当前位置:文档之家› 经济数学基础讲义 第2章 导数与微分

经济数学基础讲义 第2章 导数与微分

经济数学基础讲义 第2章 导数与微分
经济数学基础讲义 第2章 导数与微分

第2章 导数与微分

2.1 极限概念

研究函数是利用极限的方法来进行;极限是一个变量在变化过程中的变化趋势. 例1 圆的周长的求法.早在公元263年,古代数学家刘徽用圆内接正四边形、正五边形、正八边形、正十六边形……等的边长近似圆的周长,显然随着边数的增加,正多边形的边长将无限趋近圆的周长.

例2 讨论当+∞→x 时,x

1

的变化趋势.

例3 讨论一个定长的棒,每天截去一半,随着天数的增加,棒长的变化趋势。 “一尺之棰,日截其半,万世不竭”——庄子?天下

定义2.3 设函数)(x f 在点0x 的邻域(点0x 可以除外)内有定义,如果当x 无限趋于0x (但

0x x ≠)时,)(x f 无限趋近于某个常数A ,则称x 趋于0x 时,)(x f 以A 为极限,记为

A x f x x =→)(lim 0

或A x f →)( )(0x x →

若自变量x 趋于0x 时,函数)(x f 没有一个固定的变化趋势,则称函数)(x f 在0x 处没有极限.

在理解极限定义时要注意两个细节:

1.0x x →时,(0x x ≠)

2.??

?→<→>→0

00

00)()(x x x x x x x x (包括这两种情况)

例1 讨论2x y =时, 2

2

lim x x →=? 解:求极限时,可以利用极限的概念和直观的了解,我们可以借助几何图形来求函数的极限.

由几何图形可以看出,当2→x 时,42→=x y ,即2

2

lim x x →=4 例2 讨论函数112--=x x y ,当1→x 时的极限1

1

lim 21--→x x x

解:此函数在1=x 处没有定义,可以借助图形求极限.由

图形得到21

1

lim 21=--→x x x

2.1.3 左极限和右极限

考虑函数x y =,

依照极限的定义,不能考虑0→x 的极限. 因为x y =在0

又如函数?

?

?>≤=010)(x x x x f ,如果讨论0→x 是的极限,则函数分别在0x 时不是同一个表达式,必须分别考虑.由此引出左右极限的概念. 定义2.4 设函数f x ()在点x 0的邻域(x 0点可以除外)内有定义,

如果当x x <0且x 无限于x 0(即x 从x 0的左侧趋于x 0,记为x x →-

0)时,函数f x ()无

限地趋近于常数L ,则称当x 趋于x 0时,f x ()以L 为左极限,记作

= L ;

如果当x x >0且x 无限趋于x 0(即x 从x 0的右侧趋于x 0,记为x x →+0)时,函数f x ()无

限地趋近于常数R ,则称当x 趋于x 0时,f x ()以R 为右极限,记作= R .

极限存在的充分必要条件:

极限)(lim 0

x f x x →存在的充分必要条件是:函数f x ()在0x 处的左,右极限都存在且相等.

例3 ???>≤=0

10)(x x x x f , 求)(lim 0x f x → 解:注意到此函数当x =0的两侧表达式是不同,在0点处分别求左、右极限.

11lim )(lim 0

0==++

→→x x x f ,0lim )(lim 0

==-

-→→x x f x x 可见左右极限都存在但不相等;由几何图形易见,由极限的定义知,函数在某点处有极限存在需在该点处的左右端同趋于某个常数,因此此函数在0点处极限不存在. 2.1.4 无穷小量

0)(lim 0

=→x f x x 称当0x x →时,)(x f 为无穷小量,简称无穷小.

补充内容:

无穷小量是一个特殊的变量,它与有极限变量的关系是:

变量y 以为A 极限的充分必要条件是:y 可以表示成A 与一个无穷小量的和,即

)0(lim lim =+=?=ααA y A y

无穷小量的有以下性质:

性质1 有限个无穷小量的和是无穷小量; 性质2 有限个无穷小量的乘积是无穷小量;

性质3 有界函数与无穷小量的乘积是无穷小量. 无穷大量:在某个变化过程中,绝对值无限增大且可以大于任意给定的正实数的变量称为无穷大量.

例如 因为+∞=+∞

→x

x 2lim ,所以,当+∞→x 时,x 2是无穷大量.无穷小量与无穷大量有如下“倒数关系”:

定理:当0x x →(或∞→x )时,若)(x f 是无穷小(而0)(≠x f ),则

)

(1

x f 是无穷大;反之,若)(x f 是无穷大,则

是无穷小.

例4 2x y =,当0→x 时,?2→x

解: 由图形可知,当0→x 时,02→x ,当0→x 时,2x 是无穷小量. 2.2 极限的运算

2.2.1 极限的四则运算法则

在某个变化过程中,变量v u ,分别以B A ,为极限,则

B A v u v u ±=±=±lim lim )lim(,B A v u v u ?=?=?lim lim )lim(

例1 求2

2

lim x x → 解:422)lim )(lim ()(lim lim 2222

2=?==?=→→→→x x x x x x x x x 例2 求1

1

lim 21--→x x x

解:21)

1(lim 1)1)(1(lim 11lim 1121=+=-+-=--→→→x x x x x x x x x

例3 求x

x x x +-∞→2231lim

解:3

1)

13()11(lim 31lim 2222

2=+-

=+-∞→∞→x

x x x x x x x x 例4 求x

x x 1

1lim

-+→

解:)11()

11)(11(lim 11lim

00

++++-+=-+→→x x x x x x x x )

11(lim

++=→x x x

x 2

1

1

11lim

=

++=→x x 2.2.2 两个重要极限 1.1sin lim

0=→x

x

x

几何说明: 如图,设x 为单位圆的圆心角,则x 对应的小三角形的面积为

2

sin x

,x 对应的扇形的面积为

2x ,x 对应的大三角形的面积为2

tan x 当0→x 时,它们的面积都是趋于0的 ,即之比的极限是趋于1的.

例1 x

x

x 3sin lim

0→

解:x x x 3sin lim 0→=333sin 3lim

0=→x x x 333sin lim 0=→x

x

x 2.e )11(lim =+∞→x

x x e )1(lim 1

=+→x x x 例2 求极限x

x x

)311(lim +

→ 解: 31

31

331

3e ])31

1(lim [)311(lim )311(lim =+=+=+∞→?∞→∞→x x x x x x x

x x

例3 求极限x

x x 10)21(lim -→

解 22

21

)2(21

1

e ]

))

2(1(lim [))

2(1(lim )21(lim ---

→--

→→=-+=-+=-x x x

x x

x x x x

2.3 函数的连续性

定义 设函数)(x f 在点0x 的邻域内有定义,若满足)()(lim 00

x f x f x x =→,则称函数)(x f 在点0x 处连续.点0x 是)(x f 的连续点. 函数间断、间断点的概念

如果函数f x ()在点x 0处不连续,则称f x ()在点x 0处发生间断.使f x ()发生

间断的点x 0,称为f x ()的间断点

例如 函数32,x y x y ==,x y x y cos ,sin ==,x y x y e ,ln ==

在定义域内都是连续的.

例1 ??

?>-≤+=1

3211)(x x x x x f ,问)(x f 在1=x 处是否连续? 注意:此函数是分段函数,1=x 是函数的分段点.

解: 1)32(lim )(lim 11-=-=++→→x x f x x ,2)1(lim )(lim 11=+=--→→x x f x x )(lim 1

x f x →不存在,)(x f 在1=x 处是间断的. 例2 ?????=≠=0

01sin

x x x

x y ,问)(x f 在0=x 处是否连续?

解: )0(01

sin

lim )(lim 0

f x

x x f x x ===→→ (无穷小量×有界变量=无穷小量)∴)(x f 在0=x 处是连续的. 结论:(1)基本初等函数在其定义域内是连续的;

(2)连续函数的四则运算、复合运算在其有定义处连续; (3)初等函数在其定义区间内是连续的.

例3x

x x x 220cos 1e lim ++→

解: 21110

cos 01e cos 1e lim 22

0220=+=++=++→x x x x 注意: x

x x 22cos 1e ++是初等函数,在0=x 处有定义,利用

结论有极限值等于函数值. 2.4 导数与微分的概念

本节的主要内容是导数与微分的概念. 三个引例

边际成本问题 瞬时速率问题 曲线切线问题

引例1: 边际成本问题 C —总成本,q —总产量

已知 时当q q q q C C ?+→=00),((当自变量产生改变量,相应的函数也产生改变量)

)()(0q q C q C ?+→),

q q C q q C ?-?+)

()(00(成本平均变化率),

q

q C q q C q ?-?+→?)

()(lim 000

(边际成本)

引例2: 瞬时速率问题

路程S 是时间t 的函数)(t S ,当t 从t t t ?+→00时,)(t S 从)()(00t t S t S ?+→

t

t S t t S ?-?+)

()(00 (平均速率)

t t S t t S t ?-?+→?)

()(lim

000 (在0t 时刻的瞬时速率)

引例3:曲线切线问题

考虑曲线)(x f y =在0x x =处的切线斜率.

当x x x ?+→00时,对应的y y y ?+→00,曲线上))(,(00x f x 和))(,(00x x f x x ?+?+两点间割线的斜率为x

x f x x f ?-?+=

)

()(tan 00φ

(当0→?x 时),x

x f x x f x x ?-?+==→?→?)

()(lim

tan lim tan 000

φα 称为切线的斜率.

q

q C q q C q C q ?-?+=→?)

()(lim

)(000

t

t S t t S t S t ?-?+=→?)

()(lim

)(000

x

x f x x f x f x ?-?+=→?)

()(lim

)(000

关于函数)(x f y =

x x x ?+→00,)()(00x x f x f ?+→,考虑极限

x

x f x x f x ?-?+→?)

()(lim

000

定义 设函数)(x f y =在点0x 的邻域内有定义,当自变量x 在点0x 处取得改变量)0(≠?x 时,函数y 取得相应的改变量.)()(00x f x x f y -?+=? 若当0→?x 时,两个改变量之比

x

y

??的极限 x x f x x f x y

x x ?-?+=??→?→?)()(lim

lim

0000存在,则称函数)(x f y =在点0x 处可导,并称此极限

值为 )(x f y =在点0x 处的导数, 记为)(0x f '或0x x y ='或

d d x x x

f =或

d d x x x y =

即 )(0x f '=x

x f x x f x ?-?+→?)

()(lim

000

若极限不存在,则称函数)(x f y =在点0x 处不可导. 在理解导数定义时要注意:导数也是逐点讨论的. 导数定义的意义

· 数量意义 变化率 · 经济意义 边际成本 · 几何意义 切线的斜率

例1 2)(x x f y ==,求.)2(,)3(,)1(-'''f f f 思路:先求)(x f ',再求)(0x f '.

解:因为22)()(,)(x x x x f x x f ?+=?+=

x x x x x x

x x x x

x f x x f x x x 2)(2lim )(lim )()(lim

2

02

200=??+?=?-?+=?-?+→?→?→? 所以x x x f 2)()(2='=',426321-=-'='=')(,)(,)(

f f f 例2 x x

g ln )(=,求).5.0(),10(g g ''

解: 因为)ln()(,ln )(x x x x g x x g ?+=?+=

x

x x x x x

x x x

x x x x

x x x x

x g x x g ?→?→?→?→??+=?+?=?-?+=?-?+1

0000)(ln lim ln 1lim ln )ln(lim )

()(lim

x

x

x

x x

x x

x x 1e ln ]

lim ln[1

110=

=?+=??→?)(

所以2)5.0(,10

1

)10(='=

'g g 导数公式 x

x 1

)(ln ='

求导步骤

1、求)(x f ';

2、求0)(x x x f ='.

注意:)(x f '是)(x f 的导函数,函数在0x 处的导数值0)()(0x x x f x f ='=' 微分的概念 设)(x f y =,导数

)(d )(d d d x f y x

x f x y '='==,两边同乘x d ,得到函数的微分. 微分 x x f x y x f y d )(d )(d d '='== 导数公式

x

x x x c 1

)(ln )(0)(1=

'='='-ααα

x

x x x a a a x x x x e )e (ln )(sin )(cos cos )(sin ='='-='='

微分公式

由导数公式可以得到微分公式

x x x x x d )(d )(11--=='αααααα x x

x x

x d 1)(ln d 1)(ln =

=

' x x x x x d cos )(sin d cos )(sin ==' x x x x x d sin )(cos d sin )(cos -=-='

x a a a a a a x x x x d ln )(d ln )(=='

2.5 导数的计算 导数的加法法则

设)(),(x v x u 在点x 处可导,则)()(x v x u ±在点x 处可导亦可导,且

)()())()((x v x u x v x u '±'='± )())((x v c x cv '='(c 为常数)

加法公式证明

)()())()((x v x u x v x u '+'='+

证:设)()()(x v x u x f +=,则

)()()(x x v x x u x x f ?++?+=?+,)()()(x v x u x f +=

x

x f x x f x v x u x f x ?-?+='±='→?)

()(lim

))()(()(0

x

x v x u x x v x x u x ?+-?++?+=→?))

()(())()((lim

0])()()()([lim 0x

x v x x v x x u x x u x ?-?++?-?+=→?x x v x x v x x u x x u x x ?-?++?-?+=→?→?)

()(lim

)()(lim 00)()(x v x u '+'= 由已知条件,)(),(x v x u 均可导. 导数的乘法法则

设)(),(x v x u 在点x 处可导,则)()(x v x u ?在点x 处可导亦可导,且

)()()()())()((x v x u x v x u x v x u '+'=' )()()())((x v c x v c x v c x cv '='+'='

导数除法法则

设)(),(x v x u 在点x 处可导,则

)

()

(x v x u 在点x 处可导亦可导,且 )

()

()()()())()((

2x v x v x u x v x u x v x u '-'='(0)(≠x v ) 例1 设函数1453+-=x x y ,求?='y

析:现在分别知道幂函数和常数函数的导数公式,利用上述法则可求它们组合后函数的导数. 解: )1()4()5(3'+'-'='x x y (利用加法法则)

1)(4)(53'

+'-'=x x )())((x v c x cv '='

=4152-x (利用导数公式0)(,)(1='='-c x x ααα) 例2 设x x x y ln 243+-

=,求y '.

解:)ln 2()()4(3'+'-'='x x x y

)(ln 2)()(43

'+'-'=x x x (提示 x

x x

x 1

)(ln 21)(=

'=

' )

2

12x =x

x

221+

-

例3 设4cos 3x

y x

+

=,求y '. 解:)4

cos ()3('+'='x y x

(提示x x a a a x x sin )(cos ln )(-='=')

)sin (413ln 3x x -+=4

sin 3ln 3x

x -=

例4 x x y ln 2

1

3+-=,?='y

解:因为x x y ln 212123+-=(由对数的性质:x x x ln 2

1

ln ln 21

==)

所以 x

x y 21232+=

'(其中常数的导数为0) 例5 设x x y e 2=,求y '.

解:利用导数的乘法法则,)(e e )(22'+'='x x x x y (利用导数公式x x e )e (=')

)2(e e e 22x x x x x x x +=+=

例6 4x y =,求y '.

解:<方法1> 由导数基本公式344)(x x =' <方法2> 利用导数的乘法法则

224x x x y ?==3222222224422)()()()(x x x x x x x x x x x x y =?+?='?+?'='?='='

说明无论用哪种方法其结果是唯一的. 例7 x

x

y sin =

,求y '. 解:<方法1> 将函数看成x x

y sin 1

=

,利用乘法法则求导. 2

2cos sin cos 1sin 1)(sin 1sin )1(x x x x x x x x x x x x y +-=+-='+'='

<方法2> 利用导数的除法法则求导2sin cos )sin (x

x

x x x x y -='=' 其中x x v x x u ==)(,sin )(.两个结果是完全一样的. 例8 求)(tan 'x

解:x

x x x x x x x x 22cos 1

cos )sin (sin cos cos )cos sin (

)(tan =--?='=' (利用三角公式1cos sin 22=+x x )同理可求x

x 2

sin 1

)(cot -='. 2.5.2 复合函数求导法则 问题:2)32(+=x y ,求?='y

100)32(+=x y ,则?='y

解:第一个问题2)32(+=x y ,求导数没有直接公式可用. 方法1:将函数展开9124)32(22++=+=x x x y 利用加法法则有128+='x y

方法2:将函数写成两个因式乘积的形式

)32)(32()32(2++=+=x x x y ,利用四则运算法则求导数. )32(4)32(2)32(2+=+++='x x x y

第二个问题100)32(+=x y ,展开?共101项,求导很麻烦. 写成因式乘积的形式,求导也将很麻烦. 在这节课我们将介绍复合函数求导法则. 讨论100)32(+=x y ,引进中间变量32+=x u

9999)32(2002100d d d d d d +=?===

'x u x

u u y x y y 2.5.2 复合函数求导法则

定理 设y=f (u ),u= (x ),且u= (x )在点x 处可导,y=f (u )在点u= x )处可导,则复合

函数y=f ( (x ))在点x 处可导,且

)()(x u f y x φ''='或x u x u y y '?'='

复合函数求导步骤

·分清函数的复合层次,找出所有的中间变量; ·依照法则,由外向内一层层的直至对自变量求导. 多层复合的函数求导数

对于多层复合的函数,即

若)(),(),(x v v u u f y φ?===,则)()()(x v u f y φ?'''=' 或x v u x v u y y '?'?'='

注意:多层复合的函数求导数仍是经过一切中间变量直至对自变量求导. 问题: 求由方程122=+y x 所确定的隐函数)(x y y =的导数y '? 解:先将y 从方程中解出来,得到21x y -=和21x y --=

分别求导2

1x x y --=

'和2

1x x y -=

'

将21x y -=和21x y --=分别代入,得 y

x y -

=' 01232=+--y x x (1)

由(1)解得:)13(2

12

+-=

x x y 0e e =-+x xy y (2)

在(2)中0),(=y x F 隐含)(x y y = 隐函数求导方法步骤

·方程两边求导,)(x y y =; ·整理方程,求出y '. 例1 求下列函数的导数或微分 (1)x y 2e =,求.y '

解:方法一: 由x x x x y e e e e )11(2?===+

x x x y 222e 2e e =+='.这是用导数的乘法法则.

方法二: 利用复合函数求导法则,设x u y u 2,e ==

x

x

u u u y 2e 2)e (='?'='(其结果是完全一样的) (2)x

y e

=,求.y '

解:利用复合函数求导法则,设x u y u =

=,e

x

u x u u x

x

u y e

2121e )e (?=

?

='?'='.

(3)x y cos ln =,求y d .

解:利用复合函数求导法则,设x u u y cos ,ln ==

x x x

x u u u y x u tan )sin (cos 1

)(cos 1)(ln -=-='=

'?'=',x x y d tan d -= 例2 设21x y -= ,求).0(y '

解:先求一般点上函数的导数,再将0=x 代入求得结果. 设21,x u u y -==,利用复合函数求导法则,

2

2

1)2(21)1()(x

x x u

x u y x u

--=

-='-?'=',.0)0(='y

例3 设函数)2(sin 32x y +=,求y '.

解:(首先对函数进行分解,找出所有中间变量)

322,sin ,x v v u u y +===,

23cos 2x v u y ??='2333)2cos()2sin(2x x x ?+?+=)2cos()2sin(6332x x x +?+=

例4 求函数321x y -=,求y '. 解:23

1

1,x u u y -==

)1()1(3

12131

2'-?-='-x x y 32

2)1(32---=x x

例5 设函数x

y 1cos

3

=,求y '.

解: x

v v u y u

1,cos ,3=

== x

v u u x v y )1()(cos )3(''?'=' [21)()1(---='='x x x ] )1

)(sin )(3ln 3(2x

v u --=

)1)(1sin )(3ln 3

(21cos

x x x

--=x

x x

1

cos 231sin 3ln ??=

例6 求由方程122=+y x 所确定的隐函数)(x y y =的导数y '. 解:方程两边对自变量x 求导数,此时y 是中间变量.

022='+y y x ,解出y

x

y -

='(与前面的结果相同). 例7 求由方程0e e =++x y xy 所确定的隐函数)(x y y =的导数y '? 解:方程两边对自变量x 求导数,此时y 是中间变量.

0e e =+'++'x y y x y y ,解得

注意:在隐函数的导数结果中常常含有y .

例8 求双曲线1=xy 在点(1,1)处的切线斜率. 分析:此题是求隐函数在某点处的导数. 解:因为0='+y x y ,所以x

y

y -=',且在点(1,1)处的切线斜率1)1,1(-='y 2.6 高阶导数

)(x f 的高阶导数

例1:4)(x x f =

34)(d )

(d x x f x x f ='= 22

2

12)(d )(d d )d )(d d(x x f x x f x x x f =''== x x f x

x f 24)(d )

(d 3

3='''= 一般地,)(x f y =,函数的n 阶导数记为

)(d d )()(x f y x

y

n n n

n == 例1 求函数522-+=x x y 的二、三阶导数. 解: 14+='x y ,4=''y ,0='''y 例2 求)1ln(x y +=的二阶导数 至n 导数. 解: x

y +=

'11

,2)1(1)11()(x x y y +-='+=''='', 32)1(1)

!2()1(x y +-=''' … n

n n x n y )1(1)!1()1(1

)(+--=-

第二章 导数与微分习题汇总

第二章 导数与微分 【内容提要】 1.导数的概念 设函数y =f (x )在x 0的某邻域(x 0-δ,x 0 + δ)(δ>0)内有定义,当自变量x 在点x 0处有改变量Δx 时,相应地,函数有改变量00()()y f x x f x ?=+?-.若0→?x 时,极限x y x ??→?0lim 存在,则称函数y =f (x )在x =x 0处可导,称此极限值为f(x)在点x 0 处的导数, 记为 )(0x f '或)(0x y '或0|x x y ='或 0|d d x x x y =或0|d d x x x f = +→?0x 时,改变量比值的极限x y x ??+ →?0 lim 称f(x)在x 0处的右导数,记为)(0x f +'。 -→?0x 时,改变量比值的极限x y x ??- →?0 lim 称f(x)在x 0处的左导数,记为)(0x f -'。 2.导数的意义 导数的几何意义:)(0x f '是曲线y =f (x )在点(x 0,y 0)处切线的斜率,导数的几何意义给我们提供了直观的几何背景,是微分学的几何应用的基础。 导数的物理意义:路程对时间的导数)(0t s '是瞬时速度v (t 0) 。以此类推,速度对时间的导数)(0t v '是瞬时加速度a (t 0)。 3.可导与连续的关系 定理 若函数)(x f y =在点x 0处可导,则函数在点x 0处一定连续。 此定理的逆命题不成立,即连续未必可导。 4.导数的运算 定理1(代数和求导法则)若u (x )和v (x )都在点x 处可导,则 v u v u '±'='±)( 定理2(积的求导法则)若u (x )和v (x )都在点x 处可导,则 v u v u uv '+'=')( 定理3(商的求导法则)若u (x )和v (x )都在点x 处可导,且v (x )≠0,则 2v v u v u v u ' -'= ' ?? ? ??

(完整版)第二章.导数和微分答案解析

第二章 导数与微分 一 导数 (一) 导数的概念(见§2.1) Ⅰ 内容要求 (ⅰ)理解导数的概念及其几何意义,了解函数的可导性与连续性之间的关系。 (ⅱ)了解导数作为函数变化率的实际意义,会用导数表达科学技术中一些量的变化率。 Ⅱ 基本题型 (ⅰ)用导数定义推证简单初等函数的导数公式 1. 用导数定义求证下列导数公式,并记忆下列公式(每题4分) (1)0)(='C (2)21 )1(x x - =' (3)x x 21)(=' (4)x x sin )(cos -=' (5)a a a x x ln )(=' (6)1 )(-='μμμx x (ⅱ)确定简单基本初等函数在某点处的切线方程和法线方程 2.(6分)求x y ln =在)0,1(点处的切线方程及法线方程。 解:x y 1' = ,1)1(' ==k y ,所以 切线方程为1-=x y 法线方程为1+-=x y 3.(6分)求x x y = 在)1,1(点处的切线方程。 解:4 3 x y =,41 ' 43-=x y ,4 3)1(' ==k y 切线方程为1)1(43+-= x y ,即4 143+=x y (ⅲ)科技中一些量变化率的导数表示 4.填空题(每题4分) (1)若物体的温度T 与时间t 的函数关系为)(t T T =,则该物体的温度随时间的变化 速度为 )(' t T (2)若某地区t 时刻的人口数为)(t N ,则该地区人口变化速度为 )(' t N Ⅲ 疑难题型 (ⅰ)分段函数在分段点处的导数计算 5. 讨论下列函数在0=x 处的连续性与可导性 (1)(7分)|sin |x y =

高等数学第2章 导数与微分

第二章 导数与微分 教学目的: 1、理解导数和微分的概念与微分的关系和导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的的关系。 2、熟练掌握导数的四则运算法则和复合函数的求导法则,熟练掌握基本初等函数的导数公式,了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。 3、 了解高阶导数的概念,会求某些简单函数的n 阶导数。 4、 会求分段函数的导数。 5、 会求隐函数和由参数方程确定的函数的一阶、二阶导数,会求反函数的导数。 教学重点: 1、导数和微分的概念与微分的关系; 2、导数的四则运算法则和复合函数的求导法则; 3、基本初等函数的导数公式; 4、高阶导数; 6、 隐函数和由参数方程确定的函数的导数。 教学难点: 1、复合函数的求导法则; 2、分段函数的导数; 3、反函数的导数 4、隐函数和由参数方程确定的导数。 §2. 1 导数概念 一、引例 1.直线运动的速度 设一质点在坐标轴上作非匀速运动, 时刻t 质点的坐标为s , s 是t 的函数: s =f (t ), 求动点在时刻t 0的速度. 考虑比值 000) ()(t t t f t f t t s s --=--, 这个比值可认为是动点在时间间隔t -t 0内的平均速度. 如果时间间隔选较短, 这个比值在实践 中也可用来说明动点在时刻t 0的速度. 但这样做是不精确的, 更确地应当这样: 令t -t 0→0, 取

比值 0) ()(t t t f t f --的极限, 如果这个极限存在, 设为v , 即 0) ()(lim t t t f t f v t t --=→, 这时就把这个极限值v 称为动点在时刻t 0的速度. 2.切线问题 设有曲线C 及C 上的一点M , 在点M 外另取C 上一点N , 作割线MN . 当点N 沿曲线C 趋于点M 时, 如果割线MN绕点M旋转而趋于极限位置MT , 直线MT就称为曲线C有点M处的切线. 设曲线C 就是函数y =f (x )的图形. 现在要确定曲线在点M (x 0, y 0)(y 0=f (x 0))处的切线, 只要定出切线的斜率就行了. 为此, 在点M 外另取C 上一点N (x , y ), 于是割线MN 的斜率为 0 000) ()(tan x x x f x f x x y y --= --= ?, 其中?为割线MN 的倾角. 当点N 沿曲线C 趋于点M 时, x →x 0. 如果当x → 0时, 上式的极限存 在, 设为k , 即 00) ()(lim 0x x x f x f k x x --=→ 存在, 则此极限k 是割线斜率的极限, 也就是切线的斜率. 这里k =tan α, 其中α是切线MT 的 倾角. 于是, 通过点M (x 0, f (x 0))且以k 为斜率的直线MT 便是曲线C 在点M 处的切线. 二、导数的定义 1. 函数在一点处的导数与导函数 从上面所讨论的两个问题看出, 非匀速直线运动的速度和切线的斜率都归结为如下的极限: 00) ()(lim 0x x x f x f x x --→. 令?x =x -x 0, 则?y =f (x 0+?x )-f (x 0)= f (x )-f (x 0), x →x 0相当于?x →0, 于是0 0) ()(lim 0 x x x f x f x x --→ 成为 x y x ??→?0lim 或x x f x x f x ?-?+→?)()(lim 000. 定义 设函数y =f (x )在点x 0的某个邻域内有定义, 当自变量x 在x 0处取得增量?x (点x 0+?x 仍在该邻域内)时, 相应地函数y 取得增量?y =f (x 0+?x )-f (x 0); 如果?y 与?x 之比当?x →0时的极限存在, 则称函数y =f (x )在点x 0处可导, 并称这个极限为函数y =f (x )在点x 0处的导数, 记为0|x x y =', 即 x x f x x f x y x f x x ?-?+=??='→?→?)()(lim lim )(00000,

高数第二章导数与微分知识点与习题

高数第二章导数与微分知识点总结 第一节 导数 1.基本概念 (1)定义 0000000000 ()()()()()|(|)'()lim lim lim x x x x x x x f x x f x f x f x dy df x y f x dx dx x x x x ==?→?→→+?--?====??-或 注:可导必连续,连续不一定可导. 注:分段函数分界点处的导数一定要用导数的定义求. (2)左、右导数 0'00000 0()()()()()lim lim x x x f x x f x f x f x f x x x x - --?→→+?--==?-. 0 '00000 0()()()()()lim lim x x x f x x f x f x f x f x x x x + ++?→→+?--==?-. 0'()f x 存在''00()()f x f x -+?=. (3)导数的几何应用 曲线()y f x =在点00(,())x f x 处的切线方程:000()'()()y f x f x x x -=-. 法线方程:0001 ()()'() y f x x x f x -=- -. 2.基本公式 (1)'0C = (2)' 1 ()a a x ax -= (3)()'ln x x a a a =(特例()'x x e e =)(4)1 (log )'(0,1)ln a x a a x a = >≠

(5)(sin )'cos x x = (6)(cos )'sin x x =- (7)2(tan )'sec x x = (8)2 (cot )'csc x x =- (9)(sec )'sec tan x x x = (10)(csc )'csc cot x x x =- (11)2 1(arcsin )'1x x = - (12)2 1(arccos )'1x x =- - (13)21(arctan )'1x x = + (14)2 1 (arccot )'1x x =-+ (15222 2 1[ln()]'x x a x a + += + 3.函数的求导法则 (1)四则运算的求导法则 ()'''u v u v ±=± ()'''uv u v uv =+ 2 '' ()'u u v uv v v -= (2)复合函数求导法则--链式法则 设(),()y f u u x ?==,则(())y f x ?=的导数为:[(())]''(())'()f x f x x ???=. 例5 求函数2 1 sin x y e =的导数. (3)反函数的求导法则 设()y f x =的反函数为()x g y =,两者均可导,且'()0f x ≠,则 11 '()'()'(()) g y f x f g y = =. (4)隐函数求导 设函数()y f x =由方程(,)0F x y =所确定,求'y 的方法有两种:直接求导法和公式法' ''x y F y F =-. (5)对数求导法:适用于若干因子连乘及幂指函数 4.高阶导数

2第二章 导数与微分答案

第二章 导数与微分答案 第一节 导数概念 1.填空题. (1) ()'f 0= 0; (2) (2, 4) (3) 1 . (4) =a 2 ,=b -1 . 2.选择题. (1)B ; (2)B ; (3) C ; (4)D ; (5) B ; (6)B 3.解 令)(t v 表示在t 时刻的瞬时速度,由速度与位移的关系知 ()().5)21(lim 2 ) 22(lim 22lim )2()2(22222' =++=-+-+=--==→→→t t t t t s t s s v t t t 4.设()? x 在x a =处连续,()()()f x x a x =-?, 求()'f a ;若)(||)(x a x x g ?-=,()x g 在x a =处可导吗? 解(1)因为()? x 在x a =处连续, 故)()(lim a x a x ??=→,所以 ()()()).()(lim 0 )(lim lim )('a x a x x a x a x a f x f a f a x a x a x ???==---=--=→→→ (2)类似于上面推导知 ()()()),(0 )(lim lim )(' a a x x a x a x a g x g a g a x a x ??=---=--=++ →→+ ()()()).(0)(lim lim )(' a a x x a x a x a g x g a g a x a x ??-=----=--=--→→- 可见当()0=a ?时,()0)(' ==a a g ?;当()0≠a ?时,())(' ' a g a g -+≠, 故这时()x g 在x a =处不可导。 5.求曲线y x =-43在点()12,-处的切线方程和法线方程. 解 根据导数的几何意义知道,所求切线的斜率为 ,4|4|131'1=====x x x y k 从而所求切线方程为 ),1(4)2(-=--x y 即 64-=x y .

导数与微分练习题答案

高等数学练习题 第二章 导数与微分 第一节 导数概念 一.填空题 1.若)(0x f '存在,则x x f x x f x ?-?-→?) ()(lim 000 = )(0x f '- 2. 若)(0x f '存在,h h x f h x f h ) ()(lim 000 --+→= )(20x f ' . 000 (3)() lim x f x x f x x ?→+?-?=03()f x '. 3.设20-=')(x f , 则=--→)()2(lim )000 x f x x f x x 4 1 4.已知物体的运动规律为2 t t s +=(米),则物体在2=t 秒时的瞬时速度为5(米/秒) 5.曲线x y cos =上点( 3π,2 1 )处的切线方程为03 123=- -+π y x ,法线方程为 03 22332=-+ -π y x 6.用箭头?或?表示在一点处函数极限存在、连续、可导、可微之间的关系, 可微 ? 可导 <≠ ? | 连续 <≠ ? 极限存在。 二、选择题 1.设0)0(=f ,且)0(f '存在,则x x f x ) (lim 0→= [ B ] (A ))(x f ' ( B) )0(f ' (C) )0(f (D) 2 1 )0(f 2. 设)(x f 在x 处可导,a ,b 为常数,则x x b x f x a x f x ??--?+→?) ()(lim 0 = [ B ] (A ))(x f ' ( B) )()(x f b a '+ (C) )()(x f b a '- (D) 2 b a +)(x f ' 3. 函数在点0x 处连续是在该点0x 处可导的条件 [ B ] (A )充分但不是必要 (B )必要但不是充分 (C )充分必要 (D )即非充分也非必要 4.设曲线22 -+=x x y 在点M 处的切线斜率为3,则点M 的坐标为 [ B ] (A )(0,1) ( B) (1, 0) (C) ( 0,0) (D) (1,1)

(完整版)第二章导数与微分(答案)

x 第二章导数与微分 (一) f X 0 X f X 0 I x 0 X 3 .函数f x 在点x 0连续,是f x 在点x 0可导的(A ) 5. 若函数f x 在点a 连续,则f x 在点a ( D ) C . a 6. f x x 2 在点X 2处的导数是(D ) A . 1 B . 0 C . -1 D .不存在 7.曲线y 2x 3 5x 2 4x 5在点2, 1处切线斜率等于(A ) A . 8 B . 12 C . -6 D . 6 8.设y e f x 且fx 二阶可导,则y ( D ) A . e f x B f X r e f f X £ £ f X 丄 2 x C . e f x f x D . e f x 9.若 f x ax e , x 0 在x 0处可导,则a , b 的值应为 b sin2x, (A ) A .左导数存在; B .右导数存在; C .左右导数都存在 1 .设函数y f x ,当自变量x 由x 0改变到 X o x 时,相应函数的改变量 f x 0 x B . f x 0 x C . f x 0 X f X 0 f X 。 x 2 .设f x 在x o 处可,则lim f X 0 B . X o C . f X 0 D . 2 f X 0 A .必要不充分条件 B . 充分不必要条件 C .充分必要条件 既不充分也不必要条件 4.设函数y f u 是可导的,且u x 2 ,则 d y ( C ) x 2 B . xf x 2 C . 2 2 2xf x D . x f x D .有定义

10?若函数f x 在点X o 处有导数,而函数 g x 在点X o 处没有导数,则 F x f x g x , G x f x g x 在 x 0 处(A ) A ?一定都没有导数 B ?—定都有导数 C .恰有一个有导数 D ?至少一个有导数 11.函数fx 与g x 在x 0处都没有导数,则Fx g x 在 x o 处(D ) 13 . y arctg 1 ,贝U y x A .一定都没有导数 B . 一定都有导数 C .至少一个有导数 D .至多一个有导数 12.已知F x f g x ,在 X X 。处可导,则(A ) g x 都必须可导 B . f x 必须可导 C . g x 必须可导 D . x 都不一定可导

第二章导数与微分 高等数学同济大学第六版

第二章 导数与微分 数学中研究导数、微分及其应用的部分称为微分学,研究不定积分、定积分及其应用的部分称为积分学. 微分学与积分学统称为微积分学. 微积分学是高等数学最基本、最重要的组成部分,是现代数学许多分支的基础,是人类认识客观世界、探索宇宙奥秘乃至人类自身的典型数学模型之一. 恩格斯(1820-1895)曾指出:“在一切理论成就中,未必再有什么像17世纪下半叶微积分的发明那样被看作人类精神的最高胜利了”. 微积分的发展历史曲折跌宕,撼人心灵,是培养人们正确世界观、科学方法论和对人们进行文化熏陶的极好素材(本部分内容详见光盘). 积分的雏形可追溯到古希腊和我国魏晋时期,但微分概念直至16世纪才应运萌生. 本章及下一章将介绍一元函数微分学及其应用的内容. 第一节 导数概念 从15世纪初文艺复兴时期起,欧洲的工业、农业、航海事业与商贾贸易得到大规模的发展,形成了一个新的经济时代. 而十六世纪的欧洲,正处在资本主义萌芽时期,生产力得到了很大的发展. 生产实践的发展对自然科学提出了新的课题,迫切要求力学、天文学等基础科学的发展,而这些学科都是深刻依赖于数学的,因而也推动了数学的发展. 在各类学科对数学提出的种种要求中,下列三类问题导致了微分学的产生: (1) 求变速运动的瞬时速度; (2) 求曲线上一点处的切线; (3) 求最大值和最小值. 这三类实际问题的现实原型在数学上都可归结为函数相对于自变量变化而变化的快慢程度,即所谓函数的变化率问题. 牛顿从第一个问题出发,莱布尼茨从第二个问题出发,分别给出了导数的概念. 本节主要内容 1 引例变速直线运动的瞬时速度和平面曲线的切线 2 导数的定义 3 左右导数 4 用导数计算导数 5 导数的几何意义 6 函数的可导与连续的关系 讲解提纲: 一、 引例: 引例1:变速直线运动的瞬时速度0 00 ()()lim t t f t f t v t t →-=-;

导数与微分总结

arccos求导 1基础总结 1、极限的实质是:动而不达 导数的实质是:一个有规律商的极限。规律就是: 2、导数的多种变式定义: 要注意细心观察发现,是描述趋近任意x时的斜率。而可以刻画趋近具体x0时的斜率。 3、 若x没趋近到x0,那么除法得到的值是这段的平均斜率,如果趋近到了x0,得到的就是这点的斜率----导数。 4、可导与连续的关系: 导数的实质是定义在某点的左右极限。既然定义在了某点上,该点自然存在,而且还得等于左右极限。因此,可导一定是连续的。反之,如果连续,不一定可导。不多说。同理,如果不连续,肯定某点要么无定义,要么定义点跳跃跑了,肯定极限有可能存在,但是导数绝不会存在。 同理要注意左右导数的问题。如果存在左或者右导数,那么在左侧该点一定是存在的。如: 这个函数,在0点就不存在左导数,只存在右导数。为什么嫩?看定义: 。定义里面需要用到f(0)啊!因此,千万不要以为导数是一种简单的极限,极限是可以在某点无定义的,而导数却是该点必须存在! 由此引发了一些容易误判的血案: 例如: 定义解决时候一定要注意中的到底是神马。比如求上图中,这个f(x0)千万要等于2/3,而不是1! 由此也可以知道,这个函数是不存在导数的,也不存在左导数,只存在右导数。

5、反函数的导数与原函数的关系: 有这样一条有趣的关系:函数的导数=对应的反函数的导数的倒数。 注意,求反函数时候不要换元。因为换了元虽然对自身来讲函数形式不变,但是与原函数融合运算时候就算是换了一个不是自己反函数的一个函数进行运算。结果显然是错误的。举例子: 求的导数。显然反函数(不要换元)是。反函数的导数是。反函数导数的倒数是,因此, 再如,求的导数。 解:令函数为,则其反函数为,导数的倒数为。但是必须消去。因此变形得 (注意到在定义域内cosy恒为正,因此舍掉负解) 6、复合函数求导法则: 只要父函数和子函数随时能有定义,就拆着求就可以了。 7、高阶导数: 如果f(x)在点x处具有n阶导数,那么f(x)在点x的某一邻域内必定具有一切低于n阶的导数。 ; ;其余的也记不住,自己慢慢推导。 ; 二项式定理中有:;类似的,乘法的n阶导数也有: 。这个是要熟练记忆的。 8、隐函数,参数方程的导数,相关变化率 建议隐函数,参数方程的导数,以及求导数的相关变化率时使用形式求解。只有这样才能准确,安全,方便。 举例:求(隐函数f(x,y)=0)中y对x的导数 解:两边求导,,解完以后发现效果还不错。如果直接用什么y’神马的净是错误,所以不要直接用口算,用dy/dx方法求解。

第2章 导数与微分总结

1基础总结 1、极限的实质是:动而不达 导数的实质是:一个有规律商的极限。规律就是:0lim x y x ?→?? 2、导数的多种变式定义: 00000()()()() lim =lim lim x x x x f x f x y f x x f x x x x x ?→?→→-?+?-=??- 要注意细心观察发现,0 ()() lim x f x x f x x ?→+?-?是描述趋近任意x 时的斜率。而 00 ()() lim x x f x f x x x →--可以刻画趋近具体x0时的斜率。 3、 若x 没趋近到x0,那么除法得到的值是这段的平均斜率,如果趋近到了x0,得到的就是这点的斜率——导数。 4、可导与连续的关系:

导数的实质是定义在某点的左右极限。既然定义在了某点上,该点自然存在,而且还得等于左右极限。因此,可导一定是连续的。反之,如果连续,不一定可导。不多说。同理,如果不连续,肯定某点要么无定义,要么定义点跳跃跑了,肯定极限有可能存在,但是导数绝不会存在。 同理要注意左右导数的问题。如果存在左或者右导数,那么在左侧该点一定是存在的。如: (),0f x x x =< 这个函数,在0点就不存在左导数,只存在右导数。为什么嫩?看定义: 0()()()(0) lim lim x x f x x f x f x x f x x ?→?→+?-+?-=??。定义里面需要用到f(0)啊!因此,千万不要以为导数是一种简单的极限,极限是可以在某点无定义的,而导数却是该点必须存在! 由此引发了一些容易误判的血案: 例如: 定义解决时候一定要注意0 00 ()() lim x x f x f x x x →--中的0()f x 到底是神马。比如求上图 中01 ()() lim x f x f x x x + →-- ,这个f(x0)千万要等于2/3,而不是1!

导数与微分单元归纳

学科:数学 教学内容:导数与微分单元达纲检测 【知识结构】 【内容提要】 1.本章主要内容是导数与微分的概念,求导数与求微分的方法,以及导数的应用. 2.导数的概念. 函数y=f(x)的导数f ′(x),就是当△x →0时,函数的增量△y 与自变量△x 的比x y ??的极限,即 x x f x x f x y x f x x ?-?+=??=→?→?) ()(lim lim )('00 函数y=f(x)在点0x 处的导数的几何意义,就是曲线y=f(x)在点))(,(00x f x P 处的切线的斜率. 3.函数的微分

函数y=f(x)的微分,即dy=f ′(x)dx . 微分和导数的关系:微分是由导数来定义的,导数也可用函数的微分与自变量的微分的商来表示,即dx dy x f = )('. 函数值的增量△y 也可以用y 的微分近似表示,即△y ≈dy 或△y ≈f ′(x)dx 。 4.求导数的方法 (1)常用的导数公式 c ′=0(c 为常数); )()'(1 Q m mx x m m ∈=-; (sinx)′=cosx ; (cosx)′=-sinx ; x x e e =)'(, a a a x x ln )'(=; x x 1)'(ln = , e x a x a log 1)'(log =。 (2)两个函数四则运算的导数: (u ±v)′=u ′±v ′; (uv)′=u ′v+uv ′ )0(' ''2 ≠-= ?? ? ??v v uv v u v u 。 (3)复合函数的导数 设y=f(u),)(x u ?=, 则)(')(''''x u f u y y x u x ??=?=. 5.导数的应用

导数与微分导数概念

第二章 导数与微分 第一节 导数概念 1.x x x y = ,求y ' 2.求函数y =2tan x +sec x -1的导数y ' 3. x x y 1010 +=,求y ' 4. 求曲线y =cos x 上点)2 1 ,3(π处的切线方程和法线方程式. 5.3ln ln +=x e y ,求y ' 6.已知? ??<-≥=0 0 )(2x x x x x f 求f +'(0)及f -'(0), 又f '(0)是否存在? 7.设????? =≠=0 ,00 ,1sin )(x x x x x f ,用定义证明)(x f 在点0=x 处连续,但不可导。

8. 证明: 双曲线xy =a 2上任一点处的切线与两坐标轴构成的三角形的面积都等于2a 2 . 9.讨论函数y =|sin x |在x =0处的连续性与可导性: 10.设函数? ??>+≤=1 1 )(2x b ax x x x f ,为了使函数f (x )在x =1处连续且可导, a , b 应取什么值? 第二节 函数的求导法则 1.设()22arcsin x y =,求y ' 2.求函数y =sin x ?cos x 的导数y ' 3.求函数y =x 2ln x 的导数y '

4.求函数x x y ln =的导数y ' 5.求函数3ln 2+=x e y x 的导数y ' 6. )(cos )(sin 2 2x f x f y +=,求y ' 7. n b ax f y )]([+=,求y ' 8. ) ()(x f x e e f y =,求y ' 9. x x x y arcsin 12 +-=,求y ' 10.求函数y =x 2ln x cos x 的导数y ' 第三节 高阶导数 1. x x x y ln 1 arctan +=,求y ''

第二章导数与微分试题及答案

第二章 导数与微分 1. ()().1,102-'=f x x f 试按定义求设 2002 00(1)(1)10(1)10 '(1)lim lim 1020lim lim(1020)20x x x x f x f x f x x x x x x ?→?→?→?→-+?--?---==???-?==?-=-? 2. 下列各题中均假定()0x f '存在,按导数定义观察下列极限,指出此极限表示什么, 并将答案填在括号内。 ⑴ ()()=?-?-→?x x f x x f x 000lim (0'()f x -); ⑵ ()=→?x x f x 0lim ('(0)f ), 其中()()存在;且0,00f f '= ⑶ ()() =--+→h h x f h x f h 000lim (02'()f x ). 3. 求下列函数的导数: ⑴ ='=y x y ,4则3 4x ⑵ ='=y x y ,32则132 3 x - ⑶ ='=y x y ,1 则32 12x -- ⑷ = '=y x x y ,53则115165x 4. 求曲线. 21,3 cos 程处的切线方程和法线方 上点?? ? ??=πx y 'sin ,'()3y x y π=-= 所以切线方程为1)223y x π- =-- 2(1)03 y +-+=

法线方程为1)23y x π- =- 化简得3)0x π+-= 5. 讨论函数?????=≠=0 00 1sin 2 x x x x y 在0=x 处的连续性和可导性. 20(0)0 1 lim sin 0(0)()x f x f x →===因为有界量乘以无穷小 所以函数在0x =处连续 因为 20001 sin (0)(0) 1lim lim lim sin 0x x x x f x f x x x x x ?→?→?→?+?-==?=??? 所以函数在0x =处可导. 6. 已知()()()()是否存在? 又及求 0 ,0 0 , 0 2f f f x x x x x f '''???<-≥=-+ 2 ' 00(0)(0)(0)lim lim 0h h f h f h f h h + →+→++-=== '0 0(0)(0)(0)lim lim 1h h f h f h f h h -→-→++--===- ''(0)(0)f f +-≠ '(0)f ∴不存在 7. ()(). , 0 sin x f x x x x x f '?? ?≥<=求已知 当0x <时, '()(sin )'cos f x x x ==; 当0x >时, '()()'1f x x ==;

第二章导数与微分总结

第二章 导数与微分总结 一、导数与微分概念 1.导数的定义 设函数()x f y =在点0x 的某领域内有定义,自变量x 在0x 处有增量x ?,相应地函数增量()()00x f x x f y -?+=?。如果极限 ()()x x f x x f x y x x ?-?+=??→?→?0000lim lim 存在,则称此极限值为函数()x f 在0x 处的导数(也称微商),记作()0x f ',或0 x x y =' , 0x x dx dy =,()0 x x dx x df =等,并称函数()x f y =在点0x 处可导。如果上面的极限不存在, 则称函数()x f y =在点0x 处不可导。 导数定义的另一等价形式,令x x x ?+=0,0x x x -=?,则 ()()() 000 lim x x x f x f x f x x --='→ 我们也引进单侧导数概念。 右导数:()()()()() x x f x x f x x x f x f x f x x x ?-?+=--='++ →?→+000000lim lim 0 左导数:()()()()()x x f x x f x x x f x f x f x x x ?-?+=--='-- →?→-000000lim lim 0 则有 ()x f 在点0x 处可导()x f ?在点0x 处左、右导数皆存在且相等。 2.导数的几何意义与物理意义 如果函数()x f y =在点0x 处导数()0x f '存在,则在几何上()0x f '表示曲线 ()x f y =在点()()00,x f x 处的切线的斜率。 切线方程:()()()000x x x f x f y -'=- 法线方程:()() ()()()01 0000≠'-'- =-x f x x x f x f y

第二章导数与微分教学文案

第二章导数与微分 数学中研究导数、微分及其应用的部分称为微分学,研究不定积分、定积分及其应用的部分称为积分学. 微分学与积分学统称为微积分学. 微积分学是高等数学最基本、最重要的组成部分,是现代数学许多分支的基础,是人类认识客观世界、探索宇宙奥秘乃至人类自身的典型数学模型之一. 恩格斯(1820-1895)曾指出:“在一切理论成就中,未必再有什么像17世纪下半叶微积分的发明那样被看作人类精神的最高胜利了”. 微积分的发展历史曲折跌宕,撼人心灵,是培养人们正确世界观、科学方法论和对人们进行文化熏陶的极好素材(本部分内容详见光盘). 积分的雏形可追溯到古希腊和我国魏晋时期,但微分概念直至16世纪才应运萌生. 本章及下一章将介绍一元函数微分学及其应用的内容. 第一节导数概念 从15世纪初文艺复兴时期起,欧洲的工业、农业、航海事业与商贾贸易得到大规模的发展,形成了一个新的经济时代. 而十六世纪的欧洲,正处在资本主义萌芽时期,生产力得到了很大的发展. 生产实践的发展对自然科学提出了新的课题,迫切要求力学、天文学等基础科学的发展,而这些学科都是深刻依赖于数学的,因而也推动了数学的发展. 在各类学科对数学提出的种种要求中,下列三类问题导致了微分学的产生: (1) 求变速运动的瞬时速度; (2) 求曲线上一点处的切线; (3) 求最大值和最小值. 这三类实际问题的现实原型在数学上都可归结为函数相对于自变量变化而变化的快慢程度,即所谓函数的变化率问题. 牛顿从第一个问题出发,莱布尼茨从第二个问题出发,分别给出了导数的概念. 内容分布图示 ★引言★变速直线运动的瞬时速度

★平面曲线的切线★导数的定义★几点说明 ★利用定义求导数与求极限(例1、例2)★例3 ★例4 ★例5 ★例6 ★例7 ★左右导数★例8 ★例9 ★导数的几何意义★例10 ★例11 ★导数的物理意义★可导与连续的关系 ★例12 ★例13 ★例14 ★例15 ★内容小结★课堂练习 ★习题 2 - 1 ★返回 内容要点: 一、引例:引例1: 变速直线运动的瞬时速度;引例2: 平面曲线的切线 二、导数的定义: 注:导数概念是函数变化率这一概念的精确描述,它撇开了自变量和因变量所代表的几何或物理等方面的特殊意义,纯粹从数量方面来刻画函数变化率的本质: 函数增量与自变量增量的比值是函数在以和为端点的区间上的平均变化率,而导数则是函数在点处的变化率,它反映了函数随自变量变化而变化的快慢程度. 根据导数的定义求导,一般包含以下三个步骤: 1.求函数的增量: 2.求两增量的比值: ; 3.求极限 三、左右导数 定理1函数在点处可导的充要条件是:函数在点处的左、右导数均存在且相等. 四、用定义计算导数 五、导数的几何意义 六、函数的可导性与连续性的关系 定理2如果函数在点处可导,则它在处连续. 注:上述两个例子说明,函数在某点处连续是函数在该点处可导的必要条件,但不是充分条件. 由定理2还知道,若函数在某点处不连续,则它在该点处一定不可导. 在微积分理论尚不完善的时候,人们普遍认为连续函数除个别点外都是可导的. 1872年得多数学家魏尔斯特拉构造出一个处处连续但处处不

(新)高数第二章导数与微分知识点与习题

高数第二章导数与微分知识点总结 第一节 导数 1.基本概念 (1)定义 0000000000 ()()()()()|(|)'()lim lim lim x x x x x x x f x x f x f x f x dy df x y f x dx dx x x x x ==?→?→→+?--?====??-或 注:可导必连续,连续不一定可导. 注:分段函数分界点处的导数一定要用导数的定义求. (2)左、右导数 0'00000 0()()()()()lim lim x x x f x x f x f x f x f x x x x - --?→→+?--==?-. 0'00000 ()()()()()lim lim x x x f x x f x f x f x f x x x x + ++?→→+?--==?-. 0'()f x 存在''00()()f x f x -+?=. (3)导数的几何应用 曲线()y f x =在点00(,())x f x 处的切线方程:000()'()()y f x f x x x -=-. 法线方程:0001 ()()'() y f x x x f x -=- -. 2.基本公式 (1)'0C = (2)' 1 ()a a x ax -= (3)()'ln x x a a a =(特例()'x x e e =)(4)1 (log )'(0,1)ln a x a a x a = >≠ (5)(sin )'cos x x = (6)(cos )'sin x x =- (7)2(tan )'sec x x = (8)2 (cot )'csc x x =-

考研数学高数第二章导数与微分的知识点总结

考研数学高数第二章导数与微分的知识点总结 导数与微分是考研数学的基础,占据至关重要的地位。基本概念、基本公式一定要掌握牢固,常规方法和做题思路要非常熟练。下面文都考研数学老师给出该章的知识点总结,供广大考生参考。 第一节 导数 1.基本概念 (1)定义 0000000000 ()()()()()|(|)'()lim lim lim x x x x x x x f x x f x f x f x dy df x y f x dx dx x x x x ==?→?→→+?--?====??-或 注:可导必连续,连续不一定可导. 注:分段函数分界点处的导数一定要用导数的定义求. (2)左、右导数 0'000000 ()()()()()lim lim x x x f x x f x f x f x f x x x x ---?→→+?--==?-. 0'00000 0()()()()()lim lim x x x f x x f x f x f x f x x x x +++?→→+?--==?-. 0'()f x 存在''00()()f x f x -+?=. (3)导数的几何应用 曲线()y f x =在点00(,())x f x 处的切线方程:000()'()()y f x f x x x -=-. 法线方程:0001()()'() y f x x x f x -=--. 2.基本公式 (1)'0C = (2)'1()a a x ax -=

(3)()'ln x x a a a =(特例()'x x e e =)(4)1(log )'(0,1)ln a x a a x a =>≠ (5)(sin )'cos x x = (6)(cos )'sin x x =- (7)2(tan )'sec x x = (8)2 (cot )'csc x x =- (9)(sec )'sec tan x x x = (10)(csc )'csc cot x x x =- (11 )(arcsin )'x =(12 )(arccos )'x = (13)21(arctan )'1x x =+ (14)21(arccot )'1x x =-+ ( 15[ln(x += 3.函数的求导法则 (1)四则运算的求导法则 ()'''u v u v ±=± ()'''uv u v uv =+ 2 ''()'u u v uv v v -= (2)复合函数求导法则--链式法则 设(),()y f u u x ?==,则(())y f x ?=的导数为:[(())]''(())'()f x f x x ???=. 例5 求函数21 sin x y e =的导数. (3)反函数的求导法则 设()y f x =的反函数为()x g y =,两者均可导,且'()0f x ≠,则 11'()'()'(()) g y f x f g y ==. (4)隐函数求导 设函数()y f x =由方程(,)0F x y =所确定,求'y 的方法有两种:直接求导法和公式法'''x y F y F =-. (5)对数求导法:适用于若干因子连乘及幂指函数

第二章 导数与微分部分考研真题及解答

第二章 导数与微分 2.1导数的概念 01.1)设f (0)=0,则f (x )在点x =0可导的充要条件为 ( B ) (A )01lim (1cosh)h f h →-存在 (B )01 lim (1)h h f e h →-存在 (C )01lim (sinh)h f h h →-存在 (D )01 lim [(2)()]h f h f h h →-存在 03.3) 设f (x )为不恒等于零的奇函数,且)0(f '存在,则函数x x f x g ) ()(= (A) 在x =0处左极限不存在. (B) 有跳跃间断点x =0. (C) 在x =0处右极限不存在. (D) 有可去间断点x =0. [ D ] 03.4) 设函数)(1)(3 x x x f ?-=,其中)(x ?在x =1处连续,则0)1(=?是f (x )在x =1处可 导的 [ A ] (A) 充分必要条件. (B )必要但非充分条件. (C) 充分但非必要条件 . (D) 既非充分也非必要条件. 05.12)设函数n n n x x f 31lim )(+=∞ →,则f (x )在),(+∞-∞内 [ C ] (A) 处处可导. (B) 恰有一个不可导点. (C) 恰有两个不可导点. (D) 至少有三个不可导点. 05.34) 以下四个命题中,正确的是 [ C ] (A ) 若)(x f '在(0,1)内连续,则f (x )在(0,1)内有界. (B) 若)(x f 在(0,1)内连续,则f (x )在(0,1)内有界. (C) 若)(x f '在(0,1)内有界,则f (x )在(0,1)内有界. (D) 若)(x f 在(0,1)内有界,则)(x f '在(0,1)内有界. (取f (x )= x 1 ,x x f =)(反例排除) 06.34) 设函数()f x 在x =0处连续,且()22 lim 1n f h h →=,则 ( C ) (A )()()' 000f f -=且存在(B)()()'010f f -=且存在 (C)()()' 000f f +=且存在 (D)()()' 010f f +=且存在 07.1234) 设函数f (x )在x =0处连续,下列命题错误的是: ( D )(反例:()f x x =) (A ) 若0()lim x f x x →存在,则f (0)=0. (B) 若0()() lim x f x f x x →+-存在,则f (0)=0. (C) 若0()lim x f x x →存在,则(0)f '存在. (D) 若0()() lim x f x f x x →--存在,则(0)f '存在

相关主题
文本预览
相关文档 最新文档