当前位置:文档之家› 阿贝成像与空间滤波实验汇总

阿贝成像与空间滤波实验汇总

阿贝成像与空间滤波实验汇总
阿贝成像与空间滤波实验汇总

实验6-3 阿贝成像与空间滤波实验

【实验目的】

1、 通过实验了解空间频率、空间频谱的概念以及傅里叶光学的基本思想。

2、 了解阿贝成像的原理,理解透镜成像的物理过程。

3、 了解如何通过空间滤波的方法,实现对图象的改造。

【实验原理】

1、傅里叶光学变换

设有一个空间二维函数()y x g ,,其二维傅里叶变换为:

()()[]()()[]

dxdy y f x f i y x g y x g F f f G y x y x +-==??∞π2exp ,,, (6-3-1)

式中x f 、y f 分别为x 、y 方向的空间频率,()y x g ,是()y x f f G ,的逆傅里叶变换,即:

()[]()()[]y x y x y

x y x df df y f x f i f f G f f G F y x g +==??∞-π2exp ,,),(1 (6-3-2)

该式表示:任意一个空间函数()y x g ,可表示为无穷多个基元函数()[]y f x f i y x +π2exp 的线性叠加。()y x y x df df f f G ,是相应于空间频率为x f 、y f 的基元函数的权重,()y x f f G ,称为()y x g ,的空间频谱。

理论上可以证明,对在焦距为f 的会聚透镜的前焦面上放一振幅透过率为()y x g ,的图像作为物,并用波长为λ的单色平面波垂直照明,则在透镜后焦面()y x '',上的复振幅分布就是()y x g ,的傅里叶变换()

y x f f G ,,其中空间频率x f 、y f 与坐标x '、y '的关系为: ???

????'

='=f y f f x f y x λλ (6-3-3) 故()y x '',面称为频谱面(或傅氏面),由此可见,复杂的二维傅里叶变换可以用一透镜来实现,称为光学傅里叶变换,频谱面上的光强分布,也就是物的夫琅禾费衍射图。

2、阿贝成像原理

阿贝(E.Abbe )在1873年提出了相干光照明下显微镜的成像原理。他认为,在相干光照明下,显微镜的成像可分为两个步骤:第一步是通过物的衍射光在物镜的后焦面上形成一个衍射图;第二步是物镜后焦面上的衍射图复合为(中间)像,这个像可以通过目镜观察到。

成像的这两个步骤本质上就是两次傅里叶变换。第一步把物面光场的空间分布()y x g ,变为频谱面上空间频率分布()y x f f G ,,第二步则是再作一次变换,又将()

y x f f G ,还原到空间分布()y x g ,。

图6-3-1显示了成像的两个步骤。我们假设物是一个一维光栅,单色平行光垂直照在光栅上,经衍射分解成为不同方向的很多束平行光(每一束平行光相应于一定的空间频率),经过物镜分别聚焦在后焦面上形成点阵。然后代表不同空间频率的光束又重新在像面上复合而成像。

如果这两次变换完全是理想的,即信息没有任何损失,则像和物应完全相似(可能有放大或缩小),但一般说来像和物不可能完全相似,这是由于透镜的孔径是有限的,总有一部分衍射角度较大的高次成分(高频信息)不能进入到物镜而被丢弃了,所以像的信息总是比物的信息要少一些。高频信息主要反映了物的细节,如果高频信息受到了孔径的限制而不能达到像平面,则无论显微镜有多大的放大倍数,也不可能在像平面上显示出这些高频信息所反映的细节,这是显微镜分辨率受到限制的根本原因。特别是当物的结构非常精细(如很密的光栅)或物镜孔径非常小时,有可能只有0级衍射(空间频率为0)能通过,则在像平面上完全不能形成像.

3、空间滤波

根据上面讨论,透镜成像过程可看作是两次傅里叶变换,即从空间函数()y x g ,变为频谱函数

()y x f f G ,,再变回到空间函数()y x g ,(忽略放大率)

。显然如果我们在频谱面(即透镜的后焦面)上放一些不同结构的光阑,以提取(或摒弃)某些频段的物信息,则必然使像面上的图像发生相应的变化,这样的图像处理称为空间滤波,频谱面上这种光阑称为滤波器。滤波器使频谱面上一个或一部分频率分量通过,而挡住其它频率分量,从而改变了像面上图像的频率成分。例如光轴上的圆孔光栏可以作为一个低通滤波器,而圆屏就可以用作为高通滤波器。

【实验仪器及光路】

实验仪器包括:光学平台或光具座、氦氖激光器、针孔滤波器、透镜、作为物的光栅、滤波器、白色像屏等。

实验光路如图6-3-2所示,扩束镜0L 与准直透镜c L 共焦,使c L 输出平行光束.在公共焦点上安置针孔滤波器SF,以使光斑亮度均匀。依次放上物(12~15条/mm的一维光栅)和焦距为f 的透镜L ,调共轴。调节透镜位置,使光栅清晰的成像在4m以外的白屏上,此时物的位置接近于透镜L 的前焦平面。

【实验内容】

1、观测一维光栅的频谱

(1)在透镜L后缓慢移动白屏,寻找光束会聚点,即透镜L 的后焦平面(频谱面),可看到0级、±1级、±2级、±3级……一排清晰的衍射光点。衍射角越大,衍射级次越高,空间频率也越高。

(2)将白纸放在频谱面上,通过放大镜观察频谱,并用针尖分别扎透0级、±1级、±2级、±3级衍射点的中心。然后,将有扎孔的纸拿到读数显微镜下测出各级衍射点与零级衍射点的距离

1x '±、2x '±、3x '±,求出相应的空间频率 1x f 、 2x f 、3x f ,并由基频1x f (d

f x 11=,d 为光栅常数)求出光栅常数d 。

2、阿贝成像原理实验

频谱面上的衍射点如图6-3-3(a )所示。在频谱面上放上可调狭缝或滤波模板,使通过的衍射点如图6-3-3所示:(a )全部;(b )零级;(c )零和±1级;(d )零和±2级;(e )除零级外。分别记录像面特点和条纹间距,并做出定性解释。

3、阿贝一波特实验(方向滤波)

(1)光路不变,将一维光栅的物换成二维正交光栅,在频谱面上可以观察到二维分立的光点阵(频谱),像面上可以看到放大了的正交光栅像,测出像面上的网格间距。

(2)在频谱面放上可旋转狭缝光阑(方向滤波器),在下述情况:(a )只让光轴上水平的一行频谱分量通过;(b )只让光轴上垂直的一行频谱分量通过;(c )只让光轴上45°的一行频谱分量通过。记录像面上的图像变化、像面上条纹间距,并做出适当的解释。将所观测的现象、数据添入表6-3-1中。

方向滤波可去除某些方向的频谱或仅让某些方向的频谱通过,以突出图像的某些特征。

4.高低通滤波

图6-3-4中,(a )为低通滤波器,(b )为高通滤波器,(c )为带通滤波器。低通滤波器的作用是滤掉高频成分,仅让靠近零级的低频成分通过。它可以用来滤掉高频噪声,例如滤去有网格照片中的网状结构。高通滤波器是一个中心部分不透光的小光屏,它能滤去低频成分而允许高频成分通过,可用于突出像的边沿部分或者实现像的衬度反转。带通滤波器可以让某些需要的频谱分量通过,其余的被滤掉,可用于消除噪音。

图6-3-3一维光栅频谱与滤波器

表6-3-1

(1)低通滤波

将正交光栅与一个透明的“光”字重叠放在物平面上,光栅为12~15条/mm,而字的笔划粗细为毫米数量级,放大像如图6-3-5(a)所示。通过透镜L成像在像平面上。由于网格为一周期性的空间函数,它的频谱是有规律排列的分立点阵,而字迹是一个非周期性的低频信号,它的频谱是连续的.

将一个可变圆孔光阑放在频谱面上,逐步缩小光阑,直到像上不再有网格,但字迹仍然保留下来。

(2)高通滤波

将一漏光“+”字板作为物,可在像面上观察到物的像,见图6-3-5(b)。在频谱面上放一圆屏光阑挡住谱面的中心部分,观察并记录像面上的图像变化。

【思考题】

1、透镜前焦面上是50条/mm的一维光栅,其频谱面上的空间频率各是多少?相邻两衍射点间距离是多少?已知f=5.0cm, =632.8nm。

2、在低通滤波中,如果想滤掉字而保留光栅,应怎么办?

【参考资料】

1、张成英,光学实验,北京:电子工业出版社,1989.

2、朱自强,现代光学教程,成都:四川大学出版社,1990.

3、王秉超等,大学物理实验(下册),北京:高等教育出版社,2003.

4、李志超等,大学物理实验(第三册),北京:高等教育出版社,2001.

阿贝成像原理和空间滤波实验报告

实验二 阿贝成像原理和空间滤波实验 1. 引言 阿贝所提出的显微镜成像的原理以及随后的阿—波特实验在傅里叶光学早期发展历史上具有重要的地位。这些实验简单而且漂亮,对相干光成像的机理、对频谱的分析和综合的原理做出了深刻的解释。同时,这种用简单模板做滤波的方法,直到今天,在图像处理中仍然有广泛的应用价值。 1.1 实验目的和意义 1).加强对傅里叶光学中有关空间频率、空间频谱和空间滤波等概念的理解。 2).用一个带有蓝天白云还有城楼的光栅进行空间滤波和图像再现,熟悉空间滤波的光路及空间滤波的原理。 2. 系统概述 2.1 系统原理 1).二维傅里叶变换 设有一个空间二维函数),(y x g ,其二维傅里叶变换为 =),(y x f f G F [][]d xdy y f x f i y x g y x g y x ??∞ ∞-+ -=)(2exp ),(),(π (1) 式中y x f f ,分别为x,y 方向的空间频率,其量纲为L -1,而),(y x g 又是),(y x f f G 的 逆傅里叶变换,即 =),(y x g F -1[]=),(y x f f G []y x y x y x df df y f x f i f f G ??∞∞ -+)(2exp ),(π (2) 式(2)表示任意一个空金函数),(y x g ,可以表示为无穷多个基元函数[])(2exp y f x f i y x +π的线性叠加,),(y x f f G y x df df 是相应于空间频率为y x f f ,的基元函数的权重,),(y x f f G 称为),(y x g 的空间频率。

阿贝成像原理实验报告

佛山科学技术学院 实验报告 课程名称近代物理实验实验项目阿贝成像原理和空间滤波 专业班级 10物师姓名邓新炬学号 02 仪器组号 指导教师朱星成绩日期 2013年月日

2、关于阿贝成像原理 成像的这两个步骤本质上就是两次傅里叶变换。第一步把物面光场的空间分布()y x g ,变为频谱面上空间频率分布() y x f f G ,,第二步则是再作一次变换,又将() y x f f G ,还原到空间分布()y x g ,。 3、空间滤波 空间函数变为频谱函数,再变回到空间函数(忽略放大率)。显然如果我们在频谱面(即透镜的后焦面)上放一些不同结构的光阑,以提取(或摒弃)某些频段的物信息,则必然使像面上的图像发生相应的变化,这样的图像处理称为空间滤波,频谱面上这种光阑称为滤波器。滤波器使频谱面上一个或一部分频率分量通过,而挡住其它频率分量,从而改变了像面上图像的频率成分。例如光轴上的圆孔光栏可以作为一个低通滤波器,而圆屏就可以用作为高通滤波器。 四 实验步骤 1、实验光路调节 在光具座上将小圆孔光阑靠近激光管的输出端,上下左右调节激光管,使激光束能穿过小孔;然后移远小孔,如光束偏离光阑,调节激光管的仰俯,再使激光能穿过小孔,重新将光阑移近,反复调节,直至小孔光阑在光具座上平移时,激光束能通过小孔光阑。 2、阿贝成像原理实验 如实验光路图在物平面上放上一维光栅,用激光器发出的细锐光束垂直照到光栅上,用一短焦距薄透镜(6~10cm )组装一个放大的成像系统,调节透镜位置,使光栅狭缝清晰地成像在像平面屏上,那么在频谱面上的衍射点如图所示。在频谱面上放上可调狭缝或滤波模板,使通过的衍射点如下图所示:(a )全部;(b )零级;(c )零和±1级;分别记录图片信息。 3、阿贝一波特实验(方向滤波) (1)光路不变,将一维光栅的物换成二维正交光栅,在频谱面上可以观察到二维分立的光点阵(频谱),像面上可以看到放大了的正交光栅像,测出像面上的网格间距。 (2)在频谱面放上可旋转狭缝光阑(方向滤波器),在下述情况:(a )只让光轴上水平的一行频谱分量通过;(b )只让光轴上垂直的一行频谱分量通过;(c )只让光轴上45°的一行频谱分量通过。记录像面上的图像变化、像面上条纹间距,并做出适当的解释。 五 实验数据和数据处理 1. 1解释阿贝成像实验

阿贝成像原理和空间滤波实验报告

实验二阿贝成像原理和空间滤波实验 1. 引言 阿贝所提出的显微镜成像的原理以及随后的阿一波特实验在傅里叶光学早期发展历史上具有重要的地位。这些实验简单而且漂亮,对相干光成像的机理、对频谱的分析和综合的原理做出了深刻的解释。同时,这种用简单模板做滤波的方法,直到今天,在图像处理中仍然有广泛的应用价值。 1.1实验目的和意义 1 ).加强对傅里叶光学中有关空间频率、空间频谱和空间滤波等概念的理解。 2 ).用一个带有蓝天白云还有城楼的光栅进行空间滤波和图像再现,熟悉空间滤波的光路及空间滤波的原理。 2. 系统概述 2. 1系统原理 二维傅里叶变换).1设有一个空间二维函数,其二维傅里叶变换 为)yg(x, dxdyfy)i2x(f,y)g (x,y)exp xg( (1F) f,)G(f yxyx -1f,fG(f,f)的又 是式中,而分别为x,y方向的空间频率,其量纲为L)y,g(x yxyx逆傅里叶变换,即 ),fG(f -1dfdf(fx fyfG(f,)exp)i2 F ) 2 ( y),(gx yx yyyxxx 式(2)表示任意 一个空金函数,可以表示为无穷多个基元函数)x,y(g dfy)df2(fx fpexi的基元的 线性叠加,是相应于空间频率为ff,)G(ff, yxyxyyxx函数的权重,称为的空间频率。)(f,fG )y,x(g yx 当是一个空间周期性函数时,其空间频率是不连续的离散函数。)x,yg(2).光学 傅里叶变换 理论证明,如果在焦距为F的会聚透镜的前焦面上放一振幅透过率为g(x,y)的图 象作为物,并以波长为入的单色平. 面焦镜后象图,则在透面波垂照明的傅,()上的振幅分布就是y X),yg(x标与 坐,变换其中里叶f,f),fG(f yxyx 的关系为,y x''yx 3 () f f, 1图? Yx FF ,由此可见,复杂的二维傅里1面称为频谱面(或傅氏面) 故一,见图y x 叶变换可以用一透镜来实现,称为光学傅里叶变换,频谱面上的光强分布则为2..,称为频谱,也就是物的夫琅禾费衍射图。)(ff,G yx .阿贝成像原理3)年提出了相干光照明下显微镜的阿贝成像原理,他认为,在相阿贝在1873 第一步是通过物的衍射光在物镜干的光照明下,显微镜的成像可分为两个步骤:后焦面上形成一个衍射图,第二步则为物镜后面上的衍射图复合为(中间)像,这个像可以通过目镜观察到。第一步把物面光场的空间分成像的这两个步骤本质上就是两次傅里叶变换,),f (Gf,第二步则是再作一次变换,又将布变为频谱面上空家频率分布)g(x,y yx还原到空间

阿贝成像原理和空间滤波研究性报告

基础物理实验研究性报告 ——阿贝成像原理和空间滤波 2015年5月23日星期六 实验专题 阿贝成像原理和空间滤波 第一作者 13xx10xxxx 第 二 作 者 13xx10xxxxx 院(系)名称 xxxx

目录 摘要 (3) 正文 (3) 一、实验目的 (3) 二、实验原理 (3) 1、光学傅里叶变换 (3) 2、阿贝成像原理 (4) 3、空间滤波 (5) 三、实验内容 (5) 1.光路调节 (5) 2.阿贝成像原理实验 (6) 3.空间滤波实验 (6) 4.θ调制实验 (6) 四、数据处理 (6) 实验一:阿贝成像原理 (6) 实验二:高通滤波器 (8) 实验三:θ调制 (8) 五、部分问题的理解: (9) 六、实验感想与收获 (10) 参考文献: (10)

摘要 本文描述了在阿贝成像原理与空间滤波实验中看到的一些有趣的光学实验现象,计算了空间频率和光栅基频,并对不同滤波器产生的现象作出了简要解释,此外本文还简单分析了空间滤波,并对频谱面的位置做了简单计算。最后附上自己在实验中的感想与收获。 关键字:阿贝成像原理、空间频谱、空间滤波、傅立叶光学变换 正文 一、实验目的 1.通过实验来重新认识夫琅和费衍射的傅里叶变换特性。 2.结合阿贝成像原理和θ调制实验,了解傅里叶光学中有关空间频率、空间频谱和空间滤波等概念和特点。 3.巩固光学实验中有关光路调整和仪器使用的基本技能。 二、实验原理 1、光学傅里叶变换 在信息光学中、常用傅立叶变换来表达和处理光的成像过程。 设一个xy 平面上的光场的振幅分布为g(x,y),可以将这样一个空间分布展开为一系列基元函数exp[()]x y iz f x f y π+的线性叠加。即 (,)()exp[2()]x y x y x y g x y G f f f x f y df df π∞ -∞ = +?? (1) x f ,y f 为x,y 方向的空间频率,量纲为1L -;()x y G f f 是相应于空间频率为x f , y f 的基元函数的权重,也称为光场的空间频率,()x y G f f 可由下式求得:

阿贝成像原理和空间滤波

阿贝成像原理和空间滤波 阿贝所提出的显微镜成像的原理以及随后的阿—波特实验在傅里叶光学早期发展历史上具有重要的地位。这些实验简单而且漂亮,对相干光成像的机理、对频谱的分析和综合的原理做出了深刻的解释。同时,这种用简单模板做滤波的方法,直到今天,在图像处理中仍然有广泛的应用价值。 一.实验目的 1.通过实验,加强对傅里叶光学中有关空间频率、空间频谱和空间滤波等概念的理解。 2.熟悉空间滤波的光路及进行高通、低通和方向滤波的方法。 二.实验原理 阿贝认为在相干平行光照射下,显微镜的成像可分为两个步骤。第一个步骤是通过物的衍射在物镜后焦面上形成一个初级干涉图;第二个步骤则为物镜后焦面上的初级干涉图复合为像。这就是通常所说的阿贝成像原理。 成像的这两个步骤本质上就是两次傅里叶变换。如果物的复振幅分布是g (x 0,y 0),可以证明在物镜的后焦面(x f ,y f )上的复振幅分布是g (x 0,y 0)的傅里叶变换G (x f ,y f )(只要令 f x = x f / l f ,f y = y f /l f ;l 为光的波长,f 为物镜焦距) 。所以第一个步骤起的作用就是把光场分布变为空间频率分布。而第二个步骤则是又一次傅里叶变换将G (x f ,y f )又还原到空间分布。 图1显示了成像的这两个步骤。如果以一个光栅作为物。平行光照在光栅上,经衍射分解成为不同方向传播的多束平行光(每一束平行光相应于一定的空间频率)。经过物镜分别聚焦在后焦面上形成点阵。然后,代表不同空间频率的光束又重新在像平面上复合而成像。 如果这两次傅氏变换完全是理想的,信息在变换过程中没有损失,则像和物完全相似。但由于透镜的孔径是有限的,总有一部分衍射角度较大的高次成分(高频信息)不能进入物镜而被丢弃了。所以物所包含的超过一定空间频率的成分就不能包含在像上。高频信息主要反映物的细节。如果高频信息没有到达像平面,则无论显微镜有多大的放大倍数,也不能在像平面上分辨这些细节。这是显微镜分辨率受到限制的根本原因。特别当场的结构非常精细(例如很密的光栅),或物镜的孔径非常小时,有可能只有0级衍射(直流成分)能通过,则在像平面上只有光斑而完全不能形成图像。 根据上面讨论,我们可以看到显微镜中的物镜的孔径实际上起了高频滤波(即低通滤波)的作用。这就启示我们,如果在焦平面上人为地插上一些滤波器(吸收板或移像板)以改变焦平面上的光振幅和位相。就可以根据需要改变像平面上的频谱。这就是空间滤波。最 简单

阿贝成像与空间滤波实验汇总

实验6-3 阿贝成像与空间滤波实验 【实验目的】 1、 通过实验了解空间频率、空间频谱的概念以及傅里叶光学的基本思想。 2、 了解阿贝成像的原理,理解透镜成像的物理过程。 3、 了解如何通过空间滤波的方法,实现对图象的改造。 【实验原理】 1、傅里叶光学变换 设有一个空间二维函数()y x g ,,其二维傅里叶变换为: ()()[]()()[] dxdy y f x f i y x g y x g F f f G y x y x +-==??∞π2exp ,,, (6-3-1) 式中x f 、y f 分别为x 、y 方向的空间频率,()y x g ,是()y x f f G ,的逆傅里叶变换,即: ()[]()()[]y x y x y x y x df df y f x f i f f G f f G F y x g +==??∞-π2exp ,,),(1 (6-3-2) 该式表示:任意一个空间函数()y x g ,可表示为无穷多个基元函数()[]y f x f i y x +π2exp 的线性叠加。()y x y x df df f f G ,是相应于空间频率为x f 、y f 的基元函数的权重,()y x f f G ,称为()y x g ,的空间频谱。 理论上可以证明,对在焦距为f 的会聚透镜的前焦面上放一振幅透过率为()y x g ,的图像作为物,并用波长为λ的单色平面波垂直照明,则在透镜后焦面()y x '',上的复振幅分布就是()y x g ,的傅里叶变换() y x f f G ,,其中空间频率x f 、y f 与坐标x '、y '的关系为: ??? ????' ='=f y f f x f y x λλ (6-3-3) 故()y x '',面称为频谱面(或傅氏面),由此可见,复杂的二维傅里叶变换可以用一透镜来实现,称为光学傅里叶变换,频谱面上的光强分布,也就是物的夫琅禾费衍射图。 2、阿贝成像原理 阿贝(E.Abbe )在1873年提出了相干光照明下显微镜的成像原理。他认为,在相干光照明下,显微镜的成像可分为两个步骤:第一步是通过物的衍射光在物镜的后焦面上形成一个衍射图;第二步是物镜后焦面上的衍射图复合为(中间)像,这个像可以通过目镜观察到。 成像的这两个步骤本质上就是两次傅里叶变换。第一步把物面光场的空间分布()y x g ,变为频谱面上空间频率分布()y x f f G ,,第二步则是再作一次变换,又将() y x f f G ,还原到空间分布()y x g ,。

阿贝成像原理和空间滤波实验

实验一 阿贝成像原理和空间滤波 一、实验目的 1.了解透镜孔径对成像的影响和两种简单的空间滤波。 2.掌握在相干光条件下调节多透镜系统的共轴。 3.验证和演示阿贝成像原理,加深对傅里叶光学中空间频谱和空间滤波概念的理解。 4.初步了解简单的空间滤波在光信息处理中的实际应用。 二、实验原理 1.阿贝成像原理 1873年,阿贝(Abbe)在研究显微镜成像原理时提出了一个相干成像的新原理,这个原 理为当今正在兴起的光学信息处理奠定了基 础。 如图1-1所示,用一束平行光照明物体, 按照传统的成像原理,物体上任一点都成了一 次波源,辐射球面波,经透镜的会聚作用,各 个发散的球面波转变为会聚的球面波,球面波 的中心就是物体上某一点的像。一个复杂的物体可以看成是无数个亮度不同的点构成,所有这些点经透镜的作用在像平面上形成像点,像点重新叠加构成物体的像。这种传统的成像原理着眼于点的对应,物像之间是点点对应关系。 阿贝成像原理认为,透镜的成像过程可以分成两步:第一步是通过物的衍射光在透镜后焦面(即频谱面)上形成空间频谱,这是衍射所引起的“分频”作用;第二步是代表不同空间频率的各光束在像平面上相干叠加而形成物体的像,这是干涉所引起的“合成”作用。成像过程的这两步本质上就是两次傅里叶变换。如果这两次傅里叶变换是完全理想的,即信息没有任何损失,则像和物应完全相似。如果在频谱面上设置各种空间滤波器,挡去频谱某一些空间频率成份,则将会使像发生变化。空间滤波就是在光学系统的频谱面上放置各空间滤波器,去掉(或选择通过)某些空间频率或者改变它们的振幅和相位,使二维物体像按照要求得到改善。这也是相干光学处理的实质所在。 以图l-l 为例,平面物体的图像可由一个二维函数g(x,y)描述,则其空间频谱G(f x ,f y )即为g(x ,y)的傅里叶变换: 2(,)(,)(,)x y i f x f y x y G f f g x y e dxdy π∞-∞-=?? (1-1) 图1-1 阿贝成像原理

探究小孔成像实验报告

探究小孔成像实验报告 提出问题 用易拉罐自制一个针孔照相机,在观察过程中,发现在室外观察景物时成像总不太清晰,有什么办法可增加清晰度呢.照相机半透膜上的图像会发生大小改变,这大小改变受什么因素影响,又有什么规律呢? 一:探究像的清晰度实验 思考与假设 根据生活经验,猜想不清晰可能是由于以下两种情况: 1.环境中光线太亮,以致于看不清半透膜上的像。 2.孔径太小,光线进入量过少,导致半透膜上的像不清晰 下面就针对这两个假设进行实验验证 实验1像的清晰程度和周围光的强度有关 设计实验: 器材:针孔照相机,光源(F型发光二极管),黑色卡纸(遮光器) 实验步骤: 1.为“针孔照相机”用黑色卡纸做了一个圆柱形的“遮光器”,套在针孔照相机 成像的一端,以降低半透膜周围光的强度. 2.在外界光线强,有遮光器时观察像的清晰程度 3.在外界光线强,无遮光器时观察像的清晰程度 4.在外界光线弱,有遮光器时观察像的清晰程度 5.在外界光线弱,无遮光器时观察像的清晰程度 不带遮光器的针孔照相机成像 带遮光器的针孔照相机成像

进行实验: 得到以下数据: 外界光线强弱 有无遮光器 成像效果(是否清 晰) 试验一 强 有 清晰 实验二 强 无 不清晰 实验三 弱 有 较清晰 实验四 弱 无 较清晰 得出结论:通过实验可以得出,成像的清晰程度与周围光线强度有关,周围环境越亮,成像越不清晰;周围环境越暗,成像越清晰.(1) 实验2 设计实验 器材:5个有不同口径小孔的小孔成像仪器,光具座,遮光器,光源 实验步骤: 1、制作出5个有不同口径小孔的小孔成像仪器:分别裁剪5个相同尺寸的易拉罐,剪掉瓶口,并分别在瓶底钻出5个大小不同的小孔。 2、在光具座上固定一个可发出平行光线的光源,保持光源与小孔之间的距离,用5个小孔成像仪器分别观测像的大小,并进行比较. 进行实验 1、如图所示,我们制作了5个孔径大小不一的小孔成像仪器: d=7mm d=5mm d=2mm d=1mm

阿贝成像原理和空间滤波

阿贝成像原理和空间滤波 【实验目的】 1.了解阿贝成像原理,懂得透镜孔径对成像的影响. 2.了解透镜的傅里叶变换功能及空间频谱的概念. 3.了解两种简单的空间滤波. 4.掌握在相干光条件下调节多透镜系统的共轴. 【实验仪器】 光具座,氦氖激光器,溴钨灯(12V ,50W)及直流电源,薄透镜若干,可变狭缝光阑,可变圆 孔光阑,θ调制用光阑,光栅(一维、正交及θ调制各一),光学物屏,游标卡尺,白屏,平面镜. 【实验原理】 阿贝在1873年为德国蔡斯工厂改进显微镜时发现,大孔径的物镜能导致较高的分辨 率,这是因为较大的孔径可以收集全部衍射光,这些衍射光到达像平面时相干叠加出较细的 细节.例如,用一定空间频率的光栅作为物,并且用单色光加以照明,物后的衍射光到达透镜 时(这里先考虑±1级衍射),当O 级与1±级衍射光到达像平面时,相干叠加成干涉条纹, 就是光栅的像;如果单色光波长较长或者L 孔径小,只接收了零级光而把1±级光挡去,那 么到达像平面上的只有零级光,就没有条纹出现,我们说像中缺少了这种细节.根据光栅方程, 不难算出,物体上细节d 能得以在像平面有反映的限制为 θλsin = d (1) θ为透镜半径对物点所张的角.换句话说,可分辨的空间频率为 λθsin 1=d (2) 物平面上细节越细微、即空间频率越高,其后衍射光的角度就越大,更不可能通过透 镜的有限孔径到达像平面,当然图像就没有这些细节.透镜就成像光束所携带的空间 频率而言,是低通滤波器,其截止频率就是(2)式所示的,λθsin =截f .瑞利在1896年认为 物平面每一点都发出球面波,各点发出的波在透镜孔径上衍射,到达像面时成为爱里 斑,并给出分辨两个点物所成两个模糊像——两个爱里斑的判据.其实阿贝与瑞利两种方 法是等价的. 波特在1906年把一个细网格作物(相当于正交光栅),但他在透镜的焦平面上设 置一些孔式屏对焦平面上的衍射亮点(即夫琅和费衍射花样)进行阻挡或允许通过 时,得到了许多不同的图像.设焦平面上坐标为ξ,那么ξ与空间频率λθ sin 相应关系为 f λξ λ θ= sin (3) (这适用于角度较小时f tg ξθθ=≈sin ,f 为焦距,).焦平面中央亮点对应的是物平面上总

小孔成像实验课教学设计

《小孔成像实验课》教学设计 一、教材分析 本节内容是《光的直线传播》中一个重要实验。它可以说明光在同均匀介质中是沿直线传播的。通过对书本上简单小孔成像的介绍,学生动手,动脑,利用日常生活物品,或常规实验仪器,小组协作设计出简单实验仪器,并对小孔所成像的特点进行分析,总结,探究出其中规律。 二、学情分析 光的直线传播知识可以帮助我们解决日常生活中许多的问题,学生通过学习也已经了解不少,但是小孔成像还是第一次听说,平时生活中也没有多少关注,因此只有通过实验来解决这一难题。我们可以利用易拉罐,一次性纸杯,塑料薄膜,橡皮劲这些生活中常见的物品做实验,拉近实验与生活的距离。教学过程中要让学生积极主动参与其中,让学生主动去研究成像的大小与哪些因素有关。 三、教学目标 知识与技能 1、学生自己动手,利用生活中的物品,自制小孔成像演示器 2.、知道小孔成像所成的像的形状与孔的形状无关 3.、知道像的大小和哪些因素有关 过程与方法 1.通过光线的概念培养学生抽象思维能力,利用物理模型研究问题的能力 2.通过解释光直线传播的现象,培养学生利用物理知识解决实际问题的能力 情感态度与价值观 1.通过对小孔成像成因的教学,进行反对迷信、崇尚科学的思想教育. 2.通过对我国古代对小孔成像研究所取得的成就,进行爱国主义教育,对学生进行严谨的科学态度教育 四、教学重难点 教学重点: 利用光的直线传播规律理解小孔成像 教学难点:小孔成像所成的像的大小与哪些因素有关 五、教学器材 光具座,蜡烛、光屏、障碍物 六、板书设计 小孔成像实验 一、自制小孔成像演示器 二、小孔成像所成的像的形状与小孔形状的关系 三、小孔成像所成的像的大小与哪些因素有关

小孔成像一flv-小学科学实验视频课件免费下载

小孔成像一flv-小学科学实验视频课件免费下 载 篇一:小孔成像 小孔成像 忠县金声乡中心小学吴义鹤教学内容:湖南科学技术出版社《科学》,三年级下册第五单元第一节《光与影》。 教学目标: 1、知道小孔成像与光的直线传播有关。 2、培养学生动手实验操作的能力、培养学生观察分析问题的能力。 3、培养学生尊重事实、尊重科学的精神,激发学生探究科学的兴趣。 教学重点: 能完成小孔成像的实验,并能对实验想象进行观察和分析。 实验材料:蜡烛、黑色小孔板、白色塑料板、自制简易照相机。 教学过程: 一、观察现象、复习引入新课。 1、教师出示蜡烛,并用打火机点燃蜡烛。

师问:能告诉老师,它是什么物体吗?点燃蜡烛以后,你发现了什么? 2、教师手持燃烧的蜡烛走在学生的中间,同学们,你们都能看到蜡 烛发出的光吗?你能告诉老师,这说明了什么吗? 3、光是怎样传播的?(教师板书:光源、四面八方、光沿直线传播) 二、提出问题、引发猜想。 1、同学们,看一看,这节课老师都为大家准备了什么材料?(生观 察并回答) 2、教师简单介绍实验材料。(板书:蜡烛、黑色小孔板、白色塑 料板) 3、教师提出问题:如果老师把黑色小孔板放在蜡烛和白色塑料板的 中间,点燃蜡烛,猜一猜,在白塑料板上能看到什么?(先让学生 思考,再把自己的猜想画出来) 4、师:谁先来讲一讲,你猜测的结果是什么?你猜测的理由是什么? 5、学生汇报,教师统计。 6、师:同学,刚才大家所讲的都有一定的道理,要想知道谁的猜测 是正确的,怎么办呢? 三、实验探究、搜集信息。

1、刚才大家已经认识了实验桌上的材料,请小组的同学先讨论一下,怎样利用实验材料做实验,应该注意什么问题。 2、学生讨论,小组代表汇报。 3、教师讲解注意事项; A、蜡烛和白色塑料板(相当于屏幕)放在 两边,黑色小孔板放中间。 B、蜡烛和白色塑料板,黑色小孔板放 在同一直线上。 C、在实验的过程 中,可以移动蜡烛和白色塑料板,黑色小孔板 4、学生实验、填写好实验探究卡。(教师发放实验探究卡) 5、以小组为单位,进行交流汇报。教师板书:蜡烛(火焰)小 孔倒像 6、师:同学们,从刚才的实验中,我们发现蜡烛火焰通过小孔后出 现倒像,科学们在研究问题的时候,是不是做一次实验就得出结论呢? 7、教师出示“简易照相机”并介绍它的结构,同学们想一想,这种 装置的相当与刚才实验中的哪些部分。 8、用“简易照相机“观察燃烧的蜡烛,看看,是不是也能看到刚才 实验中的现象? 四、分析整理、小孔成像秘密。 1、同学们,刚才的两个实验,我们都能看到一个共同的现象:蜡烛

阿贝成像原理和空间滤波

阿贝成像原理和空间滤波 一、实验目的 1.透镜的傅里叶变换作用; 2.空间频谱面的位置及空间频谱的观察; 3. 孔径对成像质量的影响; 4.验证阿贝成像原理,强化空间滤波概念的理解。 二、实验原理 1.阿贝成像原理 1873年,阿贝(Abbe)在研究显微镜成像原理时提出了一个相干成像的新原理,这个原 理为当今正在兴起的光学信息处理奠定了基 础。 如图1-1所示,用一束平行光照明物体, 按照传统的成像原理,物体上任一点都成了一 次波源,辐射球面波,经透镜的会聚作用,各 个发散的球面波转变为会聚的球面波,球面波 的中心就是物体上某一点的像。一个复杂的物体可以看成是无数个亮度不同的点构成,所有这些点经透镜的作用在像平面上形成像点,像点重新叠加构成物体的像。这种传统的成像原理着眼于点的对应,物像之间是点点对应关系。 阿贝成像原理认为,透镜的成像过程可以分成两步:第一步是通过物的衍射光在透镜后焦面(即频谱面)上形成空间频谱,这是衍射所引起的“分频”作用;第二步是代表不同空间频率的各光束在像平面上相干叠加而形成物体的像,这是干涉所引起的“合成”作用。成像过程的这两步本质上就是两次傅里叶变换。如果这两次傅里叶变换是完全理想的,即信息没有任何损失,则像和物应完全相似。如果在频谱面上设置各种空间滤波器,挡去频谱某一些空间频率成份,则将会使像发生变化。空间滤波就是在光学系统的频谱面上放置各空间滤波器,去掉(或选择通过)某些空间频率或者改变它们的振幅和相位,使二维物体像按照要求得到改善。这也是相干光学处理的实质所在。 以图l-l 为例,平面物体的图像可由一个二维函数g(x,y)描述,则其空间频谱G(fx ,fy)即为g(x ,y)的傅里叶变换: 2(,)(,)(,)x y i f x f y x y G f f g x y e dxdy π∞-∞-=?? (1-1) 图1-1 阿贝成像原理

实验四 阿贝成像与空间滤波

实验四 阿贝成像与空间滤波 班 级: 光电1204 小组成员:张路U201214186 钟浩U201214182 李俊铖U201214183 李阳U201214181 阿贝成像原理是 1873 年由 E.阿贝在显微镜成像中提出来的。在相干照明下, 被物体衍射的相干光(见光的干涉),只有当它被显微镜物镜收集时,才能对成像 有贡献。换句话说,像平面上光场分布和像的分辨率由物镜收集多少衍射光来决 定。 空间滤波是基于阿贝成象原理的一种光学信息处理方法,它用空间频谱的语 言分析物光场的结构信息,通过有意识的改变物频谱的手段来产生所期望的像。 1、 实验原理 (1) 关于傅里叶变换 设有一个空间二维函数,其二维傅里叶变换为: 式中、分别为、方向的空间频率,是的逆傅里叶变换,即: 该式表示:任意一个空间函数可表示为无穷多个基元函数的线性叠加。是相应于空间频率为、的基元函数的权重,称为的空间频谱。 理论上可以证明,对在焦距为的会聚透镜的前焦面上放一振幅透过率为的图像作为物,并用波长为的单色平面波垂直照明,则在透镜后焦面上的复振幅分布就是的傅里叶变换,其中空间频率、与坐标、的关系为: 故面称为频谱面(或傅氏面),由此可见,复杂的二维傅里叶变换可以用一透镜来实现,称为光学傅里叶变换,频谱面上的光强分布,也就是物的夫琅禾费衍射图。 (2)关于阿贝成像 阿贝(E.Abbe)在1873年提出了相干光照明下显微镜的成像原

理。他认为,在相干光照明下,显微镜的成像可分为两个步骤:第一步是通过物的衍射光在物镜的后焦面上形成一个衍射图;第二步是物镜后焦面上的衍射图复合为(中间)像,这个像可以通过目镜观察到。 成像的这两个步骤本质上就是两次傅里叶变换。第一步把物面光场的空间分布变为频谱面上空间频率分布,第二步则是再作一次变换,又将还原到空间分布。 图6-3-1显示了成像的两个步骤。我们假设物是一个一维光栅,单色平行光垂直照在光栅上,经衍射分解成为不同方向的很多束平行光(每一束平行光相应于一定的空间频率),经过物镜分别聚焦在后焦面上形成点阵。然后代表不同空间频率的光束又重新在像面上复合而成像。 如果这两次变换完全是理想的,即信息没有任何损失,则像和物应完全相似(可能有放大或缩小),但一般说来像和物不可能完全相似,这是由于透镜的孔径是有限的,总有一部分衍射角度较大的高次成分(高频信息)不能进入到物镜而被丢弃了,所以像的信息总是比物的信息要少一些。高频信息主要反映了物的细节,如果高频信息受到了孔径的限制而不能达到像平面,则无论显微镜有多大的放大倍数,也不可能在像平面上显示出这些高频信息所反映的细节,这是显微镜分辨率受到限制的根本原因。特别是当物的结构非常精细(如很密的光栅)或物镜孔径非常小时,有可能只有0级衍射(空间频率为0)能通过,则在像平面上完全不能形成像. (3)关于空间滤波 根据上面讨论,透镜成像过程可看作是两次傅里叶变换,即从空间函数变为频谱函数,再变回到空间函数(忽略放大率)。显然如果我们在频谱面(即透镜的后焦面)上放一些不同结构的光阑,以提取(或摒弃)某些频段的物信息,则必然使像面上的图像发生相应的变化,这样的图像处理称为空间滤波,频谱面上这种光阑称为滤波器。滤波器使频谱面上一个或一部分频率分量通过,而挡住其它频率分量,从而改变了像面上图像的频率成分。例如光轴上的圆孔光栏可以作为一个低通滤波器,而圆屏就可以用作为高通滤波器。 2、知识与设计 (1)知识 描述物的空间频率概念及观察方法 1.物的空间频率 空间频率是傅里叶光学中的基本物理量,从时间频率延伸而来。波矢量为

阿贝成像原理和空间滤波(预习).

阿贝成像原理和空间滤波 【学习重点】 1. 了解光学付立叶变换的原理。掌握正透镜作为光学付立叶元件在实验上对付立叶变换的实现。 2. 对光学空间谱和滤波、调制等光学信息处理手段有一定感性认识。 3. 掌握阿贝成像原理的物理机制,了解透镜孔径对分辨率的影响。 【仪器用具】 光具座、He-Ne 激光器、白光光源、20cm 聚焦透镜两个、显微镜物镜、可变旋转狭缝、可变圆孔光阑,300目铜网和网字格,θ调制图像 【预习重点】 1. 空间滤波的光路要求和激光扩束准直的实现。 2. θ 调制的光路要求。 【背景知识】 1. 傅立叶变换 近代光学中,对光的传播和成像过程用傅立叶变换来表达,形成了傅立叶光学,可以处理一些无法用经典光学理论解决的问题。傅立叶变换时处理振荡和波这类问题的有力工具。对振动和波的傅立叶分析一般在时域和频域中进行,而对光的传播与成像分析是在空间和倒数空间中进行的。不考虑时域,单色平面光波的表达式如下: 0()[()]f r Aexp i k r ?=?+ (1) 直角坐标系中,k 的方向余弦为(cos ,cos ,cos )αβγ,r 为(x ,y ,z ) 2(cos cos ,cos )k r x y z παβγλ?=+ (2) 波矢量的物理意义可以理解为平面波的空间频率,在x ,y ,z 方向上三个分量分别为 222cos , cos , cos x y z f f f πππαβγλλλ=== (3) 在傅立叶光学中,将物光作为一个输入函数(物函数),研究其经过具有傅立叶变换作用的光学元件后在接收面上得到的输出函数(像函数)。以物是平面图像为例,物函数g (x ,y )可以表示成一系列不同空间频率的单色平面波的线性叠加,即 (,)(,)exp[2()]x y x y x y g x y G f f i xf yf df df π∞ -∞ =+?? (4) 其中(,)x y G f f 被称为物函数的空间频谱函数。 它可以由物函数g (x ,y )求得,其关系式为 ??∞ ∞-+π-=dxdy y f x f i y x g f f G y x y x )](2exp[),(),( (5) (4)(5)式为傅立叶正变换与逆变换公式。在实验实现上,一个完善的薄透镜是一个二维付立叶变换运算器,对于放 图1

阿贝成像原理和空间滤波

北京航空航天大学 实验报告 实验名称:E 09 阿贝成像原理和空间滤波 数据记录及处理和试验现象及解释: (1)阿贝成像原理试验: ① 求相应空间频率: He-Ne 激光器波长λ=632.8nm ,透镜F=250mm ,x f ξ' =,将实验数据带入下表: ② 在频谱面上放置各种滤波器,成像变化特点及相应解释: ③ 测量二维光栅像面上x ',y '方向光栅条纹间距: 像面上沿x '方向条纹间距△x '=2.0mm ,y '方向光栅条纹间距△y '=2.0mm ④ 在屏谱面图上依次放置不同小孔及不同取向光阑,观察像面变化 综上所述:从所得到的实验结果可以看出,对像中某一方向结构有贡献的是与该方向垂直的频谱。 学号:38270104 姓名:王文征 日 期:4月10日晚 同组者:刘思沂 指导老师:段亚飞 评 分:

(2)高低通滤波: ① 将物面换上3号样品,则在像面上出现带网格的“光”字。 ② 用白屏观察 焦面上物的空间频谱。光栅为一周期性函数,其频谱是有规律排列的分 立点阵。而字迹不是周期性函数,它的频谱是连续的,一般不易看清。由于光字笔画较粗,空间低频成分较多,因此频谱面的光轴附近只有光字信息而没有网格信息,由于仅保留了离轴较近的低频成份,因而图像细结构消失。 ③ 将3号滤波器(φ=1mm 的圆孔光阑)放在 后焦面的光轴上,出现“光”字,网格 信息消失,亮度较暗。换上4号滤波器(φ=0.4mm 的圆孔光阑),光字更暗。 ④ 将频谱面上光阑作一平移,使不在光轴上的一衍射点通过光阑,发现越偏离光轴图像 越暗。换上4号样品,使之成像。然后在后焦面上放上5号滤波器,发现未放之前出现红色十字,放上5号滤波器后“十”字中间变暗,四周轮廓也较为清晰,它阻挡低频分量而允许高频成份通过,可以实现图像的衬度反转或边缘增强,所以图像轮廓明显。 (3)θ调制试验: 衍射频上花、叶、背景的光栅走向 蓝(背景) 红(花) 绿(叶) 利用阿贝成像实验中的结论,对像中某一方向结构有贡献的是与该方向垂直的频谱。 θ 调制法是利用不同方位的光栅对图像进行调制的方法。具体操作为:将一个二维图像分成几个部分,不同部分的图案分别用不同方向的光栅进行调制,就完成了编码过程,获得了一块θ 调制板,经θ 调制的二维图像置于4f 系统的输入面上,用准直白光照射物平面,白光由各种不同波长的光组成,不同波长光的非零级谱点与系统光轴夹角不同,所以在频谱面上的频谱就成为彩色的,每个谱点按波长从里到外按紫、蓝、青、绿、黄、橙、红的顺序排列,每一部分图形对应予一列频谱。按设计的颜色在频谱面上放置滤波器就能得到所需的 彩色输出像。 思考题: 1. 空间频率是频率吗?为什么说物的细节部分空间频率“高”,衍射光与光轴之间的夹角大? 答:空间频率不是频率。由傅里叶变换可知,高频部分反映物的细节,所含频率越多越高,所呈现出物体的像就越精确。但因透镜孔径有限,根据dsin θ=k λ,高频部分θ大,通不过透镜。 2. 本实验的同轴等高如何进行?特别是怎样做好激光束的调整,平行光扩束,频谱面和像面 位置的确定。 答:打开激光器,调节激光管的左右及仰俯,沿导轨前后移动白屏,保证光电在屏的位置不变并记下激光束在白屏上的具体位置。调节L 1,将L 1放在激光管和白屏之间,调节L 1使移动L 1时,光斑中心在白屏的位置不变。放上L 2,使L 1和L 2间距为F 1+ F 2在白屏和L 2之间放上L 3,使白屏与L 3间距为L 3,调节L 1,L 2的相对位置,使在白屏上看到聚焦的一点时,L 1、L 2已调好。调节L 3,使在白屏上的焦点位置不变,L 3已调好。放上带有样品模板支架并调节支架使平行光均匀照在样品上。沿导轨移动L 3直到4m 以外的屏幕上得到清晰的图像。固定物及各透镜的位置。用白屏在L 3后焦面附近移动,会在白屏某处上出现清晰的一排水平排列的各点,这一平面就是频谱面,将滤波器支架放在此平面上。 3. 光学中的空间滤波如何进行?本实验中的频谱面和像面各在什么地方? 答:光学中的空间滤波就是在频谱面上放一些模版(吸收板或相移板),以减弱某些光的空间频率成分或改变某些频率成分的相位,则必然是使像面上的图像发生相应的变化,这样的光学图像处理称为空间滤波。本实验中,频谱面在 的后焦面上,像面在4m 以外的屏幕上。 4.什么叫θ调制?试验为什么要用白光照射?频谱面和像面各在什么地方?“彩色”图像是如何得到的? 答:θ调制是一个利用白光照明而获得彩色图像的实验。频谱面在光源的像面,像面在 的 后焦面上。在光源S 的像面上插入纸板,在适当的地方扎孔,自制一个“空间滤波器”,使透明图片的像面呈现县一副红花、绿叶和蓝色背景的彩色图案。

阿贝成像原理和空间滤波实验

G(fx, fy)二 U 二(x,y)齐"E y y)dxdy (1-1) 点重新叠加构成物体的像。这种传统的成像原理着眼于点的对应, 物像之间是点点对应关系。 阿贝成像原理认为, 透镜的成像过程可以分成两步: 第一步是通过物的衍射光在透镜后 焦面(即频谱面)上形成空间频谱,这是衍射所引起的“分频”作用;第二步是代表不同空间 频率的各光束在像平面上相干叠加而形成物体的像,这是干涉所引起的 过程的这两步本质上就是两次傅里叶变换。 如果这两次傅里叶变换是完全理想的, 即信息没 有任何损失,则像和物应完全相似。如果在频谱面上设置各种空间滤波器, 挡去频谱某一些 空间频率成份,则将会使像发生变化。 空间滤波就是在光学系统的频谱面上放置各空间滤波 器,去掉(或选择通过)某些空间频率或者改变它们的振幅和相位,使二维物体像按照要求得 到改善。这也是相干光学处理的实质所在。 以图1-1为例,平面物体的图像可由一个二维函数 g(x,y)描述,则其空间频谱 G(f x , f y ) 即为g(x , y)的傅里叶变换: 、实验目的 实验 阿贝成像原理和空间滤波 1 ?了解透镜孔径对成像的影响和两种简单的空间滤波。 2.掌握在相干光条件下调节多透镜系统的共轴。 3?验证和演示阿贝成像原理,加深对傅里叶光学中空间频谱和空间滤波概念的理解。 4?初步了解简单的空间滤波在光信息处理中的实际应用。 二、实验原理 1 ?阿贝成像原理 1873年,阿贝(Abbe)在研究显微镜成像原理时提出了一个相干成像的新原理,这个原 理为当今正在兴起的光学信息处理奠定了基 HaiiH 础 。 如图1-1所示,用一束平行光照明物体, 按照传统的成像原理, 物体上任一点都成了一 次波源,辐射球面波,经透镜的会聚作用,各 个发散的球面波转变为会聚的球面波, 球面波 的中心就是物体上某一点的像。 一个复杂的物 体可以看成是无数个亮度不同的点构成, 所有 图1-1阿贝成像原理 这些点经透镜的作用在像平面上形成像点, 像 “合成”作用。成像

阿贝成像原理和空间滤波实验报告

实验二阿贝成像原理和空间滤波实验 1.引言 阿贝所提出的显微镜成像的原理以及随后的阿—波特实验在傅里叶光学早期发展历史上具有重要的地位。这些实验简单而且漂亮,对相干光成像的机理、对频谱的分析和综合的原理做出了深刻的解释。同时,这种用简单模板做滤波的方法,直到今天,在图像处理中仍然有广泛的应用价值。 1.1实验目的和意义 1).加强对傅里叶光学中有关空间频率、空间频谱和空间滤波等概念的理解。 2).用一个带有蓝天白云还有城楼的光栅进行空间滤波和图像再现,熟悉空间滤波的光路及空间滤波的原理。 2.系统概述 2.1 系统原理 二维傅里叶变换).1设有一个空间二维函数,其二维傅里叶变换 为)yg(x,??????dxdyfy)i2x(f,y)g?(x,y)exp??xg((1F)???f,)G(f yxyx??-1f,fG(f,f)的又是式中,而分别为x,y方向的空间频率,其量纲为L)y,g(x yxyx逆傅里叶变换,即 ??????),fG(f?-1dfdf(fx?fyfG(f,)exp)i2?? F)2 (?y),(gx yx yyyxxx??式(2)表示任意一个空金函数,可以表示为无穷多个基元函数)x,y(g???dfy)df2(fx?fpexi的基元的线性叠加,是相应于空间频率为ff,)G(ff,yxyxyyxx函数的权重,称为的空间频 率。)(f,fG)y,x(g yx 当是一个空间周期性函数时,其空间频率是不连续的离散函数。)x,yg(2).光学傅里叶变换 理论证明,如果在焦距为F的会聚透镜的前焦面上放一振幅透过率为g(x,y)的图象作为物,并以波长为λ的单色平 面焦镜后象图,则在透面波垂照明??的傅,()上的振幅分布就是y x),yg(x标与坐,变换其中里叶f,f),fG(f yxyx??的关系为,y x''yx 3 ()?f?f, 1 图Yx??FF??,由此可见,复杂的二维傅里1面称为频谱面(或傅氏面)故—,见图y x叶变换可以用一透镜来实现,称为光学傅里叶变换,频谱面上的光强分布则为2,称为频谱,也就是物的夫琅禾费衍射图。)(ff,G yx .阿贝成像原理3)年提出了相干光照明下显微镜的阿贝成像原理,他认为,在相阿贝在1873第一步是通过物的衍射光在物镜干的光照明下,显微镜的成像可分为两个步骤:后焦面上形成一个衍射图,第二步则为物镜后面上的衍射图复合为(中间)像,这个像可以通过目镜观察到。第一步把物面光场的空间分成像的这两个步骤本质

阿贝成像与空间滤波实验报告

班 级 09级1班 ? 组 别 1组 姓 名 巩辰 ? 学 号 1090600004 日 期 3月1日 指导教师 【实验题目】 阿贝成像原理和空间滤波 【实验目的】 1. 了解透镜孔径对成像的影响和简单的空间滤波; 2. 掌握在相干光条件下调节多透镜系统的共轴; 3. 验证和演示阿贝成像原理,加深对傅里叶光学中空间频率、空间频谱和空间滤波概念的理解; 4. 初步了解简单的空间滤波在光信息处理中的实际应用. 【实验仪器与用具】 GP-78光具座 JSQ-250氦氖激光器及电源 物(光栅) 透镜×3(f=15mm 、f=70mm 、f=225mm) 光阑片 【实验原理】 1、关于傅里叶光学变换 设有一个空间二维函数()y x g ,,其二维傅里叶变换为: ()()[]()()[] dxdy y f x f i y x g y x g F f f G y x y x +-==??∞π2exp ,,, 式中x f 、y f 分别为x 、y 方向的空间频率,()y x g ,是() y x f f G ,的逆傅里叶变换,即: ()[]()()[] y x y x y x y x df df y f x f i f f G f f G F y x g +==??∞-π2exp ,,),(1 该式表示:任意一个空间函数()y x g ,可表示为无穷多个基元函数()[]y f x f i y x +π2exp 的线性叠加。()y x y x df df f f G ,是相应于空间频率为x f 、y f 的基元函数的权重,( )y x f f G ,称为()y x g ,的空间频谱。 理论上可以证明,对在焦距为f 的会聚透镜的前焦面上放一振幅透过率为()y x g ,的图

相关主题
文本预览
相关文档 最新文档