当前位置:文档之家› 数学物理方法大作业

数学物理方法大作业

数学物理方法大作业
数学物理方法大作业

基于分离变量法的波导中的电磁波研究

1 空间当中的电磁波

在迅变情况下,电磁场以波动形式存在,电磁场的基本方程是麦克斯韦方程组,对于在0==J σ情况下的迅变场,麦克斯韦方程组为]4[

??

?

??

????

=??=????=????-

=??00B D t D H t B E (1)

为了便于求解,通常将(1)式化为

???

????=??-?=??-?0101

22

2

22

22

2

t B

c

B t E c E (2) 必须指出的是,(2)式中第一式E 的三个分量X E ,y E ,z E 虽然是三个独立方程,但是其解却是相互关联的,因为(1)式到(2)式麦克斯韦方程变为二阶的麦克斯韦方程,故解的范围变大了。为了使波动方程(2)的解是原方程(2)的解,必须是波动方程的解满足条件 0=??E 。 求解方程(1),即为求解

????

???

????-

=??=??=??-?t B

E E t E

c E 0012222

(3)

(3)式在给定的边界条件下,可以求得定解. 对于定态电磁波,场量可以表示为

t i e z y x E E ω-=),,( (4)

考虑(4)式,(3)式可表示如下:

?

??

?

?

??

??-==??=+?E i

B E E k E ω002

2

(5)

设电磁波为时谐波,并考虑到关系H B μ=,由(5)式可得到z y x ,,三个分量的6个标量方程:

x y x

H i E y

E ωμγ-=+?? (6) y x z

H i E x

E ωμγ-=-??-

(7) z x

y H i y

E x

E ωμ-=??-

?? (8) x y z

E i H y

H ωεγ=+?? (9) y x z

E i H x

H ωεγ=-??-

(10) z x

y E i y

H x

H ωε=??-

?? (11) 以上6个方程经过简单运算,可以将横向场分量y x y x H H E E ,,,用两个纵向场分量

z z H E ,来表示,即:

)(1

2

y

E i x H k H z

z c

x ??-??-

=ωεγ

(12) )(12

x E i y H k H z

z c

y ??+??-

=ωεγ (13) )(12

y H i x E k E z z c

x ??+??-

=ωμγ (14) )(12

x H i y E k E z z c

y ??-??-

=ωμγ (15) 式中222

k k c +=γ

εμω=k

TM 波的纵向场分量与横向场分量关系[]1为:

y

E k i H z

c x ??=

2

ωε (12*) x E k i H z

c

y ??-

=2

ωε (13*) x

E k E z

c

x ??-

=2

γ (14*)

y E k E z

c

y ??-

=2

γ (15*)

TE 波的纵向场分量与横向场分量关系为[]1:

x

H k H z

c

x ??-

=2

γ (12+)

y

H k H z

c y ??-

=2γ (13+)

y

H k i E z

c x ??-

=2

ωμ (14+) x H k i E z

c

y ??=

2

ωμ (15+) 2 波导内的电磁场 2.1波导的几个假设

这里所讨论的波导,有以下假设:波导的横截面沿z 方向是均匀的,即波导内的电场与磁场只与坐标y x ,有关,与z 无关;构成波导壁的导体是理想导体,即

∞=σ;波导内的介质各向同性,并且0=σ;波导内的电磁场为时谐场,角频率为

ω。

2.2矩形波导中的电磁波

现在我们求解矩形波导中的电磁波解。选一直角坐标系,如图1所示。取波导内壁面为0=x 和a ,

0=y 和b ;z 轴沿电磁波传播方向。在一定频率下,

管内电磁波是方程(5)的解。次解在管壁上还满足边界条件0=?E n ]4[,即电磁场在管壁上的切向 分量为零。由于电磁波沿z 轴方向传播,它应有传播因子t i ik z e ω-。因此,我们把电场E 取为

E (x,y,z)= E (x,y)z ik z e . (16)

将(16)代入(5)式得

()()

()0,,2222

22=-+???

? ?

???+??y x E k k y x E y x z ]

4[ (17)

用直角坐标分离变量]12[,设()y x u ,为电磁场的任一直角分量,它满足方程(17)。设

()y x u ,)()(y Y x X = (18)

从而方程(17)可以分解为两个方程

02

2

2=+X k dx

X d x (19) 02

2

2=+Y k dy Y d y (20) 22

22k k k k z y x =++ (21) 求解方程(19)式和方程(20),得()y x u ,的特解

()()y k D y k C x k D x k C y x u y y x x sin cos sin cos ),(2211++= (22) 其中,1C ,1D ,2C ,2D 为任意实数,当()y x u ,具体表示E 某特定分量时,考虑边界条件0=?E n 及

0=??n

E n

,可以得到对这些常数的一些限制条件。

2.2.1矩形波导TM 波

矩形波导的横截面如图1所示,波导内传播TM 波时,有0=z H 。波导内的电磁场由z E 确定。在给定波导管中,z E 满足下面的波动方程和边界条件]1[:

02

2

22222=+??+??+??z z z z E k z E y E x E (23) 0,00

====a

x z

x z

E E (24)

0,00

====b

y z

y z

E E (25)

由均匀波导中,设z z z e y x E z y x E γ-=),(),,( (26) 将(26)式代入方程(23)中,得

0),(22

222=??????+??+??y x E k y x z c (27) 其中222

k k c +=γ为截止波数。

用分离变量法]12[求解。其解为:()XY y x E z =, (28) 将式(28)代入方程(27)中,然后方程两边除以XY ,于是方程可分裂为两个常微分方程

02

2

2=+X k dx

X d x (29) 02

2

2=+Y k dy

Y d y (30) 且2

22c y x k k k =+

方程(29)的通解为()x k D x k C X x x sin cos 11+=,并考虑边界条件(24)得

a

m k x π

=

其中???=3,2,1m 故x a m C X π

sin 1= (31)

同理,得方程(30)的通解为:

()y k D y k C Y y y sin cos 22+=

考虑边界条件式(25)得

b

n k y π

=

其中???=3,2,1n 故)sin(2y b

n C Y π

=

所以,得到矩形波导中TM 波的纵向场分量 z m z z z e y b

n x a m E e y x E z y x E γγπ

π--==)sin()sin(

),(),,( (32) 式中,21C C E m =由激励场源强度决定。 由式

2

22c y x k k k =+得截止波数

2

22

2

22??

?

??+??? ??=+=+=b n a m k k k k y

x c ππγ (33)

利用式(12*)~(15*)可求得TM 波的其它横向场分量]1[

z m c

x e y b n x a m E a m k z y x E γπ

ππγ

--

=)sin()cos()(),,(2

(34) z m c

y e y b

n x a m E b n k z y x E γπππγ

--

=)cos()sin()(),,(2

(35) z m c

x e y b n x a m E b n k i z y x H γπππωε-=

)cos()sin()(),,(2

(36) z m c

y e y b n x a m E a m k i z y x H γπππωε--

=)sin()cos()(),,(2

(37) 2.2.2 矩形波导TE 波

对于TE 波,因为TE 波在传播方向上0=z E 。故由式(12+)~(15+)可得TE 波的纵向场分量与横向场分量关系]1[为:

x

H k H z

c

x ??-

=2

γ (38)

y

H k H z

c

y ??-

=2

γ (39)

y H k i E z

c

x ??-

=2

ωμ (40) x

H k i E z

c y ??=

2

ωμ (41) 故波导内的电磁场由z H 分量确定,在给定的矩形波导中,z H 满足下面的波动方程和边界条件:

022=+?z z H k H (42)

0,

00

=??=??==a

x z x z

x

H x

H (43)

0,

00=??=??==b

y z y z y

H y

H (44)

用分离变量法求解]12[,可以得到TE 波的纵向场分量

)

cos()cos(

),(y b

n x a m H y x H m z π

π= ???=3,2,1,0,n m (45) 式中m H 由激励场源决定。

将式(45)代入式(38)~(41)中,得:

z m c

x e y b n x a m H b n k i z y x E γπ

ππωμ-=

)sin()cos()(),,(2

(46) z m c

y e y b n x a m H a m k i z y x E γπππωμ--

=)cos()sin()(),,(2

(47) z m c

x e y b

n x a m H a

m k z y x H γπ

ππ

γ-=

)cos()sin(

)(),,(2

(48) z m c

y e y b

n x a m H b n k z y x H γπ

ππγ

-=

)sin()cos()(),,(2

(49) 下面以TE 10模为例研究其分布

其场分量为

cos z ik z

z x H e a π=

sin z ik z

z x ik a x H e a

ππ-=

sin

z ik z y i a

x

E e a ωμππ=

由matlab 作图

程序如下,取a=5cm ,b=3cm ,令z 为1cm w=10^11;

u=4*pi*10^(-7); a=.05; b=.03;

e=10^7/(4*pi*9*10^16); kz=sqrt(w^2*u*e-(pi/a)^2); x=(0:0.001:0.05); y=(0:0.001:0.03); [X,Y]=meshgrid(x,y);

hz=cos(pi*X/a).*cos(kz*0.01);

hx=sin(kz)*0.01*kz*(a/pi)*sin(pi*X/a); ey=-(w*a*u/pi)*sin(pi*X/a)*sin(kz*0.01); subplot(1,3,1) mesh(X,Y ,hz) subplot(1,3,2) mesh(X,Y ,hx) subplot(1,3,3) mesh(X,Y ,ey)

下图波形依次为Hz 波,Hx 波,Ey 波

基于Microsoft Visual Studio 2010编程实现施密特正交化

设x 为向量空间m R 的子空间,且{21,,x x }为其基底,因此n m n X ≥=,dim 。在一些应用时机,如最小平方法,我们希望从已知基底建构出另一组正交正规基底

}{1n q q ,亦即0=j T i

q q ,若j i ≠,且对于任意i ,12

==i T I i

q q q 。下面先考

虑实数几何向量空间,稍后再推广至一般内积空间。

Gram-Schmidt 正交化(orthogonalization )是基础线性代数采用的标准做法,包含两

个部分:

正交化:对于i=1,2,…,n,由 i X X ,,1 的线性组合产生 i y ,且当j i ≠时,0=j T

i y y 。

正规化:将 的每个向量 正规化为单位向量 ,最后得到正交

正规基底

我们采用归纳法推导由给定基底 求得正交基底

Gram-Schmidt 正交化过程。为便于说明,考虑简单情况 。因为

包含线

性独立基底向量,

,故可令

见下图,将

正交投影至

所指直线的分量扣除就得到 :

显然,。上式的扣除量还有另一种表达方式,利用矩阵乘法结合律可得:

其中为向量投影至的正交投影矩阵,对此式疑惑的读者请参阅“正交

投影——威力强大的代数工具”。继续下一个步骤,将投影至和所扩张的子空间

分量扣除可得,因为和正交(如下图所示),于是有

上式也有对应于正交投影矩阵的推导。设,将至的行空间

的投影量从扣除即得,计算式如下:

最后再将得到的正规化,令,。

注意,Gram-Schmidt 正规化过程显示新基底向量可以表示为旧基底向量的

线性组合。反过来说也对,亦即可写为的线性组合,如下:

如果进一步将正规化结果纳入上式,直接替换为,就有

利用为正交正规向量集性质,各组合权重即为与内积:

,例如,

将前述方程组写为矩阵形式即得到著名的 QR 分解式:

因为,主对角元亦可表示为

计算程序如下:

/***************************************************************************** *

* Filename: schmidt.cpp

* Author: 靳兰海

* Student Number: 1107122540

* Company: Xidian University——School of Science——Radio Physics

* Description:

* Function List:

*

* Created: 2011年11月23日

* Environment: Microsoft Visual Studio 2010

/*****************************************************************************/

#include

#include

using namespace std;

class MyVector;/*向量类*/

class MyMatrix;/*矩阵类*/

//四种操作符的重载,以及向量点乘(dot)

MyVector operator * (const MyVector &, double); /*数乘*/

MyVector operator / (const MyVector &, double); /*数除*/

MyVector operator + (const MyVector &, const MyVector &); /*向量+向量*/ MyVector operator - (const MyVector &, const MyVector &); /*向量-向量*/

double dot(const MyVector &, const MyVector &); /*向量之间点乘*/

class MyVector

{

private:

int length_;

double *data_;

public:

/***************************************************** MyVector函数重载1,无参数

MyVector函数重载2,一个参数int n

MyVector函数重载3,对另一个MyVector向量引用修改

MyVector函数析构*/

MyVector()

{

length_=0;

data_ = NULL;

};

MyVector(int n)

{

length_ = n;

data_ = new double[n];

};

MyVector(const MyVector & v)

{

length_=v.length_;

data_= new double[length_];

for(int i =0;i

{

data_[i] = v[i];

}

};

~MyVector()/*析构*/

{

if(length_!=0)

{

delete[] data_;

}

};

/***************************************************** resize函数:重新开辟向量长度内存单元

length函数,无参数*/

void resize(const int n)

{

if(length_ == n)

{

return;

}

if(length_!=0)

{

delete [] data_;

}

length_ = n;

data_ = new double[n];

}

int length() const/*const修饰成员函数,只读常成员变量和非常成员变量*/ {

return length_;

};

/*****************************************************

operator[]重载1,对常量向量,返回其第i个元素

operator[]重载2,对非常量向量,返回其第i个元素*/

const double & operator[] (const int i) const

{

return data_[i];

};

double & operator[](const int i)

{

return data_[i];

};

/*****************************************************

norm2函数:求向量的范数

operator = 重载,把一个向量赋值给另一个向量

operator / 重载,对向量的每个元素除以一个数*/

double norm2()

{

double norm = 0.0;

for(int i=0;i

{

norm+=data_[i]*data_[i];

}

return sqrt(norm);

}

MyVector & operator = (const MyVector & a)

{

resize(a.length_);

for(int i=0; i

{

this->operator[](i)=a[i];

}

return *this;

}

MyVector operator / (const double a)

{

MyVector x(*this);

for(int i=0;i < this->length(); i++)

{

x[i] = this->operator[](i)/a;

}

return x;

}

};

/***************************************************** 重载输出运算符<<*/

ostream & operator << (ostream & os, const MyVector & a){ for(int i =0;i < a.length(); i++)

os << a[i]<<" ";

return os;

};

#include

double dot(const MyVector & a,const MyVector & b)

{

int n = a.length();

assert(n == b.length());

double result = 0.0;

for(int i =0; i

return result;

};

MyVector operator * (const MyVector & a, double x)

{

MyVector v(a);

for(int i = 0; i

v[i]*=x;

return v;

};

MyVector operator / (const MyVector & a, double x)

{

MyVector v(a);

assert(x!=0.0);

for(int i = 0; i

v[i]/=x;

return v;

};

MyVector operator + (const MyVector & a, const MyVector & b) {

assert(a.length()==b.length());

MyVector v(a);

for(int i = 0; i

v[i]+=b[i];

return v;

};

MyVector operator - (const MyVector & a, const MyVector & b) {

assert(a.length()==b.length());

MyVector v(a);

for(int i = 0; i

v[i]-=b[i];

return v;

};

class MyMatrix{

private:

int row_;

int column_;

double * data_;

public:

MyMatrix(const int n){

row_=n; column_ = n;

data_ = new double[n*n];

};

~MyMatrix(){

if(row_*column_ !=0) delete[] data_;

}

double operator()(const int i, const int j)const{

assert(i>=0 && i

assert(j>=0 && j

return data_[i*row_+j];

}

double & operator()(const int i, const int j){

assert(i>=0 && i

assert(j>=0 && j

return data_[i*row_+j];

}

};

#include

#include

int main(){

const int dim=3;

const int n=3;

//构造一个对象可以使用有参数的构造函数,如

//MyVector * y = new MyVector;

//使用new 来创造对象数组,只能采用无参数构造函数

MyVector * x = new MyVector[n];

for(int i =0; i

//如果下面一行写错,如写成

//x[0][0] = 1.0; x[0][0] = 1.0e-4; x[0][2] = 0.0;

//编译运行不会报错,但valgrind 能查出使用的内存在运算前没有赋值

x[0][0] = 1.0; x[0][1] = 1.0; x[0][2] = 0.0;

x[1][0] = 2.0; x[1][1] = 0.0; x[1][2] = 1.0;

x[2][0] = 2.0; x[2][1] = 2.0; x[2][2] = 1.0;

MyVector *q = new MyVector[n];

//如果上面错写成

//MyVector *q = new MyVector(n);

//上面一句的含义是构造了一个长度为一个MyVector长度的指针

//而不是n个MyVector数组。(n)被用来指明使用MyVecotr(cons int n) //做构造函数。

//程序编译不会报错,

//valgrind 会查出下面的语句非法访问内存

for(int i =0; i

MyMatrix r(dim);

MyVector y(dim);

r(0,0)=x[0].norm2();

//设定输出宽度

cout.width(17);

//设定输出数的有效数字

cout.precision(15);

//设定输出的格式

cout.setf(ios::scientific);

cout<<"vector x's ="<

for(int i =0; i

cout<

if(r(0,0)==0.0)

return EXIT_FAILURE;

else

q[0] = x[0]/r(0,0);

for(int i =1; i

//***Gram-Schmidt 正交化

#ifdef REGULAR_GS

for(int j =0;j

r(i,j) = dot(q[j],x[i]);

y=x[i];

for(int j =0;j

y = y - q[j] * r(i,j);

//*/

/***Modified Gram-Schmidt 正交化 **/

#else

y=x[i];

for(int j =0;j

r(i,j) = dot(q[j],y);

y = y - q[j] * r(i,j);

}

//**End of Modified Gram-Schmidt Orthogonalization */

#endif

r(i,i) = y.norm2();

if(r(i,i) == 0)

return EXIT_FAILURE;

else

q[i] = y/r(i,i);

}

cout<<"vector q's ="<

for(int i =0; i

cout<

#ifdef REGULAR_GS

cout<<"Regular Gram-Schmidt Method: The inner product between q's is"<

cout<<"Modified Gram-Schmidt Method: The inner product between q's is"<

cout<<"dot(q[0],q[1])="<

cout<<"dot(q[0],q[2])="<

cout<<"dot(q[1],q[2])="<

delete[]x;

delete[]q;

return EXIT_SUCCESS;

}

数学物理方法第八章作业答案

P 175 8.1在0x =的邻区域内,求解下列方程: (1) 2 (1)0x y''xy'y -+-= 解:依题意将方程化为标准形式2 2 10(1) (1) x y''y'y x x + - =-- 2 ()(1) x p x x = -,2 1()(1) q x x =- - 可见0x =是方程的常点. 设方程的级数解为0 ()n n n y x c x ∞ == ∑,则1 1 ()n n n y'x nc x ∞ -== ∑,2 2 ()(1)n n n y''x n n c x ∞ -== -∑ 代入原方程得2 2 2 1 2 2102 2 2 1 (1)(1)0(1)(1)0 n n n n n n n n n n n n n n n n n n n n n n n n n n c x x n n c x x nc x c x n n c x n n c x nc x c x ∞ ∞ ∞ ∞ ---====∞ ∞ ∞ ∞ -====---+- =? -- -+ - =∑∑∑∑∑∑∑∑ 由0 x 项的系数为0有:202012102 c c c c ?-=?= 由1 x 项的系数为0有:311313200 (0)c c c c c ?+-=?=≠ 由2x 项的系数为0有:42224201143212012 24 c c c c c c c ?-?+-=?= = 由3 x 项的系数为0有:533355432300c c c c c ?-?+-=?= 由4x 项的系数为0有:64446403165434010 80 c c c c c c c ?-?+-=?= = 由5 x 项的系数为0有:755577654500c c c c c ?-?+-=?= 由6 x 项的系数为0有:866686025587656056 896 c c c c c c c ?-?+-=?== …… ∴ 方程的级数解为 2 4 6 8 0100000 1115()2 24 80 896 n n n y x c x c c x c x c x c x c x ∞== =++ + + + +???∑

数学物理方法第三章答案完整版

第三章答案 1. (6分)已知齐次状态方程Ax x =&的状态转移矩阵)(t Φ如下,求其逆矩阵)(1 t -Φ和系统矩阵A 。 ??? ???+-+---=Φ--------2t t 2t t 2t t 2t t 3e 2e 3e 3e 2e 2e 2e 3e )t (。 解: ??????+-+---=-Φ=Φ-2t t 2t t 2t t 2t t 1 3e 2e 3e 3e 2e 2e 2e 3e )t ()t ( (3分) ? ? ? ? ??=Φ==4-3-21|)t (A 0t & (3分) 2. (8分)求定常控制系统的状态响应。 ()()()()()()0101,0,0,11210x t x t u t t x u t t ??????=+≥== ? ? ?--?????? & 解:11t t t At t t t t t t e te te e e t t te e te -------+??+??== ? ?----?? ?? (4分) 0()()(0)()()10t t t t t x t t x Bu t d e te e d te e e ττττττ τττ------=Φ+Φ-????+??=+=??????--?????? ?? (4分) 3.(3分) 已知齐次状态方程Ax x =&的状态转移矩阵)(t Φ如下,求其系统矩阵A 。 ?? ? ???+-+---=Φ--------2t t 2t t 2t t 2t t 3e 2e 3e 3e 2e 2e 2e 3e )t (。 解:? ? ? ? ??=Φ==4-3-21|)t (A 0t & (3分) 4.(8分)已知系统的状态方程为: u x x ?? ????+??????=111101&, 初始条件为1)0(1=x ,0)0(2=x 。求系统在单位阶跃输入作用下的响应。 解:解法1:?? ? ???=??? ? ????????---=Φ--t t t e te e s s L t 01101)(1 1; (4分) ?? ????-=??????-+??????=??? ?????????-+????????????=?---t t t t t t t t t t t t t te e te e te e d e e t e e te e x 212111)(00100τττττ。 (4分) 解法2: ?? ????--=??????--+??????--=+-=-s s s s s s s s s s x s Bu A s s x 21)1(1 11)1(11)1(1)}0()({)I ()(22221 ;

数学物理方法综合试题及答案

复变函数与积分变换 综合试题(一) 一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.设cos z i =,则( ) A . Im 0z = B .Re z π= C .0z = D .argz π= 2.复数3(cos ,sin )55z i ππ =--的三角表示式为( ) A .443(cos ,sin )55i ππ- B .443(cos ,sin )55i ππ- C .44 3(cos ,sin )55i ππ D .44 3(cos ,sin )55 i ππ-- 3.设C 为正向圆周|z|=1,则积分 ?c z dz ||等于( ) A .0 B .2πi C .2π D .-2π 4.设函数()0 z f z e d ζζζ= ? ,则()f z 等于( ) A .1++z z e ze B .1-+z z e ze C .1-+-z z e ze D .1+-z z e ze 解答: 5.1z =-是函数 4 1) (z z cot +π的( ) A . 3阶极点 B .4阶极点 C .5阶极点 D .6阶极点 6.下列映射中,把角形域0arg 4 z π << 保角映射成单位圆内部|w|<1的为( ) A .4411z w z +=- B .44-11z w z =+ C .44z i w z i -=+ D .44z i w z i +=- 7. 线性变换[]i i z z i z a e z i z i z a θω---= =-++- ( ) A.将上半平面Im z >0映射为上半平面Im ω>0 B.将上半平面Im z >0映射为单位圆|ω|<1 C.将单位圆|z|<1映射为上半平面Im ω>0 D.将单位圆|z|<1映射为单位圆|ω|<1 8.若()(,)(,)f z u x y iv x y =+在Z 平面上解析,(,)(cos sin )x v x y e y y x y =+,则(,)u x y = ( ) A.(cos sin )y e y y x y -) B.(cos sin )x e x y x y -

数学物理方法习题答案[1]

数学物理方法习题答案: 第二章: 1、(1)a 与b 的连线的垂直平分线;以0z 为圆心,2为半径的圆。 (2)左半平面0,x <但是除去圆22(1)2x y ++=及其内部;圆2211()416x y -+= 2、2 ,cos(2)sin(2)i e i π ππ+; 32,2[cos(sin(3)i e i π ππ+; ,(cos1sin1)i e e e i ?+ 3、22k e ππ--; (623)i k e ππ+; 42355cos sin 10cos sin sin ?????-+; 11()sin ()cos 22b b b b e e a i e e a --++- 1 ()cos 2 y y ay b e e x e ---- 4、(1) 2214u υ+= 变为W 平面上半径为1 2的圆。 (2)u υ=- 平分二、四象限的直线。 5、(1) z ie iC -+; 2(1) 2i z -; ln i z - (2) 选取极坐标 ,, ()2 2 u C f z ?? υ==+=6、ln C z D + 第三章: 1、 (1) i π (2)、 i ie π-- (3)、 0 (4)、i π (5)、6i π 2、 设 ()!n z z e f n ξ ξ= z 为参变数,则 () 1 220 1 1 () 1(0)2!2! 1()()!!! ! n z n n n l l n n n n z z n z e d f d f i n i n z d z z e e n n d n n ξξξξξξξξπξξπξ ξ +=== ====? ? 第四章: 1、(1) 23 23 ()()ln 22z i z i z i i i i i ---+-+- (2)23313 (1) 2!3!e z z z ++++ (3) 211111()()[(1)(1)](1)11222k k k k k k z z i i i z z z i z i z i ∞=---=-=--++--<+-+∑ 2、(1) 1 n n z ∞ =--∑ (2) 11()43f z z z =--- ①3z <时 11011()34k k k k z ∞ ++=-∑ , 34z <<时

数学物理方法期末考试规范标准答案

天津工业大学(2009—2010学年第一学期) 《数学物理方法》(A)试卷解答2009.12 理学院) 特别提示:请考生在密封线左侧的指定位置按照要求填写个人信息,若写在其它处视为作弊。本试卷共有四道大题,请认真核对后做答,若有疑问请与监考教师联系。 一 填空题(每题3分,共10小题) 1. 复数 i e +1 的指数式为:i ee ; 三角形式为:)1sin 1(cos i e + . 2. 以复数 0z 为圆心,以任意小正实数ε 为半径作一圆,则圆内所有点的集合称为0z 点的 邻域 . 3. 函数在一点可导与解析是 不等价的 (什么关系?). 4. 给出矢量场旋度的散度值,即=????f ? 0 . 5. 一般说来,在区域内,只要有一个简单的闭合曲线其内有不属 ------------------------------- 密封线 ---------------------------------------- 密封线 ---------------------------------------- 密封线--------------------------------------- 学院 专业班 学号 姓名 装订线 装订线 装订线

于该区域的点,这样的区域称为 复通区域 . 6. 若函数)(z f 在某点0z 不可导,而在0z 的任意小邻域内除0z 外处处可导,则称0z 为)(z f 的 孤立奇点 . 7. δ函数的挑选性为 ? ∞ ∞ -=-)()()(00t f d t f ττδτ. 8. 在数学上,定解条件是指 边界条件 和 初始条件 . 9. 常见的三种类型的数学物理方程分别为 波动方程 、 输运方程 和 稳定场方程 . 10. 写出l 阶勒让德方程: 0)1(2)1(222 =Θ++Θ -Θ-l l dx d x dx d x . 二 计算题(每小题7分,共6小题) 1. )(z 的实部xy y x y x u +-=22),(,求该解析函数

数学物理方法第二次作业答案解析

第七章 数学物理定解问题 1.研究均匀杆的纵振动。已知0=x 端是自由的,则该端的边界条件为 __。 2.研究细杆的热传导,若细杆的0=x 端保持绝热,则该端的边界条件为 。 3.弹性杆原长为l ,一端固定,另一端被拉离平衡位置b 而静止,放手任其振动,将其平衡位置选在x 轴上,则其边界条件为 00,0x x l u u ==== 。 4.一根长为l 的均匀弦,两端0x =和x l =固定,弦中力为0T 。在x h =点,以横向力0F 拉弦,达到稳定后放手任其振动,该定解问题的边界条件为___ f (0)=0,f (l )=0; _____。 5、下列方程是波动方程的是 D 。 A 2tt xx u a u f =+; B 2 t xx u a u f =+; C 2t xx u a u =; D 2tt x u a u =。 6、泛定方程20tt xx u a u -=要构成定解问题,则应有的初始条件个数为 B 。 A 1个; B 2个; C 3个; D 4个。 7.“一根长为l 两端固定的弦,用手把它的中 点朝横向拨开距离h ,(如图〈1〉所示)然后放 手任其振动。”该物理问题的初始条件为( D )。 A .?????∈-∈==] ,2[),(2]2,0[,2l l x x l l h l x x l h u o t B .???? ?====00 t t t u h u C .h u t ==0 D .???????=???? ?∈-∈===0 ],2[),(2]2,0[,200t t t u l l x x l l h l x x l h u 8.“线密度为ρ,长为l 的均匀弦,两端固定,开始时静止,后由于在点)0(00l x x <<受谐变 u x h 2 /l 0 u 图〈1〉

数学物理方法习题解答(完整版)

数学物理方法习题解答 一、复变函数部分习题解答 第一章习题解答 1、证明Re z 在z 平面上处处不可导。 证明:令Re z u iv =+。Re z x =,,0u x v ∴==。 1u x ?=?,0v y ?=?, u v x y ??≠??。 于是u 与v 在z 平面上处处不满足C -R 条件, 所以Re z 在z 平面上处处不可导。 2、试证()2 f z z = 仅在原点有导数。 证明:令()f z u iv =+。()2 2222,0f z z x y u x y v ==+ ∴ =+=。 2,2u u x y x y ??= =??。v v x y ?? ==0 ??。 所以除原点以外,,u v 不满足C -R 条件。而 ,,u u v v x y x y ???? , ????在原点连续,且满足C -R 条件,所以()f z 在原点可微。 ()00 00x x y y u v v u f i i x x y y ====???????? '=+=-= ? ?????????。 或:()()()2 * 00 0lim lim lim 0z z x y z f z x i y z ?→?→?=?=?'==?=?-?=?。 2 2 ***0* 00lim lim lim()0z z z z z z z zz z z z z z z z z =?→?→?→+?+?+??==+??→???。 【当0,i z z re θ≠?=,*2i z e z θ-?=?与趋向有关,则上式中**1z z z z ??==??】

3、设333322 ()z 0 ()z=0 0x y i x y f z x y ?+++≠? =+??? ,证明()z f 在原点满足C -R 条件,但不可微。 证明:令()()(),,f z u x y iv x y =+,则 ()332222 22 ,=0 0x y x y u x y x y x y ?-+≠? =+?+??, 332222 22 (,)=0 0x y x y v x y x y x y ?++≠? =+?+?? 。 3 300(,0)(0,0)(0,0)lim lim 1x x x u x u x u x x →→-===, 3300(0,)(0,0)(0,0)lim lim 1y y x u y u y u y y →→--===-; 3300(,0)(0,0)(0,0)lim lim 1x x x v x v x v x x →→-===, 3300(0,)(0,0)(0,0)lim lim 1y y x v y v y v y y →→-===。 (0,0)(0,0),(0,0)(0,0)x y y x u v u v ∴ = =- ()f z ∴ 在原点上满足C -R 条件。 但33332200()(0)() lim lim ()()z z f z f x y i x y z x y x iy →→--++=++。 令y 沿y kx =趋于0,则 333333434322222 0()1(1)1(1) lim ()()(1)(1)(1)z x y i x y k i k k k k i k k k x y x iy k ik k →-++-++-++++-+==+++++ 依赖于k ,()f z ∴在原点不可导。 4、若复变函数()z f 在区域D 上解析并满足下列条件之一,证明其在区域D 上

【最最最最最新】数学物理方法试卷(附答案)

福师大物理系《数学物理方法》B 课程考试题 一、简答题(共70分) 1、试阐述解析延拓的含义。解析延拓的结果是否唯一?(6分) 解析延拓就是通过函数的替换来扩大解析函数的定义域。替换函数在原定义域上与替换前的函数相等。 无论用何种方法进行解析延拓,所得到的替换函数都完全等同。 2、奇点分为几类?如何判别?(6分) 在挖去孤立奇点Zo而形成的环域上的解析函数F(z)的洛朗级数,或则没有负幂项,或则只有有限个负幂项,或则有无限个负幂项,我们分别将Zo称为函数F(z)的可去奇点,极点及本性奇点。 判别方法:洛朗级数展开法 A,先找出函数f(z)的奇点; B,把函数在的环域作洛朗展开 1)如果展开式中没有负幂项,则为可去奇点; 2)如果展开式中有无穷多负幂项,则为本性奇点; 3)如果展开式中只有有限项负幂项,则为极点,如果负幂项的最高项为,则为m阶奇点。 3、何谓定解问题的适定性?(6分) 1,定解问题有解;2,其解是唯一的;3,解是稳定的。满足以上三个条件,则称为定解问题的适定性。 4、什么是解析函数?其特征有哪些?(6分) 在某区域上处处可导的复变函数 称为该区域上的解析函数. 1)在区域内处处可导且有任意阶导数. 2) () () ? ? ? = = 2 1 , , C y x v C y x u 这两曲线族在区域上正交。 3)()y x u,和()y x v,都满足二维拉普拉斯方程。(称为共轭调和函数) 4)在边界上达最大值。 4、数学物理泛定方程一般分为哪几类?波动方程属于其中的哪种类型?(6分)

数学物理泛定方程一般分为三种类型:双曲线方程、抛物线方程、椭圆型偏微分方程。波动方程属于其中的双曲线方程。 5、写出)(x δ挑选性的表达式(6分) ()()()()()()?????????=-==-???∞ ∞∞-∞∞ -)()()(00000R f dv R r r f f dx x x f x f dx x x x f δδδ 6、写出复数2 31i +的三角形式和指数形式(8分) 三角形式:()3sin 3cos 231cos sin 2 321isin cos 222ππ? ?ρ??ρi i i +=++=+=+ 指数形式:由三角形式得: 313πρπ?i e z === 7、求函数 2)2)(1(--z z z 在奇点的留数(8分) 解: 奇点:一阶奇点z=1;二阶奇点:z=2 1)2)(1()1(lim Re 21)1(=????? ?---=→z z z z sf z

数学物理方法123章作业解答

另:()y x u u ,=,()y x v v ,=,?? ?==? ρ?ρsin ,cos y x ? ?ρ ρ ρ sin cos y u x u y y u x x u u ??+ ??= ????+ ????= ?? ρ ?????ρ?ρρ??ρ? ρ??= ??+ ??= ??+ ??- =??? ? ????+-??=???? ??????+????= ??u x u y u y v x v y v x v y y v x x v v cos sin cos sin cos )sin (111 ? ?ρ ρ ρ sin cos y v x v y y v x x v v ??+ ??= ????+ ????= ?? ρ ?????ρ?ρρ??ρ? ρ??- =??- ??- =??+ ??- =??? ? ????+-??=???? ??????+????= ??v x v y v y u x u y u x u y y u x x u u cos sin cos sin cos )sin (111 所以,有 ?????? ???-=????=??ρ?ρ?ρρv u v u 11 第18页 第2题

第27页 指出下列多值函数的支点及其阶。 (1) ) (a z - 解:根式的可能支点是∞点和根式内多项式的零点,现在来逐个考察这些点的性质。 ① a z =:在此点的邻域内任取一点 1 11φρi e a z +=(11 <<ρ),则有 2 11)(φ φ ρρi i e e a z = = - 当保持 1ρ不变 π φφ211+→(绕 a z =一周)时,有

数学物理方法第05章习题

第五章 习题答案 5.1-1一长为l 的均匀细杆,0=x 端固定,另一端沿杆的轴线方向被拉长d 而静止(假定拉长在弹性限度内)。突然放手使其振动,试写出振动方程与定解条件。 解:振动方程的形式与自由杆的振动方程一样。 ()l x u a u xx tt ≤≤=-00 2 ρ Y a = 2 初始条件:()()l x x l d x U ≤≤= 00, ()00,=x U t 边界条件:()0,0=t U ()0,0=t U x (右端自由振动) 5.1-2 长为l 的弦两端固定,密度为ρ,开始时在ε<-c x 处受到冲量I 的作用,写出初始条件。 解: ()00,=x U 在ε≥-c x 处 ()00,=x U t 在ε<-c x 处 由动量定理有: [] ερ ερ2)0,(0)0,(2I x U x U I t t = ?-?= 即:()??? ??<-≥-=ε ερ εc x I c x x U t 200, 5.1-3 长为l 的均匀细杆,在振动过程中,0=x 固定,另一端受拉力0F 的作用。试写出边界条件。(横截面积S ,杨氏模量Y )。 解:()0,0=t U 2 20),(t U S S t l P F ????=?--ρεε 当0→ε时有YS F t l U x U Y S F x l x 0 0),(= ???? ?==

5.1-4线密度为ρ,长为l 的弦两端固定,在某种介质中作阻尼振动,单位长度受阻力 t u h F ??-=,试写出其运动方程。 解:如图,取微元x d ,它的两端与x 轴间的夹角分别为21αα、,两端受力分别为 ()()t x T t x x T ,,d 、+,受力分析如下: x 轴方向: ()()0cos ,cos ,d 21=-+ααt x T t x x T 21,αα很小,则()()t x T t x x T ,,d =+, 即弦上张力不变。 y 轴方向:()()2221d d d sin ,sin ,d t u x g x x F t x T t x x T ????=??=?+-+ρραα 略去重力x g d ρ 有: x t u h x x u T t u x d d d 2222???-????=??ρ 所以:02 222=???+???-??t u h x u T t u ρρ 设2 a T =ρ 有:02 =+-t xx tt u h u a u ρ 5.1-5一均匀细圆锥杆作纵振动,锥的顶点固定在0=x 处,试导出此杆的振动方程。 解:设体密度为ρ,取微元x d (s 与s '中间一段) 则质量()?? ? ????-'?+??=s x s x x m 31d 31d ρ 而2 22 d 2d x x x x x x x s s +≈??? ??+=' 故()x s s x x x x m d d 31d 2 3 ??≈??? ?? ??-+??=ρρ 纵向上由牛顿定律有:s t x P s t x x P t u m ?-'?+=???),(),d (d 22 ()s x t x u x x x x t x x u Y t u x s ???? ???????-??? ??+??+??=???),(d ,d d 222ρ 1α 2α x l ()t x x T ,d + ()t x T , ()t x u , x x x d + x s s '

数学物理方法

数学物理方法课程教学大纲 一、课程说明 (一)课程名称:数学物理方法 所属专业:物理、应用物理专业 课程性质:数学、物理学 学分:5 (二)课程简介、目标与任务 这门课主要讲授物理中常用的数学方法,主要内容包括线性空间和线性算符、复变函数、积分变换和δ-函数、数学物理方程和特殊函数等,适当介绍近年来的新发展、新应用。本门课程是物理系学生建立物理直观的数学基础,其中很多内容是为后续物理课程如量子力学、电动力学等服务,是其必需的数学基础。 这门课中的一些数学手段将在今后的基础研究和工程应用中发挥重要的作用,往往构成了相应领域的数学基础。一般来讲,因为同样的方程有同样的解,掌握和运用这些数学方法所体现的物理内容将更深入,更本质。 (三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接 本课程以普通物理、高等数学和部分线性代数知识为基础,为后继的基础课程和专业课程研究有关的数学问题作准备,也为今后工作中遇到的数学物理问题求解提供基础。 (四)教材:《数学物理方法》杨孔庆编 参考书:1. 《数学物理方法》柯朗、希尔伯特著 2. 《特殊函数概论》王竹溪、郭敦仁编著 3. 《物理中的数学方法》李政道著 4. 《数学物理方法》梁昆淼编 5. 《数学物理方法》郭敦仁编 6. 《数学物理方法》吴崇试编 二、课程内容与安排 第一部分线性空间及线性算子 第一章R3空间的向量分析 第一节向量的概念 第二节R3空间的向量代数

第三节R3空间的向量分析 第四节R3空间的向量分析的一些重要公式 第二章R3空间曲线坐标系中的向量分析 第一节R3空间中的曲线坐标系 第二节曲线坐标系中的度量 第三节曲线坐标系中标量场梯度的表达式 第四节曲线坐标系中向量场散度的表达式 第五节曲线坐标系中向量场旋度的表达式 第六节曲线坐标系中Laplace(拉普拉斯)算符▽2的表达式第三章线性空间 第一节线性空间的定义 第二节线性空间的内积 第三节Hilbert(希尔伯特)空间 第四节线性算符 第五节线性算符的本征值和本征向量 第二部分复变函数 第四章复变函数的概念 第一节映射 第二节复数 第三节复变函数 第五章解析函数 第一节复变函数的导数 第二节复变函数的解析性 第三节复势 第四节解析函数变换 第六章复变函数积分 第一节复变函数的积分 第二节Cauchy(柯西)积分定理 第三节Cauchy(柯西)积分公式 第四节解析函数高阶导数的积分表达式 第七章复变函数的级数展开

数学物理方法习题及解答

2. 试解方程:()0,04 4 >=+a a z 44424400000 ,0,1,2,3 ,,,,i k i i z a a e z ae k ae z i i πππ π ωωωωω+=-=====--若令则 1.计算: (1) i i i i 524321-+ -+ (2) y = (3) 求复数2 12?? + ? ??? 的实部u 和虚部v 、模r 与幅角θ (1) 原式= ()()()12342531081052 916 2525255 i i i i i i +?+-?+-++=+=-+-- (2) 3 32( )10205 2(0,1,2,3,4)k i e k ππ+==原式 (3) 2 223 221cos sin cos sin ,3333212u v 1,2k ,k 0,1,2,223 i i i e r π πππππ θπ??==+=+==- ?????=-===+=±±L 原式所以:, 3.试证下列函数在z 平面上解析,并分别求其导数. (1)()()y i y y ie y y y x e x x sin cos sin cos ++- 3.

()()()()()()()()cos sin ,cos sin ,cos sin cos ,sin sin cos ,cos sin sin sin ,cos sin cos ,,,x x x x x x x x u e x y y y v e y y x y u e x y y y e y x u e x y y y y y v e y y x y e y y x v e y y y x y y u v u v x y y x u v z f z u iv z u f z =-=+?=-+??=---??=++??=-+?????==-????=+?'= ?证明:所以:。 由于在平面上可微 所以在平面上解析。()()()cos sin cos cos sin sin .x x x x v i e x y y y e y i e y y x y e y x x ?+=-++++? 由下列条件求解析函数()iv u z f += (),1,22i i f xy y x u +-=+-= 解: ()()()()()()()222222222212,2,21 2,2,,,2112, 2211 1,0,1,1,, 221112. 222u v x y v xy y x x y v u v y x y x x x x x c x y x f z x y xy i xy y x c f i i x y c c f z x y xy i xy x y ??????==+∴=++?????''=+=-=-+∴=-=-+?????=-+++-+ ??? =-+==+==? ?=-++-++ ?? ?而即所以由知带入上式,则则解析函数 2. ()21,3,,.i i i i i i e ++试求

2018物理二轮复习100考点第十七章物理思维方法专题17.13数学物理方法

专题17.13 数学物理方法 1.(2008·上海)如图所示为研究电子枪中电子在电场中运动的简化模型示意图。在Oxy 平面的ABCD区域内,存在两个场强大小均为E的匀强电场I和II,两电场的边界均是边长 为L的正方形(不计电子所受重力)。 (1)在该区域AB边的中点处由静止释放电子,求电子离开ABCD区域的位置。 (2)在电场I区域内适当位置由静止释放电子,电子恰能从ABCD区域左下角D处离开,求所有释放点的位置。 (3)若将左侧电场II整体水平向右移动L/n(n≥1),仍使电子从ABCD区域左下角D处离开(D不随电场移动),求在电场I区域内由静止释放电子的所有位置。 (2)设释放点在电场区域I中,其坐标为(x,y),在电场I中电子被加速到v1,然后进入 电场II做类平抛运动,并从D点离开,有,, 解得xy=,即在电场I区域内满足议程的点即为所求位置。 (3)设电子从(x,y)点释放,在电场I中加速到v2,进入电场II后做类平抛运动,在高度为y′处离开电场II时的情景与(2)中类似,然后电子做匀速直线运动,经过D点,则有

,,,。 解得,即在电场I区域内满足方程的点即为所求位置。 【点评】大于题述要求的单个或分离位置,可以用位置坐标表示;对于连续位置则需要用方程表示。 2.(2008·四川)A、B两辆汽车在笔直的公路上同向行驶。当B车在A车前84 m处时,B 车速度为4 m/s,且正以2 m/s2的加速度做匀加速运动;经过一段时间后,B车加速度突然变为零。A车一直以20 m/s的速度做匀速运动。经过12 s后两车相遇。问B车加速行驶的时间是多少? 3.(2014·四川省雅安三诊)如题79B图所示,质量为m的小球从四分之一光滑圆弧轨道顶端静止释放,从轨道末端O点水平抛出,击中平台右下侧挡板上的P点。以O为原点在竖直面内建立如图所示的平面直角坐标系,挡板形状满足方程 y=6-x2(单位:m),小球质量m=0.4 kg,圆弧轨道半径R=1.25m,g 取10 m/s2;求: (1)小球对圆弧轨道末端的压力大小; (2)小球从O点到P点所需的时间(结果可保留根号)。

数学物理方法习题解答(完整版)

数学物理方法习题解答 一、复变函数部分习题解答 第一章习题解答 1、证明Re z 在z 平面上处处不可导。 证明:令Re z u iv =+。Re z x =,,0u x v ∴==。 1u x ?=?,0v y ?=?, u v x y ??≠??。 于是u 与v 在z 平面上处处不满足C -R 条件, 所以Re z 在z 平面上处处不可导。 2、试证()2 f z z = 仅在原点有导数。 证明:令()f z u iv =+。()2 2222,0f z z x y u x y v ==+ ∴ =+=。 2,2u u x y x y ??= =??。v v x y ?? ==0 ??。 所以除原点以外,,u v 不满足C -R 条件。而 ,,u u v v x y x y ???? , ????在原点连续,且满足C -R 条件,所以()f z 在原点可微。 ()00 00 00x x y y u v v u f i i x x y y ====???????? '=+=-= ? ?????????。 或:()()()2 * 00 0lim lim lim 0z z x y z f z x i y z ?→?→?=?=?'==?=?-?=?。 2 2 ***0* 00lim lim lim()0z z z z z z z zz z z z z z z z z =?→?→?→+?+?+??==+??→???。 【当0,i z z re θ≠?=,*2i z e z θ-?=?与趋向有关,则上式中**1z z z z ??==??】

3、设333322 ()z 0 ()z=0 0x y i x y f z x y ?+++≠? =+??? ,证明()z f 在原点满足C -R 条件,但不可微。 证明:令()()(),,f z u x y iv x y =+,则 ()332222 22 ,=0 0x y x y u x y x y x y ?-+≠? =+?+??, 332222 22 (,)=0 0x y x y v x y x y x y ?++≠? =+?+?? 。 3 300(,0)(0,0)(0,0)lim lim 1x x x u x u x u x x →→-===, 3300(0,)(0,0)(0,0)lim lim 1y y x u y u y u y y →→--===-; 3300(,0)(0,0)(0,0)lim lim 1x x x v x v x v x x →→-===, 3300(0,)(0,0)(0,0)lim lim 1y y x v y v y v y y →→-===。 (0,0)(0,0),(0,0)(0,0)x y y x u v u v ∴ = =- ()f z ∴ 在原点上满足C -R 条件。 但33332200()(0)() lim lim ()()z z f z f x y i x y z x y x iy →→--++=++。 令y 沿y kx =趋于0,则 333333434322222 0()1(1)1(1) lim ()()(1)(1)(1)z x y i x y k i k k k k i k k k x y x iy k ik k →-++-++-++++-+==+++++ 依赖于k ,()f z ∴在原点不可导。 4、若复变函数()z f 在区域D 上解析并满足下列条件之一,证明其在区域D 上

(整理)数学物理方法

《数学物理方法》课程考试大纲 一、课程说明: 本课程是物理学专业的一门重要基础课程,它是继高等数学后的一门数学基础课程。 本课程的教学目的是:(1) 掌握复变函数、数学物理方程、特殊函数的基本概念、基本原理、基本解题计算方法;(2) 掌握把物理问题归结成数学问题的方法,以及对数学结果做出物理解释。为今后学习电动力学、量子力学和统计物理等理论物理课程打下必要的数学基础。 本课程的重点是解析函数、留数定理、傅里叶变换、数学物理方程、分离变数法、傅里叶级数法、本征值问题等。 本课程的难点是把物理问题归结成数学问题,以及各种数学物理方程的求解。 二、参考教材: 必读书:《数学物理方法》,梁昆淼编,高等教育出版社,1998年6月第3版。 参考书:《数学物理方法》,汪德新编,科学出版社,2006年8月第3版;《数学物理方法》,赵蕙芬、陆全康编,高等教育出版社,2003年8月第2版。 三、考试要点: 第一章复变函数 (一)考核知识点 1、复数及复数的运算 2、复变函数及其导数 3、解析函数的定义、柯西-黎曼条件 (二)考核要求 1、掌握复数三种形式的转换。 2、掌握复变函数的导数和解析等基本概念,并掌握判断导数是否存在和函数是否解析的 方法。 u 。 3、了解解析函数与调和函数的关系,并能从已知调和函数u或v,求解析函数iv 第二章复变函数的积分 (一)考核知识点 1、复变函数积分的运算 2、柯西定理 (二)考核要求 1、理解单通区域和复通区域的柯西定理,并能用它们来计算复变函数的积分。

2、掌握应用原函数法计算积分。 3、掌握柯西公式计算积分。 第三章幂级数展开 (一)考核知识点 1、幂级数的收敛半径 2、解析函数的泰勒展开 3、解析函数的洛朗展开 (二)考核要求 1、理解幂级数收敛圆的性质。 2、掌握把解析函数展开成泰勒级数的方法。 3、掌握把环域中的解析函数展开成洛朗级数的方法。 4、理解孤立奇点的分类及其类型判断。 第四章留数定理 (一)考核知识点 1、留数的计算 2、留数定理 3、利用留数定理计算实变函数定积分 (二)考核要求 1、掌握留数定理和留数计算方法。 2、掌握利用留数定理计算三类实变函数定积分。 第五章傅里叶变换 (一)考核知识点 1、傅里叶级数 2、傅里叶变换 3、δ函数 (二)考核要求 1、掌握周期函数的傅里叶级数形式和定义在有限区间) ,0(l上的函数的傅里叶展开。 2、掌握非周期函数的傅里叶变换。 3、掌握δ函数的性质及其傅里叶积分的形式。 第七章数学物理方程的定解问题

《高等数学》第四册(数学物理方法)

第一章 复数与复变函数(1) 1.计算 )(1)2; i i i i i -- = -- =-()122(12)(34)(2)5102122. ; 345(34)(34)59165 5 i i i i i i i i i i i i +-++--+++ = + =- =- --+-+5 5 51(3). ; (1)(2)(3) (13)(3) 102i i i i i i i = = = ------ 4 2 2 2 (4).(1)[(1)](2)4; i i i -=-=-=- 1 1 22 ())]a b a b i =+= 1 1 2 2 24s sin )]()(co s sin ); 2 2 i a b i θθθθ=+=++ 3. 设 1z = 2;z i = 试用三角形式表示12z z 及1 2z z 。 解: 121co s sin ;(co s sin ); 4 4 2 6 6 z i z i ππππ=+= + 121155[co s( )sin ( )](co s sin ); 2 4 6 4 6 2 12 12 z z i i π π π π ππ= + ++ = + 12 2[co s( )sin ( )]2(co s sin ); 4 6 4 6 12 12 z i i z ππππππ=- +- =+ 11.设123,,z z z 三点适合条件1230z z z ++=及1231; z z z ===试证明123,,z z z 是一个内接于单位圆 z =1 的正三角形的顶点。 证明:1230;z z ++=z 123231;312;;z z z z z z z z z ∴=--=--=-- 122331;z z z z z z ∴-=-=-123 ,,z z z ∴所组成的三角形为正三角形。 1231z z z === 123 ,,z z z ∴为以z 为圆心,1为半径的圆上的三点。 即123z ,z ,z 是内接于单位圆的正三角形。

数学物理方法第二篇第3章

第三章 行波法和通积分法 §2.3.1一维波动方程哥西问题达朗贝尔公式 无限长均匀弦的自由振动归结为一维齐次波动方程的哥西问题: ?? ?==>+∞<<-∞=-) ()0,(),()0,() 0,(,02x x u x x u t x u a u t xx tt ψ? 这个方程的特征方程为 0 )( 2 2 =-a t x d d , 所以波动方程是双曲型方程,有两组实的特征线 1c at x =-,2c at x =+, 作自变量的变换,令 at x -=ξ,at x +=η, 应用复合函数求导法则,有 η ξηξau au a u a u u t +-=?+-=)(, ηξηξu u u u u x +=?+?=11, ηηξηξξu a u a u a u tt 2 2 2 2+-=, ηη ξηξξu u u u xx ++=2, 代入波动方程中,化简得 0=ξηu , 利用偏导数的意义,得通解

)()()()(),(at x G at x F G F t x u ++-=+=ηξ, 其中F 和G 是任意二阶连续可微函数. 由),(t x u 满足的初始条件来确定F 和G 的具体形式,于是 得函数方程 ? ? ?='+'-=+)()()(), ()()(x x G a x F a x x G x F ψ? 积分第二式得 C a x G x F x x += +-?α αψd 0 )(1)()(,C 为积分常数. 从而得 2)(21)(21)(0C a x x F x x - - = ?ααψ?d , 2 )(21)(2 1)(0 C a x x G x x + + =?ααψ?d 故得一维齐次波动方程哥西问题的解 ααψ??d ?+-+ ++-= at x at x a at x at x t x u )(21)]()([2 1),(, 这就是著名的达朗贝尔公式. 通常称)(at x F -为右传播波(或右行波),称)(at x G +为左传播波(或左行波),a 为速度.所以这种解波动方程哥西问题的方法称为行波法,在数学上又叫通积分法.

【最新】数学物理方法试卷(全答案)

嘉应学院物理系《数学物理方法》B 课程考试题 一、简答题(共70分) 1、试阐述解析延拓的含义。解析延拓的结果是否唯一?(6分) 解析延拓就是通过函数的替换来扩大解析函数的定义域。替换函数在原定义域上与替换前的函数相等。 无论用何种方法进行解析延拓,所得到的替换函数都完全等同。 2、奇点分为几类?如何判别?(6分) 在挖去孤立奇点Zo而形成的环域上的解析函数F(z)的洛朗级数,或则没有负幂项,或则只有有限个负幂项,或则有无限个负幂项,我们分别将Zo称为函数F(z)的可去奇点,极点及本性奇点。 判别方法:洛朗级数展开法 A,先找出函数f(z)的奇点; B,把函数在的环域作洛朗展开 1)如果展开式中没有负幂项,则为可去奇点; 2)如果展开式中有无穷多负幂项,则为本性奇点; 3)如果展开式中只有有限项负幂项,则为极点,如果负幂项的最高项为,则为m阶奇点。 3、何谓定解问题的适定性?(6分) 1,定解问题有解;2,其解是唯一的;3,解是稳定的。满足以上三个条件,则称为定解问题的适定性。 4、什么是解析函数?其特征有哪些?(6分) 在某区域上处处可导的复变函数 称为该区域上的解析函数. 1)在区域内处处可导且有任意阶导数. 2) () () ? ? ? = = 2 1 , , C y x v C y x u 这两曲线族在区域上正交。 3)()y x u,和()y x v,都满足二维拉普拉斯方程。(称为共轭调和函数) 4)在边界上达最大值。 4、数学物理泛定方程一般分为哪几类?波动方程属于其中的哪种类型?(6分)

数学物理泛定方程一般分为三种类型:双曲线方程、抛物线方程、椭圆型偏微分方程。波动方程属于其中的双曲线方程。 5、写出)(x δ挑选性的表达式(6分) ()()()()()()?????????=-==-???∞ ∞∞-∞∞-) ()()(00000R f dv R r r f f dx x x f x f dx x x x f δδδ 6、写出复数 2 3 1i +的三角形式和指数形式(8分) 三角形式:()3 sin 3 cos 2 3 1cos sin 2 32 1isin cos 2 2 2 π π ??ρ??ρi i i +=++=+= + 指数形式:由三角形式得:3 1 3 πρπ?i e z === 7、求函数2 ) 2)(1(--z z z 在奇点的留数(8分) 解: 奇点:一阶奇点z=1;二阶奇点:z=2 1)2)(1()1(lim Re 21)1(=????? ?---=→z z z z sf z

相关主题
文本预览
相关文档 最新文档