当前位置:文档之家› 人类线粒体病的遗传学研究及治疗进展

人类线粒体病的遗传学研究及治疗进展

人类线粒体病的遗传学研究及治疗进展
人类线粒体病的遗传学研究及治疗进展

第31卷第3期济宁医学院学报2008年9月Vol131,No.3J O URNAL OF JIN ING M EDICAL COLLEGE Sep,2008

人类线粒体病的遗传学研究及治疗进展

郭岩1陈磊2高立1综述关晶1审校

(1济宁医学院2济宁医学院附属医院)

线粒体普遍存在于真核细胞的细胞质中,它是细胞物质氧化的主要场所和能量供给中心。线粒体是细胞核外含有遗传信息和表达系统的细胞器,其遗传特点表现为非孟德尔遗传方式,具有半自主性。线粒体病(m itochondr i opa t hy)是指因遗传缺损引起线粒体代谢酶的缺陷,导致AT P合成障碍、能量来源不足而出现的一组多系统疾病,因此,也被称为线粒体细胞病(m itochondr i a lcy topathy)[1,2]。

1线粒体基因组的特点

线粒体基因组是一个环状双DNA,核酸序列和组成比较保守,人类的线粒体基因组由16569bp组成,其外环为重(H)链,内环为轻(L)链,除一段非编码区(D-loop区)外,均为编码区,共编码13个多肽、22个t R NA和2个r RNA[3]。D-loop区是一大小约1000bp的调控区,其包含有重链复制起始点、保守序列节段、轻链启动子、重链启动子及终止结合序列等,几乎所有与m t DNA复制、转录和翻译相关的调控序列都位于该区。

2线粒体病的种类

线粒体病是遗传缺损引起线粒体代谢酶缺陷,使AT P合成障碍、能量来源不足导致的一组异质性病变。m t DNA有很高的突变率[4],当一种突变产生时,细胞同时含有野生型、突变型二种m t DNA时,称为异质性。异质细胞分裂时,突变和野生m t DNA随机分布到子细胞中。经过很多代的传递, m t DNA表型向野生型或突变型m t DNA占优势方向漂变,这一过程称为复制分离。随着突变型比例的增多,细胞获得能量的能力下降直到降低至阈值,即细胞或组织正常功能所必需的最小能量输出,超过这一点,就出现疾病症状[5]。一般情况下,线粒体病患者会有以上的两个至多个病症,其中的一些往往同时发生,以至于我们把它们归类为某综合征[6]。

2.1肌阵挛性癫痫伴肌肉蓬毛样红纤维综合征(M ERR F)

是由于m t DNA8344或8356发生了点突变造成的一种罕见的、杂质性母系遗传病,具有多系统紊乱的症状,包括肌阵挛性癫痫的短暂发作、不能够协调肌肉运动(共济失调)、肌细胞减少(肌病)、轻度痴呆、耳聋、脊髓神经退化等等。患者肌纤维紊乱、粗糙,线粒体形态异常并在骨骼肌细胞中积累,用Gom or iT r ichrom e染色显示为红色,称破碎红纤维。M ER-R F病一般在童年初发,病情可持续若干年[7]。

2.2慢性进行性眼外肌麻痹综合征(K SS)

病因尚未明确,50%有家族史,认为系线粒体肌病的一个亚型;也有人提到自身免疫或脂质代谢异常。20岁前起

技术的进展,期待更敏感、更特异的方法面世,这对于病理状态中细胞凋亡的研究将具有重要意义。

参考文献

[1]李跃林,李丽,邓卓军.实验性脂肪性肝病大鼠肝细胞凋亡与组织

病理的对比研究.河北医药,2004,26:9292

[2]B axa D M,Luo X,Yos h i m ura FK.Gen istei n i nduces apoptos i s i n T

l y m pho m a cell s v i a m itochondri al da m age.Nu tr C ancer,2005,51

(1):93

[3]Rob ert W,N i co l e G,E li sabeth G,M anfred W.Tw o2col or,fl uores2

cence2based m i crop late assay f or apoptosis d etecti on.B io T ech2 n i ques,2002,32(3):666

[4]S aafi EL,Konarko w ska B,z h ang S,et a1.U ltrastruct u ral ev i dence t h at

apop t os i s is t h e m echan i s m by w h i ch hum an a m yli n evokes deat h i n RINm5F pan creatic i s l et beta-cells.cell B i ol Lnt,2001,25:339 [5]袁兰,陈英玉.用激光扫描共聚焦显微镜原位检测细胞凋亡1新

技术应用,2003,(1):47

[6]王晓翔1细胞凋亡检测方法的研究进展1体育科技2005,26

(3):43

[7]Bai J,C ederb au m A I.Cycl ohexi m i de p rotects H epG2cells fro m se2

rum w it hdra w al i nduced apop tosis by d ecreasi ng p53and phospho2 rylated p53level s.J Phar m acol Exp Ther,2006,319(3):1435 [8]Ravagnan L,Roum i er T,K roe m er G.M it ochondria,the k ill er organ-

ell es and t heir w eapons.J CellPhysi o,l2002,192:131

[9]Chaturved i R,S ri vastava RK,H i sats une A,Shankar S,L illehoj EP,

K i m KC.Augm entati on of Fas li gand2i ndu ced apoptosis by M UC1 m uci n.Int J Onco,l2005,26(5):1169

[10]Pavlovs ky Z,Vagunda V.Apop t os i s2sel ect ed m et hod s of detecti on of

apoptosis and as soci ated regu l atory f act ors on ti ssue secti on s of t um ors.C esk Pat o,l2003,39(1):6

[11]张丽娟1细胞凋亡的检测方法及其在药物流产中的应用1医学

综述,200814(11):1660

[12]Lecoeu rH.Nu clear apop t os i s detecti on by n o w cyt o m etry::i nfl uen ce

of endogenou s endonu cl eases.E xp C ellR es,2002,277(1):1 [13]Dobru cki J,Darz ynk i e w i cz Z.Ch ro m ati n condensation and sens i ti vity

of DNA i n s i tu t o den aturati on duri ng cell cycl e and apop tos i s-a con f ocalm i croscopy s t udy.M icron,2001,32(7):645

[14]尹琰,寿伟璋.流式细胞术Annex i nV细胞凋亡检测方法探讨.东

南大学学报,2003,22:169

[15]Span L P,Penn i ngs AH,V ier w i nden G,et a.l The dyna m i c proces s of

apop t osis anal yzed by fl o w cyto m etry us i ng Annexi nV/p rop i d i um i o-

d i d

e and am odifi ed i n sit u end abeli ng tec hn iqu e.C yt o m etry,2002,

47(1):24

(收稿日期2008-06-11)

# 260 #

病,进展较快,表现CPEO和视网膜色素变性,常伴心脏传导阻滞[8]、小脑性共济失调、CSF蛋白增高、神经性耳聋和智能减退等。K SS型表现为眼外肌瘫痪伴视网膜色素变性和/或心脏传导阻滞,身材矮小,智能减退,神经性难听,小脑性共济失调,多由m t DNA片段缺失造成。

2.3线粒体脑肌病伴高乳酸血症和卒中样发作综合征(M ELAS)

m t DNA3243发生了点突变造成的疾病,患者多在5~15岁起病[9],儿童期发病较多。表现突发的卒中样发作,如偏瘫、偏盲和皮质盲、反复癫痫发作、偏头痛和呕吐等,病情逐渐加重。CT和M R I可见枕叶脑软化,病灶范围与主要脑血管分布不一致,常见脑萎缩、脑室扩大和基底节钙化;血和脑脊液乳酸增高。

2.4亚急性坏死性线粒体脑肌病(Le i gh)

亚急性坏死性脑脊髓病又称为线粒体脑肌病,是一种进行性神经变性疾病。临床表现为不明原因的营养不良及肝、胃肠疾病症状,进行性智力衰退及听力障碍,开始可有肢体无力、视力减退(视神经萎缩或皮质盲)、眼球运动障碍、眼震及抽搐等,病情恶化后呈木僵状态,肌强直阵挛,可因球麻痹及呼吸困难而死亡。

2.5线粒体DNA缺失综合征(M D S)

通常在婴儿期发病,该病症导致肌肉无力和/或肝功能衰竭,脑损伤则非常罕见。/懒散状0,喂食困难,发育迟缓也很常见,PEO和惊厥较少见。

2.6线粒体神经消化道脑肌病(M NG IE)

发病年龄通常20岁之前,该病可导致PEO、上睑下垂症、四肢无力以及消化道(消化系统)症状,包括慢性腹泻及腹痛。另一个常见症状是外周神经疾病(周围神经障碍症状,可导致感觉丧失及肌肉无力)。

2.7神经病、共济失调及色素性视网膜炎(MAR P)

可导致神经疾病、共济失调以及色素性视网膜炎(视网膜恶性病变,导致视觉丧失)。亦能导致发育迟缓、惊厥和痴呆。

2.8L eber遗传性视神经病(LHON)

Leber遗传性视神经病(LHON)是一种主要累及黄斑束纤维,导致视神经退性变的线粒体性遗传病。本病由von G rae f e最早于1858年报道。1871年,Leber s'收集了16个家庭中55例,并明确为一种独立的遗传性疾病;E ri ksen于1972年提出本病为线粒体m t DNA的突变所致;1988年W a-l lace等人在患LHON家族中鉴定出线粒体DNA第11778碱基对发生突变。本病具有母系遗传和倾向于男性发病的特点,起病年龄一般为青少年时期[10],我国平均为20.2岁。2.9P ea rson综合征

Pearson综合征是一种发生于婴儿时期的OXPHOS疾病,主要影响骨髓,表现为严重输血依赖性大细胞性贫血,伴不同程度白细胞和血小板减少。本症为m t DNA缺失所致,患者在婴儿期死于骨髓衰竭和反复输血并发症。存活患儿可能发展成为KS综合征,有乳酸酸中毒、生长落后、胰腺功能障碍、线粒体肌病、进行性神经系统功能障碍等,其遗传缺陷与K S综合征完全一样[11]。

3线粒体病的诊断

3.1家族史分析

在做出诊断以及进行分子遗传学测试时,详细的家族史非常重要。大多数PEO或K SS成年人患者在某个家族中只出现一例。许多幼年期发病的脑肌病在某个家族中也只出现一例,其病因可能是隐性核基因缺陷或m t DNA的缺陷。如果清楚地表现出某种母系遗传方式,则可能表明潜伏有某种m t DNA缺陷[12]。

3.2分子遗传学测试

对可疑线粒体病患者进行分子遗传学检查[13],对未知是何种突变者进行m t DNA基因筛查,位点至少包括常见的m t DNA突变,如A3243G、A8344G、T8993G/C等,以及大片段重排的检测;对于强烈提示线粒体病者需要进行m t DNA全基因组扫描及实时PCR检测m t DNA衰竭;若疾病表现与某一线粒体综合征相似首先对相关基因进行检测,若结果阴性,则进行m t DNA基因筛查;出现心肌病或耳聋等特异性症状者,除进行常见位点检测外,还需要检测与该病相关的一些罕见点突变。

3.3临床检测[14]

乳酸和丙酮酸盐:空腹血乳酸盐浓度\3mmo l/L和空腹脑脊液乳酸盐浓度>1.5mmo l/L支持线粒体病的诊断,但需排除其他导致乳酸盐增高的原因,如惊厥后血液和脑脊液乳酸盐水平增高、缺血性卒中后脑脊液乳酸盐增高等。一般来说,动脉血检测优于静脉血。乳酸盐与丙酮酸盐比值>50:1时提示呼吸链代谢障碍。

血浆磷酸肌酸激酶(CK):一般情况下正常或轻微增高,增高见于慢性进行性眼外肌麻痹(CPEO)并眼睑下垂,明显增高可能见于线粒体DNA耗竭。

神经系统影像学检查:怀疑中枢神经系统疾病者CT可见基底神经节钙化和/或弥漫性萎缩,M R I可显示大脑皮层和小脑局灶性萎缩或T2相强信号,特别是在枕侧皮层。

神经生理学检查:脑病患者脑电图可显示为慢波、在具有惊厥的患者可有局灶性尖峰信号。外周神经电生理检测可指明肢体无力、感觉障碍、反射消失,肌电图通常是正常的,也可能显示肌病特征。神经传导速度可能正常或出现轴突感觉运动性多神经病。磁共振波谱学和运动试验对于发现线粒体功能异常的证据是有帮助的,同时也可检测休息状态下大脑和肌肉的乳酸水平和运动后ATP高峰恢复延迟。

心电图和超声心电图:以显示心肌受损程度,如心肌病和房室传导阻滞。

肌肉活检:用以检测骨骼肌和皮肤纤维细胞。

4线粒体病的治疗

多年以来,人们一直认同Sherratt等[15]提出的线粒体病的治疗方法,即:代谢治疗、成肌细胞互补和基因治疗。

4.1代谢治疗

代谢治疗包括:氧化磷酸化辅助因子的补充;建立代谢旁路;刺激丙酮酸脱氢酶;防止氧自由基对线粒体内膜的损害。目前已有一些成功的治疗报告,但L ili[16]通过对研究儿童的线粒体肌病的治疗发现,Co Q10多种维生素治疗线粒体肌病是基本无效的。

4.2成肌细胞移植

成肌细胞移植是近年来兴起的一种治疗方法。细胞生物学研究表明成肌细胞相互融合成肌小管而发育成成熟的肌纤维。如将患者肌细胞与正常肌细胞在体外融合,然后输

#

261

#

入到患者体内,一般选用多点肌肉注射的方式,患者体内就可能有更多的野生型线粒体DNA。但目前尚未见成功的成肌细胞移植治疗线粒体病的临床报道[17]。

4.3基因治疗

Chrzano w ska提出了三种线粒体病的基因治疗途径:第一是将克隆有正常线粒体DNA的表达载体导入到核染色体内,在细胞质表达蛋白质产物,然后定向进入线粒体[18,19]。胞质蛋白进入线粒体的一个必须条件是其N末端必须连接有前导序列,引导蛋白质进入线粒体,然后被蛋白酶切除。由于线粒体DNA与核基因组的遗传密码不同,应通过定点诱变技术改造目的基因的遗传密码,使之能被核基因表达系统所接受。第二种基因治疗途径是转野生型DNA或RNA 进入线粒体,造成顺式或反式调控作用[20]。所谓反式互补是导入的核酸特异地与突变型线粒体DNA重组,成为野生型线粒体DNA。顺式互补是将外源基因通过表达载体系统导入线粒体,使之表达野生型的基因产物,以弥补其不足。外源核酸进入线粒体也需要前导肽的引导。Se i be l等成功地将一段与前导肽结合的寡核苷酸导入了鼠肝线粒体,初步证实了这种途径的可行性。第三种基因治疗途径是除去突变的线粒体DNA,在线粒体DNA复制时单链形成期,将反义的序列特异的寡核苷酸与之结合,可抑制突变型的复制。

4.4其他对症治疗[21]

饮食治疗能减少内源性毒性代谢产物的产生。高碳水化合物饮食能代偿受损的糖异生,减少脂肪分解。对于肉毒碱缺陷的患者,应限制脂肪摄入。生酮饮食有利于丙酮酸脱氢酶缺失的患者。对于丙酮酸羧化酶缺失的患者,则推荐高蛋白、高碳水化合物、低脂肪饮食。

在有肌无力或偏瘫的患者,物理治疗显得格外重要,注意维持肌肉的协调性和关节运动,重视功能锻炼,但是过度的体力活动可以促使无氧酵解,加重酸中毒,因此体育锻炼应适度。线粒体病的卒中样发作不是因为血管缺血,而与受损局部脑组织的ATP减少有关,常规血小板聚集抑制剂、抗凝和溶栓疗法不能预防这种发作。线粒体病的病人对低氧和高碳酸的反应性下降,因此麻醉时要十分慎重,避免引起心脏传导阻滞的药物。

5结语

线粒体遗传病分子发病机制还有待研究,m t DNA突变还有很多机制未阐明,而对该病的产前诊断处于摸索状态,关键问题是产前诊断的可信性和有效性尚不明确,还需要长期深入的研究。随着分子遗传学的发展,大量新兴的技术将应用于线粒体病的诊断,对线粒体病的机制、诊断、治疗起很大的帮助。

参考文献

[1]LarssonN G,C l ayton D.M olecu lar gen eti c as pects of hum an m it ochon-

dri al d is orders.Annu Rev Genetics,1995,29:151

[2]Sherratt E J,Tho m as A W,A l co l ado J C.M i tochondrialDNA def ects:

a w iden i ng cli n ical s pectr um of d is orders.C li n S c,i1997,92:225

[3]DM i auro S,Schon E A.M itochondri al DNA m u t ati ons i n hum an d is-

ease.A m J M ed Gen et,2001,106(1):18

[4]Nav i auxr K.Devel op i ng a s yste m atic app roach to the d i agnos i s and

cl assifi cati on of m i tochondrial d i sease.M it ochond ri on,2004,4(5-

6):351

[5]文平,蒋雪.线粒体病.生物学教学,2007,32(3):6

[6]Lu ft R.The devol op m en t of m it ochond ri al m ed i ci n e.Proc N atl A cad

SciUSA,1994,91:8731

[7]M ichelangeloM,Lu ci a P,M ass i m ili ano F.M ERRF s yndro m e w ithout

ragged-red fi b ers:The need f orm olecu lar d i agnos i s.B i oc h e m ical and

B i ophys i calRes earch Comm un i cati ons,2007,354(4):1058

[8]Su rya N,H aro l d G.Sp i nocerebellar ataxia type7m i m ick i ng Kearns

Sayre syndrom e:A cli n ical d i agnosis is desirab le.Journ al of t h e Neu-rol ogical Sciences,2008,(1-2):173

[9]Cho m yn A,En ri quez J A,M icolV et a.l The m itoc h ondri a lmyopathy

enceph al opathy,Iacti caci dosis and stroke-li ke ep i sode syn drom e-associat ed hum an m itoc h ondri a l t R NALeu(UUR)m utati on causes

a m i n oacyl ati on defici en cy and con co m i tan t redu ced ass oci ationofmR-

NA w it h ri boso m es.J ournal of B iol og i cal Che m i stry,2000,275(25): 19198

[10]Y an li J,X i aoyun J,Q i ngji ong Z.m t D NA hap logroup d istri buti on i n

Ch i nese patients w i th Leb er.s hered itary op tic neu ropat hy and G11778A m utati on.B i oche m ical and B i ophysical Res earch C o mmu-n icati ons,2007,364(2)238

[11]H s i u L,Hu eiL,Ch i ng C.The n eurological evol u ti on of Pearson syn-

d ro m e:Cas

e report and literature revie w.E urop ean J ournal ofPaed i a-

tri c N eurology,2007,11(4):208

[12]吴超群.线粒体遗传性疾病.中国优生优育,2007,13(4):169

[13]W ong L J,B ol es R G.M i tochondrialDNA anal ysis i n cli n i cal labora-

tory diagnosti cs.C li n C h i m A cta,2005,354(1-2):120

[14]Cho m yn A,En ri quezJ A,M i col V,et a.l Th e m itochondri al myopathy

encephalopat hy,Iacti c acidos i s and s troke-li ke ep i sode synd ro m e-associat ed hum an m itochondri al t RNAL eu(UUR)m u t ati on causes

a m i noacyl ati on defici en cy and conco m itan t redu ced associ ation of

mRNA w it h ri bos omes.Jou r n al of B i o l og i cal Ch e m istry,2000,275

(25):19198

[15]Sherratt E J,Thom as A W,A lcolado J C.M i tochondri a l DNA de-

fects:a w iden i ng cli n i ca l s pectrum of d i sorders.C li n S c,i1997,92: 225

[16]LiliM,B renda L,Investi gati on of ch il d ren for m it ochond ri opathy

confir m s need f or stri ct pati en t sel ecti on,i m proved m orphol og i cal criteria,and b etter laborat ory m et hod s,H u m an Pathol ogy,2006,37

(2)173

[17]K agaw a Y,H ayas h i JI.Gen e therapy of m itoc h ondri a l d i seases using

hum an cytop l asts.Gene Th er,1997,4:6

[18]M anfred I G,Fu J,OJa m I J,eta.l Rescue of adefi ciency i n ATP syn-

t h es i s by transfer ofM TATP6,a m i tochondrialDNA-encoded gene, to the nucleus.NatG enet,2002,30(4):394

[19]Zu llos J,Park s w T,Ch l oupkova M,et a.l S t ablet rans f or m ati on of

CHO C ells and hum an NARP cybri d s con f ers oligo m yci n res i stan ce (oli(r))f o ll o w i ng transfer of a m itochond ri al DNA-encodedoli(r) ATPase6gene to t he nu clear geno m e:amodel sys-te m for m t DNA genet h erapy,R ej uven ati on R es,2005,8(1):18

[20]A llen J F#The fun cti on of geno m es i n b i oenergetic organell es.Ph-i

l os Trans RS oc Lond B B i ol Sc,i2003,358:19

[21]李晓东,高枫,陈清棠.线粒体遗传病.北京医学,2001,23(1):

39

(收稿日期2008-07-17)

# 262 #

(完整word版)医学遗传学习题(附答案)第6章 线粒体遗传病

第六章线粒体遗传病 (一)选择题(A型选择题) 1.下面关于线粒体的正确描述是______。 A.含有遗传信息和转译系统 B.线粒体基因突变与人类疾病基本无关 C.是一种完全独立自主的细胞器 D.只有极少量DNA,作用很少 E.线粒体中所需蛋白质均来自细胞质 2. 关于线粒体遗传的叙述,不正确的是______。 A.线粒体遗传同样是由DNA控制的遗传 B.线粒体遗传的子代性状受母亲影响 C.线粒体遗传是细胞质遗传 D.线粒体遗传同样遵循基因的分离规律 E.线粒体遗传的表现度与突变型mtDNA的数量有关。 3.以下符合mtDNA结构特点的是______。 A.全长61569bp B.与组蛋白结合 C.呈闭环双链状 D.重链(H链)富含胞嘌呤 E.轻链(L链)富含鸟嘧啶 4.人类mtDNA的结构特点是______。 A. 全长16.6kb,不与组蛋白结合,为裸露闭环单链 B. 全长61.6kb,不与组蛋白结合,分为重链和轻链 C. 全长16.6kb,与组蛋白结合,为闭环双链 D. 全长61.6kb,不与组蛋白结合,为裸露闭环单链 E. 全长16.6kb,不与组蛋白结合,为裸露闭环双链 5.下面关于mtDNA的描述中,不正确的是______。 A.mtDNA的表达与核DNA无关 B.mtDNA是双链环状DNA C.mtDNA转录方式类似于原核细胞 D.mtDNA有重链和轻链之分 E.mtDNA的两条链都有编码功能

6.线粒体遗传属于______。 A.多基因遗传 B.显性遗传 C.隐性遗传 D.非孟德尔遗传 E.体细胞遗传 7. 线粒体中的tRNA兼用性较强,tRNA数量为______。 A.48个 B.32个 C.64个 D.61个 E.22个8.mtDNA编码线粒体中______。 A. 全部呼吸链-氧化磷酸化系统的蛋白质 B. 约10%的蛋白质 C. 大部分蛋白质 D. 线粒体基质中的全部蛋白质 E. 线粒体膜上的全部蛋白质 9. 目前已发现与mtDNA有关的人类疾病种类约为______。 A. 100余种 B. 10多种 C. 60多种 D. 几十种 E. 种类很多10.UGA在细胞核中为终止密码,而在线粒体编码的氨基酸是______。 A.色氨酸 B.赖氨酸 C.天冬酰胺 D.苏氨酸 E.异亮氨酸11.每个线粒体内含有mtDNA分子的拷贝数为______。 A.10~100个 B.10~20个 C.2~10个 D.15~30个 E.105 12.mtDNA中编码mRNA基因的数目为______。 A.37个 B.22个 C.17个 D.13个 E.2个 13.关于mtDNA的编码区,描述正确的是______。 A.包括终止密码子序列 B.不同种系间的核苷酸无同源性 C.包括13个基因 D.各基因之间部分区域重叠 E.包括启动子和内含子 14.关于mtDNA的D环区,描述正确的是______。 A.是线粒体基因组中进化速度最慢的DNA序列 B.具有高度同源性 C.包含线粒体基因组中全部的调控序列 D.突变率较编码区低 E.是子代H链在复制过程中与亲代H链发生置换的部位 15.mtDNA中含有的基因为______。 A. 22个rRNA基因,2个tRNA基因,13个mRNA基因

线粒体及其相关疾病的遗传学研究进展

线粒体及其相关疾病的遗传学研究进展(作者:___________单位: ___________邮编: ___________) 作者:齐科研相蕾陈静宋玉国霍正浩杨泽 【关键词】线粒体DNA 基因突变疾病 线粒体广泛分布于各种真核细胞中,其主要功能是通过呼吸链(电子传递链和氧化磷酸化系统)为细胞活动提供能量,并参与一些重要的代谢通路,维持细胞的钙、铁离子平衡,以及参与其他生命活动的信号传导。 此外,线粒体还与活性氧(reactiveoxygen species,ROS)的产生及细胞凋亡有关[1-3]。组成线粒体的蛋白质有1000多种,除呼吸链复合体蛋白受mtDNA与核基因双重编码,其他蛋白均由核基因编码。mtDNA突变或核基因突变都能引起线粒体功能紊乱[1,4]。早在1963年,Nass等人就发现有遗传物质DNA的存在。1981年,Anderson等发表了人类mtDNA全序列。1988年,Holt和Wallace分别在线粒体脑病和Leber’s遗传性视神经病(LHON)患者的细胞中发现了mtDNA突变,从此开辟了研究mtDNA突变与人类疾病的新领域。随着对mtDNA研究的深入,人们对mtDNA的突变和人类疾病的相关性

日益重视。芬兰的数据显示人群单个点突变(3243A>G)的比率为1∶6000,然而,英国资料表明mtDNA疾病的患病率或易患比率为1∶3500[5]。动物模型和人类研究证据均证明,mtDNA突变是引起人类多因素疾病,部分遗传性疾病以及衰老的重要原因之一。本文将从以下几个方面对mtDNA突变和相关疾病进行阐述。 1 线粒体DNA的遗传学特征 线粒体DNA是存在于线粒体内而独立于细胞核染色体的较小基因组。与核基因相比,线粒体DNA具有一些显著特征。 1.1 母系遗传 Giles等[6]通过对几个欧洲家系线粒体DNA进行了单核苷酸多态性分析时,发现mtDNA 分子严格按照母系遗传方式进行传递。母系遗传是指只由母亲将其mtDNA分子传递给下一代,然后再通过女儿传给后代。有研究表明[7],在受精过程中,精子线粒体会被卵子中泛素水解酶特异性识别而降解,这很好地解释为什么父源性mtDNA不能传播给后代。 1.2 异质性和突变负荷 核基因突变所产生的突变体分为纯合子(homozygote,等位基因都发生突变,含量为100%)和杂合子(heterozygote,等位基因中的一个发生突变,突变含量为50%)与核基因不同,线粒体基因突

线粒体功能障碍与人体疾病地研究的进展(20201221054219)

兰州交通大学化学与生物工程学院 综合能力训练I 文献综述 题目:线粒体疾病的最新研究进展 作者:朱刚刚

学号:201207730 指导教师:谢放 完成日期:2014-7-16 线粒体疾病的最新研究进展 摘要:本文为了对线粒体疾病研究的最新进展进行论述,分别从线粒体功能障碍、线粒体疾病、以及相关线粒体疾病的治疗与干预策略三个方面进行了综述。重点从线粒体的功能障碍进行了介绍。 关键词:线粒体、线粒体tDNA、线粒体疾病。 引言:线粒体疾病主要是指由于线粒体DNA突变所导致的一类疾病。 有许多人类疾病的发生与线粒体功能缺陷相关,如线粒体肌病和脑肌病、线粒体眼病,老年性痴呆、帕金森病、O型糖尿病、心肌病及衰老等,有人统称为线粒体疾病。线粒体疾病的发生被认为与氧化磷酸化过程相关基因的突变有关。 一、线粒体功能障碍 1线粒体结构、基因组特征及主要功能 1.1 线粒体结构及基因组特征电镜下的线粒体是由两层单位膜套叠而 成的封闭囊状结构,从外向内依次分为外膜、膜间隙、内膜、基质。不同于经典的“隔舱板”理论,最新提出的三维重构模型认为:(1)外膜与内质网或细胞骨架连接形成网络;⑵内外膜间随机分布横跨两端,宽20nm的接触点;(3)内膜通过界面与嵴膜接口部分相连,并不直接向内延伸形成嵴膜;(4)嵴膜非“隔舱板”式而是管状或扁平状,相互间可连接或融合,呈现不同的形式。执行线粒体功能的生物大分子分布在不同的空间:外膜上有Bcl-2家族蛋白、膜孔蛋白以及离子 通道蛋白;内膜中有电子传递链(呼吸链)复合物l~IV和复合物V(ATP合成酶); 膜间隙和嵴膜腔分布着细胞色素C、凋亡诱导因子(apoptosis in-dueing factor,AIF)和Procaspase 2、3、9及其他酶蛋白;电压依赖性阴离子通道(VDAC)、ADP/ATP 转换蛋白(ANT)和线粒体膜转运孔

线粒体功能障碍与人体疾病的研究进展样本

兰州交通大学化学与生物工程学院综合能力训练Ⅰ——文献综述 题目: 线粒体疾病的最新研究进展 作者: 朱刚刚 学号: 07730 指导教师: 谢放 完成日期: -7-16 线粒体疾病的最新研究进展

摘要: 本文为了对线粒体疾病研究的最新进展进行论述, 分别从线粒体功能障碍、线粒体疾病、以及相关线粒体疾病的治疗与干预策略三个方面进行了综述。重点从线粒体的功能障碍进行了介绍。 关键词: 线粒体、线粒体tDNA、线粒体疾病。 引言: 线粒体疾病主要是指由于线粒体DNA突变所导致的一类疾病。 有许多人类疾病的发生与线粒体功能缺陷相关,如线粒体肌病和脑肌病、线粒体眼病,老年性痴呆、帕金森病、 O型糖尿病、心肌病及衰老等,有人统称为线 粒体疾病。线粒体疾病的发生被认为与氧化磷酸化过程相关基因的突变有关。 一、线粒体功能障碍 1 线粒体结构、基因组特征及主要功能 1.1 线粒体结构及基因组特征电镜下的线粒体是由两层单位膜套叠而成的封闭囊状结构, 从外向内依次分为外膜、膜间隙、内膜、基质。不同于经典的”隔舱板”理论, 最新提出的三维重构模型认为: (1)外膜与内质网或细胞骨架连接形成网络; (2)内外膜间随机分布横跨两端, 宽20nm 的接触点; (3)内膜经过界面与嵴膜接口部分相连, 并不直接向内延伸形成嵴膜; (4)嵴膜非”隔舱板”式而是管状或扁平状, 相互间可连接或融合, 呈现不同的形式。执行线粒体功能的生物大分子分布在不同的空间: 外膜上有Bcl-2家族蛋白、膜孔蛋白以及离子通道蛋白; 内膜中有电子传递链(呼吸链)复合物I~IV和复合物V(ATP合成酶); 膜间隙和嵴膜腔分布着细胞色素C、凋亡诱导因子(apoptosis in-ducing factor, AIF)和Procaspase 2、 3、 9及其它酶蛋白; 电压依赖性阴离子通道(VDAC)、 ADP/ATP转换蛋白(ANT)和线粒体膜转运孔 (mitochondrialper-meabletransition pore, MPTP)存在于接触点; 三羧酸循环(TCA cycle)酶系、存储钙离子的致密颗粒及线粒体基因组则包含于基质中。【1】与核基因组(nDNA)不同, mtDNA 结构简单, 仅含16 569 个碱基, 编码2 种rRNA、 22 种tRNA和13种参与呼吸链形成的多肽。一般裸露且不含内含子, 既

线粒体自噬研究概论

线粒体自噬 线粒体自噬研究概论 关于线粒体自噬 线粒体自噬(mitophagy)是指细胞通过自噬的机制选择性地清除线粒体的过程。选择性清除受损伤或功能不完整的线粒体对于整个线粒体网络的功能完整性和细胞生存来说十分关键。 线粒体自噬主要的作用有几个方面: 1.选择性清除功能受损的线粒体 2.选择性调节细胞内线粒体数量 3.通过线粒体影响诸多生理和病理学过程 Fig:The pathways of mitophagy for quality control and clearance of mitochondria Cell Death and Differentiation(2013)20,31–42

线粒体自噬的信号通路 1)Pink/Parkin pathway 2)Bnip3/Nix pathway 3)FUNDC1pathway Fig.Mitophagy pathway:Pink1/Parkin OR Bnip3/Nix Pink1/Parkin pathway:E3泛素连接酶Parkin和蛋白激酶Pink1一起介导了线粒体膜电位下降,引起的线粒体自噬的发生,当线粒体损伤后,线粒体膜电位下降,引起Pink1蛋白在损伤线粒体上的积累,能够吸引Parkin到损伤的线粒体上。Parkin使得线粒体外膜上的很多蛋白发生泛素化,从而能够募集其他一些相关蛋白,介导线粒体自噬的发生。

线粒体自噬 汉恒线粒体自噬研究工具与研究方法 汉恒生物有多种线粒体自噬病毒研究工具可以提供,便于直接感染目的细胞后直观地观察线粒体自噬的变化 一、汉恒线粒体自噬表型研究工具 1)Ad-GFP-LC3腺病毒病毒系统,可高效感染目的细胞,表达GFP-LC3,感染感染后细胞可在荧光显微镜下实时观察自噬的整体水平(由于GFP荧光偏弱,暂停Ad-GFP-LC3销售, 慢病毒单标LV-GFP-LC3荧光正常,正常销售); 2)Ad-HBmTur-Mito腺病毒系统(红光标记),为汉恒生物自主研发的线粒体特异性定位荧光探针(pHBmTur-Mito)可准确定位标记线粒体,结合汉恒独家推出的双荧光LC3细胞自噬腺病毒的使用,即可准确实时地追踪线粒体自噬的动态过程; 使用方法:Ad-GFP-LC3+Ad-HBmTur-Mito共感染目的细胞,confocal检测双荧光共定位的情况,如果共定位,则存在线粒体自噬!(下图说明:红色标记为线粒体,绿色标记自噬小体,二者有共定位时代表自噬发生) 二、汉恒线粒体自噬通路研究工具 1)Ad-Parkin-EGFP 2)Ad-Bnip3-EGFP+Ad-Nix-EGFP 3)Ad-FUNDC1-EGFP

遗传学发展历史及研究进展(综述)

遗传学发展历史及研究进展 湛江师范学院09生本一班徐意媚2009574111 摘要:遗传学是一门探索生命起源和进化历程的学科,起源于人类的育种实践,于1910年进入现代遗传学阶段,并依次经历个体遗传学时期、细胞遗传学时期、数量遗传学和群体遗传学时期、细胞水平向分子水平过渡时期、分子遗传学时期。目前遗传学在医学、农牧业等领域取得重大突破,如表遗传学在肿瘤的治疗方面。21世纪将是遗传学迅猛发展的世纪,在经济、微生物、工业、制造业等许多领域都将有重大的突破。 关键词:遗传学发展历史研究现状发展前景 1 现代遗传学发展前 1.1遗传学起源于育种实践 人类在新石器时代就已经驯养动物和栽培植物,渐渐地人们学会了改良动植物品种的方法。写于公元60年左右的《论农作物》和533~544年间中国学者贾思勰在所著的《齐民要术》中均记载了嫁接技术,后者还特别记载了果树的嫁接,树苗的繁殖,家禽、家畜的阉割等技术。[1] 1.2 18世纪下半叶和19世纪上半叶期间 许多人都无法阐明亲代与子代性状之间的遗传规律,直到18世纪下半叶之后,拉马克和达尔文对生物界遗传和变异进行了系统的研究。拉马克通过长颈鹿的颈、家鸡的翅膀等认为环境条件的改变是生物变异的根本原因,并提出用进废退学说和获得性状遗传学说。达尔文达尔文以博物学家的身份进行了五年的考察工作,广泛研究遗传变异与生物进化关系,终于在1859年发表著作《物种起源》,书中提出自然选择和人工选择的进化学说,认为生物是由简单到复杂、低级再到高级逐渐进化的。除此之外,达尔文承认获得性状遗传的一些论点,并提出了“泛生论”假说,但至今未获得科学的证实。 1.3 新达尔文主义 以魏斯曼(Weismann A.,1834-1914) 为代表的等人支持达尔文选择理论否定获得性遗传,魏斯曼等人提出种质连续论,认为种质是世代连续不绝的。他们还通过对老鼠22代的割尾巴试验,否定后天获得性遗传,明确地区分种质和体质,认为种质可以影响体质,而体质不能影响种质,在理论上为遗传学的发展开辟了道路。[2] 2.现代遗传学的发展阶段

遗传学发展历史及研究进展(黄佳玲)

遗传学发展历史及研究进展 湛江师范学院 09生本3班黄佳玲 2009574310 摘要:自从孟德尔发现遗传定律的一个多世纪以来,人们对生物的遗传特性锲而不舍地深入研究。从假设到实验,从宏观到微观,遗传学的羽翼日渐丰满。从遗传因子到基因,从基因的概念到基因的本质、功能,基因的概念逐渐扩展,人们对基因的认识逐渐深化。可以说,基因概念的发展史,就是人们对基因认识的发展史,就是遗传学的发展史。而分子遗传学则主要研究基因的本质、基因的功能以及基因的变化等问题。 关键词:遗传学分子遗传学重组DNA技术 几千年来,人类对生物及人类自身的生殖、变异、遗传等现象的认识不断深入和发展。人类从古代就注意到遗传和变异的现象,并通过人工选择获得所需要的新品种。从19世纪起就对遗传和变异开始作系统的研究。按照不同历史时期的学术水平和工作特点,遗传学的研究进程大体上可以划分为经典遗传学、生化遗传学、分子遗传学、基因工程学、基因组学和表观遗传学等数个既彼此相对独立,又前后互相交融的不同发展阶段[1]。这当中,分子遗传学的地位无疑是相当重要的,它起到了承上启下的作用。它的早期研究都用微生物为材料,其形成和发展与微生物遗传学和生物化学也有密切关系。 分子遗传学的主要研究方向集中在核酸与蛋白质大分子的遗传作为上,重点是从DNA水平探索基因的分子结构与功能的关系,以及表达和调节的分子机理等诸多问题。 早在1927年马勒和1928年斯塔德勒就用 X射线等诱发了果蝇和玉米的基因突变,但是在此后一段时间中对基因突变机制的研究进展很慢。直到1944年,美国学者埃弗里等首先在肺炎双球菌中证实了转化因子是脱氧核糖核酸(DNA),从而阐明了遗传的物质基础。1953年,美国分子遗传学家沃森和英国分子生物学家克里克提出了DNA分子结构的双螺旋模型,这一发现常被认为是分子遗传学的真正开端,它为有关的科学工作者着手研究构成分子遗传学两大理论支柱,即维系遗传现象分子本质的DNA自我复制和基因与蛋白质之间的关系,提供了正确的思路,奠定了成功的基础。1955年,美国分子生物学家本泽用基因重组分析方法,研究大肠杆菌的T4噬菌体中的基因精细结构[2],其剖析重组的精细程度达到DNA多核苷酸链上相隔仅三个核苷酸的水平。这一工作在概念上沟通了分子遗传学和经典遗传学。 应该说二十世纪50年代初期至70年代初期,是分子遗传学迅猛发展快速进步的年代。在这短短的二十余年间,许多有关分子遗传学的基本原理[3]相继提出,大量的重要发现不断涌现。其中比较重要的有:1956年,美国科学家科恩伯格在大肠杆菌中发现了DNA聚合酶Ⅰ,这是可以在试管中合成DNA链的头一种核酸酶,从此拉开了DNA合成研究的序幕;1957年,弗伦克尔-康拉特和辛格证实,烟草花叶病毒TMV的遗传物质是RNA,进一步表明RNA同样具有重要的生物学意义;1958年梅塞尔森和斯塔尔发

遗传学进展概述(选修课论文)

遗传学进展概述 作者:戴宝生 克隆水稻分蘖的主控基因MOC1 据国家自然科学基金委员会2003年5月23日报道,最近,我国科学家成功分离和克隆了水稻分蘖的主控基因MOC1,该成果是由中国科学院遗传与发育研究所李家洋院士及其合作者在国内独立完成的。该研究结果已发表在Nature,2003,422:618上,这是我国分子遗传学基础研究领域的第一篇源自国内的Nature文章,标志着我国植物功能基因研究取得了重大突破。 分蘖是水稻等禾本科作物在发育过程中的一个重要的分枝现象,也是一个重要的农艺性状,它直接确定作物的穗数并进而影响产量。虽然对水稻分蘖的形态学、组织学及突变体都有过很多描述,但是控制分蘖的分子机制一直没有弄清。自1996年起,在国家科技部、国家自然科学基金委员会和中国科学院的共同资助下,李家洋和中国农业科学院国家水稻研究所的钱前博士等开始进行此方面的研究。经过不懈努力,项目组鉴定了一株分蘖的极端突变体——单杆突变体MOC1。通过遗传图谱定位克隆技术,分离鉴定了在水稻分蘖调控中起重要作用的基因MOC1,它的缺失可造成分蘖的停止。进一步的功能分析表明,该基因可编码一个属于GRAS家族的转录因子,该转录因子主要在腋芽中表达,功能是促进分蘖和促进腋芽的生长。对这一重要基因的深入研究,将有望解释禾本科作物分蘖调控的分子机制,对于水稻高产品种的培育有重要的理论和应用价值 走出“基因决定论”的误区 自从基因一词在20世纪初进入科学家的词汇表以来,它不仅是生物学家最为常用的词汇之一,也成为当今普通大众最为熟悉的科学术语之一。随着遗传学和分子生物学的进步,人们不仅知道了基因的化学性质——DNA序列,而且还认识到了基因的功能——编码蛋白质的氨基酸序列。由此,逐渐形成了一种广为流行的“基因决定论”:生命的各种性质和活动都是受基因控制的,甚至人类的精神活动也在基因的控制之下。不久前,芬兰赫尔辛基大学和瑞典卡罗林斯卡医学院的研究人员在某些患有诵读困难的病人中,发现了一种名为“DYXC1”的基因发生了突变。也就是说,人类的阅读可能受到这种“DYXC1”基因的控制。不可否认,基因对生命具有非常重要的作用,基因的异常通常就会导致生命的异常。但是,作为开放的复杂系统,生命活动从来就不是由一种因素就能完全决定的。当前越来越多的证据,正在向“基因决定论”挑战。科学家正在以一种全新的视野来理解生命现象。 不再是“垃圾” 随着基因组研究的深入,人们发现,在多细胞真核生物的基因组中,基因仅是其全部DNA 序列的一小部分。在人类基因组中,全部基因序列只占基因组的2%左右。基因组内的非基因序列曾一度被研究者称为“垃圾DNA”(junk DNA)。这些“垃圾DNA”中至少有一半是

人类线粒体病的遗传学研究及治疗进展

第31卷第3期济宁医学院学报2008年9月Vol131,No.3J O URNAL OF JIN ING M EDICAL COLLEGE Sep,2008 人类线粒体病的遗传学研究及治疗进展 郭岩1陈磊2高立1综述关晶1审校 (1济宁医学院2济宁医学院附属医院) 线粒体普遍存在于真核细胞的细胞质中,它是细胞物质氧化的主要场所和能量供给中心。线粒体是细胞核外含有遗传信息和表达系统的细胞器,其遗传特点表现为非孟德尔遗传方式,具有半自主性。线粒体病(m itochondr i opa t hy)是指因遗传缺损引起线粒体代谢酶的缺陷,导致AT P合成障碍、能量来源不足而出现的一组多系统疾病,因此,也被称为线粒体细胞病(m itochondr i a lcy topathy)[1,2]。 1线粒体基因组的特点 线粒体基因组是一个环状双DNA,核酸序列和组成比较保守,人类的线粒体基因组由16569bp组成,其外环为重(H)链,内环为轻(L)链,除一段非编码区(D-loop区)外,均为编码区,共编码13个多肽、22个t R NA和2个r RNA[3]。D-loop区是一大小约1000bp的调控区,其包含有重链复制起始点、保守序列节段、轻链启动子、重链启动子及终止结合序列等,几乎所有与m t DNA复制、转录和翻译相关的调控序列都位于该区。 2线粒体病的种类 线粒体病是遗传缺损引起线粒体代谢酶缺陷,使AT P合成障碍、能量来源不足导致的一组异质性病变。m t DNA有很高的突变率[4],当一种突变产生时,细胞同时含有野生型、突变型二种m t DNA时,称为异质性。异质细胞分裂时,突变和野生m t DNA随机分布到子细胞中。经过很多代的传递, m t DNA表型向野生型或突变型m t DNA占优势方向漂变,这一过程称为复制分离。随着突变型比例的增多,细胞获得能量的能力下降直到降低至阈值,即细胞或组织正常功能所必需的最小能量输出,超过这一点,就出现疾病症状[5]。一般情况下,线粒体病患者会有以上的两个至多个病症,其中的一些往往同时发生,以至于我们把它们归类为某综合征[6]。 2.1肌阵挛性癫痫伴肌肉蓬毛样红纤维综合征(M ERR F) 是由于m t DNA8344或8356发生了点突变造成的一种罕见的、杂质性母系遗传病,具有多系统紊乱的症状,包括肌阵挛性癫痫的短暂发作、不能够协调肌肉运动(共济失调)、肌细胞减少(肌病)、轻度痴呆、耳聋、脊髓神经退化等等。患者肌纤维紊乱、粗糙,线粒体形态异常并在骨骼肌细胞中积累,用Gom or iT r ichrom e染色显示为红色,称破碎红纤维。M ER-R F病一般在童年初发,病情可持续若干年[7]。 2.2慢性进行性眼外肌麻痹综合征(K SS) 病因尚未明确,50%有家族史,认为系线粒体肌病的一个亚型;也有人提到自身免疫或脂质代谢异常。20岁前起 技术的进展,期待更敏感、更特异的方法面世,这对于病理状态中细胞凋亡的研究将具有重要意义。 参考文献 [1]李跃林,李丽,邓卓军.实验性脂肪性肝病大鼠肝细胞凋亡与组织 病理的对比研究.河北医药,2004,26:9292 [2]B axa D M,Luo X,Yos h i m ura FK.Gen istei n i nduces apoptos i s i n T l y m pho m a cell s v i a m itochondri al da m age.Nu tr C ancer,2005,51 (1):93 [3]Rob ert W,N i co l e G,E li sabeth G,M anfred W.Tw o2col or,fl uores2 cence2based m i crop late assay f or apoptosis d etecti on.B io T ech2 n i ques,2002,32(3):666 [4]S aafi EL,Konarko w ska B,z h ang S,et a1.U ltrastruct u ral ev i dence t h at apop t os i s is t h e m echan i s m by w h i ch hum an a m yli n evokes deat h i n RINm5F pan creatic i s l et beta-cells.cell B i ol Lnt,2001,25:339 [5]袁兰,陈英玉.用激光扫描共聚焦显微镜原位检测细胞凋亡1新 技术应用,2003,(1):47 [6]王晓翔1细胞凋亡检测方法的研究进展1体育科技2005,26 (3):43 [7]Bai J,C ederb au m A I.Cycl ohexi m i de p rotects H epG2cells fro m se2 rum w it hdra w al i nduced apop tosis by d ecreasi ng p53and phospho2 rylated p53level s.J Phar m acol Exp Ther,2006,319(3):1435 [8]Ravagnan L,Roum i er T,K roe m er G.M it ochondria,the k ill er organ- ell es and t heir w eapons.J CellPhysi o,l2002,192:131 [9]Chaturved i R,S ri vastava RK,H i sats une A,Shankar S,L illehoj EP, K i m KC.Augm entati on of Fas li gand2i ndu ced apoptosis by M UC1 m uci n.Int J Onco,l2005,26(5):1169 [10]Pavlovs ky Z,Vagunda V.Apop t os i s2sel ect ed m et hod s of detecti on of apoptosis and as soci ated regu l atory f act ors on ti ssue secti on s of t um ors.C esk Pat o,l2003,39(1):6 [11]张丽娟1细胞凋亡的检测方法及其在药物流产中的应用1医学 综述,200814(11):1660 [12]Lecoeu rH.Nu clear apop t os i s detecti on by n o w cyt o m etry::i nfl uen ce of endogenou s endonu cl eases.E xp C ellR es,2002,277(1):1 [13]Dobru cki J,Darz ynk i e w i cz Z.Ch ro m ati n condensation and sens i ti vity of DNA i n s i tu t o den aturati on duri ng cell cycl e and apop tos i s-a con f ocalm i croscopy s t udy.M icron,2001,32(7):645 [14]尹琰,寿伟璋.流式细胞术Annex i nV细胞凋亡检测方法探讨.东 南大学学报,2003,22:169 [15]Span L P,Penn i ngs AH,V ier w i nden G,et a.l The dyna m i c proces s of apop t osis anal yzed by fl o w cyto m etry us i ng Annexi nV/p rop i d i um i o- d i d e and am odifi ed i n sit u end abeli ng tec hn iqu e.C yt o m etry,2002, 47(1):24 (收稿日期2008-06-11) # 260 #

细胞遗传学论文

细胞融合技术的发展及其应用 摘要 细胞融合技术作为细胞工程的一项核心技术在农业、医药、环保等领域得到迅速发展和应用,且其应用领域不断扩大。本文简述了细胞融合技术技术中的常用方法:仙台病毒(HVJ)诱导法、聚乙二醇(PEG)化学诱导法、电融合诱导法、激光诱导法及此技术的最新研究进展:空间细胞融合技术、离子束细胞融合技术、非对称细胞融合技术等。该技术不仅为核质关系、基因定位、基因调控、遗传互补、细胞免疫、疾病发生、膜蛋白动力学等理论领域的研究提供了有力的手段,而且被广泛应用于免疫学、遗传学、发育生物学,在实际应用中特别是在单克隆抗体、抗肿瘤疫苗及动植物远缘杂交育种和微生物茵种选育,绘制基因图谱等方面具有十分重要的意义。随着细胞融合技术的不断改进和完善,动物、植物及微生物细胞融合技术无论在基础理论研究还是在实际应用产生的影响将日益显著。 关键词:细胞融合;方法;应用;进展 细胞融合技术是近年来迅速发展起来的一项新生物工程技术。所谓细胞融合指在外力(诱导剂或促融剂)作用下,两个或两个以上的异源(种、属间)细胞或原生质体相互接触,从而发生膜融合、胞质融合和核融合,并形成杂种细胞的现象称为细胞融合(cell fusion)或细胞杂交(cell hybridization)[1]。利用现代科学技术,把来自于不同种生物的单个细胞融合成一个细胞,这个新细胞(杂合细胞)得到了来自两个细胞的遗传物质(包括细胞核的染色体组合和核外基因),将具有新的遗传学或生物学特性。目前,通过原生质体融合进行体细胞杂交已成为细胞工程研究的重要内容之一[2]。 细胞融合技术不仅为核质相互关系、基因调控、遗传互补、肿瘤发生、基因定位、衰老控制等领域的研究提供了有力的手段,而且在遗传学、动植物远缘杂交育种、发生生物学、免疫医学以及医药、食品、农业等方面都有广泛的应用价值。特别是在单克隆抗体的制备、哺乳动物的克隆以及抗癌疫苗的研发等技术中,细胞融合技术已成为关键技术。随着研究的不断深入,细胞融合技术的应用领域越来越广,产生的影响也日益显著。本文就其目前的研究进展及其应用进行综述。

遗传学发展历史及研究进展

遗传学发展历史及研究进展 【摘要】从1900年孟德尔的遗传学理论被重新发现时,遗传学才被典礼在科学的基础上。本世纪,遗传学已成为生物科学领域中发展最快的一门学科,几乎所有的生物学科都可以与遗传学形成交叉学科。遗传学作为自然科学的一个学科,有其建立、发展和不断完善的进程。 【关键词】历史进程发展趋势研究进展 什么是遗传学(Genetics)?遗传学就是研究生物的遗传与变异的科学。遗传是生物的一种属性,是生命世界的一种自然现象。遗传使生物体的特征得以延续,变异造成了生物体间的差别,遗传与变异构成生物进化的基础。与所有的学科一样,遗传学也是在人们的生产实践活动中发展起来的,是与生产实践紧密联系在一起的。从遗传学的建立、发展来看,研究遗传学的意义是十分深刻的。 一、遗传学的历史进程 1.远古时代 在远古时代,祖先们稚嫩的思维认为生物和非生物之间不存在什么区别,所有的东西都认为是活的。但是,祖先们在研究过程中都发现了一个事实——有些东西可以自我繁衍。“龙生龙,凤生凤”之类的俗语,可以算的上是最早的遗传学概念。在生产实践中,产生了实用遗传学,祖先们开始控制种畜的交配,选育优良的种子,淘汰较差的种畜和种子,以满足他们的需求。 2.中世纪 中世纪有一种观念严重地阻碍了科学的发展——自然发生论(Spontaneous Generation)。然而十七世纪一位意大利科学家雷迪用实验成功地否定了自然发生论。接下来,荷兰一位业余的科学家列文·虎克发明了显微镜并发现了细胞、证实了精细胞的存在和了解到多种生物都是拥有性别的。与此同时,科学家威廉·哈维也开始研究女性在生殖过程中的作用。到十九世纪为止,科学家们已发现动物和植物都有性别,自然生长论几近穷途末路。 3.十九世纪 十九世纪是一个不断进步的时代,科学家们和生产实践的工作者们碰到的问题不断地促进了对基因的探索。通过大量努力的探索,遗传规律开始被发现。一位来自奥地利布鲁恩的修道士,他用豌豆作为实验材料,进行了大量研究遗传问题的育种试验,1866年,他发表了《植物杂交试验》的论文,揭示了性状分离和独立分配的遗传规律。他就是现代遗传学的创始人——孟德尔。然而,当时的科学家正热衷于研究达尔文的进化论而忽视了这一重大发现。直到1900年,孟德尔遗传规律才被重新发现,这也标志着现代遗传学的开端。 二、现代遗传学的发展

细胞遗传学

染色体原位杂交技术在植物研究中的应用 摘要:染色体原位杂交(chromosome in situ hybridization,CISH)是一种新兴的日趋完善的技术。本文从以下几个方面对其在植物研究中的应用进行了综述:(1)外源染色质及远缘杂种的鉴定;(2)多倍体起源、非整倍体的鉴定;(3)植物基因工程及基因表达研究;(4)物种进化及亲缘关系的探讨;(5)植物基因物理图谱的构建等。 关键词:染色体原位杂交;植物;细胞遗传学 Abstract: In situ hybridization (chromosome in situ hybridization, CISH) is an emerging maturing technology. Its application in plant research are reviewed as follows: (1) exogenous chromatin and Identification of distant hybrids; (2) polyploid origin, identification of aneuploidy; (3) plant genetic engineering and gene expression studies; (4) the evolution of species and of kinship; (5)physical map construction of plant genes. Keywords: in situ hybridization; plants; cytogenetic 引言 原位杂交技术最早是由Gall和Parue[1]利用标记的rDNA探针与非洲爪蟾细胞核杂交建立起来的。该技术是从Southern和Northern杂交技术衍生而来的,其中染色体原位杂交在原位杂交技术中应用最为广泛。染色体原位杂交技术是根据核酸分子碱基互补配对原则,利用标记的DNA或寡核苷酸等探针同染色体上的DNA进行杂交,从而对染色体的待测核酸进行定位、定性或相对定量分析。 早期的染色体原位杂交技术,由于使用的探针为放射性标记,虽然该方法对于组织及染色体样本制备的要求不太高,且具有较高的灵敏度,但它不安全、不稳定、背景不理想,周期长,因而该技术发展较慢;然而20世纪80年代以后,非放射性探针的使用及PCR技术的发明,使得染色体原位杂交技术在动物及人类遗传学和分子生物学研究中迅速得到了广泛的应用,但在植物研究中一直很难有突破性的进展[2,3]。原因主要是由于植物细胞较低的有丝分裂指数和细胞壁的存在。随着植物染色体制备技术的改进,染色体显带技术、荧光标记技术、检测技术及电镜技术的发展和完善,染色体原位杂交技术在植物学研究上展示了更加广阔的应用前景。 1染色体原位杂交技术在植物研究中的应用

线粒体自噬在血管性认知障碍中的 研究进展

I C M Y K —] 430 ·综述. 线粒体自噬在血管性认知障碍中的 研究进展* 刘山*解丽*张强A董艳红*畴 【关键词】线粒休自噬血管性认知障碍慢性脑低灌 注脑缺血再灌注损伤 血管性认知障碍(vascular cognitive impairment,VCI)指 由脑血管病的危险因素(高血压病、糖尿病、高脂血症和高 同型半胱氨酸血症等)、显性脑血管病(脑梗死和脑出血等) 及非显性脑血管病(白质疏松和弥漫性脑缺血等)引起的一 组从轻度认知损害到痴呆的综合征。线粒体是缺血后神经 细胞死亡的关键靶区,机体可通过自噬控制线粒体数最,其 功能紊乱是慢性脑低灌注(chronic cerebral hypoperfusion, CCH)、脑缺血再灌注损伤(cerebral ischemia reperfusion injury, CIR)所致VCI的主要机制。通过阐述线粒体自噬机 制及其在CCH、CIR所致VCI中的作用,有利千寻找药物作 用靶点,早期干预VCI的发生发展,提升患者生存质掀。 1线粒体自噬 线粒体自噬指损伤线粒体利用自噬机制选择性清除 受损的蛋白质和细胞器,控制线粒体质最与数最,在营养 不良或外界刺激时维持细胞稳态四线粒体自噬可以通过 相关分子通路介导和影响线粒体动力学平衡发生。 1.1线粒体自噬相关分子通路 1.1.1 PINKl/Parkin分子通路同源性磷酸酶张力蛋白诱导 激酶1(phosphatase and tensin homologinduced putative kinasel, PINKl)是一种丝氨酸/苏氨酸激酶。各种原因使得线粒体 功能紊乱时,线粒体膜电位降低,膜上的PINKl聚集,将 Parkin蛋白从细胞质募集到线粒体,其具有E3泛索连接 酶活性,将标记的泛索化底物通过微管相关蛋白1轻链 doi: 10.3969/j.issn.1002-0152.2020.07.012 女河北省中医药管理局科研计划项目(编号:2019158);河北省 卫生厅科研基金项目青年科技课题(编号:20160459) * 河北医科大学研究生学院(石家庄050000) A 华北理工大学 米河北省人民医院神经内三科 。通信作者(E-mail:d_yanhongniu@https://www.doczj.com/doc/3010637691.html,) | C hin? 2020 LC3相互作用区域在自噬体上募集LC3,最终导致线粒体 与自噬体结合发生自噬性降解[2]。 1.1.2 HIF -la/BNIP3/Beclinl信号通路低氧诱导因子-l (hypoxia inducible factor-I, HIF -1)是由HIF-la亚基和 HIF-lb亚基组成的异二聚体,而HIF-la在调节氧稳态中 起着关键作用。BNIP3是Bcl-2蛋白家族成员,主要表达于 线粒体和内质网。Beclinl是磷脂酰肌醇3,是细胞自噬过 程中最重要的正性调节因子。缺血缺氧时,HIF-la表达上 调,BNIP3蛋白表达上调,BNIP3和Beclinl竞争Bcl-2结 合位点,释放Beclinl,参与线粒体自噬的激活,降解受损 的线粒体,对抗各种凋亡因子[3]。 1.1.3 PI3K-Akt-mTOR通路PI3K,即磷酸肌醇激酶3; Akt,即蛋白激酶B;mTOR,哺乳动物雷帕霉索靶蛋白 (mammalian Target Of Rapamycin),是雷帕霉素的作用靶 点。LV等[4]的研究表明,缺血/低氧条件下,线粒体能量代 谢障碍,在某种程度上通过阻断PI3K/AKT/mTOR信号通 路,增强线粒体自噬,清除受损的线粒体,保护线粒体的正 常生理功能。 1.2线粒体动力学变化线粒体通过线粒体融合、分裂蛋白 精确调控,在融合和分裂形态中不断变换维持平衡。线粒 体融合蛋自主要有视神经萎缩蛋自1(Opa l)、线粒体融合 蛋自Mfnl和Mfn2。Opal或Mfnl/2缺乏的细胞可导致线 粒体碎片聚集及线粒体自噬[5--6]。D rp l(DLPl, Dymple)主要 调控线粒体分裂,其具有G TP酶活性。D rp l的下调及敲除 可抑制线粒体自噬而导致功能紊乱的线粒体聚集[7]。如果 线粒体裂变和融合失衡,则会引发线粒体膜电位改变,进 而激活线粒体自噬,导致神经元死亡。 2线粒体自噬与血管性认知障碍 在所有认知障碍性疾病中,VCI是目前唯一一个可干 预的认知障碍性疾病。干预VCI的早期阶段,延缓疾病的 发生发展,对千提升患者及其家庭的生活质最至关重要。 从临床研究来讲,CCH、CIR都是与脑血管病有关的病因, 二者均可导致VCI。CCH指长期脑血流降低导致血流动力 学性脑缺血。既往研究表明,CCH可通过诱导血管损伤,血 脑屏障系统功能失调,神经递质紊乱等因素最终导致认知 障碍[8]。CIR损伤是指脑缺血一定时间恢复血液供应后,其 功能不但未能恢复,反而出现了更加严重的脑机能障碍。 已有国内外研究表明CIR损伤可能通过能量代谢障碍、突 触损伤、炎症反应等引起认知障碍[9]。从基础研究层面来 讲,目前VCI动物模型采用两种方法较多:CD永久结扎双 侧颈总动脉的CCH模塑;@反复结扎再灌注双侧颈总动脉 的CIR模型。在分子机制上,VCI发病涉及自噬、氧化应激、

临床遗传学研究进展的认识与感悟

临床0904班 03 陈舒宁 遗传,是一个抽象性总结性的词语,而它和我们的生活密切相关,甚至决定我们的生活质量。基因的发现以及各种探究技术的发展,将遗传这个概念具体化清晰化,我们越来越多的了解到遗传物质对各种性状表达的影响。科学的进步最终是要运用到实际中去的,遗传学的研究也在向临床应用方向推进。 今天对遗传学的认识已经远远超越了“豌豆杂交”,现在已经可以运用医学遗传学理论知识,通过家系调查和各项检查来诊断、治疗和预防遗传病。临床遗传学是在分离定律、自由组合定律、连锁交换定律等研究基础上,结合细胞遗传学技术、分子细胞遗传学技术、分子遗传学技术等,对遗传病进行诊断、预防、治疗,并且提供详细咨询。临床遗传学还有其独自的知识体系,比如染色体的基本知识、染色体国际命名体制;基因的基本知识;细胞有丝分裂、减数分裂的基本知识及其与染色体、基因遗传的关系等。通过学习,在认识到临床上对遗传学技术的应用已经远远超出了我最开始的认为。临床治疗、预防都已经和遗传学产生了密切的联系,它们相互促进,协同发展。 目前所指的遗传病,主要分为染色体病和基因病。染色体病是指染色体数目结构发生异常所引起的疾病。染色体多一条或少一条都会造成染色体病,比如唐氏综合征、13三体综合征、18三体综合征;而染色体结构的变化往往具有复杂的临床表现,比如生长发育异常、智力发育迟缓等等。这些疾病,目前主要以预防为主,高龄产妇需要格外注意。血清学检查和超声筛选应该是比较普遍的检查方式,它们不会对孕妇造成创伤,比较安全。血清学检查的检出率随着人们的研究已经有了较大的提高,但是还有一定的假阳性和假阴性的例子出现。而且,血清学筛查还存在许多问题,比如取血和开单时间无法一致,没有一个严格规范的筛查时限,有的医院技术不达标等等。于是进一步想到了较为直接的侵入性产前检查,因为它直接提取到胎儿的遗传物质,可谓是目前检查的”金标准“。但是,想象一下自己或者自己的亲人做这样的检查,会产生多大的思想压力。并且直接侵入性产检可能造成对胎儿伤害,诱发流产等。为了能够不造成母体和胎儿伤害,而又能达到较高的检出率,于是有了从母体外周血中检查游离胚胎DNA的方法。这个方法有点将前面两种方法益处相结合的意思,即提高检出率,又减少对母胎的伤害,而且它还提高了检查的效率。但是,目前应用的FISH,PCR都还有一些弊端,比如FISH的成本高,价格贵;母血的污染可能影响结果判断等等。当然,一切都还是在进步的,非侵入性产前非整倍体检查正在被不断完善,随着发展也一定会更加普及。染色体质的改变也会造成疾病,目前的检查方法检出率一般,而且并没有得到普及。并且由于染色的的缺失、重复等改变是微小的,多为新发,所以还需要更多的病例累积来帮助临床认识一些新的综合征。 基因病则分为单基因病和多基因病。单基因病是由单个基因突变引起的疾病,有一定的遗传规律,而且遗传研究上已经累积了一些病例知识,对致病基因的有一定的认识。对于临床上的常见的单基因病,例如短指症,白化病都有较好的诊断。结合病人的系谱调查,该遗传病的遗传特点,加之PCR等基因检测技术,可以达到较高的检出率。当然每个技术都不可能称之为百分百的完美,单基因病的诊断中也有许多问题干扰诊断,比如:表现度不同,有时会产生拟表型等等。多基因病则是指多对微小的累加的等位基因与环境共同作用所引起的疾病,比如心血管疾病,中风,精神分裂等。临床上主要还是对症治疗,并且有一定疗效。但是,治问题要治之根本,所以目前对这些疾病的基因诊断、治疗还在不断的研究之中。

相关主题
文本预览
相关文档 最新文档