当前位置:文档之家› 瓷片电容中心谐振频率计算公式

瓷片电容中心谐振频率计算公式

RLC联谐振频率及其计算公式

RLC串联谐振频率及其计算公式串联谐振是指所研究的串联电路部分的电压和电流达到同相位,即电路中电感的感抗和电容的容抗在数值上时相等的,从而使所研究电路呈现纯电阻特性,在给定端电压的情况下,所研究的电路中将出现最大电流,电路中消耗的有功功率也最大. 1. 谐振定义:电路中L、C 两组件之能量相等,当能量由电路中某一电抗组件释 出时,且另一电抗组件必吸收相同之能量,即此两电抗组件间会产生一能量脉动。 2. 电路欲产生谐振,必须具备有电感器L及电容器C 两组件。 3. 谐振时其所对应之频率为谐振频率(resonance),或称共振频率,以f r表示之。 4. 串联谐振电路之条件如图1所示:当Q=Q ?I2X L = I2 X C也就是X L =X C时,为R-L-C串联电路产生谐振之条件。

图1 串联谐振电路图 5. 串联谐振电路之特性: (1) 电路阻抗最小且为纯电阻。即 Z =R+jX L?jX C=R (2) 电路电流为最大。即 (3) 电路功率因子为1。即 (4) 电路平均功率最大。即P=I2R (5) 电路总虚功率为零。即Q L=Q C?Q T=Q L?Q C=0 6. 串联谐振电路之频率: (1) 公式: (2) R - L -C串联电路欲产生谐振时,可调整电源频率f 、电感器L 或电容器C 使其达到谐振频率f r,而与电阻R完全无关。

7. 串联谐振电路之质量因子: (1) 定义:电感器或电容器在谐振时产生的电抗功率与电阻器消耗的平均功率 之比,称为谐振时之品质因子。 (2) 公式: (3) 品质因子Q值愈大表示电路对谐振时之响应愈佳。一般Q值在10~100 之 间。 8. 串联谐振电路阻抗与频率之关系如图(2)所示: (1) 电阻R 与频率无关,系一常数,故为一横线。 (2) 电感抗X L=2 πfL ,与频率成正比,故为一斜线。 (3) 电容抗与频率成反比,故为一曲线。 (4) 阻抗Z = R+ j(X L?X C) 当 f = f r时, Z = R 为最小值,电路为电阻性。

电容器计算公式(2013_04_21)

电容器计算公式 电容器串并联容量 并联:C=C1+C2+…… 串联:2 121C C C C C +?= 电容器总容量 3.0.2 本条是并联电容器装置总容量的确定原则。 如没有进行调相调压计算,一般情况下,电容器容量可按主变压器的容量的10%~30%确定,这就是不具备计算条件时估算电容器安装总容量的简便方法。 谐波 3.0.3 发生谐振的电容器容量,可按下式计算: )1(2K n S Q d cx -= 式中,cx Q ----发生n 次谐波谐振的电容器容量(Mvar)d S ----并联电容器装置安装处的母线短路容量(MVA)n ----谐波次数,即谐波频率与电网基波频率之比K ----电抗率 母线电压升高 5.2.2 本条明确了电容器额定电压选择的主要原则 并联电容器装置接入电网后引起的母线电压升高值可按下式计算: d so s S Q U U =? 式中,s U ?----母线电压升高值(kV) so U ----并联电容器装置投入前的母线电压(kV) Q ---- 母线上所有运行的电容器容量(Mvar) d S ----母线短路容量(MVA) 电容器额定电压 5.2.2 本条明确了电容器额定电压选择的主要原则 电容器额定电压可由公式求出计算值,再从产品标准系列中选取,计算公式如下: )1(305.1K S U U SN CN -= 式中,CN U ----单台电容器额定电压(kV)SN U ----电容器投入点电网标称电压(kV)S ---- 电容器每组的串联段数K ----电抗率

串联电抗器的电抗率 5.5.2 (1)当电网背景谐波为5次及以上时,可配置电抗率4.5%一6%。因为6%的电抗器有明显的放大三次谐波作用,因此,在抑制5次及以上谐波,同时又要兼顾减小对3次谐波的放大,电抗率可选用4.5%。 (2)当电网背景谐波为3次及以上时,电抗率配置有两种方案:全部配12%电抗率,或采用4.5%一6%与12%两种电抗率进行组合。采用两种电抗率进行组合的条件是电容器组数较多,为了节省投资和减小电抗器消耗的容性无功。 电容器对母线短路容量的助增 5.1.2 在电力系统中集中装设大容量的并联电容器组,将会改变装设点的系统网络性质,电容器组对安装点的短路电流起着助增作用,而且助增作用随着电容器组的容量增大和电容器性能的改进(如介质损耗减小、有效电阻降低)、开关动作速度加快而增加。试验研究报告建议:在电容器总容量与安装地点的短路容量之比不超过5%或10%(对应于电抗率K=5%~6%,不超过5%;K=12%~13%,不超过10%),助增作用相对较小,可不考虑。 当K=12%~13%时,%10 d c S Q 式中,c Q ----电容器容量(kVar) d S ----母线短路容量(kVar) 回路导体的额定电流 5.1.3 所以取1.35倍电容器组额定电流作为选择回路设备和导体的条件是安全的也是合理的。 电容器分组原则 3.0.3 变电所装设无功补偿电容器的总容量确定以后,通常将电容器分组安装,分组的主要原则是根据电压波动、负荷变化、谐波含量等因素来确定。

电容计算公式

电容定义式 C=Q/U Q=I*T 电容放电时间计算:C=(Vwork+ Vmin)*l*t/( Vwork2 -Vmin2) 电压(V)= 电流⑴x 电阻(R)电荷量(Q)= 电流⑴x 时间(T)功率(P) = V x I (I=P/U; P=Q*U/T)能量(W) = P x T = Q x V 容量F=库伦(C)/电压(V)将容量、电压转为等效电量电量二电压(V) x 电荷量(C)实例估算:电压5.5V仆(1法拉电容)的电量为5.5C (库伦),电压下限是3.8V,电容放电的有效电压差为5.5-3.8=1.7V ,所以有效电量为1.7C。 1.7C=1.7A*S (安秒)=1700mAS(毫安时)=0.472mAh (安时) 若电流消耗以10mA 计算,1700mAS/10mA=170S=2.83min(维持时间分钟) 电容放电时间的计算 在超级电容的应用中,很多用户都遇到相同的问题,就是怎样计算一定容量的超级电 容在以一定电流放电时的放电时间,或者根据放电电流及放电时间,怎么选择超级电容的容 量,下面我们给出简单的计算公司,用户根据这个公式,就可以简单地进行电容容量、放电电流、放电时间的推算,十分地方便。 C(F):超电容的标称容量; R(Ohms):超电容的标称内阻; ESR(Ohms) 1KZ下等效串联电阻;

Vwork(V):正常工作电压 Vmin(V):截止工作电压; t(s):在电路中要求持续工作时间; Vdrop(V):在放电或大电流脉冲结束时,总的电压降; 1(A):负载电流; 超电容容量的近似计算公式, 保持所需能量=超级电容减少的能量。 保持期间所需能量=1/2l(Vwork+ Vmi n)t ; 超电容减少能量=1/2C(Vwork -Vmin ), 因而,可得其容量(忽略由IR引起的压降) C=(Vwork+ Vmin)*l*t/( Vwork 2 -Vmin 2) 举例如下: 如单片机应用系统中,应用超级电容作为后备电源,在掉电后需要用超级电容维持 100mA的电流,持续时间为10s,单片机系统截止工作电压为4.2V,那么需要多大容量的超级电容能够保证系统正常工作? 由以上公式可知: 工作起始电压Vwork = 5V 工作截止电压Vmin= 4.2V 工作时间t=10s 工作电源I = 0.1A 那么所需的电容容量为:

10kv高压电缆串联谐振电流计算方式(详细讲解)

10kv高压电缆串联谐振电流计算方式(详细讲解) 电缆串联谐振(别称:电缆交流耐压试验装置),是基于RLC串联谐振电路原理,针对6kv~330kv系统电缆的串联谐振试验,输出30~310Hz的宽幅频率,兼顾主变、GIS、母线的交流耐压,该产品由控制部分、励磁部分、升压部分和采集部分组成,满足自动试验、手动试验和半自动化试验,兼顾性强,可靠性好,安全性高。0814A 我们在日常的试验中针对试验电流是如何计算呢?很多用户并不清楚,而是通过电抗器的反复多次匹配,找不到谐振点就增加电抗器或者改变连接方式,这种方式并不是不可取,他虽然也是能找到谐振点,但是效率是非常低,其实,如何配置是可以通过高压电流计算得出,可减少不必要的劳力浪费,下面具体讲一下10kv 高压电缆的电流计算方法。

10kv高压电缆一般取1.5A/km的试验电流,如果单节电抗器的容量是27kv/1A,那么10kv 1公里电压按照2.5U0即计算,采用2节电抗器并联1节串联即可满足谐振条件,同理,35kv电缆一般建议取2.5A/公里,同样按照2.5U0,那么方案是两节电抗串联,三节电抗并联即可满足串联谐振的试验条件,如果对频率不满意,可调节励磁变压器抽头或者增减电抗器的数量,如果频率超出工频不多不建议调节,如果您对产品的原理不太了解,反而会将频率溢出额定频率之外。励磁变压器接线注意下列事项: 1. 用于10KV电缆的耐压装置,励磁变压器一般接低端; 2. 用于10KV和35KV电缆的耐压装置,10KV电缆耐压励磁变压器接低端,35KV电缆耐压励磁变压器接较高端; 3. 用于10KV 、35KV和110KV电缆的串联谐振耐压装置10KV、35KV电缆耐压励磁变压器接低端,110KV电缆耐压励磁变压器接高端; 对于短电缆,无论电压高低,一般将至少两节电抗器串联,以确保回路可以谐振。

RLC串联谐振频率及其计算公式38586

RLC串联谐振频率及其计算公式 2009-04-21 09:51 串联谐振是指所研究的串联电路部分的电压和电流达到同相位,即电路中电感的感抗和电容的容抗在数值上时相等的,从而使所研究电路呈现纯电阻特性,在给定端电压的情况下,所研究的电路中将出现最大电流,电路中消耗的有功功率也最大. 1. 谐振定义:电路中L、C 两组件之能量相等,当能量由电路中某一电抗组件释 出时,且另一电抗组件必吸收相同之能量,即此两电抗组件间会产生一能量脉动。 2. 电路欲产生谐振,必须具备有电感器L及电容器C 两组件。 3. 谐振时其所对应之频率为谐振频率(resonance),或称共振频率,以f r表示之。 4. 串联谐振电路之条件如图1所示:当Q=Q ? I2X L = I2 X C也就是 X L =X C 时,为R-L-C 串联电路产生谐振之条件。 图1 串联谐振电路图 5. 串联谐振电路之特性: (1) 电路阻抗最小且为纯电阻。即Z =R+jX L?jX C=R (2) 电路电流为最大。即 (3) 电路功率因子为1。即 (4) 电路平均功率最大。即P=I2R (5) 电路总虚功率为零。即Q L=Q C?Q T=Q L?Q C=0 6. 串联谐振电路之频率:

(1) 公式: (2) R - L -C 串联电路欲产生谐振时,可调整电源频率f 、电感器L 或电容器C 使其达到谐振频率f r ,而与电阻R完全无关。 7. 串联谐振电路之质量因子: (1) 定义:电感器或电容器在谐振时产生的电抗功率与电阻器消耗的平均功率之比,称为谐振时之品质因子。 (2) 公式: (3) 品质因子Q值愈大表示电路对谐振时之响应愈佳。一般Q值在10~100 之间。 8. 串联谐振电路阻抗与频率之关系如图(2)所示: (1) 电阻R 与频率无关,系一常数,故为一横线。 (2) 电感抗X L=2 π fL ,与频率成正比,故为一斜线。 (3) 电容抗与频率成反比,故为一曲线。 (4) 阻抗Z = R+ j(X L ?X C) 当f = f r时,Z = R 为最小值,电路为电阻性。 当f >f r时,X L>X C,电路为电感性。 当f <fr 时,X L<X C,电路为电容性。 当f = 0 或f = ∞ 时, Z = ∞ ,电路为开路。 (5) 若将电源频率f 由小增大,则电路阻抗Z 的变化为先减后增。 9. 串联谐振电路之选择性如图(3)所示:

电容计算公式

电容计算公式 教你两条不变应万变得原理: 1.电容器的计算依据是高斯通量定理和电压环流定律; 2.电感的计算依据是诺伊曼公式。要一两个答案查书就够了,要成高手只能靠你自己~慢慢学,慢慢练。 容量是电容的大小与电压没有关系。电压是电容的耐压范围。可变电容一般用在低压电路中电容的计算公式: 平板C=Q/U=Q/Ed=εS/4πkd 1. 所以E=4πkQ/εS即场强E与两板间距离d无关。2.当电容器两端接电时,即电压U一定时,U=Ed,所以U和d成正比。 容抗用XC表示,电容用C(F)表示,频率用f(Hz)表示,那么Xc=1/2πfc 容抗的单位是欧。知道了交流电的频率f和电容C,就可以用上式把容抗计算出来。 感抗用XL表示,电感用L(H)表示,频率用f(Hz)表示,那么XL=2πfL感抗的单位是欧。知道了交流电的频率f和线圈的电感L,就可以用上式把感抗计算出来。 已知容抗与感抗,则对应的电压与电流可以用欧姆定律算出,如果电容与电阻和电感一起使用,就要考虑相位关系了。 2、电容器的计算公式: C=Q\U =S\4*3.1415KD Q为电荷量 U为电势差 S为相对面积 D为距离 3.1415实际是圆周率 K为静电力常数并联:C=C1+C2 电路中各电容电压相等;总电荷量等于各电容电荷量之和。串 联:1/C=1/C1+1/C2 电路中各电容电荷量相等;总电压等于各电容电压之和。 电容并联的等效电容等于各电容之和!电容的并联使总电容值增大。当电容的耐压值符合要求,但容量不够时,可将几个电容并联。

3、Q=UI=I2Xc=U2/Xc 这是单相电容的 Xc=1/2*3.14fc 为什么我看到一个三相电容上面标的额定容量是30Kvar,而额定容量是472微法。额定电压是450伏。额定电流是38.5安三角接法, 答:C,KVar/(U×U×2×π×f×0.000000001) ,30/(450×450×2×3.14×50×0.000000001)?472(μF) 4、我知道电容公式有C=εS/D和C=Q/U,那么他们与电容"C"的关系,我特别想知道:我知道"U"与电容成反比,但是我在听老师讲时,没听到为什么成反比,就像知道"Q"与电容的关系时,就明白,一个电容放得的电荷越多就越大,还有"ε"是什么,与电容有什么关系, 再请问在计算中应注意什么,电容是如何阻直通交的呢, 五一长假除了旅游还能做什么, 辅导补习美容养颜家庭家务加班须知 答:电容c是常数,只跟自身性质有关,即使没有电压,电荷它也是存在的,ε是介电,跟电介质的性质有关,交流能不停的对电容充电放电(因为交流的方向是变化的),二直流无此性质,所以通交流阻直流,更专业的话,大学物理里面会讲,如果你要求不高的话就不用深究了 5、电 容降压 在常用的低压电源中,用电容器降压(实际是电容限流)与用变压器相比,电容降压的电源体积小、经济、可靠、效率高,缺点是不如变压器变压的电源安全。通过电容器把交流电引入负载中,对地有220V电压,人易触电,但若用在不需人体接触的电路内部电路电源中, 本弱点也可克服。如冰箱电子温控器或遥控电源的开/关等电源都是用电容器降压而制作的。 相对于电阻降压,对于频率较低的50Hz交流电而言,在电容器上产生的热能损耗很小,所以电容器降压更优于电阻降压。

RLC串联谐振频率及其计算公式

R L C串联谐振频率及其计算公式 2009-04-21 09:51 串联谐振是指所研究的串联电路部分的电压和电流达到同相位,即电路中电感的感抗和电容的容抗在数值上时相等的,从而使所研究电路呈现纯电阻特性,在给定端电压的情况下,所研究的电路中将出现最大电流,电路中消耗的有功功率也最大. 1. 谐振定义:电路中L、C 两组件之能量相等,当能量由电路中某一电抗组件释 出时,且另一电抗组件必吸收相同之能量,即此两电抗组件间会产生一能量脉动。 2. 电路欲产生谐振,必须具备有电感器L及电容器C 两组件。 3. 谐振时其所对应之频率为谐振频率(resonance),或称共振频率,以f r表示之。 4. 串联谐振电路之条件如图1所示:当Q=Q I2X L = I2 X C也就是 X L =X C 时,为R-L-C 串联电路产生谐振之条件。 图1 串联谐振电路图 5. 串联谐振电路之特性: (1) 电路阻抗最小且为纯电阻。即Z =R+jX L jX C=R (2) 电路电流为最大。即 (3) 电路功率因子为1。即 (4) 电路平均功率最大。即P=I2R (5) 电路总虚功率为零。即Q L=Q C Q T=Q L Q C=0 6. 串联谐振电路之频率: (1) 公式:

(2) R - L -C 串联电路欲产生谐振时,可调整电源频率f 、电感器L 或电容器C 使其达到谐振频率f r ,而与电阻R完全无关。 7. 串联谐振电路之质量因子: (1) 定义:电感器或电容器在谐振时产生的电抗功率与电阻器消耗的平均功率 之比,称为谐振时之品质因子。 (2) 公式: (3) 品质因子Q值愈大表示电路对谐振时之响应愈佳。一般Q值在10~100 之间。 8. 串联谐振电路阻抗与频率之关系如图(2)所示: (1) 电阻R 与频率无关,系一常数,故为一横线。 (2) 电感抗X L=2 π fL ,与频率成正比,故为一斜线。 (3) 电容抗与频率成反比,故为一曲线。 (4) 阻抗Z = R+ j(X L X C) 当 f = f r时,Z = R 为最小值,电路为电阻性。 当f >f r时,X L>X C,电路为电感性。

RLC串联谐振法测电感

RLC串联谐振法测电容 摘要: 电容、电感元件在交流电路中的阻抗是随着电源频率的改变而改变。将正弦交流电压加到电阻、电容和电感组成的电路中时,各元件上的电压及相位会随之变化,这称作电路的稳态特性。利用这特性,当电源频率满足一定条件时,电源和电阻上的相位差为0,即两波形重叠,回路就发生了谐振现象。此时回路 f=。本实验研究了用示波器观察波形, 成纯电阻性,此时的电源频率 找出频率点测电容大小的方法即RLC谐振法测电容,用这种方法测量未知电容,并就实验原理、实验操作、实验误差进行分析。 关键词:电容,电感,相位,示波器,RLC谐振频率阻抗 一.实验目的 1.了解容抗和感抗随频率变化情况 2. 利用示波器测量给定电容的大小。 3.、加深理解电路发生谐振的条件、特点。 二、实验仪器 DH4503型RLC电路实验仪、电容、导线、UTD2062C数字示波器。 三、实验原理 1.RLC谐振 由RLC组成的电路在周期性交变电源的激励下,将产生受追形式的的交流振荡,其振荡幅度随交变电源频率的改变而变化,当电源频率满足一定条件时,回路的振荡幅度达到最大值,即回路发生谐振。

2.测RLC 谐振频率 通过逐点改变加在(直接或间接)RLC 谐振回路上信号频率来找到最大输 出时的频率点,并把这一频点定义为RLC 谐振频率。 3..RLC 串联电路如图5.1所示: 在图5.1所示的R 、L 、C 串联电路中,当正弦交流信号源的频率f 改变时,电路中的感抗、容抗随之而变,电路中的电流也随f 而变。取电阻R 上的电压 U0作为响应,当输入电压U 维持不变时,在不同信号频率的激励下,测出U0 之值,然后以f 为横坐标,以U0/U 为纵坐标,绘出光滑的曲线,此即为幅频特 性,亦称谐振曲线,如图5.2所示。 图中所加交流电压U (有效值)的角频率为w ,则电路的的复阻抗为:1Z R j WL WC ??=+- ??? 复阻抗的模为: 2 21Z R WL WC ??= +- ??? 复阻抗的幅角: 图5.1 RLC 串联电路 图5.2 谐振曲线

LCR串联谐振电路基础知识

LCR串联谐振电路基础知识 1. 谐振定义:电路中L、C 两组件之能量相等,当能量由电路中某一电抗组件释出时,且另一电抗组件必吸收相同之能量,即此两电抗组件间会产生一能量脉动。 2. 电路欲产生谐振,必须具备有电感器L及电容器C 两组件。 3. 谐振时其所对应之频率为谐振频率(resonance),或称共振频率,以f r表示之。 4. 串联谐振电路之条件如图1所示:当Q=Q ?I2X L = I2 X C也就是X L =X C时,为R-L-C串联电路产生谐振之条件。 图1 串联谐振电路图 5. 串联谐振电路的特性: (1) 电路阻抗最小且为纯电阻。即Z =R+jX L?jX C=R (2) 电路电流为最大。即 (3) 电路功率因子为1。即 (4) 电路平均功率最大。即P=I2R (5) 电路总虚功率为零。即Q L=Q C?Q T=Q L?Q C=0 6. 串联谐振电路频率计算公式: (1) 公式: (2) R - L -C串联电路欲产生谐振时,可调整电源频率f 、电感器L 或电容器C 使其达到谐振频率f r,而与电阻R完全无关。 7. 串联谐振电路品质因子(Q值): (1) 定义:电感器或电容器在谐振时产生的电抗功率与电阻器消耗的平均功率

之比,称为谐振时之品质因子。 (2) Q值计算公式: (3) 品质因子Q值愈大表示电路对谐振时之响应愈佳。一般Q值在10~100 之间。 8. 串联谐振电路阻抗与频率之关系如图(2)所示: (1) 电阻R 与频率无关,系一常数,故为一横线。 (2) 电感抗X L=2 πfL ,与频率成正比,故为一斜线。 (3) 电容抗与频率成反比,故为一曲线。 (4) 阻抗Z = R+ j(X L?X C) 当f = f r时,Z = R 为最小值,电路为电阻性。 当f > f r时,X L>X C,电路为电感性。 当f <fr时,X L<X C,电路为电容性。 当f = 0或f = ∞时, Z = ∞ ,电路为开路。 (5) 若将电源频率f由小增大,则电路阻抗Z 的变化为先减后增。 9. 串联谐振电路之选择性如图(3)所示: (1) 当f = f r时, ,此频率称为谐振频率。 (2) 当f = f1或f 2时, ,此频率称为旁带频率、截止频率或半功率频率。

电容计算公式

教你两条不变应万变得原理: 1.电容器的计算依据是高斯通量定理和电压环流定律; 2.电感的计算依据是诺伊曼公式。要一两个答案查书就够了,要成高手只能靠你自己!慢慢学,慢慢练。 容量是电容的大小与电压没有关系。电压是电容的耐压范围。可变电容一般用在低压电路中电容的计算公式: 平板C=Q/U=Q/Ed=εS/4πkd 1. 所以E=4πkQ/εS即场强E与两板间距离d无关。2.当电容器两端接电时,即电压U一定时,U=Ed,所以U和d成正比。 容抗用XC表示,电容用C(F)表示,频率用f(Hz)表示,那么Xc=1/2πfc 容抗的单位是欧。知道了交流电的频率f和电容C,就可以用上式把容抗计算出来。 感抗用XL表示,电感用L(H)表示,频率用f(Hz)表示,那么XL=2πfL感抗的单位是欧。知道了交流电的频率f和线圈的电感L,就可以用上式把感抗计算出来。 已知容抗与感抗,则对应的电压与电流可以用欧姆定律算出,如果电容与电阻和电感一起使用,就要考虑相位关系了。 2、电容器的计算公式: C=Q\U =S\4*3.1415KD Q为电荷量 U为电势差 S为相对面积 D为距离 3.1415实际是圆周率 K为静电力常数 并联:C=C1+C2 电路中各电容电压相等;总电荷量等于各电容电荷量之和。串联:1/C=1/C1+1/C2 电路中各电容电荷量相等;总电压等于各电容电压之和。 电容并联的等效电容等于各电容之和!电容的并联使总电容值增大。当电容的耐压值符合要求,但容量不够时,可将几个电容并联。 3、Q=UI=I2Xc=U2/Xc 这是单相电容的 Xc=1/2*3.14fc 为什么我看到一个三相电容上面标的额定容量是30Kvar,而额定容量是472微法。额定电压是450伏。额定电流是38.5安三角接法? 答:C=KVar/(U×U×2×π×f×0.000000001) =30/(450×450×2×3.14×50×0.000000001)≈472(μF) 4、我知道电容公式有C=εS/D和C=Q/U,那么他们与电容"C"的关系,我特别想知道:我知道"U"与电容成反比,但是我在听老师讲时,没听到为什么成反比,就像知道"Q"与电容的关系时,就明白,一个电容放得的电荷越多就越大?还有"ε"是什么,与电容有什么关系?再请问在计算中应注意什么?电容是如何阻直通交的呢? 五一长假除了旅游还能做什么?辅导补习美容养颜家庭家务加班须知 第 2 页共 3 页 答:电容c是常数,只跟自身性质有关,即使没有电压,电荷它也是存在的,ε是介电,跟电介质的性质有关,交流能不停的对电容充电放电(因为交流的方向是变化的),二直流无此性质,所以通交流阻直流,更专业的话,大学物理里面会讲,如果你要求不高的话就不用深究了 5、电容降压 在常用的低压电源中,用电容器降压(实际是电容限流)与用变压器相比,电容降压的电源体积小、经济、可靠、效率高,缺点是不如变压器变压的电源安全。通过电容器把交流电引入负载中,对地有220V电压,人易触电,但若用在不需人体接触的电路内部电路电源中,

电容器的串并联的计算方法

电容器的串并联的计算方 法 Final revision on November 26, 2020

电容器的串并联的计算方法 电容器并联时,相当于电极的面积加大,电容量也就加大了。并联时的总容量为各电容量之和:C并=C1+C2+C3+…… 顺便说说电容器的串联。若三个电容器串联后外加电压为U, 则U=U1+U2+U3=Q1/C1+Q2/C2+Q3/C3, 而电荷Q1=Q2=Q3=Q,所以Q/C串=(1/C1+1/C2+1/C3)Q 1/C串=1/C1+1/C2+1/C3 可见,串联后总电容量减小。 电容器串联时,要并联阻值比电容器绝缘电阻小的电阻,使各电容器上的电压分配均匀,以免电压分配不均而损坏电容器。 又可知,电容的串、并联计算正好与电阻的串、并联计算相反。 电压是充电时的电压,容量与电流,电压的关系和功率相似,和负载有关,电压和容量为定量时,负载电阻越小,电流越大,时间越短电压和负载为定量时,容量越大,电流不变,时间越长但实际放电电路中,一般负载是不变的,电容的电压是逐渐下降的,电流也就逐渐下降。 1.电容量(uf)=电流(mA)/15 限流电阻(Ω)=310/最大允许浪涌电流 放电电阻(KΩ)=500/电容(uf) 2.计算方式C=15×IC为电容容量单位微法i设备为工作电流单位为安 如一个灯泡的电阻为0.6安电容就选择15×0.6=9微法在电路里串连9微法的电容就可以了 3.经验公式,1uF输出50mA(如果是线性的话,10000F的超级电容可以达到500兆安培的浪涌电流) 还有 4.半波整流方式计算应该是每uF电容量提供约30mA电流,这是在中国的50Hz220V线路上的参考。 全波整流时电流加倍,即每uF可提供60mA电流。 而我比较清楚的是,书本上的公式:R*C≥(3~5)*T/2,需要知道纹波成份中的频率最低信号的频率是多少(即最大的T),然后来确定C的值。 电容的容量。

LC固有频率计算公式

Q=wL\R=2πfL\R(因为w=2πf)=1/wCR=1/2πfCR 1. LC并联谐振电路最常见的应用是构成选频电路或选频放大器; 2. LC串联谐振电路最主要用来构成吸收电路,用来构成在众多频率信号中将某一频率信号进行吸收,也就是进行衰减,将某一频率信号从众多频率中去掉; 3. LC并联谐振电路还可用来构成阻波电路,即从众多频率中阻止某一频率信号通过放大器或其他电路; 4. LC并联谐振电路还可以构成移相电路,用来对信号相位进行超前或滞逅移动。 a. 无论是LC并联谐振还是LC串联谐振电路,其频率的计算公式相同,谐振频率又称固有频率,或自然频率。f0=1/(2*pi*sqrt(L1*C1)); b. 品质因数Q值——衡量LC谐振电路振荡质量的重要参数。Q=(2*pi*f0*L1)/R1,R1为线圈L1的直流电阻,L1为谐振电路中电感; ①频点分析:输入信号频率等于该电路谐振电路谐振频率时,LC并联谐振电路发生谐振,此时谐振电路的阻抗达到最大,并且为纯阻性,Z0=Q*Q*R1,Q为品质因数,R1为线圈L1的直流电阻; ②高频段分析:输入信号频率高于谐振频率f0时,LC谐振电路处于失谐状态,电路阻抗下降; ③低频段分析:输入信号频率低于谐振电路f0时,LC并联谐振电路也处于失谐状态,谐振电路的阻抗也要减小。 信号频率低于谐振频率时,LC并联谐振电路的阻抗呈感性电路等效成一个电感(但不等于L1)。

1. 谐振定义:电路中L、C两组件之能量相等,当能量由电路中某一电抗组件释出时,且另一电抗组件必吸收相同之能量,即此两电抗组件间会产生一能量脉动。 2. 电路欲产生谐振,必须具备有电感器L及电容器C两组件。 3. 谐振时其所对应之频率为谐振频率(resonance),或称共振频率,以f r表示之。 4. 串联谐振电路之条件如图1所示:当Q=Q ?I2X L = I2 X C也就是 X L =X C时,为R-L-C串联电路产生谐振之条件。 图1 串联谐振电路图 5. 串联谐振电路之特性: (1) 电路阻抗最小且为纯电阻。即Z =R+jX L?jX C=R (2) 电路电流为最大。即 (3) 电路功率因子为1。即 (4) 电路平均功率最大。即P=I2R (5) 电路总虚功率为零。即Q L=Q C?Q T=Q L?Q C=0 6. 串联谐振电路之频率: (1) 公式: (2) R - L -C串联电路欲产生谐振时,可调整电源频率f 、电感器L 或电容器C 使其达到谐振频率f r,而与电阻R完全无关。 7. 串联谐振电路之质量因子: (1) 定义:电感器或电容器在谐振时产生的电抗功率与电阻器消耗的平均功率

电容补偿计算方法

1、感性负载的视在功率S×负载的功率因数COSφ = 需要补偿的无功功率Q: S×COSφ =Q 2、相无功率Q‘ =? 补偿的三相无功功率Q/3 3、因为:Q =2πfCU^2 ,所以: 1μF电容、额定电压380v时,无功容量是Q=0.045Kvar 100μF电容、额定电压380v时,无功容量是Q=4.5Kvar? 1000μF电容、额定电压380v时,无功容量是Q=45Kvar 4、“多大负荷需要多大电容” : 1)你可以先算出三相的无功功率Q; 2)在算出1相的无功功率Q/3; 3)在算出1相的电容C; 4)然后三角形连接! 5、因为:Q =2πfCU^2 ,所以: 1μF电容、额定电压10Kv时,无功容量是Q=31.4Kvar 100μF电容、额定电压10Kv时,无功容量是Q=3140Kvar 6、因为:Q =2πfCU^2 ,所以: 1μF电容、额定电压220v时,无功容量是Q=0.015Kvar 100μF电容、额定电压220v时,无功容量是Q=1.520Kvar? 1000μF电容、额定电压220v时,无功容量是Q=15.198Kvar

提高功率因数节能计算 我这里有一个电机,有功功率 kw 23.3 视在功率 kva 87.2 无功功率 kvar 84.1 功率因数cosφ=0.27 电压是377V 电流是135A 麻烦帮我算一下功率因数提高到0.95所节约的电能,以及需要就地补偿的电容容量,请给出公式和注意事项,感谢! 满意答案 网友回答2014-05-03 有功功率23.3KW是不变的,功率因数提高到0.95以后,无功功率降低为Q=P*tgφ= P*tg(arcosφ)=P*tg(arcos0.95)=23.3*0.33=7.7kvar 需补偿容量为84.1-7.7=76.4kvar 视在功率也减小为P/cosφ=23.3/0.95=24.5kva 所节约的电能是不好计算的,因为电能是以有功电量计算的,但功率因数提高了,你的力率电费会减少,能少交很多电费。 另外,因为视在功率降低了,线路上的电流也就降低了,线路损耗也能相应降低不少,电压也会有所提高。。 电动机无功补偿容量的计算方法 有以下两种: 1、空载电流法 Qc=3(Uc2/Ue2)*Ue*Io*K1。 说明: I0——电动机空载电流; Uc——电容器额定电压(kv); Ue——电动机额定电压; K1——推荐系统0.9。 2、目标功率因数法 Qc=P(1/(cosφe2-1)-1/(cosφ2-1))*K2。 说明:cosφe——电动机额定功率因数; K2——修正系数; cosφ ——电动机补偿后的目标功率因数; P——电动机额定功率; Ue——电动机额定电压; 推荐cosφ在0.95~0.98范围内选取。

详解滤波电容的选择及计算

电源滤波电容的选择与计算 电感的阻抗与频率成正比,电容的阻抗与频率成反比.所以,电感可以阻扼高频通过,电容可 以阻扼低频通过.二者适当组合,就可过滤各种频率信号.如在整流电路中,将电容并在负载 上或将电感串联在负载上,可滤去交流纹波.。电容滤波属电压滤波,是直接储存脉动电压来平滑输出电压,输出电压高,接近交流电压峰值;适用于小电流,电流越小滤波效果越好。电感滤波属电流滤波,是靠通过电流产生电磁感应来平滑输出电流,输出电压低,低于交流电压有效值;适用于大电流,电流越大滤波效果越好。电容和电感的很多特性是恰恰相反的。 一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低频信号,其频率也分为了好几个数量级。因此为了适合在不同频率下使用,电解电容也分为高频电容和低频电容(这里的高频是相对而言)。 低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz。当我们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高。因此在使用中会因电解液的频繁极化而产生较大的热量。而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂。 电源滤波电容的大小,平时做设计,前级用4.7u,用于滤低频,二级用0.1u,用于滤高频,4.7uF的电容作用是减小输出脉动和低频干扰,0.1uF的电容应该是减小由于负载电流瞬时变化引起的高频干扰。一般前面那个越大越好,两个电容值相差大概100倍左右。电源滤波,开关电源,要看你的ESR(电容的等效串联电阻)有多大,而高频电容的选择最好在其自谐振频率上。大电容是防止浪涌,机理就好比大水库防洪能力更强一样;小电容滤高频干扰,任何器件都可以等效成一个电阻、电感、电容的串并联电路,也就有了自谐振,只有在这个自谐振频率上,等效电阻最小,所以滤波最好! 电容的等效模型为一电感L,一电阻R和电容C的串联, 电感L为电容引线所至,电阻R代表电容的有功功率损耗,电容C. 因而可等效为串联LC回路求其谐振频率,串联谐振的条件为WL=1/WC,W=2*PI*f,从而得到此式子f=1/(2pi*LC).,串联LC回路中心频率处电抗最小表现为纯电阻,所以中心频率处起到滤波效果.引线电感的大小因其粗细长短而不同,接地电容的电感一般是1MM为10nH左右,取决于需要接地的频率.

电容器电流计算

电容器电流计算 The manuscript was revised on the evening of 2021

电流计算 根据某进口品牌电容器铭牌,参考举例:要达到50Kvar无功输出。需配置电容器为70Kvar电容器。其额定电流为:81.6A,额定电压为:500V,产品型号:7R50+XD70. 根据公式计算: 额定电流 I=Q÷·U)=70÷又根据I=U/Z=U÷(1/wc)=wc·U 故wc=I/U=81÷=162 1、当电容器运行在480V系统电压下时:I=wc·U Q=·I 电流(A) I==≈78A 容量(Kvar) Q=·I= 2、当电容器运行在450V系统电压下时:电流(A) I==≈73A 容量(Kvar) Q=·I= 3、当电容器运行在440V系统电压下时:电流(A) I== 容量(Kvar) Q=·I=、当电容器运行在420V系统电压下时:电流(A) I==≈68A 容量(Kvar) Q=·I= 综上计算公式可知,当系统电压越低,运行电流也变小,其实际输出容量则越小。考虑到一般低压配电系统运行电压为380V±5%。 取其上限计算。U=380+=399≈400V .考虑其加装7%电抗器后电容器端电压被抬高大约28V左右.实际运行电压假定为430V。 电流(A) I==≈70A

容量(Kvar) Q=·I=若实际电流为380V, 考虑其加装7%电抗器后电容器端电压被抬高大约28V左右.实际运行电压假定为410V. 电流(A) I==≈67A 容量(Kvar) Q=·I=下图为某进口电容器铭牌: 根 据 以 上 公 式 来 推算,其铭牌标注容量跟实际计算容量完全吻合。

电容的选取与充放电时间的计算

电容的选取与充放电时间的计算 电容的选取: 电容在电路中实际要承受的电压不能超过它的耐压值。在滤波电路中,电容的耐压值不要小于交流有效值的1.42倍。使用电解电容的时候,还要注意正负极不要接反。 不同电路应该选用不同种类的电容。揩振回路可以选用云母、高频陶瓷电容,隔直流可以选用纸介、涤纶、云母、电解、陶瓷等电容,滤波可以选用电解电容,旁路可以选用涤纶、纸介、陶瓷、电解等电容。 电容在装入电路前要检查它有没有短路、断路和漏电等现象,并且核对它的电容值。安装的时候,要使电容的类别、容量、耐压等符号容易看到,以便核实。 电容的原理: 在电子线路中,电容用来通过交流而阻隔直流,也用来存储和释放电荷以充当滤波器,平滑输出脉动信号。小容量的电容,通常在高频电路中使用,如收音机、发射机和振荡器中。大容量的电容往往是作滤波和存储电荷用。而且还有一个特点,一般1μF以上的电容均为电解电容,而1μF以下的电容多为瓷片电容,当然也有其他的,比如独石电容、涤纶电容、小容量的云母电容等。电解电容有个铝壳,里面充满了电解质,并引出两个电极,作为正(+)、负(-)极,与

其它电容器不同,它们在电路中的极性不能接错,而其他电容则没有极性。 把电容器的两个电极分别接在电源的正、负极上,过一会儿即使把电源断开,两个引脚间仍然会有残留电压(学了以后的教程,可以用万用表观察),我们说电容器储存了电荷。电容器极板间建立起电压,积蓄起电能,这个过程称为电容器的充电。充好电的电容器两端有一定的电压。电容器储存的电荷向电路释放的过程,称为电容器的放电。 举一个现实生活中的例子,我们看到市售的整流电源在拔下插头后,上面的发光二极管还会继续亮一会儿,然后逐渐熄灭,就是因为里面的电容事先存储了电能,然后释放。当然这个电容原本是用作滤波的。至于电容滤波,不知你有没有用整流电源听随身听的经历,一般低质的电源由于厂家出于节约成本考虑使用了较小容量的滤波电容,造成耳机中有嗡嗡声。这时可以在电源两端并接上一个较大容量的电解电容(1000μF,注意正极接正极),一般可以改善效果。发烧友制作HiFi音响,都要用至少1万微法以上的电容器来滤波,滤波电容越大,输出的电压波形越接近直流,而且大电容的储能作用,使得突发的大信号到来时,电路有足够的能量转换为强劲有力的音频输出。这时,大电容的作用有点像水库,使得原来汹涌的水流平滑地输出,并可以保证下游大量用水时的供应。

串联谐振电路计算公式及研究

串联谐振耐压试验技术是现阶段国际上先进的电气设备主绝缘测试技术,较之以往使用的工频交流耐压试验设备,其结构简单,适用范围广,所需试验电源容量也大大减小。目前,在日常电气设备的调试工作中应用已非常普遍。 RLC 串联谐振电路中回路电流、电容电压和电感电压的最大值发生的频率并不相同, 而电容电压和电感电压发生最大值的频率分别小于和大于电路的固有频率, 且还得满足电阻 R 的条件, 否则电容和电感电压不可能达到最大值 .这些结论给实际应用中的 RLC 串联谐振电路的分析和应用提供了重要的理论依据。 按照电气设备交接试验要求,变压器、GIS系统、SF6断路器、电流互感器、电力电缆、套管等容性设备交接时需进行交流耐压试验。采用传统的工频电压试验法进行容性设备交流耐压试验时,升压试验变压器笨重、庞大,且现场大电流试验电源不易取得。与传统试验方法相比较,变频串联谐振具有输入电源容量小、设备重量轻,品质因数高,并具有自动调谐、多重保护、组合方式灵活等优点。由于串联谐振电源是利用谐振电抗器和被试品电容谐振产生高电压和大电流的,试验电源只需提供系统有功的消耗,因此其所需电源功率只有试验容量的1/Q。而且,由于串联谐振试验不需要大功率调压装置和工频试验变压器,谐振激磁电源只需试验容量的1/Q,使得串联谐振系统重量和体积大大减少。另外,谐振电源是谐振式滤波电路,其能改善输出电压波形,从而防止谐波峰值对试品的误击穿。而在串联谐振状态下,当试品绝缘弱点被击穿时,电路立即脱谐,回路电流迅速下降为正常试验电流的1/Q,故其还可防止大的短路电流对故障点的烧伤。 在电阻、电感及电容所组成的串联电路中,当容抗与感抗相等时,电路中的电压与电流相位相同,电路呈现纯电阻性,此即为串联谐振。当电路发生串联谐振时,电路的阻抗Z=R ,此时回路总阻抗值最小,回路电流最大值。图1(a)所示为电感和电容元件串联组成的一端口网络,其等效阻抗 ,当发生谐振时,其端口电压与电流同相位,即 ,由此可推得谐振角频率和谐振频率分别为 ?。定义谐振时的感抗或容抗为特性阻抗ρ,则特性阻抗ρ与电阻R 的比值即为品质因数Q。

电抗滤波器的谐振频率如何计算

关于电抗滤波器的问题,为什么在7%时189Hz时形成谐振?如何计算的? 今天一个厂家来做产品推荐,当谈到电抗滤波器抑制流经电容器的谐波电流时,突然想从理论计算出为何电抗为电容的7%时,形成谐振,而此时的频率F0=189Hz。但是我发现凭我的能力算不出来。麻烦会的朋友告诉我这个计算过程,现在很纠结这个问题。一个所有样本上写出的东西是如何计算得出的。 我现在就知道f=/(2x3.14x(LC)^2)。再往后如何计算啊? 问厂家的技术人员,他们也不能推导出整个过程,后来老总说你自己回去推倒吧。算了半天还是算不出来,睡不着觉了。 没人回答吗?我查了一晚上文献,终于明白自己错在哪了。 所谓的7%是指电抗与电容器的有名值比,即感抗/容抗,单位都应该是欧姆。而我一直是按照电感与电容来推导的,单位都不一样(H和F),根本不是一个概念。 正确的推导应该是:XL为基波下(即50Hz)电抗器的感抗,Xc为基波下电容器的容抗,假设n次谐波发生谐振,则nXL=Xc/n(XLn=2π n f0 L,Xcn=1/(2π n f0 C),导出n=√(Xc/XL)=√(1/0.07)=3.78,即3.78x50=189Hz时发生谐振。 或者说,7%是指基波电流下感抗与容抗的比值,f0=50Hz。从这个角度出发,也可以通过f=/(2x3.14x(LC)^2)推导,只要把(XLn=2π n f0 L,Xcn=1/(2π n f0 C)搞懂就行。另外推荐大家看看《串联电抗器抑制谐波的作用及电抗率的选择》,对谐波治理以及无功补偿能有一个数学模型上的认识。 看来我还是对基础概念有混淆,相信有部分和我一样年轻的工程师也有这个问题,希望大家以我为戒。弄清这个问题实际上对做工程没有太大意义,因为样本上已经把想处理几次谐波选择多大的电抗器给出来,只要查数据就行了。只是我这个人有些偏执狂,如果弄不懂一个非常想知道的问题就睡不着觉。 另外,这个论坛要是能贴mathtype的公式就好了,否则写的麻烦,看的也麻烦。

相关主题
文本预览
相关文档 最新文档