当前位置:文档之家› 第四章线性系统的可控性和可观性3

第四章线性系统的可控性和可观性3

第四章线性系统的可控性和可观性3
第四章线性系统的可控性和可观性3

3、最小实现

定义4.9(最小实现定义):

传递函数矩阵)(s G 的一个实现(没有相同的零、极点或相同零、极点已经对消)

Cx

y Bu Ax x

=+=

称为最小实现。如果)(s G 中不存在其它实现

x

C y u B x A x

=+=

使x 的维数小于x 的维数。

定理4.11:

传递函数矩阵)(s G 的一个实现∑),,(C B A

Cx

y Bu Ax x

=+=

为最小实现的充分必要条件是∑),,(C B A 既是可控的又是可观测的。

【例4.9.4】试求如下传递函数矩阵的最小实现。 ??

????

++++=)3)(2(1

)

2)(1(1

)(s s s s s G

解:(1) ??

?

?

??

++++++++=?)3)(2)(1(1

)

3)(2)(1(3

)(21s s s s s s s s s G

说 明:

设传递函数矩阵为r m s G ?)(,在求其最小实现时,先初选一种实现(可控标准型实现或可观测标准型实现)。r 为输入变量的维数,m 为输出变量的维数。

初选规则是:

(1)m r >时,先初选可观测标准型实现。 (2)m r <时,先初选可控标准型实现。

[]13)

3)(2)(1(1

+++++=

s s s s s

[][]{}13116

1161

2

3

++++=s s s s

60=a ,111=a ,62=a []13

0=β,[]111=β,[]00

2=β

由21)()(??=s G s G r m ,2=r ,1=m ,m r >,故先选可观测标准型。 12100000=????????

??---=m m m

m

m m m

m m m o I a I I a I I a A ????

?

??

?

??---=61

01101

600

???

?

????

??=??????????=00

11

13

210βββo B ,[][]10

001===m m m

m o I C

(2)检验可观测标准型实现∑),,(o o o C B A 是否可控。

[]

????

?

?????------==53

1

1

11111311660013

2

o

o o o o

c B A B A B Q

n rankQ

c

==3,故∑),,(o o o C B A 可控可观测,∑),,(o o o C B A 为最小实现。

四、可控性、可观测性与传递函数矩阵的关系

定理4.12 :

SISO 系统可控且可观测的充分必要条件是:由动态方程导出的传递函数不存在零极点对消(即传递函数不可约)。

SISO 系统可控的充分必要条件是:b A sI 1

)(--不存在零极点对消。 SISO 系统可观测的充分必要条件是:1

)(--A sI c 不存在零极点对消。

【例4.9.5】试分析下列系统的可控性、可观测性与传递函数的关系。

(1)u x x ??

????+????

??-=105.15

.210 ,[]x y 15.2=

(2)u x x ??

?

???+????

??-=15.25.11

5.20 ,[]x y 10=

(3)u x x

???

???+??????-=015.20

1 ,[]x y 01=

解:三个系统的传递函数均为 )

5.2)(1(5.2)

()()(+-+=

=

s s s s U s Y s G

显然存在零极点对消。

(1)b A 、为可控标准型,故此系统可控不可观测。 (2)c A 、为可观测标准型,故此系统可观测不可控。

(3)系统不可控、不可观测。

【例4.9.6】设二阶系统如下图。试用状态空间及传递函数描述判别系统的可控性和可观测性,并说明传递函数描述的不完全性。

解:由结构图有

???

?

?

????-+=-=-+-=)(11)(4

521221

x u x y y

s x x u s x 整理后,有:

u x x ??

????-+????

??-=1501

54 , []u x y +-=11

?

?

????-??

??

??--+=---15154)(1

1

s s b A sI ??????-+--=15)5)(1(1

s s s []1

1

154

11

)

(--??

??

??--+-=-s s A sI c []11)

5)(1(1-+--=

s s s

显然,都出现零极点对消,故系统不可控、不可观测。

分析:系统的特征多项式为)1)(5(-+=-λλλA I ,二阶系统的特征多项式应是二次多项式,但对消的结果是使二阶系统降为一阶。 5

6)

1)(5()1(6)()(1

+-=

-+--=

-=-s s s s b A sI c s G

原系统是不稳定的,含有一个右特征值1=λ。但用对消后的传递函数描述系统时,会误认为系统是稳定的。因此说传递函数描述是不完全的。

定理4.13 :

多输入系统可控的充要条件是:B A sI 1)(--的n 行线性无关。 多输出系统可观测的充要条件是:1)(--A sI C 的n 列线性无关。

【例4.9.7】试用传递函数矩阵判别下列MIMO 系统的可控性、可观测性。

Bu Ax x

+= ,Cx y = ????

????

??=10

240

231A ,??

?

?

?

??

???=010010

B , ??

?

???=10

001C 解:1

1

10

2

4023

1)

(--????

??????------=-s s s A sI ????

?

???

??------=40

210234

)

4()1(12s s s s s s (1)判别可控性

????

?

?????-----=--04

0242

)4()1(1)(21

s s s s s B A sI 令[][][]004

0242321=-++-s a a s a

解此方程组,有0321===a a a ,故B A sI 1

)(--三行线性无关,系统可控。

(2)判别可观测性 ??

????-----=

--40

234)4()1(1

)

(2

1

s s s s s A sI C 令0420304321=??

?

???-+??????+????

??-s a a s a

解此方程组,有0321===a a a ,故1

)(--A sI C 三列线性无关,系统可观测。

§4-10 线性定常系统的规范分解

系统中只要有一个状态变量不可控便称系统不可控,那么不可控系统便含有可控和不可控两种状态变量;只要有一个状态变量不可观测便称系统不可观测,那么不可观测系统便含有可观测和不可观测两种状态变量。从可控性、可观测性角度出发,状态变量可分解成可控可观测状态变量co x 、可控不可观测状态变量o c x 、不可控可观测状态变量o c x 、不可控不可观测状态变量o c x 四类。由相应状态变量作坐标轴构成的子空间也分成四类,并把系统也相应分成四类子系统,称为系统的规范分解。

一、系统按可控性的结构分解

设不可控线性定常系统为Bu Ax x += ,Cx y =,其可控性判别矩阵的秩为r (n r <),

即n r rankQ

c

<=,则存在非奇异变换

x R x c =

将状态空间表达式变换为:u B x A x

+= ,x C y = 其中:

非奇异变换阵 []n r r

c R R R R R R

1

2

1

+=

中的n 个列向量可按如下方法构造:

前r 个列向量r R R R ,,,21 是可控性判别矩阵[]

B A

AB

B

Q n c 1

-=

中的r 个线

性无关的列;另外)(r n -个列向量n r R R ,,1 +在确保c R 为非奇异的条件下任意选择。 将变换后的动态方程展开,有

}})

(0221211

1

r n r A A A AR R A c

c -???

??

???

??==-

r

)

(r n }})

(r n r x x x c c -????

?

?????=

??

??

?

?????==-011

B B R B

c r )

(r n -[

]

2

1

C C CR C c

==)

(r n

u B x A x A x

c c c 11211++= c c x A x

22= c c x C x C y 21+= 即

可控子系统动态方程为:u B x A x A x

c c c 11211++= c x C y 11=

不可控子系统动态方程为:c c x A x

22= c x C y 22=

可控部分

不可控部分

按可控性进行结构分解示意图

实验六 连续时间系统的零极点分析

实验六 连续时间系统的零极点分析 实验目的: 1、学会用Matlab 求解系统函数的零极点; 2、学会用Matlab 分析系统函数的极点分布与系统稳定性的关系。 实验原理: 1、系统零极点绘制 系统函数H(s)通常是一个有理分式,其分子和分母均为多项式。利用Matlab 中的roots 函数,可以求出分子和分母多项式的根,即可计算出H(s)的零极点。 例如:多项式542)(24+++=s s s s N 的根可以由下列语句求出: N =[1 0 2 4 5];r=roots(N); 求出零极点后以零极点的实部和虚部作图,即可得出零极点的分布图。例如:执行zs=roots(b);ps=roots(a);(b ,a 分别为分子分母多项式系数向量),再执行plot(real(zs),imag(zs),’o’,real(ps),imag(ps),’x’,’markersize’,12);就能够画出系统的零极点分布图。 绘制系统零极点的分布图再Matlab 中还有一种更加简便的方法,即利用函数pzmap ,调用形式为: pzmap(sys) 它表示画出由sys 所描述的系统的零极点分布图。利用sys =tf(b,a)来构建系统模型,这在实验2中已经介绍过,b,a 分别为系统函数H(s)的分子分母多项式系数向量。 2、 系统函数的零极点与系统的稳定性 根据信号与线性系统中的知识我们知道:当系统函数的极点全部位于s 平面的左平面时,系统是稳定的。在绘制好系统零极点分布图后,就可以根据这个知识点判断系统的稳定性。 注意:在绘制系统零极点分布图时,可以适当变换坐标的显示范围,来达到增强零极点分布图可读性的效果。 实验内容: 一、用两种方法绘制如下系统函数的零极点分布图,并且判断系统是否稳定。

连续时间系统的模拟

实验三 连续时间系统的模拟 一、 实验目的 学习根据给定的连续系统的传输函数,用基本运算单元组成模拟装置。 二、 实验原理 1. 线性系统的模拟 系统的模拟就是用基本运算单元组成的模拟装置来模拟实际的系统。这些实际的系统可以是电的或非电的物理量系统,也可以是社会、经济和军事等非物理量系统。模拟装置可以与实际系统的内容完全不同,但是两者之间的微分方程完全相同,输入输出关系即传输函数也完全相同。模拟装置的激励和响应是电物理量,而实际系统的激励和响应不一定是电物理量,但它们之间的关系是一一对应的。所以,可以通过对模拟装置的研究来分析实际系统,最终达到在一定条件下确定最佳参数的目的。对于那些用数学手段较难处理的高阶系统来说,系统模拟就更为有效。 2. 传输函数的模拟 若已知实际系统的传输函数为: 10111()()()n n n n n n a s a s a Y s H s F s s b s b --+++==+++ (1) 分子、分母同乘以n s -得: 11011111() ()()()1() n n n n a a s a s P s Y s H s F s b s b s Q s ------+++=== +++ (2) 式中1()P s -和1()Q s -分别代表分子、分母的s 负幂次方多项式。因此: 111 ()()()() Y s P s F s Q s --=? (3) 令:11 ()() X F s Q s -= (4) 则111()()n n F s XQ s X b s X b s X ---==++ + (5) 1 1()n n X F s b s X b s X --??=-+ +?? (6) 1101()()n n Y s P s X a X a s X a s X ---==+++ (7) 根据式(6)可以画出如图1所示的模拟框图。在该图的基础上考虑式(7)就可以画出如图2所示系统模拟框图。在连接模拟电路时,1s -用积分器,1b -、2b -、3b -及0a 、1a 、2a 均用标量乘法器,负号可用倒相器,求和用加法器。值得注意的问题是,积分运算单元有积分 时间常数τ,即积分运算单元的实际传递函数为1/s τ-,所示标量乘法器的标量12,, ,n b b b ---应分别乘以12,, ,n τττ。同理,01,, ,n a a a 应分别乘以012,,, ,n ττττ。此外, 本实验采用的积分器是反相积分器,即传递函数为1/s τ--,所以01,,,n a a a 还应分别乘以

第四章线性系统的可控性和可观性1

第四章 线性系统的可控性和可观性 §4-1 问题的提出 经典控制理论中用传递函数描述系统的输入—输出特性,输出量即被控量,只要系统是因果系统并且是稳定的,输出量便可以受控,且输出量总是可以被测量的,因而不需要提出可控性和可观性的概念。 现代控制理论是建立在用状态空间法描述系统的基础上的。状态方程描述输入)(t u 引起状态)(t x 的变化过程;输出方程描述由状态变化所引起的输出)(t y 的变化。可控性和可观性正是定性地分别描述输入)(t u 对状态)(t x 的控制能力,输出)(t y 对状态)(t x 的反映能力。它们分别回答: “输入能否控制状态的变化”——可控性 “状态的变化能否由输出反映出来”——可观性 可控性和可观性是卡尔曼(Kalman )在1960年首先提出来的。可控性和可观性的概念在现代控制理论中无论是理论上还是实践上都是非常重要的。例如:在最优控制问题中,其任务是寻找输入)(t u ,使状态达到预期的轨线。就定常系统而言,如果系统的状态不受控于输入)(t u ,当然就无法实现最优控制。另外,为了改善系统的品质,在工程上常用状态变量作为反馈信息。可是状态)(t x 的值通常是难以测取的,往往需要从测量到的)(t y 中估计出状态)(t x ;如果输出)(t y 不能完全反映系统的状态)(t x ,那么就无法实现对状态的估计。 状态空间表达式是对系统的一种完全的描述。判别系统的可控性和可观性的主要依据就是状态空间表达式。 【例如】 (1)u x x ?? ? ???+??????=202001 []x y 01= 分析:上述动态方程写成方程组形式:?? ? ??=+==1221122x y u x x x x 从状态方程来看,输入u 不能控制状态变量1x ,所以状态变量1x 是不可控的;从输出方程看,输出y 不能反映状态变量2x ,所以状态变量2x 是不能观测的。 即状态变量1x 不可控、可观测;状态变量2x 可控、不可观测。

(完整word)MIMO非线性系统的反馈线性化初步理论

第五章 MIMO 非线性系统的反馈线性化初步理论 引言: 对于多输入多输出系统仍可以用下列紧缩的形式的方程来描述: )()()(x h y u x g x f x =+=& (*) n R x ∈ 若输入的个数与输出的个数的数目相同时,可令 ) 1( )](),...,([)()1()](),...,([)()()](),...,([)() 1() ,...,() 1(),...,(11111?=?=?=?=?=m x h x h Col x h n x f x f Col x f m n x g x g x g m y y Col y m u u Col u m n m m m )(),...,(),(1x g x g x f m 均是光滑的向量场,)(),...,(1x h x h m 是光滑的函数,均定义在n R 的某个开集上。 5.1 向量相对阶和总相对阶: 一个多变量非线性系统(*),在οx 处有向量相对阶},...,{1m r r 是指: (i) 0)(=x h L L i k f g j 对所有:111-<≤≤≤≤i r k m i m j οx x ∈?的邻域 (ii) m m ?矩阵 ?? ?? ? ? ?????? ??=------)(.. ) (. ...)(..)() (.. )()(11212111 11 12211 1 1x h L L x h L L x h L L x h L L x h L L x h L L x A m r f g m r f g r f g r f g r f g r f g m m m m m 在οx x =处是非奇异的。 注意: (1)该定义涵盖了SISO 系统。 (2)整数m r r ,...,1中的某个i r 是与系统第i 个输出)(x h i 有关的。行向量: )](),...,([111x h L L x h L L i r f g i r f g i m i --,至少有一个元素是非零的,

第五章线性系统状态反馈1

第五章 线性定常系统的状态反馈和状态观测器设计 闭环系统性能与闭环极点(特征值)密切相关,经典控制理论用输出反馈或引入校正装置的方法来配置极点,以改善系统性能。而现代控制理论由于采用了状态空间来描述系统,除了利用输出反馈以外,主要利用状态反馈来配置极点。采用状态反馈不但可以实现闭环系统极点的任意配置,而且还可以实现系统解耦和形成最优控制规律。然而系统的状态变量在工程实际中并不都是可测量的,于是提出了根据已知的输入和输出来估计系统状态的问题,即状态观测器的设计。 §5-1 状态反馈与闭环系统极点的配置 一、状态反馈 1、状态反馈的概念 状态反馈就是将系统的每一个状态变量乘以相应的反馈系数反馈到输入端与参考输入相加,其和作为受控系统的输入。 设SISO 系统的状态空间表达式为: bu Ax x += cx y = 状态反馈矩阵为k ,则状态反馈系统动态方程为: )(kx v b Ax x -+= bv x bk A +-=)( cx y = 式中: k 为n ?1矩阵,即[]11 -=n o k k k k ,称为状态反馈增益矩阵。 )(bk A -称为闭环系统矩阵。 闭环特征多项式为 ) (bk A I --λ。 可见,引入状态反馈后,只改变了系统矩阵及其特征值,c b 、阵均无变化。 状态反馈系统结构图

【例5.1.1】已知系统如下,试画出状态反馈系统结构图。 u x x ?? ? ? ? ?????+??????? ???--=10020 110010 , []x y 00 4= 解:[]x k k k v kx v u 21 -=-= 其中[]21 k k k k =称为状态反馈系数矩阵或状态反馈增益矩阵。 ??? ?? ??=+-=+-==1333222142x y u x x x x x x x 说 明:如果系统为r 维输入、m 维输出的MIMO 系统,则反馈增益矩阵k 是一个m r ?维矩阵。即 m r rm r r m m k k k k k k k k k k ???? ??? ??????= 2 1 2222111211 2、状态反馈增益矩阵k 的计算 控制系统的品质很大程度上取决于该系统的极点在s 平面上的位置。因此,对系统进行综合设计时,往往是给出一组期望的极点,或者根据时域指标提出一组期望的极点。所谓极点配置问题就是通过对反馈增益矩阵k 的设计,使闭环系统的极点恰好处于s 平面上所期望的位置,以便获得期望的动态特性。 本节只讨论SISO 系统的极点配置问题,因为SISO 系统根据指定极点所设计的状态反馈增益矩阵是唯一的。

基于matlab信号与线性系统分析实验四——线性连续时间系统的分析

第一题: 1. num=[1,0]; den=[1,32,60]; p=roots(den); z=roots(num); plot(real(p),imag(p),'*');hold on; plot(real(z),imag(z),'o');grid on 稳定 -30-25-20-15-10-50 2. num=[1,0]; den=[1,32,60]; T=0:0.1:3; y1=impulse(num,den,T); y2=step(num,den,T); U=sin(T); y3=lsim(num,den,U,T); subplot(1,1,1);plot(T,y1);title('脉冲响应');grid on;

-2-1.5-1-0.500.51 1.52 2.53 第二题: 1. num=[1,0]; den=[1,32,60]; T=0:0.1:3; y1=impulse(num,den,T); y2=step(num,den,T); U=sin(T); y3=lsim(num,den,U,T); subplot(1,1,1);plot(T,y1);title('脉冲响应');grid on;

00.51 1.52 2.53-0.20 0.2 0.4 0.6 0.8 1 1.2 2. num=[1,0]; den=[1,-1,-6]; T=0:0.1:3; y1=impulse(num,den,T); y2=step(num,den,T); U=sin(T); y3=lsim(num,den,U,T); subplot(1,1,1);plot(T,y1);title('脉冲响应');grid on;

通信信道的随机线性控制

通信信道的随机线性控制 Sekhar Tatikonda 会员IEEE Anant Sahai, 会员IEEE Sanjoy Mitter 终身会员IEEE 摘要我们研究线性随机控制系统时,有一个通信信道连接传感器到控制器。问题由信道编码器和解码器以及控制器满足某些给定的控制目标的设计。特别是,我们检查的作用传播对经典的线性二次高斯问题。我们给的条件下,估计和控制之间的持有和确定性等价控制律优化经典的分离性能。然后我们提出了连续的率失真框架。我们目前所能达到的性能界限和显示控制和通信成本之间固有的权衡。特别是,我们证明了最优二次型成本分解为两个方面:一个完整的知识成本与顺序的率失真成本。 指数条款确定性等价控制,通信约束的网络控制,顺序,分离,率失真,线性随机系统。 一、引言 最近的技术进步已经引导网络控制系统的设计活动的增加。在本文中,我们研究一个随机控制问题,那里是一个通信信道连接传感器到控制器。这个问题出现时,控制器和设备,在地理位置上是分离的,有一个带限和可能是嘈杂的通信信道连接。此外,出现时,控制器和设备之间没有大的地理分离的通信约束,但有一个共享的通信介质,被用在在同一地区的其他用户,或作为更大的系统的一部分。虽然我们不明确地检查每一本文的网络问题,我们认为,通信约束的作用,一个基本的了解,将是一个更完整的网络控制理论的本质。 我们考虑的系统是由一个设备,一个编码器,信道,解码器,和一个控制器。设备和信道是直接给我们的。我们的任务是设计的编码器,解码器,控制器,以满足某些给定的控制目标。因为我们有一个分布式信息系统模式的选择,[ 26 ],可以有显着的影响控制性能是可以实现的。我们讨论了在编码器的信息模式的选择上需要实现控制目标的通信要求的影响。尤其是,我们研究的对象,传播对经典的线性二次高斯(LQG)问题。为此我们提出的顺序的率失真(SRD)框架。我们得到的边界上所能达到的性能和显示控制和通信成本之间固有的权衡。特别是,我们将最优LQG成本分解为两个方面:一个完整的知识成本与顺序的率失真成本。 手稿收到2003年6月4日;2003年12月19日修订。由客座编辑P. antsaklis和J. Baillieul推荐。这项工作是由美国陆军研究办公室在穆里格兰特:传感器数据融合在大的daad19-00-1-0466阵列,并由国防部在穆里格兰特:协同控制subaward复杂自适应网络03-132。 S. Tatikonda,美国耶鲁大学,纽黑文,CT 06520 USA(电子邮件:ekhar.tatikonda@https://www.doczj.com/doc/2f6431347.html,)。 A. Sahai ,加利福尼亚大学伯克利分校,CA 94720 USA。 S. Mitter,美国麻省理工大学,剑桥,MA 02139 USA。 数字对象标识符10.1109/tac.2004.834430。 有两个经典的概念,在本文中我们研究的分离。第一个概念是状态估计和控制之间的控制理论的分离。我们目前的条件下,确保确定性等价控制律的最优性。这些工作是建立在Bar-Shalom and Tse [3]的基础上。第二个是信源编码和信道编码之间的信息理论的分离。特别是,在长时间的延迟的限制下,它是已知的可以不失一般性的,设计的信源编码器和信道编码器分别[ 11 ]。这种分离是众所周知的应用广泛,[ 25 ],但是,在一般情况下,失败的短期延迟和不稳定的过程。在大量的延迟限制下,[ 18 ]表明不稳定过程的估计可以适当修改分离定理,但这个信息理论的结果并不延伸到有限的延迟的情况下。由于延迟是一个重要的问题,在控制中的应用我们不能用信息理论的分离效果,去解决我们的问题。处理这种延迟的问题,我们提出了连续的率失真框架首先介绍[ 13 ]和进一步发展[ 19] ,[ 20 ],和[ 23 ]。

线性系统理论中状态反馈综述

线性系统理论中状态反馈综述 学号:1402028 姓名:王家林 现代控制理论源于20世纪60年代,以极大值等原理为形成标志,经典理论中以单一输入变量为研究对象,主要通过频率进行控制,现在控制理论以线性空间理论为基础,在时域中研究系统,能够定量的进行系统的分析和设计,随着计算机运算能力的发展,现代控制也在更多领域得到应用。控制系统是有受控对象和反馈控制器两部分组成的闭环系统,经典控制理论通常采用输出反馈,而现代控制理论多采用状态反馈。闭环系统极点的分布情况决定于系统的稳定性和动态品质,因此,可以根据对系统动态品质的要求,规定闭环系统的极点所具备的分布情况,把极点的配置作为系统的动态品质指标。这种把极点配置在某位置的过程称为极点配置。在空间状态法中,一般采用反馈系统状态变量或输出变量的方法,来实现系统的极点配置。 20世纪50年代以后,随着航天等技术发展和控制理论应用范围的扩大,经典线性控制理论的局限性日趋明显,它既不能满足实际需要,也不能解决理论本身提出的问题,这就推动了线性系统的研究,于是在1960年以后从经典阶段发展到现阶段。美国学者R.E.卡尔曼首先把状态空间法应用于多变量线性系统的研究,提出了能控性和能观性两个基本概念。其研究问题的方法主要有时域状态空间分析法,线性二次型最优状态调节器法,状态观测器控制法,李雅普诺夫稳定性分析法以及极点配置法等。近年来,计算机技术的迅速发展给需要大计算量的现代控制提供了更好的发展空间,同事工业生产的告诉发

展,是的工程界对控制的要求也日益提高,由此也极大地推动了现代控制理论的发展和完善。 在控制理论与实践中的一个基本要求是设计反馈控制率,将闭环系统的极点配置在制定的位置上,从而保证闭环系统具有所要求的动态和稳态特性。由于模型的不确定因素和各种扰动的存在,使得精确极点配置的控制方式不可能得到真正的实现。世纪设计中只能将闭环系统的极点配置在指定的区域内,就可以使系统获得满意的性能。近年来,对D稳定理论的研究十分活跃,利用这一理论研究区域极点配置问题已取得一些成果,包括最优控制、鲁棒性等方面。 在对系统的分析和设计中,首先要考虑的是系统的稳定性问题,而线性系统的稳定性与其极点的位置紧密相关,因此极点配置问题在系统设计中是很重要的。为此,需要根据分析和设计的目的,将系统极点配置在指定区域内或指定某个位置。 所谓极点配置问题,就是通过反馈矩阵的选择,使闭环系统的极点,即闭环特征方程的特征值恰好处于所希望的一组极点位置上或者是某个区内。由于希望的极点具有一定的任意性,因此极点的配置也具有一定的任意性。 对于线性系统而言,其稳定性取决于状态的零输入响应,因而取决于系统极点的分布,当极点的实部小于零时,系统是稳定的;当极点分布在虚轴上时,系统是临界稳定的;当极点的实部大于零时,系统是不稳定的。同事,系统动态响应的基本特性也依赖于极点的分布,若系统极点是负实数,则系统动态响应时非周期的,按指数规律

连续时间系统的时域分析

第二章 连续时间系统的时域分析 §2-1 引 言 线性连续时间系统的时域分析,就是一个建立和求解线性微分方程的过程。 一、建立数学模型 主要应用《电路分析》课程中建立在KCL 和KVL 基础上的各种方法。 线性时不变系统的微分方程的一般形式可以为: )()(...)()()()(...)()(0111101111t e b t e dt d b t e dt d b t e dt d b t r a t r dt d a t r dt d a t r dt d m m m m m m n n n n n ++++=++++------ 二、求解(时域解) 1、时域法 将响应分为通解和特解两部分: 1) 通解:通过方程左边部分对应的特征方程所得 到的特征频率,解得的系统的自然响应(或自由响应); 2) 特解:由激励项得到系统的受迫响应;

3)代入初始条件,确定通解和特解中的待定系数。 经典解法在激励信号形式简单时求解比较简单,但是激励信号形式比较复杂时求解就不容易,这时候很难确定特解的形式。 2、卷积法(或近代时域法,算子法) 这种方法将响应分为两个部分,分别求解: 1)零输入响应:系统在没有输入激励的情况下,仅仅由系统的初始状态引起的响应 r )(t ; zi 2)零状态响应: 状态为零(没有初始储能)的条件下,仅仅由输入信号引起的响应 r )(t 。 zs ●系统的零输入响应可以用经典法求解,在其中 只有自然响应部分; ●系统的零状态响应也可以用经典法求解,但是 用卷积积分法更加方便。借助于计算机数值计算,可以求出任意信号激励下的响应(数值解)。 ●卷积法要求激励信号是一个有始信号,否则无

连续时间系统的时分析

实验三 连续时间系统的时域分析 一 实验目的: 1、熟悉和掌握常用的用于信号与系统时域分析的MATLAB 函数; 2、掌握如何利用Matlab 软件求解一个线性时不变连续时间系统的零状态 响 应、冲激响应和阶跃响应。 二 实验原理: 在信号与线性系统中,LTI(线性时不变)连续时间系统以常系数微分方程描述,系统的零状态响应可以通过求解初始状态为零的微分方程得到。在Matlab 中,控制系统工具箱提供了一个用于求解零初始条件微分方程数值解的函数lsim ,其调用形式为: ),,(t f sys lsim y = 式中,t 表示计算系统响应的抽样点向量,f 是系统输入信号向量(即激励),sys 是LTI 系统模型,用来表示微分方程。在求解微分方程时,微分方程的LTI 系统模型sys 要借助Matlab 中的tf 函数来获得,其调用形式为: ),(a b tf sys = 式中,b 和a 分别为微分方程右端和左端各项的系数向量。例如对于三阶微分方程: )()()()()()()()(01230123t f b t f b t f b t f b t y a t y a t y a t y a +'+''+'''=+'+''+''' 可以用以下命令: b=[b3,b2,b1,b0]; a=[a3,a2,a1,a0]; sys=tf(b, a); 来获得LTI 模型。 系统的LTI 模型建立后,就可以求出系统的冲激响应和阶跃响应。在连续时 间LTI 中,冲击响应和阶跃响应是系统特性的描述。输入为单位冲击函数)(t δ所引起的零状态响应称为单位冲击响应,简称冲击响应,用)(t h 表示;输入为单位阶跃函数)(t ε所引起的零状态响应称为单位阶跃响应,简称阶跃响应,用)(t u 表示。求解系统的冲激响应的函数是impulse ,求解系统的阶跃响应可以利用函数

现代控制理论试题

现代控制理论试题 一、 名词解释(15分) 1、 能控性 2、能观性 3、系统的最小实现 4、渐近稳定性 二、 简答题(15分) 1、连续时间线性时不变系统(线性定常连续系统)做线性变换时不改变系统的那些性质? 2、如何判断线性定常系统的能控性?如何判断线性定常系统的能观性? 3、传递函数矩阵 的最小实现A 、B 、C 和D 的充要条件是什么? 4、对于线性定常系统能够任意配置极点的充要条件是什么? 5、线性定常连续系统状态观测器的存在条件是什么? 三、 计算题(70分) 1、RC 无源网络如图1所示,试列写出其状态方程和输出方程。其中,为系统的输入,选两端的电压为状态变量 , 两端的电压为状态变量 ,电压 为为系统的输出 y 。 2、计算下列状态空间描述的传递函数 g(s) 3、 求出下列连续时间线性是不变系统的时间离散化状态方程: 其中,采样周期为T=2. 4、 求取下列各连续时间线性时不变系统的状态变量解 和 图1:RC 无源网络

5、确定是下列连续时间线性时不变系统联合完全能控和完全能观测得待定参数a的 取值范围: 6、对下列连续时间非线性时不变系统,判断原点平衡状态即是否为大范围渐近 稳定: 7、给定一个单输入单输出连续时间线性时不变系统的传递函数为 试确定一个状态反馈矩阵K,使闭环极点配置为,和。 现代控制理论试题答案 一、概念题 1、何为系统的能控性和能观性? 答:(1)对于线性定常连续系统,若存在一分段连续控制向量u(t),能在有限时间区间[t0,t1]内将系统从初始状态x(t0)转移到任意终端状态x(t1),那么就称此状态是能控的。 (2)对于线性定常系统,在任意给定的输入u(t)下,能够根据输出量y(t)在有限时间区间[t0,t1]内的测量值,唯一地确定系统在t0时刻的初始状态x(t0 ),就称系统在t0时刻是能观测的。若在任意初始时刻系统都能观测,则称系统是状态完全能观测的,简称能观测的。 2、何为系统的最小实现? 答:由传递函数矩阵或相应的脉冲响应来建立系统的状态空间表达式的工作,称为实现问题。在所有可能的实现中,维数最小的实现称为最小实现。 3、何为系统的渐近稳定性?

线性系统的可控性和可观测性

8.4线性系统的可控性和可观测性 8.4.1可控性和可观测性的概念 第三节介绍了系统的稳定性,本节接着介绍系统另外两个重要特性,即系统的可控性和可观测性,这两个特性是经典控制理论所没有的。在用传递函数描述的经典控制系统中,输出量一般是可控的和可以被测量的,因而不需要特别地提及可控性及可观测性的概念。现 代控制理论用状态方程和输出方程描述系统,输出和输入构成系统的外部变量,而状态为系 统的内部变量,系统就好比是一块集成电路芯片,内部结构可能十分复杂,物理量很多,而 外部只有少数几个引脚,对电路内部物理量的控制和观测都只能通过这为数不多的几个引脚进行。这就存在着系统内的所有状态是否都受输入控制和所有状态是否都可以从输出反映出来的问题,这就是可控性和可观测性问题。如果系统所有状态变量的运动都可以通过有限的控制点的输入来使其由任意的初态达到任意设定的终态,则称系统是可控的,更确切的说是 状态可控的;否则,就称系统是不完全可控的,简称为系统不可控。相应地,如果系统所有的状态变量任意形式的运动均可由有限测量点的输出完全确定出来,则称系统是可观测的,简称为系统可观测;反之,则称系统是不完全可观测的,简称为系统不可观测。 可控性与可观测性的概念,是用状态空间描述系统引伸出来的新概念,在现代控制理论 中起着重要的作用。可控性、可观测性与稳定性是现代控制系统的三大基本特性。 下面举几个例子直观地说明系统的可控性和可观测性。 (a) (b) (c) 图8-20 电路系统可控性和可观测性的直观判别 对图8-20所示的结构图,其中图(a)显见洛受U的控制,但X2与U无关,故系统不可控。系统输出量丫=捲,但X!是受X2影响的,y能间接获得X2的信息,故系统是可观测的。图(b)中的,X2均受u的控制,故系统可控,但y与X2无关,故系统不可观测。图 (c)中的X i、X2均受u的控制,且在y中均能观测到X i、X2,故系统是可控可观测的。 只有少数简单的系统可以从结构图或信号流图直接判别系统的可控性与可观测性,如果系统结构复杂,就只能借助于数学方法进行分析与研究,才能得到正确的结论。

线性控制系统(0600004)

线性控制系统(0600004) 一、课程编码:0600004 课内学时: 48 学分: 3 二、适用学科专业:控制科学与工程、控制工程 三、先修课程:自动控制原理,现代控制理论,矩阵分析 四、教学目标 通过本课程的学习, 使学生了解线性系统理论基础,掌握时变、时不变多变量系统的状态空间描述;掌握系统稳定性理论、系统可控性与系统可观测性理论;掌握线性系统反馈理论,实现系统状态反馈极点配置、状态反馈解耦、镇定等;掌握状态观测器的设计方法,掌握具有观测器的状态反馈系统设计,提升学生对控制系统分析和系统设计的能力。 五、教学方式 课堂讲授 六、主要内容及学时分配 1.系统的数学描述 6学时 1.1 输入-输出描述 1.2 状态空间描述 1.3 输入-输出描述和状态变量描述的比较 2.线性系统运动分析 4学时 2.1 线性系统的运动分析 2.2 等价动态方程 2.3 脉冲响应矩阵及其实现 3.线性动态方程的可控性和可观测性 8学时 3.1 线性动态方程的可控性 3.2 线性动态方程的可观测性 3.3 线性时不变动态方程的规范性分解 3.4 约当形动态方程的可控性和可观测性 3.5 输出可控性和输出函数可控性 4.标准型和不可简约实现 3学时 4.1 正则有理矩阵的特征多项式和次数 4.2 动态方程的可控和可观测标准型 4.3 不可简约矩阵分式描述的最小实现 5.状态反馈和状态观测器 8学时 5.1 状态反馈和输出反馈 5.2 状态反馈极点配置 5.3 状态观测器及状态观测器的设计 5.4 基于观测器的状态反馈控制系统特性 6.线性系统的镇定、解耦及最优控制 3 学时

6.1 状态反馈镇定 6.2 状态反馈解耦 6.3 线性二次型最优控制 7.系统的运动稳定性 8学时 7.1 李亚普诺夫意义下的运动稳定性 7.2 线性系统的稳定性 7.3 李亚普诺夫第二方法 8.离散时间线性系统 4学时 8.1 连续时间系统的离散化 8.2 离散时间线性系统的数学描述 8.3 离散时间线性系统的运动分析 8.4 离散时间线性系统的可控性与可观测性 8.5 离散时间线性系统的李亚普诺夫稳定性分析 8.6 离散时间线性系统状态反馈 9.组合系统 4学时 9.1 组合系统的状态空间描述和传递函数描述 9.2 组合系统的可控性和可观测性 9.3 组合系统的稳定性 9.4 单位反馈系统设计 9.5 渐进跟踪和干扰抑制 9.6 输入输出反馈系统 七、考核与成绩评定 成绩以百分制衡量。成绩评定依据:平时成绩占20%,期末笔试成绩占80%。 八、参考书及学生必读参考资料 1. 姚小兰,李保奎,耿庆波.线性系统理论[M].北京:高等教育出版社 2. 郑大钟. 线性系统理论(第2版)[M].北京:清华大学出版社,2002 3. 陈啟宗. 线性系统理论与设计[M]. 北京:科学出版社,1988 4. 段广仁.线性系统理论[M].哈尔滨:哈尔滨工业大学出版社,200 九、大纲撰写人:姚小兰、李保奎

倒立摆系统的线性二次型状态反馈控制

万方数据

万方数据

LQR控制的仿真曲线 参考文献: 【1】翁正新,王广雄,姚一新.鲁棒H一状态反馈控制【J].[2]张姝,朱善安.环形单级倒立摆起摆控制研究[J】江南控制理论与应用,1994,11(4):456—459.大学学报(自然科学版),2004,3(5):482—485. 枣木牛枣木木幸木术木木}木堆术}枣木宰木水牛术木木水木术木木水木木木枣半水幸车木丰水木木半半水率术水木木木水木术丰木木术木术半丰串水牛丰木木木术丰木冰术术水木半木木球串牢木木木毕木半半禾半半水水术水水车枣木术术木术丰木术水木木(土接劳50黄)确定各通讯数据的cANID编码规3协议编制与仿真 则。数据ID编码决定cAN通讯协议的优劣和CAN 总线能否正常工作。CAN通讯系统既有全局和局部 广播数据或点对点发送数据。各数据有不同优先级。故好的通讯协议应具备:①各数据以不同优先级 发送;②通过对屏蔽码设置,各接点只接收所需 信息;③ID值要充分表示数据各种信息(含源地 址、目的地址、数据内容和格式等);④系统应具有可扩展性。, 例如:制定10个节点CAN通信系统的通讯协 议,采用cAN2.0B标准11位ID,如表1。将ID0~ IDl0中标志符的高7位ID4~IDl0定义为地址段,标记CAN总线中不同的通讯站点;标识符的低4位IDO~ID3为指令段,标记各站点的不同数据后, 后4位用0填充,采用16进制4位描述数据标识,如0x0000;每个接点可用后4位标记不同数据。如以广播。O方式发数据的编码有GB0.1(0X0000)、GB0.2(0x0020)…GB0.16(0x01E0)。按此编码,各接点通过屏蔽码前7位的设置,使接点可接收广 播0数据。接点1、6不仅可接发按自己接点编码的 数据还可接收所有广播数据。接点2、5只接收按自己接点编码数据和广播0数据;接点3、7、10可接 收按自己接点编码数据和广播0、广播2数据;接 点4、8、9可接收按自己接点编码数据和广播0及l数据。也可通过系统的不同要求做相应改动。 表1制定10个节点cAN通信系统的通讯协议 嚣隧蹲|蘩@j馥谗莲嘲“瀑瀚j“蕊暖警曝??j|酶舔。;瓷蕊强蕊÷÷0OO0O0O0XO000GBO广播O0OO0O010X0200GBl广播1 OOO0Ol0OX0400GB2广播20OOOOl1OX0600GB3广播3OO011l1OXlEOOJDl接点1OO101OO0X2800JD2接点2O01lO1O0X3400JD3接点3O1OOlO1OX4A00JD4接点40lOlO0OOX5000JD5接点50l1OO11OX6600JD6接点61OOOl10OX8COOJD7接点71001O01OX9200JD8接点8lO1OO01OXA200JD9接点9l1OO0lOOXC400JDl0接点10?58? 确定以上通讯约束条件和编码规则后,制定通讯协议变得简单,只需按上述约束条件和编码规则对需传输的数据编码即可。协议制定后应仔细检查,在对系统进行通讯实验与仿真后,可发布到各通讯接点的研制单位进行通讯系统的设计与调试。 4结语 CAN—Bus已被广泛应用到各自动化控制系统中,好的CAN通讯协议有利提高系统通讯的速率与可靠性,充分发挥cAN—Bus自身的特点。 参考文献: [1]杨宪惠.现场总线技术及其应用[M】.北京:清华大学出版社,2001. [2】邬宽明.总线原理和应用系统设计[M].北京:北京航空航天大学出版社,1995. 对电子信息系统尽快形成作战能力的思考 徐忠杰1,李洪峰2 (1.炮兵学院,安徽合肥23003l;2.73111部队,福建厦门36lOOO)摘要:电子信息系统能否尽快形成作战能力,对做好军事斗争准备具有重要影响。我军电子信息系统存在的问题延缓了系统形成作战能力的步伐,必须从确立正确观念、加强系统需求分析、运用系统集成手段整合现役系统以及创建系统运用理论,加强系统训练等方面加以解决。 ThinkingofHowtoMakeElectronic InformationSVstemCombatCapabilitVSoon xuzhong_jiel,LIHong—fen92 (1.ArtilleryAcademyofPLA,Hefei230031,China; 2.Unit73111ofPLA,Xiamen361000,China) Abstract:Whethertheelectronicinformationsystemcanformcombatcapabilityquicklywill greatly innuencethemilitaryconflictpreparation.Theproblemsofourafmyelectronicinformationsystemdelayestablishingthecombatcapability.Theproblemscanberesolvedbyestablishingtherightidea,strengtheningthesystemrequirements,makinguseoftheintegrationmeanto confomthecurrentsystem,establishingthesystemusagetheoryandstrengtheningsystem training.  万方数据

实验六--连续时间系统的零极点分析

实验六--连续时间系统的零极点分析

实验六 连续时间系统的零极点分析 实验目的: 1、学会用Matlab 求解系统函数的零极点; 2、学会用Matlab 分析系统函数的极点分布与系统稳定性的关系。 实验原理: 1、系统零极点绘制 系统函数H(s)通常是一个有理分式,其分子和分母均为多项式。利用Matlab 中的roots 函数,可以求出分子和分母多项式的根,即可计算出H(s)的零极点。 例如:多项式542)(24+++=s s s s N 的根可以由下列语句求出: N =[1 0 2 4 5];r=roots(N); 求出零极点后以零极点的实部和虚部作图,即可得出零极点的分布图。例如:执行zs=roots(b);ps=roots(a);(b ,a 分别为分子分母多项式系数向量),再执行plot(real(zs),imag(zs),’o’,real(ps),imag(ps),’x’,’markersize’,12);就能够画出系统的零极点分布图。 绘制系统零极点的分布图再Matlab 中还有一种更加简便的方法,即利用函数pzmap ,调用形式为: pzmap(sys) 它表示画出由sys 所描述的系统的零极点分布图。利用sys =tf(b,a)来构建系统模型,这在实验2中已经介绍过,b,a 分别为系统函数H(s)的分子分母多项式系数向量。 2、 系统函数的零极点与系统的稳定性 根据信号与线性系统中的知识我们知道:当系统函数的极点全部位于s 平面的左平面时,系统是稳定的。在绘制好系统零极点分布图后,就可以根据这个知识点判断系统的稳定性。 注意:在绘制系统零极点分布图时,可以适当变换坐标的显示范围,来达到增强零极点分布图可读性的效果。 实验内容: 一、用两种方法绘制如下系统函数的零极点分布图,并且判断系统是否稳定。

第三章-连续时间线性定常系统时域分析-修订版-646302069word版本

第三章:连续时间线性定常系统时域分析 §3.1 系统的数学模型 LTI 系统中各参量之间的相互关系及其随时间的演化,可以由下列四种模型描述。 R 、L 、C 上的电压与电流关系——()()~e t i t 关系模型 ? 电阻: ()()1 i t e t R = (3-1) 或 ()()e t Ri t = (3-2) 图3-1 电阻 图3-2 电压作用于电阻产生电流 图3-3 电流作用于电阻产生电压 ? 电感: ()()()11 d p t i t e e t L L ττ-∞= =? (3-3) 或: ()()()d p d e t L i t L i t t == (3-4) 图3-4 电感上的直流不产生电压

图3-5 电流作用于电感产生电压 图3-6 电压作用于电感产生电流 ? 电容: ()()()d p d i t C e t C e t t == (3-5) 或: ()()()11 d p t e t i i t C C ττ-∞= =? (3-6) 图3-7 电容上的恒压不产生电流 图3-8 电压作用于电容产生电流 图3-9 电流作用于电容产生电压 ? 求和(相加): ()()()12y t f t f t =± (3-7) 图3-10 信号汇聚流图 ? 分支: ()()()123f t f t f t == (3-8) i(t)e(t)Cp i(t)e(t)Cp e(t)i(t)1Cp e(t)i(t)1Cp

图3-11 信号分支流图 须注意,信息可以拷贝,可以无限复制;而物质则只能被瓜分式共享。 LTI 连续时间系统的状态空间模型: 例1:如图3-12电路 求:(1)()()y t v t :,(2)()()()12:x t x t v t 、 解:列回路电流、电压方程: ()()()()()()()()()()()()()()()()()12122231221233421 220 302v t i t i t x t i t x t i t i t x t x t i t i t x t i t y t i t =-? ? =? ?=-?? ?++-=? -=? ?=? && 消去i 1、i 2、i 3,得下列方程: ()()()()()()()()()11221211122203200 3x t x t v t x t x t x t y t v t x t ?--?????????????=+?????????-????????????????????=+????????????? &L L &L L L L 状态方程观测方程 图3-12 例1电路图 ? 定义(状态):能够表征系统时域动力学行为的一组最小内部变量组。 ? 物理上,状态的维数dim (t ) = 系统中独立储能元件的个数 ? 状态的选取可以不唯一 ? 状态空间模型:

第4章(1) 线性控制系统的能控性和能观性

第四章 线性控制系统的能控性和能观性 在现代控制理论中,能控性(Controllability)和能观性(Observ- ability)是两个重要的概念,它是卡尔曼(Kalman)在1960年提出的,是最优控制和最优估计的设计基础。 能观(测)性针对的是系统状态空间模型中的状态的可观测性,它反映系统的内部状态x(t)(通常是不可以直接测量的)被系统的输出量y(t)(通常是可以直接测量的)所反映的能力。 能控性严格上说有两种,一种是系统控制输入u(t)对系统内部状态x(t)的控制能力,另一种是控制输入u(t)对系统输出y(t)的控制能力。但是一般没有特别指明时,指的都是状态的可控性。 所以,系统的能控性和能观性研究一般都是基于系统的状态空间表达式的。 4-1 线性连续定常系统的能控性 定义 对于单输入n 阶线性定常连续系统 bu Ax x += 若存在一个分段连续的控制函数u(t),能在有限的时间段 [] f t t ,0内把系统从0t 时刻的初始状态()0t x 转移到任意指定的终态()f t x ,那么就称系统在0t 时刻的状态()0t x 是能控的;如果系统每一个状态()0t x 都能控,那么就称系统是状态完全可控的。反之,只要有一个状态不可控,我们就称系统不可控。 对于线性定常连续系统,为简便计,可以假设00=t ,()0=f t x ,即00=t 时刻的任意初始状态()0x ,在有限时间段转移到零状态()0=f t x (原点)。

4-2线性连续定常系统的能控性判别 4-2-1具有约旦标准型系统的能控性判别 1. 单输入系统 具有约旦标准型系统 bu x x +Λ= ????? ?? ?????????=Λn λλλλ 0000000 00 00003 2 1 n λλλλ≠≠≠≠ 321即为n 个互异根 或bu Jx x += ??????? ????? ???????? ??????=++n m m J λλλλλλ 0000000000000 0010000 00000121 1 11 m 个重根1λ n-m 个互异根n m m λλλ≠≠≠++ 21 例:分析下列系统的能控性 (1)u b x x ??????+??????=221 00 0λλ []x c c y 21 = 解:?=111x x λ 1x 与u 无关,即不受u 控制

相关主题
文本预览
相关文档 最新文档