当前位置:文档之家› 公交车调度的方案优化设计

公交车调度的方案优化设计

公交车调度的方案优化设计
公交车调度的方案优化设计

公交公交车调度方案优化设计

摘要

本文利用某一特大城市某条公交路线上的客流调查运营资料,以乘客的平均抱怨度、公司运营所需的总车辆数、公司每天所发的总车次数以及平均每车次的载客率为目标函数,建立了的分时段等间隔发车的综合优化调度模型。在模型求解过程中,采用了时间步长法、等效法以及二者的结合的等效时间步长法三种求解方法,尤其是第三种求解方法既提高了速度又改善了精度。结合模型的求解结果,我们最终推荐的模型是分时段等间隔发车的优化调度方案。

在建立模型时,我们首先进行了一些必要假设和分析,尤其是针对乘客的抱怨程度这一模糊性的指标,进行了合理的定义。既考虑了乘客抱怨度和等待时间长短的关系,也照顾了不同时间段内抱怨度对等待时间的敏感性不同,即乘客在不同时段等待相同时间抱怨度可能不一样。

主要思想是通过逐步改变发车时间间隔用计算机模拟各个时间段期间的系统运行状态,确定最优的发车时间间隔,但计算量过大,对初值依赖性强。等效法是基于先来先上总候车时间和后来先上的总候车时间相等的原理,通过把问题等价为后来先上的情况,巧妙地利用“滞留人数”的概念,把原来数据大大简化了。很快而且很方便地就可求出给定发车间隔时的平均等待时间,和在给定平均等待时间的情况下的发车间隔,但该方法只能对不同时段分别处理。结合前两种方法的优点提出等效时间步长法,即从全天时段内考虑整体目标,使用等效法为时间步长法提供初值,通过逐步求精,把整个一天联合在一起进行优化。通过对模型计算结果的分析,我们发现由于高峰期乘车人数在所有站点都突然大量增加,而车辆调度有滞后效应,从而建议调度方案根据实际情况前移一段适当的时间。在模型的进一步讨论和推广中,我们还对采集运营数据方法的优化、公共汽车线路的通行能力以及上下行方向发车的均衡性等进行了讨论。

在求具体发车时刻表时,利用等效时间步长法,较快地根据题中所给出的数据设计了一个较好的照顾到了乘客和公交公司双方利益的公交车调度方案,给出了两个起点站的发车时刻表(见表二),得出了总共需要49辆车,共发440辆次,早高峰期间等待时间超过5分钟的人数占早高峰期间总人数的0.93%,非早高峰期间等待时间超过10分钟的人数占非早高峰期间总人数的3.12%。引入随机干扰因子,使各单位时间内等车人数发生随机改变。在不同随机干扰水平下,对推荐的调度方案进行仿真计算,发现平均抱怨度对10%的随机干扰水平相对改变只有0.53%,因此该方案对随机变化有很好的适应性,能满足实际调度的需要。

1.问题的提出

公共交通是城市交通的重要组成部分,做好公交车的调度对于完善城市交通环境、改善市民出行状况、提高公交公司的经济和社会效益,都具有重要意义。下面考虑一条公交线路上公交车的调度问题,其数据来自我国一座特大城市某条公交线路的客流调查和运营资料。

该条公交线路上行方向共14站,下行方向共13站,题中给出了典型的一个工作日两个运行方向各站上下车的乘客流量统计。公交公司配给该线路同一型号的大客车,每辆标准载客100人,据统计客车在该线路上运行的平均速度为20公里/小时。运营调度要求,乘客候车时间一般不要超过10分钟,早高峰时一般不要超过5分钟,车辆满载率不应超过120%,一般也不要低于50%。

试根据这些资料和要求,为该线路设计一个便于操作的全天(工作日)的公交车调度方案,包括两个起点站的发车时刻表;一共需要多少辆车;这个方案以怎样的程度照顾到了乘客和公交公司双方的利益。

2.模型假设与说明

1.题目中所给出的一个工作日的乘客流量统计数据是具有代表性的;

2.工作日每天同一时间的乘客流量大致相等;

3.在任何时刻车辆上的人数不能多于120人;

4. 每个乘客都严格遵守先到先上车的规则;

5. 在公交线路上所有车辆总能正常通行,不考虑诸如堵车、交通事故等意外情况;

6.不考虑公交车在各站的停车时间,即乘客上下车均在瞬间完成;

7.公交车在公路上行驶速度处处相等,都等于题目中给出的平均速度;

3.符号系统

l 上:公交路线上行方向的总路程; l 下:公交路线下行方向的总路程;

v :客车行驶的平均速度;

上i t ?:上行车辆第i 段时间内的发车时间间隔;

下i t ?:下行车辆第i 段时间内的发车时间间隔;

ρ:乘客的抱怨度;

N :一共需要的车辆数;

S :一天总的发车次数;

η:平均每车次的载客率;

总i num :在第i 时间段内上车的总人数; 总num :一天的乘车总人数;

4.问题分析与模型的建立

4.1 问题分析

本题要求设计全天(工作日)的公交车调度方案,这里需要考虑乘客和公交公司两方面的利益,是一个多目标的优化问题。其中可以供选择的目标函数主要有:1)乘客候车时间要尽量短;2)候车时间超过5分钟乘客数要尽量少;3)公交公司所需的总车辆数尽量少;4)全天范围内,发车的总次数尽量少;5)平均每车次的载客率尽量高等等。

以上的目标可以用乘客利益和公司利益分为两类,这两类目标是相互冲突的,不可能同时达到最大。工作日的早高峰正是多数乘客上班的时间,也是一天中乘坐公交车人数的高峰期,所以这段时间里所需的车辆数也是最多的。从乘客的方面考虑,早上上班迟到对他的利益的损失相当大,因此乘客希望候车时间一般不要超过5分钟。这时应以乘客的抱怨程度尽量小为主要目标,求得公交公司在早高峰期间的所需的最少车辆数。在其余时间段里,乘客候车时间一般不要超过10分钟,这时考虑到公交公司的利益使其在这段时间内所发的总共发车的车次总数最少,以及提高每车次的载客率为主要目标。

因此我们首先确定出早高峰期,针对早高峰期的数据,在一定的乘客抱怨水平下,求出共需多少辆车,然后再根据全天其它时段的数据,并综合其它指标求出两个起点站的发车时刻表。

由于题目中所给出的仅是各站一个小时上下车人数的数据,对于我们的计算而言太过粗糙。首先想到的是运用题中的数据对每一车站在各时段上车和下车的人数进行分布拟合,但这样做也有很大的缺点,因为各时段每个站点上下车人数受上下班时间以及道路沿线工厂等因素影响很大,从而导致各时段前后相关性很小。而对各时段上车和下车的人数进行分布拟合就人为的增加了各时间段的上下班人数的相关性,与实际情况不符。

实际中如果把统计做的更细致或者知道那些影响上下车人数分布的因素,就可以较好的求出这些分布;由于缺乏我们对这些情况得了解,所以我们假设各站的上下车人数在各个时间段(一小时)内分布是均匀的,即

E[num ik(t,Δt i)]=λ(Δt i)= num ik/Δt i

其中num ik(t,Δt i)表示在[t,Δt i]内上车的人数。

4.2模型的建立

为了更好的建立模型,首先要明确下面几个问题:

1)时间段的划分:假设在题目中给出的各时段(一小时)内,各车站上下车的乘客人数分布均匀,这样就可将全天分为18个时间段,分别对每一个时间段进行考虑,并认为每个时间段内的发车间隔时间Δt i上和Δt i下分别为常数,但两者不一定相等。

2)对下行方向的处理:从题中数据可以看出上行方向比下行方向多一个车站A1,我们对此的处理是在下行方向同样也补上一个车站A1,并且令这个车站在任何时段上车和下车的人数均为0。

3)对乘客平均抱怨度的定义:考虑到一个人的抱怨程度是一个模糊的表述,它与候车时间的长短有关,候车时间越长,抱怨程度越大,但候车时间足够短时又不会抱怨。经过分析可以定义第i个时间段上行的(或下行的)第j个乘客的抱怨度为:

?????????>≤<≤<≤<≤=10,107,75,54,4,0),(4321ij i ij i ij i ij i ij w w w w w j i γγγγρ上 或 ?????????>≤<≤<≤<≤=10

,107,75,54,4,0),(4321ij i ij i

ij i ij i ij w w w w w j i γγγγρ下

式中i 1γ,i 2γ,i 3γ,i 4γ表示当此乘客不同等待时间w ij 对应不同的抱怨度。可以看出抱怨度不仅与等待时间的长短有关,而且还会与所在的时间段i 有关。很明显,早高峰期间和平时时段里等待同样长的时间,前者给乘客造成的损失可能更大些,因此抱怨度也会相应大一些。

有了每个乘客抱怨度的定义,第i 时间段的平均抱怨度为:

∑=+=总下上总i num j i i j i j i num 1

)),(),((1ρρρ 一天内的平均抱怨度为:∑==18

1i i i ρωρ

式中ωi 表示第i 段时间内区间的平均抱怨度对总平均抱怨度的权重,可取118

1∑===i i i i num num ωω,使得总总

。其中w ij 是由Δt i 上或Δt i 下及num ik (t ,Δt i )决定的,其中num ik (t ,Δt i )是一个随机量,故w ij 也是一个随机量,从而一天内的平均抱怨度ρ也是一个随机量,可表示为f (Δt i 上,Δt i 下)。

4)总车辆数的确定: 一天所需的总车辆数N 等于各时段所需的总车辆数N i 中的最大值,即N=g (Δt i 上,Δt i 下)=max{N 1,N 2,…,N 18},而每一时段所需的总车辆数由上行车辆数、下行车辆数,加开车辆数三部分组成,有N i =N i 上+N i 下+ N i 加

其中 ??

?????=???????=下上下上下上i i i i t v l N t v l N , ????????????-?-=下

上上下上下下下上上下下上上加i i i i i i i i i i i i i i i t t t t t t v l T t t t t t t v l T N ],)[(],)[(

这里[·]表示对括号内的数取整。

5)对平均每车次的载客率的定义:考虑到每车次的运营成本基本不变,这样 平均每车次的载客数目的多少就能反映公司的利益。于是我们定义平均每车次载客率定义为:η=num 总/S 即:

)(181181141下

上上

i i i i i i j ij T T num ?+?=∑∑∑===η

式中上ij num 代表第i 时段在第j 车站到上车人数(包括上行和下行);i T 代表第时段的时间间隔;i ?第i 时段上行或下行的发车时间间隔。

平均每车次的载客率的高低直接反映了一个调度方案对于公交公司的收益率。一般地乘坐公交车是按次计费的,所以总上车人数即反映了公交公司一天的收入,而总发车次数则反映了公交公司一天的支出。

6)据以上分析,我们建立如下模型:

目标:min E[ρ]=E[f (Δt i 上,Δt i 下)]

min N=g (Δt i 上,Δt i 下)

min ])/[]/([18

1下上i i i i i t T t T S ?+?=∑= 这里[?]表示对括号内的数取整

max η=num 总/S

调度要求:

1.每辆车上承载的人数不超过120人;

2.在给定时间段T i =60(分)内Δt i 上,Δt i 下为定值。

5.模型的求解

5.0 解法分析

在我们建立的模型中的多个目标中,总共需要的车辆数N 涉及到公司建立一条公交线路的初始投资,每辆车所需的资金巨大,应被首先考虑。而要确定总共需要的车辆数,只需求出早高峰期(我们根据题中给出的数据,假设早高峰期为7:00—8:00和8:00—9:00两个时段)内所需的车辆数即可。

考虑到实际求解过程中,对于前面模型中所定义的抱怨度在各个时间段内对于不同等待时间长度取值问题,可以通过实际的调查数据得到;简化地想,如果对应所有的区间,顾客等待时间长度大于5分钟时都取1,而小于5时都取0,那么这是所定义的抱怨度直观意义就是指所有时间内等待时间超过5分钟的人数占总人数的比值,但显然着这种定义太粗糙;由于缺乏实际的调查,我们在以下求解过程中对抱怨度在各个时间段内对于不同等待时间长度取值作以下假定:早高峰期间γi1--γi4分别取[0 0.3 1 1.5 2.4];而其它时间段内γi1--γi4分别取[0 0.15 0.5 0.75 1.2]。

5.1 解法一:时间步长法

总体思路:在给定的假设原则下,通过逐步改变发车时间间隔用计算机模拟各个时间段期间的系统运行状态,确定最优的发车时间间隔。为简化计算,可以设定每个车站单位时间内上下车人数分别正比于该车站在这个时间段上下车的总人数,即num ik (t ,Δt i )=λ(Δt i )= num ik /Δt i 。

运行步骤:

1)初始发车时间间隔i t ?,i =1,2, (18)

2)设置初始状态。模拟时钟00=T 、终点时间60=e T

3)设置每个车站等车人数以及待发车辆的最初状态,将每个车站的等车人 按其等待时间的长短分为以下几类:10<≤ij w 、21<≤ij w 、

32<≤ij w 、

54<≤ij w 、65<≤ij w 、…;

4)判断是否需要发车以及是否有车到站,并更改一次各车站等车人数及

运行车辆的状态。其中运行车辆的状态包括实际承载人数和空余座位 数。判断是否到了终点时间?——若是,转5);否则100+=T T 转2);

5)统计整个过程中各区间等车时间超过5分钟以上的人数,对这些人加权

求和,然后除以该过程总的上车人数得到平均抱怨程度。判断是否大于给定的目标抱怨度?——若大于给定值则转1),并改变发车时间间隔Δt i ;否则,给出结果并转6)。

6)结束。

5.2 解法二:等效法

总体思路:由于不同上车规则所对应的所有乘车人员的等待时间之和T 总是相等的,可以把先到先乘车这个规则所对应的T 总等效成后到先乘车规则的情况求出来。由T 总除以总乘车人数可以得到乘客的平均等待时间T 平,对乘客而言,

T 平当然越小越好,即可以把T 平作为一个目标;当然也可以这样解释:通过对乘

客等待时间的统计,可得到等待时间位于各个时间区间内的乘客人数。通过拟合有如下图所示的分布,图中虚线代表T 平,那么图中阴影所示的面积就反映了等

车时间超过5分钟的比重。由图可看出,T 平的值越小,抱怨度也会越小。

图一

等效法求解T 平的计算原理及方法:

利用等效的概念求解是基于这样一种结论:只要每个乘客到达的车站的时间和发车的间隔确定,那么先到先上车的规则和后到先上车的规则两种情况下所有人员的等车时间总和总是相等的。例如:甲在一个车站等待,过了一个周期来了一辆车和乙,但车只有一个座位;又过一个周期,又来了一辆车和丙,也是只能一个人上。那么,这段时间里如果按照先来先上规则,甲和乙的等车时间都是一个周期;如果按照后来先上规则,则甲的等车时间是两个周期,而乙可以不等待, 但是两人的等待时间之和是一样的。如果沒有更多的空位如果没有更多的空位,甲将被“滞留”在那里。

这种现象可解释为:如果出现等待,先到先上规则是每个乘客都得等一段时间,而后到先上规则却是先到的人员一直在等,后来得人反倒可以即来即上。相当于后来人员的等待时间被折合到先到人员身上的缘故。先到的乘客担当了全体人员的“替罪羊”,从而形成了在整个时间隔内永远上不了车的滞留情况。这样就可以只通过计算这些滞留人员的滞留时间之和,得到全体的平均等待时间。

定义 第i 个时段内,第j 个车站的净上车人数a ij 为该车站在这一时段内的

上车人数减去下去车人数。

用以上定义对数据进行预处理,即得到每个车站在各时间段内的的净上车人数a ij 。考虑在Δt i 内,一辆本来已经满载的车经过第j 个车站的情况:如果这个车站的净上车人数大于0,则这个站滞留的乘客人数为Δt i 内的净上车人数a ij Δt i /T i ;若净上车人数小于等于0,则这个车站可以为后面的车站提供空位置,从而使得下面站点的滞留人数减少,即可等效为它能提供的滞留人数为一负值,用来对消后面车站的滞留人数;但是如果其后面所有车站的净上车人数之和为负的话,它所提供的空位永远也不会有人来坐,负的滞留人数就没有实际意义。这时就可令它和它之后的所有车站所能提供的滞留人数都为0。按照以上方法可求得每个时段上只有前面若干个车站会出现滞留人数,即可简化计算;同时对第i 时段的始发站而言,它所提供的滞留人数为:)120(i

i ij

T t a ?--。图二给出的是7:00—8:00段各站上行方向上的净上车人数)。

图二

按上述等效原理,算出各时间段内各站的净上车人数,即滞留人数,而滞留的人从到站起就一直等待到时间段结束,其等待时间成一个等差数列。由此可得总的等待时间的计算公式为:

))(())120((][111∑∑?=≠??-???+??--=i

i t T n i i j ij i i i i i i t n T a T t a T t T 总 而平均等待时间T i 平=T i 总/总i num

下面给出上行方向各段平均等待时间T i 平的目标,求得结果如下:

表一:上行方向各段平均等待时间T i 平的目标

T i 平 7

3 2 2

4 4 4 4 4 4 4 3 3 4 4 4 4 7 Δt i 9.7 2.

5 1.4

6 2.58 4.5 5.6 4.8 5.5 6.1 6.9

7 3.2 2.65 7 11.3 12.3 15.3 37.3

误差讨论:

该方案计算时,当一个人的等待时间i ij t w ?<时,他的等待时间就被忽略了,导致结果偏小,这里应对平均等待时间T 平加上一个Δt i /2的修正;

5.3解法三:等效时间步长法

时间步长法虽然将全天的数据作为一个整体来处理,充分考虑到各时间段的数据对相邻时间段的影响,可以较好的模拟出全天公交车的运营情况,并且给出对乘客抱怨度较为精确的描述;但Δt i 是一个18维的向量,我们对于初值的确定缺乏依据,而导致大量盲目的搜索。

另一方面,等效法可方便快捷的给出在平均等待时间T 平约束下各段的发车

时间间隔;但其根本缺陷在于只对每个时间段内的数据进行处理,而没有考虑到上一时间段遗留下来的人对本时间段的影响及本时间段遗留的人对下一时间段的影响。因此算出的结果对于全天来说是就不见得特别好了。

结合前面两种算法,我们想到可以首先用等效法算出几组Δt i 的初值,然后将 这些初值带入时间步长法中进行计算,得出平均抱怨度最小的一组Δt i 作为我们的结果。

5.4模型的结果:

按解法三求得结果如下:

1.两个起点站的发车时刻表如下:

2.总共需要N=49辆车;

3.一天内总的发车次数为S=440 次,其中下行方向为202次,上行方向为 238次;

4.平均每次车载客率P=246人/车次

5.抱怨度ρ=0.2831

5.5 方案模拟

不同工作日同一时段乘客到达总数基本相同,但由于种种随机因素的影响,它总是有一定的上下波动。于是在单位时间内到达乘客数均值m 上引入随机量ε,它服从均值为0正态分布,其均方差与m 成正比关系,即ε~N(0,(m ?α)2 ) 于是实际到达人数ε+='m m ,其中可以通过调整α来控制波动的程度。

在α不同水平下的对上行方向调度方案仿真,同一水平下作100次仿真然后取均值得到一天不同候车时间w 占全天乘车人数的比值及最后总的抱怨度ρ。

表四:不同随机水平α上行方向调度方案仿真结果

5<≤w 6 6<≤w 7 7<≤w 8 8<≤w 9 9<≤w 10 10w ≤ ρ

α=0

0.0688 0.05 0.0137 0.0127 0.0158 0.0297 0.2826 α=0.01 0.0688

0.05 0.0137 0.0128 0.0156 0.0297 0.2827 α=0.02 0.0688 0.0501

0.014 0.0129 0.0156 0.0297 0.2830 α=0.05 0.0687 0.0501 0.0139 0.0129

0.0151 0.0302 0.2835 α=0.1

0.0687 0.0508 0.0147 0.0139 0.0151 0.0295 0.2841 可以看出,调度方案对α即对于数据的波动不敏感。最大随机水平α=0.1时,抱怨度相对变化只有0.53%,此方案有较大的适用范围。

5.6 结果分析与模型改进

通过对上面所得到的结果进行分析可以看出高峰期及高峰期前各时间段等车时间较长的人数较多,而高峰期后各时间段等车时间较长的人几乎没有。

其原因是我们的模型是在第i 段的起点时刻才开始启用第i 段的时间间隔i t ?,而在第i 段发出第一辆车的时刻,各站的上下车人数均已按第i 段的数据开始出现了,但已在路上运行的车还是按第i-1段的时间间隔1-?i t 发出的,这样车就明显的与乘客的需求不相符合。当第i 段的上下车人数大于第i-1段的上下车人数时,乘客的等待时间显然会变长,增加乘客的抱怨;我们的结果中高峰期及高峰期前各时间段等车时间较长的人数较多就是这种情况;反之,乘客的等待时间显然会变短,同时也使车辆的满载率过低,不符合公司的利益。

对此我们可对我们的模型作如下调整:

在第i 段的起始时刻之前Tr 时刻开始的T i =60(分)时段内按第i 段的时间间隔Δt i 发车,针对不同的Tr 值进行搜索,得出使得平均抱怨度ρ最小的Tr 。

得到结果如下:

6.模型的进一步讨论

1.对数据处理时出现的现象讨论:

同一方向同一时段内上下车人数之差通常不等于零,大于0说明这个时段内

上车的乘客,有一部分要到下一时段才能下车;小于0说明有一部分在这个时段内下车的人时在上一个是段上来的;而为0,说明出现这两种情况的机会相等。整个线路上全天的净上车人数不为44,数据不等,可能是输入错误或者随机误差。

对每个车站一整天的净上车人数的物理意义:如果净上车人数接近于0,说明此地没有别的交通工具大的干扰,该处的乘客多会在一天之内返回然来地点;如果净上车人数大于0,说明此处可能是一个大的中转站,有别的交通工具或公交路线为这个站点提供源源不断的净上车人数,这种地方适合作为一个公交线路的起始点。

2.采集运营数据方法的优化

由于题目中给出的数据过于粗糙,因而我们进行了适当的简化。如果要更好的对公交车进行的调度,就需要知道运行方向各车站上下车人数更细致的数据,比如说各站每10分钟上下车的人数,甚至每分钟上下车的人数。我们可以对运营数据的采集的统计时间间隔按一定的规律进行调整,一般来说,在高峰期时对数据进行统计的间隔较小的,而在一般时段对数据进行统计的间隔较大。

3.公共汽车交通线路的通行问题:

公共汽车交通线路的通行能力为:

C线=min{C站}=3600/max{T m}

式中C

线——公交线路的通行能力(辆/h);C

——车站的通行能力(辆/h);

T m——车辆占用车站的总时间。

汽车在站停靠时间与车辆性能车辆结构上下车乘客的多少车站秩序等因素

有关。一般可按下式估算:T m =t1+t2+t3+t4

式中t1——车辆进站停车用的时间(s);t2——车辆开门和关门的时间,一般为3~4s;t3——乘客上下车占用的时间(s);t3=ΩKt0/n d,其中Ω为公交车的最大载客量,本题为120人;K为上下车乘客占车容量的比例;t0为一个乘客上车或下车所用时间,平均约为2s;n d为乘客上下车用的车门数;t4——车辆启动和离开车站的时间(s)。

在本题中,我们主要考虑乘客上下车所用的时间,即

T m = t3=ΩKt0/n d

C线=min{C站}=3600/max{ΩKt0/n d}

我们算出公交路线的通行能力,即每小时能通过的最大车辆数C

线

,这样也

就可得出发车的最小时间间隔了60/ C

线

4 . 上下行方向发车的均衡性讨论

通过调度方案结果的分析表明模型运行了一天之后,我们发现上行方向的车次数比下行方向的车次数多出36,这就会导致如果不进行调整,第二天的车辆无法调度。解决的办法可以有如下三种途径:

1)找一个空闲的时间段(例如夜晚),把A0站的36辆车开到A13,显然这样做会很浪费,因为这36车次完全没起到作用;

2)在早高峰间,增加下行的车次,这样会最大限度地减少抱怨度,但是使得总共送需的车辆数会增加;

3)在晚高峰期间,增加下行的车次,这样既可以较大地减少抱怨,又可以使得后续天的正常调度;

7.模型的推广

模型可以推广到以下情况:有一条产品运输通道(如铁路),通道沿途有产品的供需资料,通道上的运输工具如何分配及调度问题。稍加修改即可适用于天车调度及串联通信线路加上等。我们发现有如下很有意义的一个结论:在等待时间均值大于0的情况下,为大局着想,净上车人数大于0的车站中如果前面的车站(上车人数-下车人数)/下车人数比后面的比值小,那么可以优先让比值大的车站人先上车。

这一结论具有很普遍的适用价值,例如:火车的预留车票问题;运输产品时如果等待时间过长会过期变质等。

8.模型的评价

1)针对题目中给出的数据,充分考虑到各方面的利益建立了多个目标下的优

化模型;

2)对模型对求解结合了时间步长法和等效法的优点,求解简单,而得到的方

案较为理想;

3)对人到达各车站的时间的随机变化进行了模拟,检验了方案对扰动的敏感

性;

4)对于两个起点站发车次数的均衡性,对调度方案的影响未做很好的分析,

只进行了定性的分析。

【参考文献】

1.王炜,过秀成等编著.交通工程学.南京:东南大学出版社,2000

2.杨肇夏.计算机模拟及其应用.北京:中国铁道出版社,1999

3.谌红.模糊数学在国民经济中的应用.武汉:华中理工大学出版社,1994

数学建模论文-物资调度问题

物资调度问题 摘要 “运输调度”数学模型是通过运输车运输路线的确定以及运输车调配方案的确定来使运输的花费最小。本文首先分析了物资调度中运费、载重量及各站点需求量间相互关系。而后,紧抓住总运营费用最小这个目标,找出最短路径,最后完成了每辆运输车的最优调度具体方案。 问题一:根据题目及实际经验得出运输车运输物资与其载重量及其行驶的路程成正比例关系,又运输的价格一定,再结合题目给出的条件“运输车重载运费2元/吨公里”,其重载运费的单位“元/吨公里”给我们的启发。于是结合题目给定的表,我们将两个决策变量(载重量,路程)化零为整为一个花费因素来考虑,即从经济的角度来考虑。同理我们将多辆车也化零为整,即用一辆“超大运输车”来运输物资。根据这样从经济的角度来考虑,于是我们将需求点的需求量乘入需求点的坐标得到一个新的表,即花费经济表,我们再运用数学软件Mathematic 作出一个新的坐标,这样可以得到一个花费坐标。于是按照从经济花费最少的角度,根据我们所掌握的最短路径及Dijkstra 算法再结合数学软件Mathematic ,可求得经济花费坐标上的最短路径。具体求法上,采用了 Dijkstra 算法结合“最优化原理” ,先保证每个站点的运营费用最小,从而找出所有站点的总运营费用最小,即找出了一条总费用最低的最短路径。用我们的“超大运输车”走这条最小花费的路线,我们发现时间这个因素不能满足且计算结果与实际的经验偏差较大。于是我们重新分配路线,并且同时满足运输车工作时间这个因素的限制,重新对该方案综合考虑,作出了合理的调整.此处我们运用了“化整为零”的思想,将该路线分为八条路径。同时也将超大车进行分解,于是派八辆运输车向29个需求点运送物资。同样的道理我们也将运输车运送物资从经济的角度看,即将运量乘以其速度,又因运输的价格一定,因此便可以将运输车在整体上从经济考虑。于是便可以将整体从经济上来考虑。将运输最小花费转化从经济方面来考虑比较合理。由此可求解出运输车全程的最低费用: 结合各约束条件求得最低费用为1980.16元。 问题二:由题目知运输车的载重量不同,但由于我们从整体的经济上来考虑运输物资的花费最少问题,因此花费坐标的最短路径仍然不变。因此结合运输车工作时间的这个因素,我们仍用问题一的思路,运用“化零为整”,“化整为零”的思想来考虑第二问。按照这样的的思路我们制定了八条路线,派了七辆运输车来运送物资。同样在整体上对问题从经济上来考虑比较合理。 29 1 1234302+0.5527213420+34+18+242+0.5527213420341824i i T T T T T T ='??'''''=?+++++?+++++++∑(++++) ()() 结合各约束条件求得最低费用为1969.66元,需要7辆车 关键词:物资调度 最短路线 最优化原理 Dijkstra 算法 0-1规划 一、问题重述 29 ij 1231Min Min Min 0.5()S S d n ij i S c c c c μ==+=?+?++++∑总去返

优化调度的数学模型

1)目标函数 假设系统可运行的机组数为n,总负荷为d P,以电厂内所有机组的总煤耗量最小为目标,建立如下的数学模型: 其中:——机组序号; ——第i台机组的煤耗量; ——n 台机组的总煤耗; ——第i台机组的负荷; ——第i台机组的煤耗量与负荷的函数关系。 2)约束条件 约束条件包括功率平衡约束和机组出力约束。 (1)功率平衡约束: (2)机组出力约束: 其中:——n台机组的总负荷; ——第i台机组的负荷下限和负荷上限。

假设系统可运行的机组数为,总负荷为,以调度周期为一昼夜来考虑,分为h个时段。 1)目标函数 机组优化组合的目标函数如下: 式中——机组序号; ——n 台机组的总煤耗; ——机组i运行状态的变量,仅取0、1 两个值,表示停机,表示运行。 ——第i台机组在t时刻的负荷; ——第i台机组在t时刻的煤耗量与负荷的函数关系; ——机组的启动耗量。 2)约束条件 考虑机组运行的实际情况,本文确定的机组约束条件包括功率平衡约束、机组出力约束、最小停机时间约束、最小运行时间约束以及功率响应速度约束。 (1)功率平衡约束: 式中——机组序号; ——第i台机组在t时刻的负荷;

——n台机组的总负荷。 (2)机组出力约束: 式中——机组的启停状态,0 表示停机,1 表示运行。 ——第i台机组的负荷下限和负荷上限。 (3)最小停机时间约束: 式中——机组i的最小停机时间。 (4)最小运行时间约束: 式中——机组i的最小运行时间。 (5)功率响应速度约束: 式中——机组i每分钟输出功率的允许最大下降速率和最大上升速率。 由于是在火电厂内部进行优化组合,可不考虑网损和系统的旋转热备用约束(这两项通常是电网调度中需要考虑的)。因此,机组优化组合从数学角度上讲就是在(5)~(9)的约束条件下求式(4)的最小值。 3)机组启停耗量能耗Si 的确定 通常情况下,对Si的处理采用如下的方法:机组的启动耗量包括汽机和锅炉两部分,由于汽机的热容量很小,其启动耗量一般可近似当

公交车调度数学建模

公交车调度数学建模

公交车调度 摘 要 本文通过对给定数据进行统计分析,将数据按18个时段、两个行驶方向进行处理,计算出各个时段各个站点以及两个方向的流通量,从而将远问题转化为对流通量的处理。首先,利用各时段小时断面最高流通量计算出各时段各方向的最小发车次数,进行适当的调整,确定了各时段两个方向的发车次数。假定采用均匀发车的方式。继而求出各时段两个方向发车间隔,经部分调整后,列出0A 站和13A 站的发车时刻表,并给出了时刻表的合理性证明,从而制定调度方案。根据调度方案采用逐步累加各时段新调用的车辆数算法,求出公交车的发配车辆数为57辆。其次,建立乘客平均待车时间和公交车辆实际利用率与期望利用率的差值这两个量化指标,并用这两个指标来评价调度方案以如何的程度照顾到乘客和公交公司双方利益。前者为4.2分钟,后者为13.88%。最后,我们以上述两个指标为优化目标,以乘客的等车时间数学期望值和公交车辆的满载率的数学期望为约束指标,建立了一个双目标的优化模型。并且给出了具体的求解方法,特别指出的是,给出了计算机模拟的方法求解的进程控制图。通过了对模型的分析,提出了采集数据的 采集数据方法的建议。 注释: 第i 站乘客流通量:∑=i k 1 (第k 站的上车的人数与 第k 站的下车人数的差值); 总的乘客等车时间:∑=m i 1 ∑=n j 1 (第i 时段第j 站等车 乘客数)?(第I 时段第j 站等待时间); 乘客平均等车时间:总的乘客等车时间与总乘客数的比值; 实际利用率:总实际乘客流通量与公司车辆总最大客运量的比值;

期望利用率:总期望乘客流通量与公司车辆总最大客运量的比值

公交车调度问题的数学模型

承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): B 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名): 参赛队员 (打印并签名) :1. 赵惠平 2. 李敏 3. 赵俊海 指导教师或指导教师组负责人 (打印并签名): 日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):

编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 赛区评阅记录(可供赛区评阅时使用): 评 阅 人 评 分 备 注 全国统一编号(由赛区组委会送交全国前编号): 全国评阅编号(由全国组委会评阅前进行编号):

对公交车调度问题的研究 摘要 公交车调度问题是现代城市交通中一个突出的问题。本文通过所给的一条公交线路上下行方向各时间段,各站点的客流量,根据一些合理假设,并在优先考虑将乘客拉完同时兼顾公交公司利益最大化的基础上,利用最优化思想建立线性规划模型。然后根据所给资料,利用数学软件编程检验。 通过对数据的分析,并且考虑到方案的可操作性,将一天划分为高峰时间段和一般时间段,。首先给该线路设计一个便于操作的全天(工作日)的公交车调度方案,包括两个起点站的发车时刻表和车辆数。通过分析发现满足高峰时间段所需的车辆数便可满足一整天其他时间所需车辆数,所以对于车辆数,是通过对各路段个时间端上车人数净增量来确定的。算出时间段内每分钟车上的净增人数,根据每小时发车的时间间隔算出每小时的车辆数,进而得到了全天的车辆数。我们通过假设乘客均匀到站,并且乘客候车时间包括在车辆运行中,即认为公交车到站后乘客上车不费时间,建立线性规划模型进行求解。 最后我们对题目所给数据进行了处理,得出了车辆具体的运行方案,并用所建模型对结果作检验。并用Matlab编写了所需程序。 关键字:公交车调度线性规划净增量均匀到站

数学建模电梯调度问题

电梯调度问题

电梯调度问题 摘要: 本题为一个电梯调度的优化问题,在一栋特定的写字楼内,利用现有的电梯资源,如何使用电梯能提高它的最大运输量,在人流密度十分大的情况下,如何更快的疏通人流成为一个备受关注的问题。为了评价一个电梯群系统的运作效率,及运载能力,在第一问中,我们用层次分析发,从效益、成本两大方面给出了六个分立的小指标,一同构成电梯群运载效率的指标体系。对第二问,本文根据题目情况的特殊性,定义忙期作为目标函数,对该电梯调度问题建立非线性规划模型,最后用遗传算法对模型求解。第三问中,本文将模型回归实际,分析假设对模型结果的影响,给出改进方案。 对于问题一,本文用评价方法中的层次分析法对电梯群系统的运作效率及运载能力进行分析。经分析,本文最终确定平均候梯时间、最长候车时间、平均行程时间、平均运营人数(服务强度)、平均服务时间及停站次数这六个指标作为电梯调度的指标体系。在这些评价指标的基础上,本文细化评价过程,给出完整的评价方案:首先,采用极差变换法对评价指标做无量纲化处理。然后,采用综合评价法对模型进行评价。在这个过程中,本文采用受人主观影响较小的夹角余弦法来确定权重系数。 对于第二问,本文建立非线性优化模型。借鉴排队论的思想,本文定义忙期,构造了针对本题中特定情形的简单数学表达式,作为目标函数。利用matlab软件,采用遗传算法对模型求解。多次运行可得到多个结果,然后用第一问中的评价模型进行评价,最终选出较优方案。最得到如下方案: 第一个电梯可停层数为:1,2,3,4,5,6,7,10,14,15,16,19,20,22 第二个电梯可停层数:1,4,5,7,10,13,16,18,19,20,21 第三个电梯可停层数:1,2,3,4,6,8,10,11,12,15,16,20,22 第四个电梯可停层数:1,2,3,4,7,10,11,17,18,19,21,22 第五个电梯可停层数:1,2,4,7,8,9,17,18,19,20,21 第六个电梯可停层数:1,4,5,6,7,8,9,11,13,18,19,20 此方案平均忙期为:15.3分钟。 对于第三问,本文是从每分钟到达人群数的分布角度改进模型的。第二问中

数学建模-2001年地公交车调度问题

第三篇公交车调度方案的优化模型 2001年 B题公交车调度Array公共交通是城市交通的重要组成部分,作好公交车的调度对 于完善城市交通环境、改进市民出行状况、提高公交公司的经济 和社会效益,都具有重要意义。下面考虑一条公交线路上公交车 的调度问题,其数据来自我国一座特大城市某条公交线路的客流 调查和运营资料。 该条公交线路上行方向共14站,下行方向共13站,表3-1 给出的是典型的一个工作日两个运行方向各站上下车的乘客数量统计。公交公司配给该线路同一型号的大客车,每辆标准载客100人,据统计客车在该线路上运行的平均速度为20公里/小时。运营调度要求,乘客候车时间一般不要超过10分钟,早高峰时一般不要超过5分钟,车辆满载率不应超过120%,一般也不要低于50%。 试根据这些资料和要求,为该线路设计一个便于操作的全天(工作日)的公交车调度方案,包括两个起点站的发车时刻表;一共需要多少辆车;这个方案以怎样的程度照顾到了乘客和公交公司双方的利益;等等。 如何将这个调度问题抽象成一个明确、完整的数学模型,指出求解模型的方法;根据实际问题 的要求,如果要设计更好的调度方案,应如何采集运营数据。

公交车调度方案的优化模型* 摘要:本文建立了公交车调度方案的优化模型,使公交公司在满足一定的社会效益和获得最大经济效益的前提下,给出了理想发车时刻表和最少车辆数。并提供了关于采集运营数据的较好建议。 在模型Ⅰ中,对问题1建立了求最大客容量、车次数、发车时间间隔等模型,运用决策方法给出了各时段最大客容量数,再与车辆最大载客量比较,得出载完该时组乘客的最少车次数462次,从便于操作和发车密度考虑,给出了整分发车时刻表和需要的最少车辆数61辆。模型Ⅱ建立模糊分析模型,结合层次分析求得模型Ⅰ带给公司和乘客双方日满意度为(0.941,0.811)根据双方满意度围和程度,找出同时达到双方最优日满意度(0.8807,0.8807),且此时结果为474次50辆;从日共需车辆最少考虑,结果为484次45辆。对问题2,建立了综合效益目标模型及线性规划法求解。对问题3,数据采集方法是遵照前门进中门出的规律,运用两个自动记录机对上下车乘客数记录和自动报站机(加报时间信息)作录音结合,给出准确的各项数据,返站后结合日期储存到公司总调度室。 关键词:公交调度;模糊优化法;层次分析;满意度 *本文获2001年全国一等奖。队员:叶云,周迎春,齐欢,指导教师:朱家明等。

公交车调度的方案优化设计

公交公交车调度方案优化设计 摘要 本文利用某一特大城市某条公交路线上的客流调查运营资料,以乘客的平均抱怨度、公司运营所需的总车辆数、公司每天所发的总车次数以及平均每车次的载客率为目标函数,建立了的分时段等间隔发车的综合优化调度模型。在模型求解过程中,采用了时间步长法、等效法以及二者的结合的等效时间步长法三种求解方法,尤其是第三种求解方法既提高了速度又改善了精度。结合模型的求解结果,我们最终推荐的模型是分时段等间隔发车的优化调度方案。 在建立模型时,我们首先进行了一些必要假设和分析,尤其是针对乘客的抱怨程度这一模糊性的指标,进行了合理的定义。既考虑了乘客抱怨度和等待时间长短的关系,也照顾了不同时间段内抱怨度对等待时间的敏感性不同,即乘客在不同时段等待相同时间抱怨度可能不一样。 主要思想是通过逐步改变发车时间间隔用计算机模拟各个时间段期间的系统运行状态,确定最优的发车时间间隔,但计算量过大,对初值依赖性强。等效法是基于先来先上总候车时间和后来先上的总候车时间相等的原理,通过把问题等价为后来先上的情况,巧妙地利用“滞留人数”的概念,把原来数据大大简化了。很快而且很方便地就可求出给定发车间隔时的平均等待时间,和在给定平均等待时间的情况下的发车间隔,但该方法只能对不同时段分别处理。结合前两种方法的优点提出等效时间步长法,即从全天时段内考虑整体目标,使用等效法为时间步长法提供初值,通过逐步求精,把整个一天联合在一起进行优化。通过对模型计算结果的分析,我们发现由于高峰期乘车人数在所有站点都突然大量增加,而车辆调度有滞后效应,从而建议调度方案根据实际情况前移一段适当的时间。在模型的进一步讨论和推广中,我们还对采集运营数据方法的优化、公共汽车线路的通行能力以及上下行方向发车的均衡性等进行了讨论。 在求具体发车时刻表时,利用等效时间步长法,较快地根据题中所给出的数据设计了一个较好的照顾到了乘客和公交公司双方利益的公交车调度方案,给出了两个起点站的发车时刻表(见表二),得出了总共需要49辆车,共发440辆次,早高峰期间等待时间超过5分钟的人数占早高峰期间总人数的0.93%,非早高峰期间等待时间超过10分钟的人数占非早高峰期间总人数的3.12%。引入随机干扰因子,使各单位时间内等车人数发生随机改变。在不同随机干扰水平下,对推荐的调度方案进行仿真计算,发现平均抱怨度对10%的随机干扰水平相对改变只有0.53%,因此该方案对随机变化有很好的适应性,能满足实际调度的需要。 1.问题的提出

数学建模的公交车调度问题

数学建模的公交车调度问 题 Revised by Jack on December 14,2020

第三篇公交车调度方案的优化模型 2001年 B题公交车调度 公共交通是城市交通的重要组成部分,作好公交车的调度对 于完善城市交通环境、改进市民出行状况、提高公交公司的经济 和社会效益,都具有重要意义。下面考虑一条公交线路上公交车 的调度问题,其数据来自我国一座特大城市某条公交线路的客流 调查和运营资料。 该条公交线路上行方向共14站,下行方向共13站,表3-1 给出的是典型的一个工作日两个运行方向各站上下车的乘客数量统计。公交公司配给该线路同一型号的大客车,每辆标准载客100人,据统计客车在该线路上运行的平均速度为20公里/小时。运营调度要求,乘客候车时间一般不要超过10分钟,早高峰时一般不要超过5分钟,车辆满载率不应超过120%,一般也不要低于50%。 试根据这些资料和要求,为该线路设计一个便于操作的全天(工作日)的公交车调度方案,包括两个起点站的发车时刻表;一共需要多少辆车;这个方案以怎样的程度照顾到了乘客和公交公司双方的利益;等等。 如何将这个调度问题抽象成一个明确、完整的数学模型,指出求解模型的方法;根据实际问题的要求,如果要设计更好的调度方案,应如何采集运营数据。

公交车调度方案的优化模型* 摘要:本文建立了公交车调度方案的优化模型,使公交公司在满足一定的社会效益和获得最大经济效益的前提下,给出了理想发车时刻表和最少车辆数。并提供了关于采集运营数据的较好建议。 在模型Ⅰ中,对问题1建立了求最大客容量、车次数、发车时间间隔等模型,运用决策方法给出了各时段最大客容量数,再与车辆最大载客量比较,得出载完该时组乘客的最少车次数462次,从便于操作和发车密度考虑,给出了整分发车时刻表和需要的最少车辆数61辆。模型Ⅱ建立模糊分析模型,结合层次分析求得模型Ⅰ带给公司和乘客双方日满意度为(,)根据双方满意度范围和程度,找出同时达到双方最优日满意度,,且此时结果为474次50辆;从日共需车辆最少考虑,结果为484次45辆。对问题2,建立了综合效益目标模型及线性规划法求解。对问题3,数据采集方法是遵照前门进中门出的规律,运用两个自动记录机对上下车乘客数记录和自动报站机(加报时间信息)作录音结合,给出准确的各项数据,返站后结合日期储存到公司总调度室。 关键词:公交调度;模糊优化法;层次分析;满意度 §1 问题的重述 一、问题的基本背景 公交公司制定公交车调度方案,要考虑公交车、车站和乘客三方面因素。我国某特大城市某条公交线路情况,一个工作日两个运营方向各个站上下车的乘客数量统计见表3-1。 二、运营及调度要求 1.公交线路上行方向共14站,下行方向共13站; 2.公交公司配给该线路同一型号的大客车,每辆标准载客100人,据统计客车在该线路上运营的平均速度为20公里/小时。车辆满载率不应超过120%,一般也不低于50%; 3.乘客候车时间一般不要超过10分钟,早高峰时一般不要超过5分钟。 三、要求的具体问题 1.试根据这些资料和要求,为该线路设计一个便于操作的全天(工作日)的公交车调度方案,包括两个起点站的发车时刻表;一共需要多少辆车;这个方案以怎样的程度照顾到了乘客和公交公司双方的利益,等等; 2.如何将这个调度问题抽象成一个明确完整的数学模型,并指出求解方法; *本文获2001年全国一等奖。队员:叶云,周迎春,齐欢,指导教师:朱家明等。

公交车调度的优化模型

公交车调度的优化模型 摘要 公共交通是城市交通的重要组成部分,做好公交车的调度对于完善城市交通环境、改进市民出行状况、提高公交公司的经济和社会效益,都具有重要意义。本文就是通过对我国一座特大城市某条公交线路的一个工作日两个运行方向各站上下车的乘客数量统计进行分析,建立公交车调度方案的优化模型,使公交公司在满足一定的社会效益和获得最大经济效益前提下,给出了理想公交车调度方案。 对于问题一,模型I 中建立了最大客容量,发车车次数的数学模型,运用决策方法给出了各时间段最大客容量数,在满足客车载满率及载完各时段所有乘客情形下,得出每天最少车次数为460次,最少车辆数为54辆,并给出了整分发车时刻表(见表6、表7)。 对于问题二,模型II 进行了满意度分析。满意度包含公交公司的满意度A i 和乘客的满意度i B ,通过分析得到公交公司的满意度公式(7)和乘客的满意度公式(12),然后求出当公交车最大载客量为120时,公交公司和乘客的满意度为:上行方向:11A =0.9686,B 0.7165=,下行方向:2A2=0.9563,B 0.7138=。再算出当公交车最大载客量分别为100、50时对应的公交公司和乘客的满意度,最后通过二次拟合得出乘客和公交公司满意度对应的关系式为: 上行方向:21111.8709 2.10170.4361B A A =-++ 10.41020.9686A ≤≤ 下行方向:22222.2995 2.63450.2974B A A =-++ 20.41060.9563A ≤≤ 使双方满意度之和达到最大,同时双方满意度之差最小,得到上下行的最优满意度分别为()110.8599,0.8599A B ==,()220.8610,0.8610A B ==,此时公交车调度

数学建模-公交车调度问题

第三篇公交车调度方案得优化模型 2001年 B题公交车调度Array公共交通就是城市交通得重要组成部分,作好公交车得调度 对于完善城市交通环境、改进市民出行状况、提高公交公司得经 济与社会效益,都具有重要意义。下面考虑一条公交线路上公交车 得调度问题,其数据来自我国一座特大城市某条公交线路得客流 调查与运营资料。 该条公交线路上行方向共14站,下行方向共13站,表3—1 给出得就是典型得一个工作日两个运行方向各站上下车得乘客数量统计。公交公司配给该线路同一型号得大客车,每辆标准载客100人,据统计客车在该线路上运行得平均速度为20公里/小时.运营调度要求,乘客候车时间一般不要超过10分钟,早高峰时一般不要超过5分钟,车辆满载率不应超过120%,一般也不要低于50%。 试根据这些资料与要求,为该线路设计一个便于操作得全天(工作日)得公交车调度方案,包括两个起点站得发车时刻表;一共需要多少辆车;这个方案以怎样得程度照顾到了乘客与公交公司双方得利益;等等。 如何将这个调度问题抽象成一个明确、完整得数学模型,指出求解模型得方法;根据实际问题 得要求,如果要设计更好得调度方案,应如何采集运营数据.

公交车调度方案得优化模型* 摘要:本文建立了公交车调度方案得优化模型,使公交公司在满足一定得社会效益与获得最大经济效益得前提下,给出了理想发车时刻表与最少车辆数。并提供了关于采集运营数据得较好建议。 在模型Ⅰ中,对问题1建立了求最大客容量、车次数、发车时间间隔等模型,运用决策方法给出了各时段最大客容量数,再与车辆最大载客量比较,得出载完该时组乘客得最少车次数462次,从便于操作与发车密度考虑,给出了整分发车时刻表与需要得最少车辆数61辆。模型Ⅱ建立模糊分析模型,结合层次分析求得模型Ⅰ带给公司与乘客双方日满意度为(0、941,0、811)根据双方满意度范围与程度,找出同时达到双方最优日满意度(0、8807,0、8807),且此时结果为474次50辆;从日共需车辆最少考虑,结果为484次45辆。对问题2,建立了综合效益目标模型及线性规划法求解.对问题3,数据采集方法就是遵照前门进中门出得规律,运用两个自动记录机对上下车乘客数记录与自动报站机(加报时间信息)作录音结合,给出准确得各项数据,返站后结合日期储存到公司总调度室。 关键词:公交调度;模糊优化法;层次分析;满意度 §1 问题得重述 一、问题得基本背景 公交公司制定公交车调度方案,要考虑公交车、车站与乘客三方面因素。我国某特大城市某条公交线路情况,一个工作日两个运营方向各个站上下车得乘客数量统计见表3-1. 二、运营及调度要求 1.公交线路上行方向共14站,下行方向共13站; 2.公交公司配给该线路同一型号得大客车,每辆标准载客100人,据统计客车在该线路上运营得平均速度为20公里/小时.车辆满载率不应超过120%,一般也不低于50%; 3.乘客候车时间一般不要超过10分钟,早高峰时一般不要超过5分钟。 三、要求得具体问题 1.试根据这些资料与要求,为该线路设计一个便于操作得全天(工作日)得公交车调度方案,包括两个起点站得发车时刻表;一共需要多少辆车;这个方案以怎样得程度照顾到了乘客与公交公司双方得利益,等等; 2.如何将这个调度问题抽象成一个明确完整得数学模型,并指出求解方法; 3.据实际问题得要求,如果要设计好更好得调度方案,应如何采集运营数据。 3、2问题得分析 本问题得难点就是同时考虑到完善城市交通环境、改进市民出行状况、提高公交公司得经济与*本文获2001年全国一等奖。队员:叶云,周迎春,齐欢,指导教师:朱家明等。

公交车调度问题数学建模论文设计

2011年数学建模论文 ——对公交车调度问题的研究 摘要:本文根据所给的客流量及运营情况排出公交车调度时刻表,以及反映客运公司和乘客的利益有多个指标,建立了乘客的利益及公司利益两个目标函数的多目标规划数学模型。基于多目标规划分析法,进行数值计算,从而得到原问题的一个明确、完整的数学模型,并在模型扩展中运用已建的计算机模拟系统对所得的结果和我们对于调度方案的想法进行分析和评价。 首先通过数据的分析,并考虑到方案的可操作性,将一天划为;引入乘客的利益、公司利益作为两个目标函数,建立了两目标优化模型。通过运客能力与运输需求(实际客运量) 达到最优匹配、满载率高低体现乘客利益;通过总车辆数较少、发车次数最少表示公司利益建立两个目标函数。应用matlab中的fgoalattain进行多目标规划求出发车数,以及时间步长法估计发车间隔和车辆数。 关键字:公交车调度;多目标规划;数据分析;数学模型;时间步长法,matlab

一问题的重述: 1、路公交线路上下行方向各24站,总共有L 辆汽车在运行,开始时段线路两端的停车场中各停放汽车m辆,每两车可乘坐S人。这些汽车将按照发车时刻表及到达次序次发车,循环往返地运行来完成运送乘客的任务。建立数学模型,根据乘客人数大小,配多少辆车、多长时间发一班车使得公交公司的盈利最高,乘客的抱怨程度最小。假设公交车在运行过程中是匀速的速度为v。 1路公交车站点客流量见下表

1 已知数据及问题的提出 我们要考虑的是市的一路公交线路上的车辆调度问题。现已知该线路上行的车站总数N1 ( = 24 ),下行的车站总数N2 ( = 24 ),并且给出每一个站点上下车的人数。公交线路总路程L(=L);公交行驶的速度V=20km/ h;运营调度要求,车辆满载率不应超过r= 120 % ,一般也不要底于r= 50 %。 现要我们根据以上资料和要求,为该线路设计一个公交公司发车

关于公交车调度的数学模型

关于公交车调度的数学模型

公交车调度 关于公交车调度的数学模型 摘要:本文根据典型的一个工作日两个运行方向各站上下车的乘客数量统计,首先探讨了如何利用平滑法来确定一个有价值并且效率高的车辆运行时刻表,使其满足乘客的舒适性和公交公司低成本的服务;接着,又利用最优化的基本思想,对此问题进行了进一步的讨论,得到了最小配车辆的数量,然后针对满意度的评价水平问题,建立了几个良好刻画公司以及乘客满意度的满意度函数并求出了乘客与公交公司双方的满意度。最后,我们对新提出的模型进行了模型的评价和模型改进方向的讨论,并对如何采集公交车客运量的数据,提出了几个中肯的建议,完成了对关于公交车调度问题的较为详细而合理的讨论。 (一)问题重述 公共交通是城市交通的重要组成部分,作好公交车的调度对于完善城市交通环境、改进市民出行状况、提高公交公司的经济和社会效益,都具有重要意义。下面考虑一条公交线路上公交车的调度问题,其数据来自我国一座特大城市某条公交线路的客流调查和运营资料。 该条公交线路上行方向共14站,下行方向共13站,第3-4页给出的是典型的一个工作日两个运行方向各站上下车的乘客数量统计。公交公司

配给该线路同一型号的大客车,每辆标准载客100 人,据统计客车在该线路上运行的平均速度为20公里/小时。运营调度要求,乘客候车时间一般不要超过10分钟,早高峰时一般不要超过5分钟,车辆满载率不应超过120%,一般也不要低于50%。 试根据这些资料和要求,为该线路设计一个便于操作的全天(工作日)的公交车调度方案,包括两个起点站的发车时刻表;一共需要多少辆车;这个方案以怎样的程度照顾到了乘客和公交公司双方的利益;等等。 如何将这个调度问题抽象成一个明确、完整的数学模型,指出求解模型的方法;根据实际问题的要求,如果要设计更好的调度方案,应如何采集运营数据。 (二)定义与符号说明 1、T( I )------ 第I个时段 ( I=1、2……18 ) 2、A( J )------ 第J个公交车站 (J=1、2……15 ) 3、P( I )------ 在第I个时段内的配车量 4、L( I )------ 在第I个时段内的客流量 5、G( I )------ 在第I个时段内的满载率 6、S( I )------ 在第I个时段内的乘客候车时间期望值 7、V--------- 客车在该线路上运行的平均速度 8、ΔL(J)---第J-1个公交车站到第J个公交车站之间的距离

数学建模电梯的调度问题

高峰模式下高层办公楼电梯调度改善方案 摘要 电梯调度方案是指在特定的交通状况下,电梯系统应遵循的一组确定控制策略的规则。对于配有多台电梯的现代高层办公楼,如何建立合适的电梯运行方式至关重要。本文的目的就是建立合理的调度方案,主要运用概率,运筹学等理论对问题建立相关的数学模型,用matlab 等软件对问题进行求解,最终得出最合理的安排及优化方案,已解决高层办公楼电梯拥挤的情况。 本题的评价指标有三个,一是排队等待时间,二是电梯运行时乘客在电梯等待的时间,三是6部电梯将全部员工运送到指定楼层所用的时间,三个评价指标中,排队等待时间与电梯运行时乘客在电梯等待的时间可以综合为乘客的满意度。 对于问题一,首先考虑最简单的情形建立模型一,采用极端假设的方法,不考虑乘客到来的随机性,不考虑乘客的等待时间,在规定的时间,电梯每次都是满载的,且运送的都是同一层的员工。这样得到一个简化模型,此模型运送完员工所花费的时间是最短的,同时求解出在确定的电梯数量确定的办公人数分布前提下电梯调度的最大运载能力。将所有的人都运到的最短的时间为:1955.5秒。 接着对于理想模型实际化建立模型二,以“最后被运送的乘客的等待时间最短”为评价标准,以“电梯运行周期与运行总时间之比等于电梯在一个周期运送的乘客数与乘客总数之比”的“比例”云则为依据,对几种常见电梯运行方案建立数学模型,比较其运行效率,得出分段运行方案是符合要求的最优方案。 在极端假设条件下的模型的基础上进行改进建立模型三,对所有的楼层进行分段,每个电梯负责特定的楼层,以概率的方法,得出非线性规划方程组,求得最优的分段数,并求出一些表征参数如:总运行时间及运载能力。

公交车调度方案的优化设计

公交车调度 公共交通是城市交通的重要组成部分,作好公交车的调度对于完善城市交通环境、改进市民出行状况、提高公交公司的经济和社会效益,都具有重要意义。下面考虑一条公交线路上公交车的调度问题,其数据来自我国一座特大城市某条公交线路的客流调查和运营资料。 该条公交线路上行方向共14站,下行方向共13站,第3-4页给出的是典型的一个工作日两个运行方向各站上下车的乘客数量统计。公交公司配给该线路同一型号的大客车,每辆标准载客100 人,据统计客车在该线路上运行的平均速度为20公里/小时。运营调度要求,乘客候车时间一般不要超过10分钟,早高峰时一般不要超过5分钟,车辆满载率不应超过120%,一般也不要低于50%。 试根据这些资料和要求,为该线路设计一个便于操作的全天(工作日)的公交车调度方案,包括两个起点站的发车时刻表;一共需要多少辆车;这个方案以怎样的程度照顾到了乘客和公交公司双方的利益;等等。 如何将这个调度问题抽象成一个明确、完整的数学模型,指出求解模型的方法;根据实际问题的要求,如果要设计更好的调度方案,应如何采集运营数据。

公交车调度方案的优化设计 摘要 本文利用某一特大城市某条公交路线上的客流调查运营资料,以乘客的平均抱怨度、公司运营所需的总车辆数、公司每天所发的总车次数以及平均每车次的载客率为目标函数,建立了的分时段等间隔发车的综合优化调度模型。在模型求解过程中,采用了时间步长法、等效法以及二者的结合的等效时间步长法三种求解方法,尤其是第三种求解方法既提高了速度又改善了精度。结合模型的求解结果,我们最终推荐的模型是分时段等间隔发车的优化调度方案。 在建立模型时,我们首先进行了一些必要假设和分析,尤其是针对乘客的抱怨程度这一模糊性的指标,进行了合理的定义。既考虑了乘客抱怨度和等待时间长短的关系,也照顾了不同时间段内抱怨度对等待时间的敏感性不同,即乘客在不同时段等待相同时间抱怨度可能不一样。 主要思想是通过逐步改变发车时间间隔用计算机模拟各个时间段期间的系统运行状态,确定最优的发车时间间隔,但计算量过大,对初值依赖性强。等效法是基于先来先上总候车时间和后来先上的总候车时间相等的原理,通过把问题等价为后来先上的情况,巧妙地利用“滞留人数”的概念,把原来数据大大简化了。很快而且很方便地就可求出给定发车间隔时的平均等待时间,和在给定平均等待时间的情况下的发车间隔,但该方法只能对不同时段分别处理。结合前两种方法的优点提出等效时间步长法,即从全天时段内考虑整体目标,使用等效法为时间步长法提供初值,通过逐步求精,把整个一天联合在一起进行优化。通过对模型计算结果的分析,我们发现由于高峰期乘车人数在所有站点都突然大量增加,而车辆调度有滞后效应,从而建议调度方案根据实际情况前移一段适当的时间。在模型的进一步讨论和推广中,我们还对采集运营数据方法的优化、公共汽车线路的通行能力以及上下行方向发车的均衡性等进行了讨论。 在求具体发车时刻表时,利用等效时间步长法,较快地根据题中所给出的数据设计了一个较好的照顾到了乘客和公交公司双方利益的公交车调度方案,给出了两个起点站的发车时刻表(见表二),得出了总共需要49辆车,共发440辆次,早高峰期间等待时间超过5分钟的人数占早高峰期间总人数的0.93%,非早高峰期间等待时间超过10分钟的人数占非早高峰期间总人数的3.12%。引入随机干扰因子,使各单位时间内等车人数发生随机改变。在不同随机干扰水平下,对推荐的调度方案进行仿真计算,发现平均抱怨度对10%的随机干扰水平相对改变只有0.53%,因此该方案对随机变化有很好的适应性,能满足实际调度的需要。

交巡警服务平台的设置与调度的优化模型

湖南工业大学 课程设计 资料袋 学院(系、部)2011~2012 学年第 2 学期 课程名称图论及其应用指导教师职称 学生姓名ake555 专业班级学号 题目交巡警服务平台的设置与调度的优化模型 成绩起止日期2013 年6月16 日~2013 年 6 月21 日 目录清单

课程设计任务书 2012—2013学年第2学期 学院专业班级 课程名称:图论及其应用 设计题目:交警服务平台和调度设计问题 完成期限:自2013 年 6 月16 日至2013 年 6 月21 日共 1 周

指导教师(签字):年月日系(教研室)主任(签字):年月日

图论及其应用课程设计说明书 2013年6 月21 日 目录

一、问题描述 (5) 二、模型假设 (6) 三、符号说明 (6) 四、模型建立与求解 (6) 五、模型评价 (15) 六、体会心得 (16) 七、参考文献 (16) 八、附件 (16) 交巡警服务平台的设置与调度的优化模型 一问题描述 随着人们社会经济的迅猛发展,人们生活的质量的提高,安全意识以深入人心,作为社会秩序的维护者警察对社会稳定起着巨大的作用

.警察肩负着刑事执法、治安管理、交通管理、服务群众四大职能。为了更有效地贯彻实施这些职能,需要在市区的一些交通要道和重要部位设置交巡警服务平台。每个交巡警服务平台的职能和警力配备基本相同。由于警务资源是有限的,如何根据城市的实际情况与需求合理地设置交巡警服务平台、分配各平台的管辖范围、调度警务资源是警务部门面临的一个实际课题。 试就某市设置交巡警服务平台的相关情况,建立数学模型分析研究下面的问题:问题一:附件1中的附图1给出了该市中心城区A的交通网络和现有的20个交巡警服务平台的设置情况示意图,相关的数据信息见附件2。要求为各交巡警服务平台分配管辖范围,使其在所管辖的范围内出现突发事件时,尽量能在3分钟内有交巡警(警车的时速为60km/h)到达事发地。 问题二:对于重大突发事件,需要调度全区20个交巡警服务平台的警力资源,对进出该区的13条交通要道实现快速全封锁。实际中一个平台的警力最多封锁一个路口,通过求解给出该区交巡警服务平台警力合理的调度方案。 问题三:根据现有交巡警服务平台的工作量不均衡和有些地方出警时间过长的实际情况,拟在该区内再增加2至5个平台,通过分析计算需要增加平台的具体个数和位置。 问题四:针对全市(主城六区A,B,C,D,E,F)的具体情况,按照设置交巡警服务平台的原则和任务,分析研究该市现有交巡警服务平台设置方案(参见附件)的合理性。如果有明显不合理的地方,给出解决方案。 问题五:如果该市地点P(第32个节点)处发生了重大刑事案件,在案发3分钟后接到报警,犯罪嫌疑人已驾车逃跑。为了快速搜捕嫌疑犯,请给出调度全市交巡警服务平台警力资源的最佳围堵方案。 二模型假设 1.出警时道路恒畅通(无交通事故、交通堵塞等发生),警车行驶正常;2.在整个路途中,转弯处不需要花费时间; 3.假设逃犯驾车逃跑的车速与警车车速相当 三符号说明

公交车调度问题

公交车调度问题 关于公交车的调度问题 摘要:本文主要是研究公交车调度的最优策略问题。我们建立了一个以公交车 的利益为目标函数的优化模型,同时保证等车时间超过10 分钟(或者超过 5 分 钟)的乘客人数在总的等车乘客数所占的比重小于一个事先给定的较小值。首先,利用最小二乘法拟合出各站上(下)车人数的非参数分布函数,求解时 先用一种简单方法估算出最小配车数43 辆。然后依此为参照值,利用Maple 优化工具得到一个整体最优解:最小配车数为48 辆,并给出了在公交车载客量不同条件下的最优车辆调度方案,使得公司的收益得到最大,并且乘客等车的时间不宜过长,最后对整个模型进行了推广和评价,指出了有效改进方向。 关键词:公交车调度;优化模型;最小二乘法 问题的重述:公共交通是城市交通的重要组成部分,作好公交车的调度对于完 善城市交通环境、改进市民出行状况、提高公交公司的经济和社会效益,都具有重要意义。下面考虑一条公交线路上公交车的调度问题,其数据来自我国一座特大城市某条公交线路的客流调查和运营资料。 该条公交线路上行方向共14 站,下行方向共13 站,第3-4 页给出的是典型 的一个工作日两个运行方向各站上下车的乘客数量统计。公交公司配给该线路同一型号的大客车,每辆标准载客100 人,据统计客车在该线路上运行的平均

速度为20 公里/小时。运营调度要求,乘客候车时间一般不要超过10 分钟,早 高峰时一般不要超过5分钟,车辆满载率不应超过120%, 一般也不要低于50%。 试根据这些资料和要求,为该线路设计一个便于操作的全天(工作日)的公交车调度方案,包括两个起点站的发车时刻表;一共需要多少辆车;这个方案以怎样的程度照顾到了乘客和公交公司双方的利益;等等。 如何将这个调度问题抽象成一个明确、完整的数学模型, 指出求解模型的方 法;根据实际问题的要求,如果要设计更好的调度方案,应如何采集运营数据。 基本假设 1)该公交路线不存在堵塞现象,且公共汽车之间依次行进,不存在超车现象。 2)公共汽车满载后,乘客不能再上,只得等待下一辆车的到来。 3)上行、下行方向的头班车同时从起始站出发。 4)该公交路线上行方向共14站,下行方向共13站。 5)公交车均为同一型号,每辆标准载客100 名,车辆满载率不应超过120%, 一般也不要低于50% 。 6)客车在该路线上运行的平均速度为20 公里/小时,不考虑乘客上下车时间。 7)乘客侯车时间一般不超过10 分钟,早高峰时一般不超过 5 分钟。 8)一开始从 A 13出发的车辆,与一开始从A 0出发的车辆不发生交替,两循环 独立。 9)题目所给的数据具有一定的代表性,可以做为各种计算的依据。 符号说明 N a:从总站A13 始发出的公交车的总次数(上行方向) N b :从总站 A 0 始发出的公交车的总次数(下行方向) T1 :上行方向早高峰发车间隔时间 T 2 :上行方向平时发车间隔时间 T 3 :上行方向晚高峰发车间隔时间

数学建模-全国一等奖 公交线路

11701 B 本科 2001年全国大学生数学建模竞赛答卷 (全国一等奖) 学员:叶云周迎春齐欢指导老师:朱家明 公交车调度方案的优化模型 摘要 本文建立了公交车调度方案的优化模型,使公交公司在满足一定的社会效益和获得最大经济效益的前提下,给出了理想发车时刻表和最少车辆数。 并提供了关于采集运营数据的较好建议。 在模型Ⅰ中,对问题1建立了求最大客容量、车次数、发车时间间隔等模型,运用决策方法给出了各时段最大客容量数,再与车辆最大载客量比较, 得出载完该时组乘客的最少车次数462次,从便于操作和发车密度考虑,给 出了整分发车时刻表和需要的最少车辆数61辆。模型Ⅱ建立模糊分析模型, 结合层次分析求得模型Ⅰ带给公司和乘客双方日满意度为(0.941,0.811) 根据双方满意度范围和程度,找出同时达到双方最优日满意度 (0.8807,0.8807),且此时结果为474次50辆;从日共需车辆最少考虑,结果 为484次45辆。对问题2,交待了综合效益目标模型及线性规划法求解。对 问题3,采集方法是遵照前门进中门出的规律,运用两个自动记录机对上下 车乘客数记录和自动报站机(加报时间信息)作录音结合,给出准确的各项数 据,返站后结合日期储存到公司总调度室。 关键词:公交调度模糊优化法层次分析满意度

一、问题的提出 公交公司制定公交车调度方案,要考虑公交车、车站和乘客三方面因素。我国某特大城市某条公交线路情况,一个工作日两个运营方向各个站上下车的乘客数量统计见表1。已知运营情况及调度要求如下: 1、公交线路上行方向共14站,下行方向共13站; 2、公交公司配给该线路同一型号的大客车,每辆标准载客100人,据统计客车在该线路上运营的平均速度为20公里/小时。车辆满载率不应超过120%,一般也不低于50%; 3、乘客候车时间一般不要超过10分钟,早高峰时一般不要超过5分钟。 现提出以下三个问题: 1、试根据这些资料和要求,为该线路设计一个便于操作的全天(工作日)的公交车调度方案,包括两个起点站的发车时刻表;一共需要多少辆车;这个方案以怎样的程度照顾到了乘客和公交公司双方的利益;等等。 2、如何将这个调度问题抽象成一个明确完整的数学模型,并指出求解方法。 3、据实际问题的要求,如果要设计好更好的调度方案,应如何采集运营数据。 二、符号约定 a:上或下行第j时段第k站上车人数 ijk b:上或下行第j时段第k站下车人数 ijk l上或下行第j时段最大客容量 ij k上或下行时第j时段平均载客量 ij C日所需总车次 c上或下行第j时段的车次 ij s上或下行第j时段平均发车时差 ij p上或下行第j时段平均载客量 ij t上或下行的平均发车时间间隔 ij

相关主题
文本预览
相关文档 最新文档