0000000000000000000000000000000000000000000000000000 0L g C C L g C C L L C C C L C C C L C C C A Ω-? ? ??-Ω????Ω-Ω? ?-Ω????Ω=? ?????? ?????????? ? [00000]E N E N U T V V W W W W W W δδψψψ=,E D V W W δψ 为零均值高斯 白噪声,分别为加速度计误差和陀螺漂移的噪声成分,Ω为地球自转角速度,ij C 为姿态矩 阵n b C 中的元素,L 为当地纬度。 量测量选取两个水平速度误差:[ ]T E N Z V V δδ=,则量测方程为: 10000000000100000000E E N N V X V δηδη???? ??=+???????????? (2) 即Z HX η=+ 其中,H 为量测矩阵,[]T E N ηηη=为量测方程的随机噪声状态矢量,为零均值高 斯白噪声。 要利用基本卡尔曼滤波方程进行状态估计,需要将状态方程和量测方程进行离散化。 系统转移矩阵为: 2323/1111102!3!! n n k k k k k k n T T T I TA A A A n ∞ -----=Φ=++++=∑ (3)

滤波器设计的实验报告

实验三滤波器设计 一、实验目的: 1、熟悉Labview的软件操作环境; 2、了解VI设计的方法和步骤,学会简单的虚拟仪器的设计; 3、熟悉创建、调试VI; 4、利用Labview制作一个滤波器,实现低通、高通、带通、带阻等基本滤波功能,并调节截止频率实现滤波效果。 二、实验要求: 1、可正弦实现低通、高通、带通、带阻等基本滤波功能,并图形显示滤波前后波形; 2、可调节每种滤波器的上限截止频率或者下限截止频率; 3、给出每种滤波器的幅频特性; 三、设计原理: 1、利用LABVIEW中的数字IIR、FIR数字滤波器实现数字滤波功能,参数可调;

2、将两路不同频率的信号先叠加,然后通过滤波,将一路信号滤除,而保留有用信号,Hz f Hz f 100,2021==; 3、叠加即将两个信号相加,用到一个数学公式; 4、信号进入case 结构,结构中有两路分支,每路分支均有一个滤波模块,其中一个为IIR 滤波器,另一个为FIR 滤波器,通过按钮可选择IIR 或是FIR.每个滤波模块都可通过外部按钮对其参数进行调整,各个过程的波形都用波形图显示出来; 5、将IIR 、FIR 滤波器的“滤波信息”接线端用控件按名称解除捆绑接入波形图,观察波形的幅度和相位; 6、用一个while 循环实现不重新启动既可以改参数。 四、设计流程: 1、前面板的设计:

2、程序框图的设计: 五、实验结果: 1、低通滤波功能:将100Hz的信号滤除,保留20Hz的信号 用IIR巴特沃斯滤波器,将低截止频率设置为25Hz。

用FIR滤波器,拓扑类型选择Windowed FIR,将最低通带设置为50。 用IIR巴特沃斯滤波器,将低截止频率设置为90Hz。

空间频率滤波及角度调制

空间频率滤波与角度调制 背景:空间频率滤波是在光学系统的空间频谱面上放置适当的滤波器,去掉(或有选择地通过)某些空间频率或改变它们的振幅和位相,使物体的图像按照人们的希望得到改善。它是信息光学中最基本、最典型的基础实验,是相干光学信息处理中的一种最简单的情况。 一、实验目的 1. 了解傅里叶光学基本理论的物理意义,加深对光学空间频率、空间频谱和空间频率滤波等概念的理解; 2. 验证阿贝成像原理,理解成像过程的物理实质——“分频”与“合成”过程,了解透镜孔径对显微镜分辨率的影响; 二、实验原理 1. 傅里叶光学变换 设有一个空间二维函数),(y x g ,其二维傅里叶变换为 dxdy y x i y x g G )](2exp[),(),(ηξπηξ+-=??∝∝- (1) 式中ηξ,分别为x,y 方向的空间频率,而),(y x g 则为),(ηξG 的傅里叶逆变换,即 ηξηξπηξd d y x i G y x g ??+=∝∝-)](2exp[),(),( (2) 式(2)表示,任意一个空间函数),(y x g 可表示为无穷多个基元函数)](2exp[y x i ηξπ+的线性迭加,),(ηξG 是相应于空间频率为ηξ,的基元函数的权重,),(ηξG 称为),(y x g 的空间频谱。 用光学的方法可以很方便地实现二维图像的傅里叶变换,获得它的空间频谱。由透镜的傅里叶变换性质知,只要在傅里变换透镜的前焦面上放置一透率为),(y x g 的图像,并以相干平行光束垂直照明之,则在透镜后焦面上的光场分布就是),(y x g 的傅里叶变换),(ηξG ,即空间频谱),(f y f x G λ''。其中λ为光波波长,f 为透镜的焦距,(y x '',)为后焦面(即频谱面)上任意一点的位置坐标。 显然,后焦面上任意一点(y x '',)对应的空间频率为

(完整版)整流滤波电路实验报告

整流滤波电路实验报告 姓名:XXX 学号:5702112116 座号:11 时间:第六周星期4 一、实验目的 1、研究半波整流电路、全波桥式整流电路。 2、电容滤波电路,观察滤波器在半波和全波整流电路中的滤波效果。 3、整流滤波电路输出脉动电压的峰值。 4、初步掌握示波器显示与测量的技能。 二、实验仪器 示波器、6v交流电源、面包板、电容(10μF*1,470μF*1)、变阻箱、二极管*4、导线若干。 三、实验原理 1、利用二极管的单向导电作用,可将交流电变为直流电。常用的二极管整 流电路有单相半波整流电路和桥式整流电路等。 2、在桥式整流电路输出端与负载电阻RL并联一个较大电容C,构成电容滤 波电路。整流电路接入滤波电容后,不仅使输出电压变得平滑、纹波显著成小,同时输出电压的平均值也增大了。 四、实验步骤 1、连接好示波器,将信号输入线与6V交流电源连接,校准图形基准线。 2、如图,在面包板上连接好半波整流电路,将信号连接线与电阻并联。

3、如图,在面包板上连接好全波整流电路,将信号输入线与电阻连接。

4、在全波整流电路中将电阻换成470μF的电容,将信号接入线与电容并联。 5、如图,选择470μF的电容,连接好整流滤波电路,将信号接入线与电阻并联。 改变电阻大小(200Ω、100Ω、50Ω、25Ω)

200Ω100Ω50Ω

25Ω 6、更换10μF的电容,改变电阻(200Ω、100Ω、50Ω、25Ω)200Ω 100Ω

50Ω 25Ω 五、数据处理 1、当C 不变时,输出电压与电阻的关系。 输出电压与输入交流电压、纹波电压的关系如下: avg)r m V V V (输+= 又有i avg R C V ??=输89.2V )(r 所以当C 一定时,R 越大 就越小 )(r V avg 越大 输V

阿贝成像与空间滤波实验汇总

实验6-3 阿贝成像与空间滤波实验 【实验目的】 1、 通过实验了解空间频率、空间频谱的概念以及傅里叶光学的基本思想。 2、 了解阿贝成像的原理,理解透镜成像的物理过程。 3、 了解如何通过空间滤波的方法,实现对图象的改造。 【实验原理】 1、傅里叶光学变换 设有一个空间二维函数()y x g ,,其二维傅里叶变换为: ()()[]()()[] dxdy y f x f i y x g y x g F f f G y x y x +-==??∞π2exp ,,, (6-3-1) 式中x f 、y f 分别为x 、y 方向的空间频率,()y x g ,是()y x f f G ,的逆傅里叶变换,即: ()[]()()[]y x y x y x y x df df y f x f i f f G f f G F y x g +==??∞-π2exp ,,),(1 (6-3-2) 该式表示:任意一个空间函数()y x g ,可表示为无穷多个基元函数()[]y f x f i y x +π2exp 的线性叠加。()y x y x df df f f G ,是相应于空间频率为x f 、y f 的基元函数的权重,()y x f f G ,称为()y x g ,的空间频谱。 理论上可以证明,对在焦距为f 的会聚透镜的前焦面上放一振幅透过率为()y x g ,的图像作为物,并用波长为λ的单色平面波垂直照明,则在透镜后焦面()y x '',上的复振幅分布就是()y x g ,的傅里叶变换() y x f f G ,,其中空间频率x f 、y f 与坐标x '、y '的关系为: ??? ????' ='=f y f f x f y x λλ (6-3-3) 故()y x '',面称为频谱面(或傅氏面),由此可见,复杂的二维傅里叶变换可以用一透镜来实现,称为光学傅里叶变换,频谱面上的光强分布,也就是物的夫琅禾费衍射图。 2、阿贝成像原理 阿贝(E.Abbe )在1873年提出了相干光照明下显微镜的成像原理。他认为,在相干光照明下,显微镜的成像可分为两个步骤:第一步是通过物的衍射光在物镜的后焦面上形成一个衍射图;第二步是物镜后焦面上的衍射图复合为(中间)像,这个像可以通过目镜观察到。 成像的这两个步骤本质上就是两次傅里叶变换。第一步把物面光场的空间分布()y x g ,变为频谱面上空间频率分布()y x f f G ,,第二步则是再作一次变换,又将() y x f f G ,还原到空间分布()y x g ,。

自适应滤波实验报告

LMS 自适应滤波实验报告 姓名: 学号: 日期:2015.12.2 实验内容: 利用自适应滤波法研究从宽带信号中提取单频信号的方法。 设()()()()t f B t f A t s t x 212cos 2cos π?π+++=,()t s 是宽带信号,A ,B ,1f ,2f , ?任选 (1)要求提取两个单频信号; (2)设f f f ?+=12,要求提取单频信号()t f 22cos π,研究f ?的大小对提取单频信号的影响。 1. 自适应滤波器原理 自适应滤波器理论是现代信号处理技术的重要组成部分,它对复杂信号的处理具有独特的功能。自适应滤波器在信号处理中属于随机信号处理的范畴。在一些信号和噪声特性无法预知或他们是随时间变化的情况下,自适应滤波器通过自适应滤波算法调整滤波器系数,使得滤波器的特性随信号和噪声的变化,以达到最优滤波的效果,解决了固定全系数的维纳滤器和卡尔曼滤波器的不足。 (1) 自适应横向滤波器 所谓自适应滤波,就是利用前一时刻已获得的滤波器参数等结果,自动调节现时刻的滤波器参数,以适应信号和噪声未知或随时间变化的统计特性,从而实现最优滤波。自适应滤波器由两个部分组成:滤波器结构和调节滤波器系数的自适应算法。自适应滤波器的特点是自动调节自身的冲激响应,达到最优滤波,此算法适用于平稳和非平稳随机信号,并且不要求知道信号和噪声的统计特性。 一个单输入的横向自适应滤波器的原理框图如图所示:

实际上这种单输入系统就是一个FIR 网络结构,其输出()n y 用滤波器单位脉冲响应表示成下式: ()()()∑-=-=1 N m m n x m w n y 这里()n w 称为滤波器单位脉冲响应,令:()()n i n x x i w w m i i i ,1,1,1+-=-=+=用j 表示,上式可以写成 ∑==N i ij i j x w y 1 这里i w 也称为滤波器加权系数。用上面公式表示其输出,适用于自适应线性组合器,也适用于FIR 滤波器。将上式表示成矩阵形式: X W W X j T T j j y == 式中 [][ ] T Nj j j j T N x x x w w w X W ,...,,, ,...,,2121== 误差信号表示为 X W j T j j j j d y d e -=-= (2) 最小均方(LMS )算法 Widrow 等人提出的最小均方算法,是用梯度的估计值代替梯度的精确值,这种算法简单易行,因此获得了广泛的应用。 LMS 算法的梯度估计值用一条样本曲线进行计算,公式如下:

实验七 空间滤波实验

实验七 空间频率滤波器 一、实验目的 (1)知道光信息处理的原理。 (2)掌握光信息处理的实验装置和技术。 (3)掌握基本空间滤波器的作用。 二、原理概述 用(图7-1)来说明最常见的在频域内作光信息处理的实验装置,常称为三透镜系统。三个透镜的焦距都相同为f ,两透镜之间的距离为2f 。其中插有平面,平面与相邻透镜的距离为也f 。 光信息处理的原理是基于透镜的傅立叶变换性质和谱面上的空间滤波。在(图7-1)中第一个透镜1L 把点光源变为平行光束,照射到照片(物)上,该照片置于第二个透镜2L 的前焦面上,在透镜2L 的后焦面上,可观察到照片的频谱。第三个透镜3L 把置于自己前焦面的照片频谱,又重新变换为原照片的像,像位于3L 的后焦面上。如果在谱面上采用各种不同的空间滤波器来改变照片的频谱,就能改变照片像的性质,这就是光学空间滤波过程。在谱面上插入一个滤波器,实际上是对照片的频谱进行调制,能去处或增加照片的频谱,当滤波后的频谱被透镜3L 傅里叶变换到像面上后,照片的像将发生改变,不需要的部份(例如噪声)就会被去除,或增加某些新的内容,以方便我们进行照片识别,这就叫做图像处理。其关键技术就是各种滤波器的制作和使用。本实验仅介绍几种常见的简单空间滤波器。 1. 低通和高通滤波器 如(图7-2a)所示的一中心透光的圆孔,它就 是低通滤波器。它的作用是能让低空间频率的光 波通过,而将高空间频率的光波档住。因为在频 谱面上位置坐标,越靠近光轴的点,也就是衍射 角较小的点,它的空间频率越低。当照片上有小 的霉点和灰尘时,它们的频谱会充满整个谱面, 如果使用低通滤波器,就能挡住它们的绝大部分 (图17-1)光信息处理的三透镜系统实验装置 (a)低通滤波器 (b)高通滤波器 (图17-2)低通和高通滤波器

自适应滤波实验报告

LMS 自适应滤波实验报告 : 学号: 日期:2015.12.2 实验容: 利用自适应滤波法研究从宽带信号中提取单频信号的方法。 设()()()()t f B t f A t s t x 212cos 2cos π?π+++=,()t s 是宽带信号,A ,B ,1f ,2f , ?任选 (1)要求提取两个单频信号; (2)设f f f ?+=12,要求提取单频信号()t f 22cos π,研究f ?的大小对提取单频信号的影响。 1. 自适应滤波器原理 自适应滤波器理论是现代信号处理技术的重要组成部分,它对复杂信号的处理具有独特的功能。自适应滤波器在信号处理中属于随机信号处理的畴。在一些信号和噪声特性无法预知或他们是随时间变化的情况下,自适应滤波器通过自适应滤波算法调整滤波器系数,使得滤波器的特性随信号和噪声的变化,以达到最优滤波的效果,解决了固定全系数的维纳滤器和卡尔曼滤波器的不足。 (1) 自适应横向滤波器 所谓自适应滤波,就是利用前一时刻已获得的滤波器参数等结果,自动调节现时刻的滤波器参数,以适应信号和噪声未知或随时间变化的统计特性,从而实现最优滤波。自适应滤波器由两个部分组成:滤波器结构和调节滤波器系数的自适应算法。自适应滤波器的特点是自动调节自身的冲激响应,达到最优滤波,此算法适用于平稳和非平稳随机信号,并且不要求知道信号和噪声的统计特性。

一个单输入的横向自适应滤波器的原理框图如图所示: 实际上这种单输入系统就是一个FIR 网络结构,其输出()n y 用滤波器单位脉冲响应表示成下式: ()()()∑-=-=1 N m m n x m w n y 这里()n w 称为滤波器单位脉冲响应,令: ()()n i n x x i w w m i i i ,1,1,1+-=-=+=用j 表示,上式可以写成 ∑==N i ij i j x w y 1 这里i w 也称为滤波器加权系数。用上面公式表示其输出,适用于自适应线性组合器,也适用于FIR 滤波器。将上式表示成矩阵形式: X W W X j T T j j y == 式中 [][ ] T Nj j j j T N x x x w w w X W ,...,,, ,...,,2121== 误差信号表示为 X W j T j j j j d y d e -=-= (2) 最小均方(LMS )算法 Widrow 等人提出的最小均方算法,是用梯度的估计值代替梯度的精确值,这种算法简单易行,因此获得了广泛的应用。

有源滤波器实验报告

有源滤波器实验报告文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

实验七集成运算放大器的基本应用(Ⅱ)—有源滤波器 一、实验目的 1、熟悉用运放、电阻和电容组成有源低通滤波、高通滤波和带通、带阻滤波器。 2、学会测量有源滤波器的幅频特性。 二、实验原理 (a)低通(b)高通 (c) 带通(d)带阻 图7-1 四种滤波电路的幅频特性示意图 由RC元件与运算放大器组成的滤波器称为RC有源滤波器,其功能是让一定频率范围内的信号通过,抑制或急剧衰减此频率范围以外的信号。可用在信息处理、数据传输、抑制干扰等方面,但因受运算放大器频带限制,这类滤波器主要用于低频范围。根据对频率范围的选择不同,可分为低通(LPF)、高通(HPF)、带通(BPF)与带阻(BEF)等四种滤波器,它们的幅频特性如图7-1所示。 具有理想幅频特性的滤波器是很难实现的,只能用实际的幅频特性去逼近理想的。一般来说,滤波器的幅频特性越好,其相频特性越差,反之亦然。滤波器的阶数越高,幅频特性衰减的速率越快,但RC网络的节数越多,元件参数计算越繁琐,电路调试越困难。任何高阶滤波器均可以用较低的二阶RC有滤波器级联实现。 1、低通滤波器(LPF) 低通滤波器是用来通过低频信号衰减或抑制高频信号。

如图7-2(a )所示,为典型的二阶有源低通滤波器。它由两级RC 滤波环节与同相比例运算电路组成,其中第一级电容C 接至输出端,引入适量的正反馈,以改善幅频特性。图7-2(b )为二阶低通滤波器幅频特性曲线。 (a)电路图 (b)频率特性 图7-2 二阶低通滤波器 电路性能参数 1 f uP R R 1A + = 二阶低通滤波器的通带增益 RC 2π1 f O = 截止频率,它是二阶低通滤波器通带与阻带的界限频率。 uP A 31 Q -= 品质因数,它的大小影响低通滤波器在截止频率处幅频特性的形状。 2、高通滤波器(HPF ) 与低通滤波器相反,高通滤波器用来通过高频信号,衰减或抑制低频信号。 只要将图7-2低通滤波电路中起滤波作用的电阻、电容互换,即可变成二阶有源高通滤波器,如图7-3(a)所示。高通滤波器性能与低通滤波器相反,其频率响应和低通滤波器是“镜象”关系,仿照LPH 分析方法,不难求得HPF 的幅频特性。

卡尔曼滤波简介和实例讲解.

卡尔曼,美国数学家和电气工程师。1930年5月 19日生于匈牙利首都布达佩斯。1953年在美国麻省理工学院毕业获理学士学位,1954年获理学硕士学位,1957年在哥伦比亚大学获科学博士学位。1957~1958年在国际商业机器公司(IBM)研究大系统计算机控制的数学问题。1958~1964年在巴尔的摩高级研究院研究控制和数学问题。1964~1971年到斯坦福大学任教授。1971年任佛罗里达大学数学系统理论研究中心主任,并兼任苏黎世的瑞士联邦高等工业学校教授。1960年卡尔曼因提出著名的卡尔曼滤波器而闻名于世。卡尔曼滤波器在随机序列估计、空间技术、工程系统辨识和经济系统建模等方面有许多重要应用。1960年卡尔曼还提出能控性的概念。能控性是控制系统的研究和实现的基本概念,在最优控制理论、稳定性理论和网络理论中起着重要作用。卡尔曼还利用对偶原理导出能观测性概念,并在数学上证明了卡尔曼滤波理论与最优控制理论对偶。为此获电气与电子工程师学会(IEEE)的最高奖──荣誉奖章。卡尔曼著有《数学系统概论》(1968)等书。 什么是卡尔曼滤波 最佳线性滤波理论起源于40年代美国科学家Wiener和前苏联科学家Kолмогоров等人的研究工作,后人统称为维纳滤波理论。从理论上说,维纳滤波的最大缺点是必须用到无限过去的数据,不适用于实时处理。为了克服这一缺点,60年代Kalman把状态空间模型引入滤波理论,并导出了一套递推估计算法,后人称之为卡尔曼

滤波理论。卡尔曼滤波是以最小均方误差为估计的最佳准则,来寻求一套递推估计的算法,其基本思想是:采用信号与噪声的状态空间模型,利用前一时刻地估计值和现时刻的观测值来更新对状态变量的估计,求出现时刻的估计值。它适合于实时处理和计算机运算。 卡尔曼滤波的实质是由量测值重构系统的状态向量。它以“预测—实测—修正”的顺序递推,根据系统的量测值来消除随机干扰,再现系统的状态,或根据系统的量测值从被污染的系统中恢复系统的本来面目。 释文:卡尔曼滤波器是一种由卡尔曼(Kalman)提出的用于时变线性系统的递归滤波器。这个系统可用包含正交状态变量的微分方程模型来描述,这种滤波器是将过去的测量估计误差合并到新的测量误差中来估计将来的误差。 卡尔曼滤波的应用 斯坦利.施密特(Stanley Schmidt)首次实现了卡尔曼滤波器.卡尔曼在NASA埃姆斯研究中心访问时,发现他的方法对于解决阿波罗计划的轨道预测很有用,后来阿波罗飞船的导航电脑使用了这种滤波器. 关于这种滤波器的论文由Swerling (1958), Kalman (1960)与 Kalman and Bucy (1961)发表.

FIR滤波器设计实验报告

实验报告 课程名称:数字信号处理 实验项目:FIR滤波器设计 专业班级: 姓名:学号: 实验室号:实验组号: 实验时间:批阅时间: 指导教师:成绩:

实验报告 专业班级: 学号: 姓名: 一、实验目的: 1、熟悉线性相位FIR 数字低通滤波器特性。 2、熟悉用窗函数法设计FIR 数字低通滤波器的原理和方法。 3、了解各种窗函数对滤波特性的影响。 要求认真复习FIR 数字滤波器有关内容实验内容。 二、实验原理 如果所希望的滤波器理想频率响应函数为)(e H j ωd ,则其对应的单位样值响应为 ωπ= ωππ -?d e j ωn j d d e )(H 21(n)h 窗函数法设计法的基本原理是用有限长单位样值响应h(n)逼近(n)h d 。由于(n)h d 往往是无限长序列,且是非因果的,所以用窗函数(n)w 将(n)h d 截断,并进行加权处理,得 到:(n)(n)h h(n)d w ?=。h(n)就作为实际设计的FIR 滤波器单位样值响应序列,其频率函数)H(e j ω 为∑-=ω= 1 n n j -j ω h(n)e )H(e N 。式中N 为所选窗函数(n)w 的长度。 用窗函数法设计的FIR 滤波器性能取决于窗函数类型及窗口长度N 的取值。设计过程中要根据阻带衰减和过渡带宽度的要求选择合适的窗函数类型和窗口长度N 。各类窗函数所能达到的阻带最小衰减和过渡带宽度见P342表7-3。 选定窗函数类型和长度N 以后,求出单位样值响应(n)(n)h h(n)d w ?=。验算 )()()]([)(ω?ωω==j g j e H n h DTFT e H 是否满足要求,如不满足要求,则重新选定窗函 数类型和长度N ,直至满足要求。 如要求线性相位特性,h(n)还必须满足n)-1-h(N h(n)±=。根据上式中的正、负号和长度N 的奇偶性又将线性相位FIR 滤波器分成4类(见P330表7-1及下表),根据要设计的滤波器特性正确选择其中一类。例如要设计低通特性,可选择情况1、2,不能选择情况3、4。

空间频率与空间滤波

空间频谱与空间滤波 一, 实验背景: 阿贝成像原理认为:透镜成像过程可分为两步,第一步是通过物体衍射的光在系统的频谱面上形成空间频谱,这是衍射引起的“分频”作用;第二步是代表不同空间频率的各光束在像平面上相互叠加而形成物体的像,这是干涉引起的“合成”作用。这两步从本质上对应着两次傅里叶变换。如果这两次傅里叶变换完全理想,则像和物应完全一样。如果在频谱面上设置各种空间滤波器,当去频谱中某一频率的成分,则将明显地影响图像,此即为空间滤波。 二, 实验目的: 1, 掌握光具座上光学调整技术; 2, 掌握空间滤波的基本原理,理解成像过程中“分频” 与“合成”作用。 3, 掌握方向滤波,高通滤波,低通滤波等滤波技术,观察各种滤波器产生的滤波效果,加深对光学信息处理实质的认识。 三, 实验原理: 1, 傅立叶变换 近代光学中,对光的传播和成像过程用傅立叶变换来表达,形成了傅立叶光学,可以处理一些无法用经典光学理论解决的问题。傅立叶变换时处理振荡和波这类问题的有力工具。对振动和波的傅立叶分析一般在时域和频域中进行,而对光的传播与成像分析是在空间和倒数空间中进行的。不考虑时域,单色平面光波的表达式如下: 0()[()]f r Aexp i k r ?=?+ (1) 直角坐标系中,k 的方向余弦为(cos ,cos ,cos )αβγ,r 为(x ,y ,z ) 2(cos cos ,cos )k r x y z παβγλ ?=+ (2) 波矢量的物理意义可以理解为平面波的空间频率,在x ,y ,z 方向上三个分量分别为 222cos , cos , cos x y z f f f π π π αβγλλλ=== (3) 在傅立叶光学中,将物光作为一个输入函数(物函数),研究其经过具有傅立叶变换作用的光学元件后在接收面上得到的输出函数(像函数)。以物是平面图像为例,物函数g (x ,y )可以表示成一系列不同空间频率的单色平面波的线性叠加,即 (,)(,)exp[2()]x y x y x y g x y G f f i xf yf df df π∞ -∞ =+?? (4) 其中(,)x y G f f 被称为物函数的空间频谱函数。它可以 由物函数g (x ,y )求得,其关系式为 ??∞ ∞-+π-=dxdy y f x f i y x g f f G y x y x )](2exp[),(),( (5) 图1

阿贝成像原理和空间滤波实验

实验一 阿贝成像原理和空间滤波 一、实验目的 1.了解透镜孔径对成像的影响和两种简单的空间滤波。 2.掌握在相干光条件下调节多透镜系统的共轴。 3.验证和演示阿贝成像原理,加深对傅里叶光学中空间频谱和空间滤波概念的理解。 4.初步了解简单的空间滤波在光信息处理中的实际应用。 二、实验原理 1.阿贝成像原理 1873年,阿贝(Abbe)在研究显微镜成像原理时提出了一个相干成像的新原理,这个原 理为当今正在兴起的光学信息处理奠定了基 础。 如图1-1所示,用一束平行光照明物体, 按照传统的成像原理,物体上任一点都成了一 次波源,辐射球面波,经透镜的会聚作用,各 个发散的球面波转变为会聚的球面波,球面波 的中心就是物体上某一点的像。一个复杂的物体可以看成是无数个亮度不同的点构成,所有这些点经透镜的作用在像平面上形成像点,像点重新叠加构成物体的像。这种传统的成像原理着眼于点的对应,物像之间是点点对应关系。 阿贝成像原理认为,透镜的成像过程可以分成两步:第一步是通过物的衍射光在透镜后焦面(即频谱面)上形成空间频谱,这是衍射所引起的“分频”作用;第二步是代表不同空间频率的各光束在像平面上相干叠加而形成物体的像,这是干涉所引起的“合成”作用。成像过程的这两步本质上就是两次傅里叶变换。如果这两次傅里叶变换是完全理想的,即信息没有任何损失,则像和物应完全相似。如果在频谱面上设置各种空间滤波器,挡去频谱某一些空间频率成份,则将会使像发生变化。空间滤波就是在光学系统的频谱面上放置各空间滤波器,去掉(或选择通过)某些空间频率或者改变它们的振幅和相位,使二维物体像按照要求得到改善。这也是相干光学处理的实质所在。 以图l-l 为例,平面物体的图像可由一个二维函数g(x,y)描述,则其空间频谱G(f x ,f y )即为g(x ,y)的傅里叶变换: 2(,)(,)(,)x y i f x f y x y G f f g x y e dxdy π∞-∞-=?? (1-1) 图1-1 阿贝成像原理

卡尔曼滤波与组合导航课程报告

卡尔曼滤波与组合导航》课程实验报告 实验 捷联惯导 /GPS 组合导航系统静态导航实验 实验序号 3 姓名 陈星宇 系院专业 17 班级 ZY11172 学号 ZY1117212 日期 2012-5-15 指导教师 宫晓琳 成绩 、实验目的 ① 掌握捷联惯导 /GPS 组合导航系统的构成和基本工作原理; ②掌握采用卡尔曼滤波方法进行捷联惯导 /GPS 组合的基本原理; ③掌握捷联惯导 /GPS 组合导航系统静态性能; ④了解捷联惯导 /GPS 组合导航静态时的系统状态可观测性; 、实验原理 ( 1)系统方程 X FX GW 系统噪声矢量由陀螺仪和加速度计的随机误差组成,表达式为: 2)量测方程 和 H 分别为捷联解算与 GPS 的东向速度、北向速度、天向速度、纬度、经度和高度之 差;量测矩阵 H H V H P T ,H P 03 6 diag R M H, (R N H )cos L, 036 , H V 033 diag 1, 1, 1 039 ,v v V E v V N v V U v L v v H 为量测噪声。 量测噪声 v E v N T v U L h x y z x y z 其中, E 、 N 、 U 为数学平台失准角; v E 、 v N 、 v U 分别为载体的东向、北向和天向速度误差; L 、 、 h 分别为纬度误差、经度误差和高度误差; x 、 y 、 z 、 x 、 y 、 z 分别为陀螺随 机常值漂移和加速度计随机常值零偏。(下 标 系统的噪声转移矩阵 G 为: E 、N 、 U 分别代表东、北、天) C b n 3 3 0 9 3 3 3 C n C b 9 3 15 6 系统的状态转移矩阵 w w w w F 组成内容为: w z F 06N 9 F S F M ,其中 F N 中非零元素为可由惯导误差模型获得。 F S C b n 3 3 0 3 3 3 3 C b n 3 3 96 量测变量 z V E V N V U L H , , V E 、 V N 、 V U 、 L 、 X U

有源滤波器实验报告

实验七 集成运算放大器的基本应用(n )—有源滤波器 一、 实验目的 i 熟悉用运放、电阻和电容组成有源低通滤波、高通滤波和带通、带阻滤波器。 2、学会测量有源滤波器的幅频特性。 二、 实验原理 (a )低通 (b )高通 (c)带通 (d )带阻 图7—1四种滤波电路的幅频特性示意图 由RC 元件与运算放大器组成的滤波器称为 RC 有源滤波器,其功能是让一定频率范围内的信号通过, 抑制或急剧衰减此频率范围以外的信号。 可用在信息处理、数据传输、 抑制干扰等方面,但因受运算放 大器频带限制,这类滤波器主要用于低频范围。根据对频率范围的选择不同,可分为低通 (LPF)、高通 (HPF)、带通(BPF)与带阻(BEF)等四种滤波器,它们的幅频特性如图 7— 1所示。 具有理想幅频特性的滤波器是很难实现的, 只能用实际的幅频特性去逼近理想的。 一般来说,滤波 器的幅频特性越好,其相频特性越差,反之亦然。滤波器的阶数越高 ,幅频特性衰减的速率越快,但 RC 网络的节数越多,元件参数计算越繁琐,电路调试越困难。任何高阶滤波器均可以用较低的二阶 RC 有 滤波器级联实现。 1、低通滤波器(LPF ) 低通滤波器是用来通过低频信号衰减或抑制高频信号 如图7— 2 (a )所示,为典型的二阶有源低通滤波器。它由两级 RC 滤波环节与同相比例运算电路 组成,其中第一级电容 C 接至输出端,弓I 入适量的正反馈,以改善幅频特性。图 7—2 (b )为二阶低 通滤波器幅频特性曲线。 (a) 电路图 图7—2二阶低通滤波器 电路性能参数 ―1奈二阶低通滤波器的通带增益 截止频率,它是二阶低通滤波器通带与阻带的界限频率。 (b)频率特性 1 2 T RC

基于Matlab的空间滤波实验的计算机仿真.

35 基于Matlab 的空间滤波实验的计算机仿真 张奇辉,王洪,蓝发超 (华南理工大学物理科学与技术学院,广东广州 510640 摘要:利用阿贝-波特实验装置和空间滤波系统,从改变频谱入手改造一幅光学图形进行光学信息处理。在 此基础上,通过Matlab 环境编写程序完成阿贝-波特实验的物理模型的构建并进行计算机模拟实验。 关键词:计算机模拟;Matlab ;空间滤波 中图分类号:TP391.9 文献标识码:A 文章编号:1003-7551(200801-0035-04 1 引言 在工程设计领域中,人们通过对研究对象建立模型,用计算机程序实现系统的运行和得到运行结果,寻找出最优方案,然后再予以物理实现,这就是计算机仿真科学。在计算机日益普及的今天,计算机仿真技术作为虚拟实验手段已经成为计算机应用的一个重要分支。它是继理论分析和实物实验之后,认识客观规律性的新型手段。作为科学计算软件,Matlab 的特点是使用方便、输入便捷、运算功能齐全,而且有大量的函数可供使用。因此本文提出基于Matlab 软件,通过在频谱面上设置滤波器对空间频谱的处理,实现对阿贝-波特 实验装置和空间滤波系统的模拟。为了实现仿真实验操作的方便,本文设计出了图形用户可操作界面(GUI 。 2 空间滤波原理

根据阿贝成像原理,相干光学成像过程可分为两步:第一步称为分频过程,即从物平面到光源的共轭像平面或曰频谱面,由输入的物作为衍射屏对照射光波产生夫琅和费衍射;第二步称为合频或频谱综合过程,即从频谱面到输入物的共轭像平面,被分解的频谱成分经进一步的衍射后再次叠加形成输入物的共轭像。按照傅里叶变换理论,两步成像过程实际上是光学系统对携带输入物信息的二维光场的复振幅分布进行的两次傅里叶变换过程。 以图1所示4f 成像系统为例,此时输入平面O(即物平面位于透镜1L 的前焦平面,输出平面I(即像平面位于透镜1L 的后焦平面。透镜1L 和2L 分别起分频(傅里叶变换和合频(逆傅里叶变换作用。设输入图像的复振幅分布为,(y x g ,透镜1L 后焦平面T(即频谱面上的复振幅分布为,(ηξG ,按照傅里叶光学理论,当1L 的孔径无限大时,函数,(ηξG 即等于,(y x g 的傅里叶变换,而,(y x g 为,(ηξG 的傅里叶逆变换,即 (,(,exp i2(d d x y x y G f f g x y f x f y x y π∞ ?∞ ??=?+??∫∫(1 (,(,exp[i2(]d d g x y G x y ξηπμνμν∞∞ ?∞?∞=+∫∫ (2 其中/f μξλ=,/f νηλ=,表示光场(,G ξη的空间频率。设(','g x y 为透镜2L 后焦平面I(输出平面上的复振幅分布,同样,当2L 的孔径无限大时,(','g x y 就等于的傅里叶变换: (','(,exp[i2('']d d g x y G x y ξηπμνμν∞∞?∞?∞= +∫∫ (3 可以得 (','(,g x y g x y ∝?? (4 即输出图像是输入图像的倒置,且在几何上相似。

相关主题
文本预览
相关文档 最新文档