当前位置:文档之家› led灯的发光原理及荧光粉改善技术

led灯的发光原理及荧光粉改善技术

led灯的发光原理及荧光粉改善技术
led灯的发光原理及荧光粉改善技术

led灯的发光原理及荧光粉改善技术

led的发光原理。led是由ⅲ一v族化合物,如gaas(砷化镓)、gaasp(磷化镓砷)、a1gaas(砷化铝镓)等半导体制成,其核心是p-n结,因此它具有一般p-n结的伏一安特性,即正向导通、反向截止、击穿特性。当p型半导体和n型半导体结合时,由于交界面处存在的载流子浓度差。于是电子和空穴都会从高浓度区域向低浓度区域扩散。这样,p区一侧失去空穴剩下不能移动的负离子,n区一侧失去电子而留下不能移动的正离子。这些不能移动的带电粒子就是空间电荷。空间电荷集中在p区和n区交界面附近,形成了一很薄的空间电荷区,就是p-n结。当给p-n结1个正向电压时。便改变了p-n结的动态平衡。注入的少数载流子(少子)与多数载流子(多子)复合时,便将多余的能量以光的形式释放出来,从而把电能直接转换为光能。如果给pn结加反向电压,少数载流子(少子)难以注入,故不发光。

白光led的主要实现方法。目前,氮化镓基led获得白光主要有:蓝光led+黄色荧光粉、三色led合成白光、紫光led+三色荧光粉3种办法。最为常见形成白光的技术途径是蓝光led芯片和可被蓝光有效激发的荧光粉结合组成白光led.led辐射出峰值为470nm 左右的蓝光,而部分蓝光激发荧光粉发出峰值为570nm左右的黄绿

光。与另一部分的蓝光与激发荧光粉产生的黄绿光混合产生ylo:ce 白光。目前采用的荧光粉多为稀土激活的铝酸盐ylo:ce(yag),当有蓝光激发它时发出黄绿色光,所以称作黄绿色荧光粉。该方法发光,发光效率高,制备简单,工艺成熟。但色彩随角度而变。光一致性差,而且荧光粉与led的寿命也不一致,随着时问的推移,显色指数和色温都会变化,影响了发光光源的发光质量。

采用红、绿、蓝三原色led芯片或三原色led管混合实现白光。前者为三芯片型,后者为3个发光管组装型。红、绿、蓝led 封装在1个管内,光效可达20lm/w,发光效率较高,显色性较好。不过,这种合成白光方法的不足之处就是led的驱动电路较为复杂。三芯片型三原色混合成本较高,而且由于红绿蓝3种led的光衰特性不一致,随着使用时间的增加,三色的混合比例会变化。显色指数也会相应变化紫外光或紫光led激发三原色荧光粉,产生白光。采用这种方法更容易获得颜色一致的白光,因为颜色仅仅由荧光粉的配比决定,此外,还可以获得很高的显色指数。但其最大的难点在于如何获得高转换效率的三色荧光粉,特别是高效红色荧光粉。而且防止紫外线泄露也是很重要的。

添加红色荧光粉对大功率白光led光效和显色指数的影响

白光led是最具吸引力的21世纪绿色照明光源,日亚发明的制

作白光led的方法即是使用蓝光led激发黄色荧光粉,这种制备方法非常普及,已被用于工业化量产。其发光效率高低主要取决于材料(晶片、荧光粉、胶水)的优劣和生产制程的过程控制。

有研究机构对传统制备工艺进行了改良,并做了大量的大功率白光led实验,用蓝光led激发黄色荧光粉、红色荧光粉、及添加适当比例红色荧光粉的黄色荧光粉混合物,分别产生白光,从而探讨黄色荧光粉和红色荧光粉的放射光谱,以及相应led的特性。最终证明激发添加适当比例红色荧光粉的黄色荧光粉混合物的白光led,其发光效率比激发黄色荧光粉的白光led要低,但是显色指数(cri)要高。

可用于tv背光与普通照明的新型红绿荧光粉技术

黄色、绿色硅酸盐荧光粉在455nm以下激发效率较高;橙色硅酸盐和红色氮化物荧光粉在整个蓝光波段有较高的激发效率;yag 荧光粉在以460nm为中心波长的光谱范围内激发效率较高。

电视背光对led光源的要求主要包括以下几个方面:中等功率,冷白光,高显色性,良好的热稳定性,长期工作可靠性。针对上述要求电视背光可采用的荧光粉包括:

1、绿色荧光粉,包括硅酸盐荧光粉、β-sialon、铝酸盐绿色荧光粉、yag等,性能各有优劣。其中硅酸盐绿色荧光粉激发效率

高,但热稳定性能差且易吸潮;β-sialon热稳定性能优良,但激发效率不高且价格昂贵;铝酸盐绿色荧光粉激发效率高、热稳定性能优良、长期工作可靠性好。

2、红色荧光粉主要采用氮化物红色荧光粉,热稳定性能优良,激发效率得到进一步提升,但价格相对较高。

普通照明对led光源的要求主要包括以下几个方面:高功率,暖白光,高显色性,良好的热稳定性,长期工作可靠性。针对上述要求普通照明可采用的荧光粉包括:

1、yag荧光粉是最佳的黄色荧光粉,热稳定性能好,寿命长,但缺少绿光段导致显色指数较低。

2、硅酸盐荧光粉可以提供混合绿色、黄色、橙色荧光粉以提高显色指数,但硅酸盐荧光粉的缺点在于热稳定性能差且易吸潮。

3、铝酸盐绿色荧光粉热稳定性能好,寿命长,黄绿波段转换效率高,可以实现高显色指数。

4、氮化物红色荧光粉与黄色、绿色荧光粉混合可以实现高显色性暖白光,热稳定性能好,寿命长。

铝酸盐绿色荧光粉峰值波长515nm-540nm,典型颗粒度10-17um,与硅酸盐绿色荧光粉和β-sialon相比,波谱更宽;与yag荧光粉相比热稳定性能更佳。

氮化物红色荧光粉caalsi(na)3:eu2+,波长范围620nm-

670nm,630nm系列红色荧光粉可用于实现显色指数80的暖白光led,650nm系列红色荧光粉可用于实现显色指数90的暖白光led及高ntsc电视背光源。

将beta-sialon绿色荧光粉、硅酸盐绿色荧光粉、新型铝酸盐绿光荧光粉,分别与氮化物红色荧光粉r650组合用于液晶电视背光源,并对其温度特性进行对比。结果显示,铝酸盐绿光荧光粉与氮化物红光荧光粉r630组合可实现用于普通照明的暖白光led.yag、og450、硅酸盐黄光荧光粉等荧光粉可实现用于普通照明的冷白光led.

LED发光原理

LED(Light Emitting Diode),发光二极管,是一种固态的半导体器件,它可以直接把电转化为光。LED的心脏是一个半导体的晶片,晶片的一端附在一个支架上,一端是负极,另一端连接电源的正极,整个晶片被环氧树脂封装起来。半导体晶片由两部分组成,一部分是P型半导体,在它里面空穴占主导地位,另一端是N型半导体,在这边主要是电子。但这两种半导体连接起来的时候,它们之间就形成一个“P-N结”。当电流通过导线作用于这个晶片的时候,电子就会被推向P区,在P区里电子跟空穴复合,然后就会以光子的形式发出能量,这就是LED发光的原理 其发光过程包括三部分:正向偏压下的载流子注入、复合辐射和光能传输。微小的半导体晶片被封装在洁净的环氧树脂物中,当电子经过该晶片时,带负电的电子移动到带正电的空穴区域并与之复合,电子和空穴消失的同时产生光子。电子和空穴之间的能量(带隙)越大,产生的光子的能量就越高。光子的能量反过来与光的颜色对应,可见光的频谱范围内,蓝色光、紫色光携带的能量最多,桔色光、红色光携带的能量最少。由于不同的材料具有不同的带隙,从而能够发出不同颜色的光。 LED灯具照明光源的主流将是高亮度的白光LED。目前,已商品化的白光LED 多是二波长,即以蓝光单晶片加上YAG黄色荧光粉混合产生白光。未来较被看好的是三波长白光LED,即以无机紫外光晶片加红、蓝、绿三颜色荧光粉混合产生白光,它将取代荧光灯、紧凑型节能荧光灯泡及LED背光源等市场。 LED的实质性结构是半导体PN结,核心部分由P型半导体和N型半导体组成的晶片,在P型半导体和N型半导体之间有一个过渡层,称为PN结。其发光原理可以用PN结的能带结构来做解释。制作半导体发光二极管的半导体材料是重掺杂的,热平衡状态下的N区有很多迁移率很高的电子,P区有较多的迁移率较低的空穴。在常态下及PN结阻挡层的限制,二者不能发生自然复合,而当给PN结加以正向电压时,由于外加电场方向与势垒区的自建电场方向相反,因此势垒高度降低,势垒区宽度变窄,破坏了PN结动态平衡,产生少数载流子的电注入。空穴从P区注入N区,同样电子从N区注入到P区,注入的少数载流子将同该区的多数载流子复合,不断的将多余的能量以光的形式辐射出去。

LED发光二极管原理(图文)讲解学习

LED发光二极管原理(图文)半导体发光器件包括半导体发光二极管(简称LED)、数码管、符号管、米字管及点阵式显示屏(简称矩阵管)等。事实上,数码管、符号管、米字管及矩阵管中的每个发光单元都是一个发光二极管。 一、半导体发光二极管工作原理、特性及应用(一)LED发光原理发光二极管是由Ⅲ-Ⅳ族化合物,如GaAs(砷化镓)、GaP(磷化镓)、GaAsP(磷砷化镓)等半导体制成的,其核心是PN结。因此它具有一般P-N结的I-N特性,即正向导通,反向截止、击穿特性。此外,在一定条件下,它还具有发光特性。在正向电压下,电子由N区注入P区,空穴由P 区注入N区。进入对方区域的少数载流子(少子)一部分与多数载流子(多子)复合而发光,如图1所示。 假设发光是在P区中发生的,那么注入的电子与价带空穴直接复合而发光,或者先被发光中心捕获后,再与空穴复合发光。除了这种发光复合外,还有些电子被非发光中心(这个中心介于导带、介带中间附近)捕获,而后再与空穴复合,每次释放的能量不大,不能形成可见光。发光的复合量相对于非发光复合量的比例越大,光量子效率越高。由于复合是在少子扩散区内发光的,所以光仅在靠近PN结面数μm以内产生。 理论和实践证明,光的峰值波长λ与发光区域的半导体材料禁带宽度Eg有关,即λ≈1240/Eg(mm)式中Eg的单位为电子伏特(eV)。若能产生可见光(波长在380nm紫光~780nm红光),半导体材料的Eg应在3.26~1.63eV之间。比红光波长长的光为红外光。现在已有红外、红、黄、绿及蓝光发光二极管,但其中蓝光二极管成本、价格很高,使用不普遍。 (二)LED的特性 1.极限参数的意义(1)允许功耗Pm:允许加于LED两端正向直流电压与流过它的电流之积的最大值。超过此值,LED发热、损坏。 (2)最大正向直流电流IFm:允许加的最大的正向直流电流。超过此值可损坏二极管。(3)最大反向电压VRm:所允许加的最大反向电压。超过此值,发光二极管可能被击穿损坏。 (4)工作环境topm:发光二极管可正常工作的环境温度范围。低于或高于此温度范围,发

LED荧光粉种类

LED荧光粉产业以及市场调研报告 1 LED荧光粉概述 LED荧光粉近几年的发展非常迅速,美国GE公司持有多项专利,国内也有一些专利报道。蓝光LED激发的黄色荧光粉基本上能满足目前白光LED产品的要求。但还需要进一步提高效率,降低粒度。最好能制备出直径3~4nm之间的球形的荧光粉。 20世纪90年代中期,日本日亚化学公司的Nakamura等人经过不懈努力,突破了制造蓝光发光二极管(LED)的关键技术,并由此开发出以荧光材料覆盖蓝光LED 产生白光光源的技术。半导体照明具有绿色环保、寿命超长、高效节能、抗恶劣环境、结构简单、体积小、重量轻、响应快、工作电压低及安全性好的特点,因此被誉为继白炽灯、日光灯和节能灯之后的第四代照明电光源,或称为21世纪绿色光源。美国、日本及欧洲均注入大量人力和财力,设立专门的机构推动半导体照明技术的发展。 2 LED荧光粉的种类 2.1 YAG铝酸盐荧光粉(Y3Al5O12:Ce) 描述:淡黄色粉末,点涂于蓝光芯片,受蓝光芯片激发产生黄光。黄光与剩于蓝光合成白光。 优点:亮度高,发射峰宽,成本低,应用广泛,黄粉效果较好。 缺点:激发波段窄,光谱中缺乏红光的成分,显色指数不高,很难超过85,特别是低色温白光LED中,必须使用优质的红色荧光体 2.1.1 文摘1:YAG粉合成工艺

2.2 硅酸盐荧光粉 优点:激发波段宽,绿粉和橙粉较好。 缺点:发射峰窄,对湿度较敏感,缺乏好的红粉,不太耐高温,不适合做大功率LED,适合用在小功率LED。 2.2.1硅酸盐绿色荧光粉 传统的硫化物基质荧光粉在空气中化学稳定性差,容易被气化,亮度也低,在应用中受到很大的限制,现已逐步被替代;而铝酸盐体系具有 2.3 氮化物荧光粉 优点:激发波段宽,温度稳定性好,非常稳定.红粉、绿粉较好。 缺点:制造成本较高,发射峰较窄。 2.3.1 氮化物荧光粉的主要类型及制造 摘文1:LED氮化物荧光粉主要类型及制造

阐述LED荧光粉的用途和工作原理

阐述LED荧光粉的用途和工作原理 近年来,在照明领域最引人关注的事件是半导体照明的兴起。20世纪90年代中期,日本日亚化学公司的Nakamura等人经过不懈努力,突破了制造蓝光发光二极管(LED)的关键技术,并由此开发出以荧光材料覆盖蓝光LED产生白光光源的技术。半导体照明具有绿色环保、寿命超长、高效节能、抗恶劣环境、结构简单、体积小、重量轻、响应快、工作电压低及安全性好的特点,因此被誉为继白炽灯、日光灯和节能灯之后的第四代照明电光源,或称为21世纪绿色光源。美国、日本及欧洲均注入大量人力和财力,设立专门的机构推动半导体照明技术的发展。 LED实现白光有多种方式,而开发较早、已实现产业化的方式是在LED芯片上涂敷荧光粉而实现白光发射。 LED采用荧光粉实现白光主要有三种方法,但它们并没有完全成熟,由此严重地影响白光LED在照明领域的应用。 第一种方法是在蓝色LED芯片上涂敷能被蓝光激发的(YAG)黄色荧光粉,芯片发出的蓝光与荧光粉发出的黄光互补形成白光。该技术被日本Nichia公司垄断,而且这种方案的一个原理性的缺点就是该荧光体中Ce3+离子的发射光谱不具连续光谱特性,显色性较差,难以满足低色温照明的要求,同时发光效率还不够高,需要通过开发新型的高效荧光粉来改善。 第二种实现方法是蓝色LED芯片上涂覆绿色和红色荧光粉,通过芯片发出的蓝光与荧光粉发出的绿光和红光复合得到白光,显色性较好。但是,这种方法所用荧光粉有效转换效率较低,尤其是红色荧光粉的效率需要较大幅度的提高。

第三种实现方法是在紫光或紫外光LED芯片上涂敷三基色或多种颜色的荧光粉,利用该芯片发射的长波紫外光(370nm-380nm)或紫光(380nm -410nm)来激发荧光粉而实现白光发射,该方法显色性更好,但同样存在和第二种方法相似的问题,且目前转换效率较高的红色和绿色荧光粉多为硫化物体系,这类荧光粉发光稳定性差、光衰较大,因此开发高效的、低光衰的白光LED用荧光粉已成为一项迫在眉睫的工作。 我们是国内率先进行LED用高效低光衰荧光粉研究的研究机构。最近,通过与我国台湾合作伙伴的联合攻关,多种采用荧光粉的彩色LED被开发出来了。 采用荧光粉来制作彩色LED有以下优点: 首先,虽然不使用荧光粉,就能制备出红、黄、绿、蓝、紫等不同颜色的彩色LED,但由于这些不同颜色LED的发光效率相差很大,采用荧光粉以后,可以利用某些波段LED发光效率高的优点来制备其他波段的LED,以提高该波段的发光效率。例如有些绿色波段的LED效率较低,台湾厂商利用我们提供的荧光粉制备出一种效率较高,被其称为"苹果绿"的LED用于手机背光源,取得了较好的经济效益。 其次,LED的发光波长现在还很难精确控制,因而会造成有些波长的LED得不到应用而出现浪费,例如需要制备470nm的LED时,可能制备出来的是从455nm到480nm范围很宽的LED,发光波长在两端的LED只能以较低廉的价格处理掉或者废弃,而采用荧光粉可以将这些所谓的"废品"转化成我们所需要的颜色而得到利用。 第三,采用荧光粉以后,有些LED的光色会变得更加柔和或鲜艳,以适应不同的应用需要。当然,荧光粉在LED上最广泛的应用还是在白光领域,但由于其特殊的优点,在彩色LED 中也能得到一定的应用,但荧光粉在彩色LED上的应用还刚刚起步,需要进一步进行深入的研究和开发。

LED荧光粉

在制作白光LED的方法中,有两种方法都与荧光粉有关,因此在制作白光LED时,必须对荧光粉进行仔细研究。 荧光粉是一个非常关键的材料,它的性能直接影响白光LED的亮度、色坐标、色温及显色性等。 因而开发具有良好发光特性的荧光粉是得到高亮度、高发光效率、高显色性白光LED的关键所在。 所谓荧光粉是指那些可以吸收能量(这些所吸收的能量包括电磁波(含可见光、X射线、紫外线)、电子束或离子束、热、化学反应等),再经由能量转换后放出可见光的物质,也称之为荧光体或夜光粉。 目前发光材料的发光机理基本是用能带理论进行解释的。不论采用那一种形式的发光,都包含了: ?激发; ?能量传递; ?发光; 三个过程 一、激发与发光过程 ?激发过程: 发光体中可激系统(发光中心、基质和激子等)吸收能量以后,从基态跃迁到较高能量状态的过程称为激发过程。 ?发光过程: 受激系统从激发态跃回基态,而把激发时吸收的一部分能量以光辐射的形式发射出来的过程,称为发光过程。 一般有三种激发和发光过程 1. 发光中心直接激发与发光 (1). 自发发光 过程1:发光中心吸收能量后,电子从发光中心的基态A跃迁到激发态G 过程2:当电子从激发态G回到基态A,激发时吸收的一部分能量以光辐射的形式发射出来的过程。 发光只在发光中心内部进行。 (2). 受迫发光 若发光中心激发后,电子不能 从激发态G直接回到基态A(禁戒的跃迁),而是先经过亚稳态M(过程2),然后通过热激发从亚稳态M跃迁回激发态G(过程3),最后回到基态A(过程4)发射出光子

的过程,成为受迫发光。 受迫发光的余辉时间比自发发光长,发光衰减和温度有关。 2. 基质激发发光 基质吸收了能量以后, 电子从价带激发到导带 (过程1); 在价带中留下空穴,通 过热平衡过程,导带中的电子很快降到导带底(过程2); 价带中的空穴很快上升到价带顶(过程2’), 然后被发光中俘获(过程3’), 导带底部的电子又可 以经过三个过程产生发光。 (1). 直接落入发光中心激发 态的发光 导带底的电子直接落入发光中心的激发态G(过程3),然后又跃迁回基态A,与发光中上的空穴复合发光(过程4)

LED荧光粉的分析测试方法分析

评估方案 一、荧光粉的分析测试方法 1、发射光谱和激发光谱的测定 把样粉装好后,放到样品室里,选定一个激发波长,作发射光谱扫描,读出发射光谱的发射主峰。给定发射光谱的发射主峰,作激发光谱扫描,读出激发光谱峰值波长。重新装样,测试3次,各次之间峰值波长的差值不超过±1nm,取算术平均值。 2、外量子效率的测定 把样粉装好后,放到样品室里,选定一个激发波长,激发荧光粉发光,利用光谱辐射分析仪测试得到荧光粉的发射光谱功率分布。计算荧光粉在该激发波长下的外量子效率。重新装样,测试3次,各次之间的相对差值不大于1%,取算术平均值。 3、相对亮度的测定 将试样和参比样品分别装满样品盘,用平面玻璃压平,使表面平整。用激发光源分别激发试样和参比样品。用光电探测器将试样和参比样品发出的光转换成光电流,并记录数值。试样和参比样品连续重复读数3次,各次之间相对差值不大于1%,取算术平均值。 4、色品坐标的测定 把试样装好放入样品室中。选定激发光源的发射波长,使其垂直激发样品室里的荧光粉样品。利用光谱辐射分析仪按一定的波长间隔(不大于5nm)测试得到荧光粉的发射光谱功率分布。按GB 3102.6-1993中“6.39 色品坐标”的公式求出荧光粉的色品坐标。 重复测试3次,各次之间x、y的差值均不超过±0.001,取算术平均值。 5、温度特性的测定 把试样装好放入样品室中,于室温下测试其激发、发射主峰波长,相对亮度及色品坐标等。每一试样按测定步骤平行测3次,各次之间激发、发射主峰波长的差值均不超过±1 nm,相对亮度的差值不超过±1%,色品坐标的差值不超过±0.001。启动加热装置,将被测的荧光粉试样加热并稳定在设定的温度值10min。稳定在预定的温度下,测定荧光粉试样的激发、发射主峰波长,相对亮度及色品坐标等。每一试样按测定步骤平行测3次,各次之间激发、发射主峰波长的差值均不超过±1nm,相对亮度的差值不超过±1%,色品坐标的差值不超过±0.001。冷却荧光粉试样至室温,测试其激发、发射主峰波长,相对亮度及色

荧光粉发光原理

荧光粉发光的原理是什么 一、"荧光粉"发光的启示 为了弄清荧光粉的化学成分,我们首先想到了荧火虫的发光,荧火虫的发光原理主要有以下一系列过程。 成光蛋白质+成光酵素含氧成光蛋白质(发出绿光) 含氧成光蛋白质+H2O成光蛋白质 这就是荧火虫为何能持续发光,并且光亮一闪一闪的原因,值得注意的是,荧火虫所发出的绿光是一种"冷光",其结果转化率竟达97%。 其次,我们又注意了发光塑料的发光,发光塑料主要是在普通塑料中掺进一些放射性物质,如14C、35Sr、90Sr及Na、Th和发光材料ZnS、CaS这些硫化物在放射光线的照射下,被激发而射出可见光(冷光)。 荧光粉的化学成份由模糊的硅酸盐、钨酸盐,单一的元素Ba、Sr最后深化到标准的化学式,其化学组成为: 类别 化学式 颜色 密度 红粉 Y2O3:Eu 白 5.1±0.2 绿粉 CeMgL11O19:Tb 白 4.2±0.2 蓝粉 BaMgAl10O17:Eu 白 3.7±0.2 双峰蓝粉 BaMgA10O17:(Eu、Mn) 白 3.8±0.2 上转化荧光粉,即红外线激发荧光粉的成分为: 化学组成:YErYbF3 外观:白色无机粉末 晶粒尺寸:30nm 激发波长:980nm 发光颜色:绿光 特性:透光率较高,有较高的耐溶剂、耐酸碱性能

应对荧光粉危害的几种方法 由于荧光粉在充入日光灯管过程中,含有较多量的Hg,因此其危害的主要来源就是其散发的Hg蒸气,权威资料显示: 汞蒸气达0.04至3毫克时,会使人在2至3月内慢性中毒;达1.2至8.5毫克量,会诱发急性汞中毒,如若其量达到20毫克,会直接导致动物死亡。 汞一旦进入人体内,可很快弥散,并积累到肾、胸等组织和器官中,慢性汞中毒会导致精神失常,植物神经紊乱,急性症状常头痛、乏力、发热、口腔及消化道齿龈红肿酸痛,靡烂出血,牙齿松动等,部分皮肤红色斑、丘疹,少数肾损害,个别肾疼、胸痛,呼吸困难,紫绀等急性间质性肺炎。 汞如若保管和处置不当,还会对生态环境造成巨大危害,它以各种形态进入环境中,直接污染土壤、空气和水源,再通过食物链进入人体,危害着人们的健康生活,因此绝对不能将日光灯管碎片随处丢弃。 如果室内日光灯管碎裂了,可用碘1克/立方米加酒精后薰蒸或直接用1克/立方米碘分散于地面置8-12小时,这样挥发或升华的碘与空气中的汞生成难挥发的碘化汞(Hg+I2=HgI2)。用以降低汞蒸气的浓度,还可用5%-10%的三氯化铁或10%的漂白粉冲洗被污染的地面。 物质发光现象大致分为两类:一类是物质受热,产生热辐射而发光,另一类是物体受激发吸收能量而跃迁至激发态(非稳定态)在反回到基态的过程中,以光的形式放出能量。以稀土化合物为基质和以稀土元素为激活剂的发光材料多属于后一类,即稀土荧光粉。稀土元素原子具有丰富的电子能级,因为稀土元素原子的电子构型中存在4f轨道,为多种能级跃迁创造了条件,从而获得多种发光性能。稀土是一个巨大的发光材料宝库,在人类开发的各种发光材料中,稀土元素发挥着非常重要的作用。 自1973年世界发生能源危机以来,各国纷纷致力于研制节能发光材料,于是利用稀土三基色荧光材料制作荧光灯的研究应运而生。1979年荷兰菲利浦公司首先研制成功,随后投放市场,从此,各种品种规格的稀土三基色荧光灯先后问世。随着人类生活水平的不断提高,彩电已开始向大屏幕和高清晰度方向发展。稀土荧光粉在这些方面显示自己十分优越的性能,从而为人类实现彩电的大屏幕化和高清晰度提供了理想的发光材料。 稀土荧光材料与相应的非稀土荧光材料相比,其发光效率及光色等性能都更胜一筹。因此近几年稀土荧光材料的用途越来越广泛,年用量增长较快。 根据激发源的不同,稀土发光材料可分为光致发光(以紫外光或可见光激发)、阴极射线发光(以电子束激发)、X射线发光(以X射线激发)以及电致发光(以电场激发)材料等。 阴极射线发光材料—显示用荧光粉 主要用于电视机、示波器、雷达和计算机等各类荧光屏和显示器。稀土红色荧光粉(Y2O3∶Eu和Y2O2S∶Eu)用于彩色电视机荧光屏,使彩电的亮度达到了更高水平。蓝色和绿色荧光粉仍使用非稀土的荧光粉,但La2O2S∶Tb绿色荧光粉发光特性较好,有开发前景。最近彩色电视机统一使用EBU(欧州广播联盟)色,红粉为Y2O2S∶Eu。计算机不象电视机那样重视颜色的再现性,而优先考虑亮度,因而采用橙色更强的红色,Y2O2S中Eu的含量通常为5~7wt%。而彩色电视机红粉中Eu的含量约为计算机的1.5倍。

LED灯及其发光原理

LED灯及其发光原理 一、LED的结构及发光原理 50年前人们已经了解半导体材料可产生光线的基本知识,第一个商用二极管产生于1960年。LED是英文light emitting diode(发光二极管)的缩写,它的基本结构是一块电致发光的半导体材料,置于一个有引线的架子上,然后四周用环氧树脂密封,起到保护内部芯线的作用,所以LED的抗震性能好 LED结构图如下图所示 发光二极管的核心部分是由p型半导体和n型半导体组成的晶片,在p 型半导体和n型半导体之间有一个过渡层,称为p-n结。在某些半导体材料

的PN结中,注入的少数载流子与多数载流子复合时会把多余的能量以光的形式释放出来,从而把电能直接转换为光能。PN结加反向电压,少数载流子难以注入,故不发光。这种利用注入式电致发光原理制作的二极管叫发光二极管,通称LED。当它处于正向工作状态时(即两端加上正向电压),电流从LED阳极流向阴极时,半导体晶体就发出从紫外到红外不同颜色的光线,光的强弱与电流有关。 二、LED光源的特点 1. 电压:LED使用低压电源,供电电压在6-24V之间,根据产品不同而异,所以它是一个比使用高压电源更安全的电源,特别适用于公共场所。 2. 效能:消耗能量较同光效的白炽灯减少80% 3. 适用性:很小,每个单元LED小片是3-5mm的正方形,所以可以制 备成各种形状的器件,并且适合于易变的环境 4. 稳定性:10万小时,光衰为初始的50% 5. 响应时间:其白炽灯的响应时间为毫秒级,LED灯的响应时间为纳秒级 6. 对环境污染:无有害金属汞 7. 颜色:改变电流可以变色,发光二极管方便地通过化学修饰方法,调整材料的能带结构和带隙,实现红黄绿兰橙多色发光。如小电流时为红

荧光粉合成方法研究

荧光粉合成方法研究 1 研究背景 (1) 2 荧光粉合成方法 (1) 3 稀土元素及其发光性质 (3) 4荧光粉发光机理 (3) 1 研究背景 白光LED因其具有工作电压低、发光响应快、耗电量少、体积小、寿命长、性能稳定、耐震性强等优点,目前以广泛应用于显示屏、灯饰、光源及检测、医学、化学、生物等领域。此外,随着全球环境的恶化、能源的枯竭、资源的紧缺,这种兼备诸多优点的白光LED更引起了各国政府和众多公司的高度重视。 白光是一种复合光,人眼可视范围的白光需要至少两种波长以上光组合而成。白光LED一般可以分为以下三类:荧光转换型、多芯片组合型,单芯片多量子阱型。从目前的发展趋势、可行性、使用性和商品化方面考虑,荧光转换型更具有一定的优势。至今,采用蓝光、紫光或UV-LED配合荧光粉的技术已经相对成熟。但用于LED的红色荧光粉仍然存在发光强度低、不稳定、光衰大等缺点,从而导致显色指数不高、寿命短等问题,一种更为理想的红色荧光粉还有待研发。 2 荧光粉合成方法 目前工业上荧光粉的制备大多采用高温固相法,但该方法反应温度高、反应时间长,团聚现象严重,难以获得粒径较小、分散性好的荧光粉体。此外,煅烧后产物结团块严重,需机械研磨,从而导致荧光粉晶粒产生晶型缺陷,增加无辐射发光中心,也可能在晶体表面形成一层无定型不发光薄膜,很大程度上降低了荧光粉的发光效率。所以,这些问题的解决还需要更做更多的研究。众所周知,合成方法对荧光粉的理化性能影响很大,目前人们常用的制备方法有:高温固相法、溶胶凝胶法、微波辐射法、燃烧法、水热合成法、喷雾热解法和化学共沉淀法等。 ①高温固相法:目前为止,荧光粉的合成使用最多的方法就是高温固相法。它是将合成物质的原料按一定化学计量比进行称量,往往一并加入定量的助溶剂、电荷补偿剂充分混合研磨均匀,然后在一定的条件(如温度、时间等)下进行焙烧而得的产品,再经粉碎、过筛等处理即可得所需产物。此方法在原料配比、条件控制、助溶剂选择等诸多方面已日趋成熟,容易实现粉体的批量生产,也因此得到广泛的应用。但是,高温固相法制备的荧光粉团聚严重、颗粒粗大,机械研磨时容易引入杂质、破坏晶型,以致降低发光效率。

LED亮化灯具的种类及应用.

LED亮化灯具的种类及应用 LED护栏管 LED护栏管是采用优质超高亮LED发光二极管组成,主要用于城市景观亮化作用。本产品具有耗电低(每米到10W)、低热量、寿命长、耐冲击、可靠性高、节能环保,光色柔和,亮度高等特点。颜色纯正、色彩丰富,超长寿命,平均寿命达8万~10万小时。 LED护栏管原理 是由红绿蓝三基色混色实现七种颜色的变化,采用输出波形的脉宽调制, 即调节LED灯导通的占空比,在扫描速度很快的情况下,利用人眼的视觉惰性达到渐变的效果。一根灯管通过内控芯片,能够分段变化出七种不同颜色,并产生渐变、闪变、扫描、追逐、流水等各种效果,灯管长度要按实际效果要决定长度,常规的长度为一米。抗紫外线照射,防水、防潮。

LED护栏管特点 可放在PCB电路板上按红绿蓝顺序呈直线排列,以专用驱动芯片控制,构成变化无穷的色彩和图形。外壳采用阻燃PC塑料制作,强度高,抗冲击,抗老化,防紫外线,防尘,防潮,防护等级达到IP65。LED 护栏管具有功耗小,低热量,耐冲击,长寿命等优点,配合控制器,即可实现流水,渐变,跳变,追逐等效果。如果应用于大面积工程中,连接电脑同步控制器,还可显示图案,动画视频等效LED数码全彩灯管可以组成一个模拟LED显示屏,模拟显示屏可以提供各种全彩效果及动态显示图像字符,可以采用脱机控制或计算机连接实行同步控制;可以显示各式各样的全彩动态效果。控制系统采用专用灯光编程软件编辑,数码管控制花样更改方便,只需将编辑生成的花样格式文件复制进CF卡即可,数码管控制器可以单独控制,也可多台联机控制,数码管安装编排方式任意,适合各种复杂工程需求。数码管、控制器以及电源等以标准公母插头连接,方便快捷,并具有独特的外形设计,全新的户外防水结构。 LED护栏管应用范围 特别适合应用于广告牌背景、立交桥、河、湖护栏、建筑物轮廓等大型动感光带之中,可产生彩虹般绚丽的效果。用护栏管装饰建筑物的轮廓,可以起到突出美彩亮化建筑物的效果。事实证明,它已经成为照明产品中的一只奇葩,绽放在动感都市。 LED点光源 LED点光源是指以LED作为发光体的点光源,LED属于人造电光源之一。 由于LED的发光体接近“点”光源,灯具设计较为方便,但是,若作为大面积显示时,电流和功耗都较大。LED一般可用于电子设备的指示灯、数码管、显示板等显示器件和光电耦合器件,也常用于光通信等,以及建筑物轮廓,游乐园,广告牌,街道,舞台等场所的装饰。

荧光粉的配比 LED封装

浅谈LED荧光粉配胶程序 荧光粉在LED制造过程起着至关重要的作用。使用绿色荧光粉配合黄色荧光粉和蓝色LED芯片,可获得高亮度白光LED;若使用绿色荧光粉配合蓝光LED芯片,可以直接获得绿光;若使用绿色荧光粉配合黄色荧光粉与蓝色LED芯片,可以获得冷色调白光;绿色荧光粉也可配合红色荧光粉与蓝色LED芯片而获得白光。白光LED的显色指数(CRI)与蓝光芯片、Y AG荧光粉、相关色温等有关,其中最重要的是Y AG粉,不同色温区的LED,用的粉及蓝光芯片不一样。目标色温越低的管子用的粉发射峰值要越长,芯片的峰值也要长,低于4000K色温,还要另外加入发红光的粉,以弥补红成分的不足,达到提高显色指数的目的,在保持的芯片及粉不变的条件下,色温越高显色指数越高。 在生产中总结出来的经验来看,蓝光与Y AG的最佳匹配关系如下: Y AG发射峰值/nm 蓝光峰值波长/nm 530±5 450-455 540±5 455-460 550±5 460-465 555±5 465-470 这样做出的白光比较白,一般芯片厂家提供的都是主波长,峰值波长要用专门仪器测试,测出来的值一般都比主波长短5nm左右。荧光粉与芯片波长决定了色坐标中一条直线,确定了荧光粉与芯片波长。只要增加减少配比都可以调节色坐标在此一条直线上位置。 常见的LED晶粒如下: 材料波长材料波长 InGaN 475-485nm InGaN 525nm InGaN 465-475nm InGaN 505nm InGaN 455-465nm InGaN 515nm InGaAlP 620-640nm GaAlAs/GaAs 660nm InGaAlP 610-620nm GaAlAs/GaAlAs 660nm InGaAlP 600-610nm GaP 700nm InGaAlP 592-600nm GaP 570-575nm InGaAlP 580-593nm GaP 565-570nm InGaAlP 567-577nm GaP 550-565nm InGaAlP 550-565nm PY---GaAlAs 585nm 由于荧光粉目前有无机类和有机类荧光粉。若不添加有机类荧光粉之情况,Y AG荧光粉和AB胶之比例一般为1:6 ~ 10(重量比)。至于AB胶应为 6 ~10g之间的多少数量,必须视蓝色芯片的功率大小做调整。芯片功率大者,在荧光粉数量固定不变下,AB胶数量应较为少(例如1:6)。反之,功率小者AB胶数量应较为多(例如:1:10)。 LED荧光粉配胶程序是LED工艺中,相当基础的一环,我们来看看是怎么做的。 准备工作: 1、开启并检查所有的LED生产使用设备(烤箱、精密电子称、真空箱) 2、用丙酮清洗配胶所用的小烧杯。 3、准备所需的量产规格书或相应的联络单,及相应型号胶水等并确认其都在有效的使用期内。

led荧光粉

LED荧光粉是制造白色LED的必须材料。 首先,我们要了解白色LED的发光原理。白色LED芯片是不存在的。我们见到的白色LED 一般是蓝光芯片激发黄色荧光粉发出白色光的。好比:蓝色涂料和黄色涂料混在一起就变成了白色。 其次,不同波长的LED蓝光芯片需要配合不同波长的黄色荧光粉能够最大化的发出白光。 所以说,LED荧光粉是制造白色LED必须的东西(白色LED也有另外几种发光方式,但是市面上白色LED95%都是蓝光芯片激发黄色荧光粉的原理)。 黑体(热力学) 任何物体都具有不断辐射、吸收、发射电磁波的本领。辐射出去的电磁波在各个波段是不同的,也就是具有一定的谱分布。这种谱分布与物体本身的特性及其温度有关,因而被称之为热辐射。为了研究不依赖于物质具体物性的热辐射规律,物理学家们定义了一种理想物体——黑体(black body),以此作为热辐射研究的标准物体。 所谓黑体是指入射的电磁波全部被吸收,既没有反射,也没有透射( 当然黑体仍然要向外辐射)。显然自然界不存在真正的黑体,但许多地物是较好的黑体近似( 在某些波段上)。黑体辐射情况只与其温度有关,与组成材料无关. 基尔霍夫辐射定律(Kirchhoff),在热平衡状态的物体所辐射的能量与吸收的能量之比与物体本身物性无关,只与波长和温度有关。按照基尔霍夫辐射定律,在一定温度下,黑体必然是辐射本领最大的物体,可叫作完全辐射体。用公式表达如下: Er =α*Eo Er——物体在单位面积和单位时间内发射出来的辐射能; α——该物体对辐射能的吸收系数; Eo——等价于黑体在相同温度下发射的能量,它是常数。 普朗克辐射定律(Planck)则给出了黑体辐射的具体谱分布,在一定温度下,单位面积的黑体在单位时间、单位立体角内和单位波长间隔内辐射出的能量为 B(λ,T)=2hc2 /λ5 ·1/exp(hc/λRT)-1 B(λ,T)—黑体的光谱辐射亮度(W,m-2 ,Sr-1 ,μm-1 ) λ—辐射波长(μm) T—黑体绝对温度(K、T=t+273k) C—光速(2.998×108 m·s-1 ) h—普朗克常数,6.626×10-34 J·S K—波尔兹曼常数(Bolfzmann),1.380×10-23 J·K-1 基本物理常数 由图2.2可以看出: ①在一定温度下,黑体的谱辐射亮度存在一个极值,这个极值的位置与温度有关,这就是维恩位移定律(Wien) λm T=2.898×103 (μm·K) λm —最大黑体谱辐射亮度处的波长(μm) T—黑体的绝对温度(K) 根据维恩定律,我们可以估算,当T~6000K时,λm ~0.48μm(绿色)。这就是太阳辐射中大致的最大谱辐射亮度处。 当T~300K,λm~9.6μm,这就是地球物体辐射中大致最大谱辐射亮度处。 ②在任一波长处,高温黑体的谱辐射亮度绝对大于低温黑体的谱辐射亮度,不论这个波长是

白炽灯、日光灯、LED的发光原理

白炽灯、日光灯、LED的发光原理 评论:1 条查看:2240 次taoluezheLED发表于2008-01-05 14:24 1.白炽灯 根据白炽灯技术,主要有四种灯泡形式,分别为钨丝灯(tungsten-filament)、卤钨灯(tungsten halogen)、石英卤素灯(quartz halogen)及红外线反射灯 (infra-lamps,简称IR灯)。 1.1 白炽灯的发光原理 白炽灯是将电能转化为光能以提供照明的设备。其工作原理是:电首先被转化成了热,将灯丝加热至极高的温度(钨丝,熔点达3000℃多),这时候组成灯丝的元素的原子核外电子会被激发,从而使得其向较高能量的外层跃迁,当电子再次向低能量的电子层跃迁时,多余的能量便以光的形式放出来了。同时产生热量,螺旋状的灯丝不断将热量聚集,使得灯丝的温度达2000℃以上,灯丝在处于白炽状态时,就象烧红了的铁能发光一样而发出光来。灯丝的温度越高,发出的光就越亮。故称之为白炽灯。 白炽灯是由发光用的金属钨丝、与外界电源相通的电极,尾部的密封部分组成。一般将灯泡里面抽成真空或充入其它惰性气体,利用钨的熔点高的特点,将其制造成丝状,通入电流后,钨丝便发光,并有一部分电能转化为热能。在使用白炽灯时,注意不要去处接触灯泡,第一,灯泡表面温度很高,容易烫着手;第二,灯泡在工作时,钨丝在很高的温度下变软,如果晃动灯泡,容易使灯泡损坏。在刚开关刚闭合时钨丝最容易烧断。 1.2 灯丝材料 做灯丝的材料要求具有一定的电阻率、机械强度、化学稳定性和低挥发(即高熔点)。钨满足以上这些基本要求,当然这并不是说只有这一种材料,事实上还有铼,钼,钽,锇以及金属碳化物。

LED灯发光原理及基本特征(精)

LED灯发放原理及基本特征 一、LED发光原理 发光二极管主要由PN结芯片、电极和光学系统组成。其发光体——晶片的面积为10.12mil(1mil=0.0254平方毫米),目前国际上出现大晶片LED,晶片面积达40mil。 其发光过程包括三部分:正向偏压下的载流子注入、复合辐射和光能传输。微小的半导体晶片被封装在洁净的环氧树脂物中,当电子经过该晶片时,带负电的电子移动到带正电的空穴区域并与之复合,电子和空穴消失的同时产生光子。电子和空穴之间的能量(带隙)越大,产生的光子的能量就越高。光子的能量反过来与光的颜色对应,可见光的频谱范围内,蓝色光、紫色光携带的能量最多,桔色光、红色光携带的能量最少。由于不同的材料具有不同的带隙,从而能够发出不同颜色的光。 LED照明光源的主流将是高亮度的白光LED。目前,已商品化的白光LED多是二波长,即以蓝光单晶片加上YAG黄色荧光粉混合产生白光。未来较被看好的是三波长白光LED,即以无机紫外光晶片加红、蓝、绿三颜色荧光粉混合产生白光,它将取代荧光灯、紧凑型节能荧光灯泡及LED背光源等市场。 二、LED光源的基本特征 1、发光效率高 LED经过几十年的技术改良,其发光效率有了较大的提升。白炽灯、卤钨灯光效为12-24流明/瓦,荧光灯50~70流明/瓦,钠灯90~140流明/瓦,大部分的耗电变成热量损耗。LED光效经改良后将达到达50~200流明/瓦,而且其光的单色性好、光谱窄,无需过滤可直接发出有色可见光。目前,世界各国均加紧提高LED光效方面的研究,在不远的将来其发光效率将有更大的提高。 2、耗电量少 LED单管功率0.03~0.06瓦,采用直流驱动,单管驱动电压1.5~3.5伏,电流15~18毫安,反应速度快,可在高频操作。同样照明效果的情况下,耗电量是白炽灯泡的八分之一,荧光灯管的二分之一、日本估计,如采用光效比荧光灯还要高两倍的LED替代日本一半的白炽灯和荧光灯。每年可节约相当于60亿升原油。就桥梁护栏灯例,同样效果的一支日光灯40多瓦,而采用LED每支的功率只有8瓦,而且可以七彩变化。 3、使用寿命长 采用电子光场辐射发光,灯丝发光易烧、热沉积、光衰减等缺点。而采用LED 灯体积小、重量轻,环氧树脂封装,可承受高强度机械冲击和震动,不易破碎。平均寿命达10万小时。LED灯具使用寿命可达5~10年,可以大大降低灯具的维护费用,避免经常换灯之苦。4、安全可靠性强

led灯的发光原理及荧光粉改善技术

led灯的发光原理及荧光粉改善技术 led的发光原理。led是由ⅲ一v族化合物,如gaas(砷化镓)、gaasp(磷化镓砷)、a1gaas(砷化铝镓)等半导体制成,其核心是p-n结,因此它具有一般p-n结的伏一安特性,即正向导通、反向截止、击穿特性。当p型半导体和n型半导体结合时,由于交界面处存在的载流子浓度差。于是电子和空穴都会从高浓度区域向低浓度区域扩散。这样,p区一侧失去空穴剩下不能移动的负离子,n区一侧失去电子而留下不能移动的正离子。这些不能移动的带电粒子就是空间电荷。空间电荷集中在p区和n区交界面附近,形成了一很薄的空间电荷区,就是p-n结。当给p-n结1个正向电压时。便改变了p-n结的动态平衡。注入的少数载流子(少子)与多数载流子(多子)复合时,便将多余的能量以光的形式释放出来,从而把电能直接转换为光能。如果给pn结加反向电压,少数载流子(少子)难以注入,故不发光。 白光led的主要实现方法。目前,氮化镓基led获得白光主要有:蓝光led+黄色荧光粉、三色led合成白光、紫光led+三色荧光粉3种办法。最为常见形成白光的技术途径是蓝光led芯片和可被蓝光有效激发的荧光粉结合组成白光led.led辐射出峰值为470nm 左右的蓝光,而部分蓝光激发荧光粉发出峰值为570nm左右的黄绿

光。与另一部分的蓝光与激发荧光粉产生的黄绿光混合产生ylo:ce 白光。目前采用的荧光粉多为稀土激活的铝酸盐ylo:ce(yag),当有蓝光激发它时发出黄绿色光,所以称作黄绿色荧光粉。该方法发光,发光效率高,制备简单,工艺成熟。但色彩随角度而变。光一致性差,而且荧光粉与led的寿命也不一致,随着时问的推移,显色指数和色温都会变化,影响了发光光源的发光质量。 采用红、绿、蓝三原色led芯片或三原色led管混合实现白光。前者为三芯片型,后者为3个发光管组装型。红、绿、蓝led 封装在1个管内,光效可达20lm/w,发光效率较高,显色性较好。不过,这种合成白光方法的不足之处就是led的驱动电路较为复杂。三芯片型三原色混合成本较高,而且由于红绿蓝3种led的光衰特性不一致,随着使用时间的增加,三色的混合比例会变化。显色指数也会相应变化紫外光或紫光led激发三原色荧光粉,产生白光。采用这种方法更容易获得颜色一致的白光,因为颜色仅仅由荧光粉的配比决定,此外,还可以获得很高的显色指数。但其最大的难点在于如何获得高转换效率的三色荧光粉,特别是高效红色荧光粉。而且防止紫外线泄露也是很重要的。 添加红色荧光粉对大功率白光led光效和显色指数的影响 白光led是最具吸引力的21世纪绿色照明光源,日亚发明的制

LED荧光粉种类详述

作者:陈登铭 LED照明商用化的快速发展,预计将会加大白光LED荧光粉的市场需求,在各界持续投入荧光粉的研发能量之下,目前已发展出的三大主流白光LED荧光粉,将可望因应不同应用,满足对于性能的多样性与严苛度的要求。 为控制全球温室气体排放,节约地球有限的能源资源,近年来各国制定能源政策同时,无不竞相提出“节能减碳”计划,其中白炽灯已为澳洲、欧盟以及美国加州等陆续宣布淘汰的照明设施。发光二极管(LED)具有发热量低、耗电量小、寿命长、反应速度快、以及体积小等优点,目前全球白光LED照明产业持续蓬勃发展,尤其在手机面板背光源、照明以及汽车产业的应用更有无穷潜力。近年来,国内外多家面板厂商已将白光LED导入作为笔记本电脑液晶显示器背光源,取代使用汞的传统冷阴极荧光灯管。从解决环保及能源问题观点而言,白炽灯泡向来存在低能源效率与发热问题;至于含汞荧光灯,则存在汞污染的缺点,为此LED照明无疑将成为全球照明大厂全力以赴的目标。虽然白光LED使用于民生照明还存在诸多问题亟待解决,然可预见的将来,在制造成本逐渐降低、照明应用领域陆续开发之下,未来10年内,白光LED预期将成为极具潜力的照明商品。自1993年日本日亚化学成功开发出全球第一个商业化以氮化铟镓(InGaN)为材质的蓝、紫光LED之后,更加速以白光LED作为照明新世代的来临。日亚化学更在1996年发表InGaN/Y3Al5O12:Ce3+(简称YAG:Ce)荧光粉的单芯片白光LED,自此全球热烈展开白光LED相关技术研发的竞逐。日亚化学已在2007年内量产发光效率达每瓦150流明的白光LED,该公司同时表示第一阶段将先量产顺向电流20毫安的产品,此项LED发光效率堪称目前全球业界最高纪录。目前市场上白光LED 生产技术主要分为两大主流,第一为利用荧光粉将蓝光LED或紫外UV-LED所产生的蓝光或紫外光分别转换为双波长(Dichromatic)或三波长(Trichromatic)白光,此项技术称之为荧光粉转换白光LED(Phosphor Converted-LED);第二类则为多芯片型白光LED,经由组合两种(或以上)不同色光的LED组合以形成白光,目前市场上白光LED商品以蓝光LED芯片搭配黄光荧光粉最为普遍,主要应用于汽车照明与手机面板等领域,以目前白光LED产品市场分析,荧光粉转换白光LED可谓主流。图1简要归纳并比较多种白光LED构装原理和优劣点,其中(a)型构装方式、演色性最佳,但成本最高,尚未能普及;构装方式(b)则具有技术最成熟且成本低廉之优势,但色偏、演色性不佳,须以适当红、黄光荧光粉加以改善,此外,最严重者为日亚化学专利限制难以规避;而构装方式(c)与(d)两者所制作的白光LED演色性俱佳、色偏小、成本低且专利局限较不严重,因此未来深具发展潜力。图1 利用发光二极管产生白光的原理与优劣点

led灯的结构及发光原理(精)

led灯的结构及发光原理 50年前人们已经了解半导体材料可产生光线的基本知识,第一个商用二极管产生于1960年。LED是英文light emitting diode(发光二极管)的缩写,它的基本结构是一块电致发光的半导体材料,置于一个有引线的架子上,然后四周用环氧树脂密封,起到保护内部芯线的作用,所以LED的抗震性能好。 led灯结构图如下图所示 发光二极管的核心部分是由p型半导体和n型半导体组成的晶片,在p型半导体和n型半导体之间有一个过渡层,称为p-n结。在某些半导体材料的PN 结中,注入的少数载流子与多数载流子复合时会把多余的能量以光的形式释放出来,从而把电能直接转换为光能。PN结加反向电压,少数载流子难以注入,故不发光。这种利用注入式电致发光原理制作的二极管叫发光二极管,通称LED。当它处于正向工作状态时(即两端加上正向电压),电流从LED阳极流向阴极时,半导体晶体就发出从紫外到红外不同颜色的光线,光的强弱与电流有关。 二、什么是led光源,led光源的特点 1. 电压:LED使用低压电源,供电电压在6-24V之间,根据产品不同而异,所以它是一个比使用高压电源更安全的电源,特别适用于公共场所。 2. 效能:消耗能量较同光效的白炽灯减少80% 3. 适用性:很小,每个单元LED小片是3-5mm的正方形,所以可以制备成各种形状的器件,并且适合于易变的环境 4. 稳定性:10万小时,光衰为初始的50%

5. 响应时间:其白炽灯的响应时间为毫秒级,LED灯的响应时间为纳秒级 6. 对环境污染:无有害金属汞 7.颜色:改变电流可以变色,发光二极管方便地通过化学修饰方法,调整材料的能带结构和带隙,实现红黄绿兰橙多色发光。如小电流时为红色的LED,随着电流的增加,可以依次变为橙色,黄色,最后为绿色 8. 价格:LED的价格比较昂贵,较之于白炽灯,几只LED的价格就可以与一只白炽灯的价格相当,而通常每组信号灯需由上300~500只二极管构成。 三、单色光led灯的种类及其发展历史 最早应用半导体P-N结发光原理制成的LED光源问世于20世纪60年代初。当时所用的材料是GaAsP,发红光(λp=650nm),在驱动电流为20毫安时,光通量只有千分之几个流明,相应的发光效率约0.1流明/瓦。 70年代中期,引入元素In和N,使LED产生绿光(λp=555nm),黄光(λp=590nm)和橙光(λp=610nm),光效也提高到1流明/瓦。 到了80年代初,出现了GaAlAs的LED光源,使得红色LED的光效达到10流明/瓦。 90年代初,发红光、黄光的GaAlInP和发绿、蓝光的GaInN两种新材料的开发成功,使LED的光效得到大幅度的提高。在2000年,前者做成的LED在红、橙区(λp=615nm)的光效达到100流明/瓦,而后者制成的LED在绿色区域(λp=530nm)的光效可以达到50流明/瓦。 四、单色光LED的应用 最初LED用作仪器仪表的指示光源,后来各种光色的LED在交通信号灯和大面积显示屏中得到了广泛应用,产生了很好的经济效益和社会效益。以12 英寸的红色交通信号灯为例,在美国本来是采用长寿命,低光效的140瓦白炽灯作为光源,它产生2000流明的白光。经红色滤光片后,光损失90%,只剩下200流明的红光。而在新设计的灯中,Lumileds公司采用了18个红色LED光源,包括电路损失在内,共耗电14瓦,即可产生同样的光效。 汽车信号灯也是LED光源应用的重要领域。1987年,我国开始在汽车上安装高位刹车灯,由于LED响应速度快(纳秒级),可以及早让尾随车辆的司机知道行驶状况,减少汽车追尾事故的发生。 另外,LED灯在室外红、绿、蓝全彩显示屏,匙扣式微型电筒等领域都得到了应用。 五、白光led灯的开发 对于一般照明而言,人们更需要白色的光源。1998年发白光的led灯开发成功。这种led灯是将GaN芯片和钇铝石榴石(YAG)封装在一起做成。GaN芯片发蓝光(λp=465nm,Wd=30nm),高温烧结制成的含

相关主题
文本预览
相关文档 最新文档