当前位置:文档之家› 浅谈金风风力发电机组的振动

浅谈金风风力发电机组的振动

浅谈金风风力发电机组的振动
浅谈金风风力发电机组的振动

浅谈金风风力发电机组的振动

姓名:张玉博

入职时间:2013年5月

部门:哈密总装厂

目录

摘要: (2)

一、引言 (3)

二、状态监测与故障诊断 (4)

(一)、振动监测方式 (4)

(二)、国内外发展现状 (4)

(三)、振动故障诊断 (4)

三、金风风力发电机组振动故障案例 (6)

(一)、石碑山A0701机组 (6)

(二)、石碑山B1004机组 (7)

四、金风风力发电机组减振措施与保护 (8)

(一)、对中概念 (8)

(二)、造成不对中的原因 (8)

(三)、不对中对风机的影响 (9)

(四)、金风风力发电机组的减振措施 (9)

(五)、独立于系统的硬件保护 (11)

五、小结 (11)

参考文献 (12)

浅谈金风风力发电机组的振动

摘要:

振动是自然界和工程界常见的现象。振动的消极方面是:影响仪器设备功能,降低机械设备的工作精度,加剧构件磨损,甚至引起结构疲劳破坏;振动的积极方面是:有许多需利用振动的设备和工艺(如振动传输、振动研磨、振动沉桩等)。振动分析的基本任务是讨论系统的激励(即输入,指系统的外来扰动,又称干扰)、响应(即输出,指系统受激励后的反应)和系统动态特性(或物理参数)三者之间的关系。20世纪60年代以后,计算机和振动测试技术的重大进展,为综合利用分析、实验和计算方法解决振动问题开拓了广阔的前景。

风力发电机组中减少振动很重要的一个举措就是对中。金风风力发电机组为了减少振动带来的消极影响,做了许多积极措施。从S43/600Kw机组的机械对中到S48/750Kw的激光对中等都有了质的飞跃。

关键词:

振动;振动分析;对中

一、引言

振动,又称振荡,是指一个状态改变的过程,即物体的往复运动。

从广义上说振动是指描述系统状态的参量(如位移、电压)在其基准值上下交替变化的过程。狭义的指机械振动,即力学系统中的振动。电磁振动习惯上称为振荡。力学系统能维持振动,必须具有弹性和惯性。由于弹性,系统偏离其平衡位置时,会产生回复力,促使系统返回原来位置;由于惯性,系统在返回平衡位置的过程中积累了动能,从而使系统越过平衡位置向另一侧运动。正是由于弹性和惯性的相互影响,才造成系统的振动。按系统运动自由度分,有单自由度系统振动(如钟摆的振动)和多自由度系统振动。有限多自由度系统与离散系统相对应,其振动由常微分方程描述;无限多自由度系统与连续系统(如杆、梁、板、壳等)相对应,其振动由偏微分方程描述。方程中不显含时间的系统称自治系统;显含时间的称非自治系统。按系统受力情况分,有自由振动、衰减振动和受迫振动。按弹性力和阻尼力性质分,有线性振动和非线性振动。振动又可分为确定性振动和随机振动,后者无确定性规律,如车辆行进中的颠簸。机械振动中最常见的就是简谐振动。简谐振动可以看作匀速圆周运动沿正的两个方向进行分解,其中任意一个方向的运动,都是简谐振动。由此可知,简谐振动比匀速圆周运动复杂得多。

简谐振动的特点是:

1、有一个平衡位置(机械能耗尽之后,振子应该静止的唯一位置);

2、有一个大小和方向都作周期性变化的回复力的作用;

3、频率单一、振幅不变。

风力发电机组中遇到的振动大多数为机械振动,本文从金风风力发电机组的构造中认识振动,减少由于振动使设备等造成破坏。

二、状态监测与故障诊断

设备发生振动故障的概率最高;振动信号包含的设备状态信息量最丰富;振动信号易于采集,便于在不影响机组运行的情况下实行在线式监测和诊断。因此,振动监测技术是旋转机械设备故障诊断中运用最广泛、最有效的方法。

(一)、振动监测方式

1、连续监测:也称在线监测,以远程故障诊断系统为手段的精密诊断。信息收集比较全面,分析手段丰富。

2、定期监测:按照确定的时间间隔,进行定期监测。一般以小型便携式检测仪器为手段,投资较小,操作简便。

3、故障监测:也称离线检测,以人员巡回检查为基础,感官发现设备运行异常时,对设备进行测试和分析,查找故障原因。

(二)、国内外发展现状

1、国外

目前,欧洲在线监测系统是电场业主对风力发电机组投保的必要条件,第三方仪器供应商同时负责定期提供监测数据的分析报告。一部分在线监测系统作为标配由风力发电机制造商集成提供,一部分在线监测系统的费用由电场业主支付。

2、国内

国内还处于试用初级阶段,例如金风正在试用SKF、FAG在线监测系统。部分风电场维护公司或业主已采购国外便携式离线检测设备,由现场人员定期采集数据,由仪器公司专业振动分析师分析诊断数据并出具报告。效果明显,但价格昂贵。

(三)、振动故障诊断

金风48/750kW风力发电机组为定桨恒速型,其传动系统基本组成部分为:主轴承、主轴、齿轮箱、刹车盘、联轴器和发电机,其中主轴与齿轮箱以缩紧盘方式联结,齿轮

箱靠三点支撑。常用的振动测量参数有位移、速度和加速度,一般选用原则为:

1、低频振动(<10Hz)测量位移

位移反映振动幅度的大小,与设备的刚度有直接关系。刚性破坏由低频振动引起。

2、中频振动(10-1000Hz)测量速度

速度反映振动的快慢。疲劳破坏由中频振动引起。

3、高频振动(>1000Hz)测量加速度

加速度反映振动快慢的变化。惯性力破坏是由高频振动引起的。

每一次的振动检测,必须测量速度。因为它反映振动能量,且国际振动诊断标准规定振动烈度的度量值为振动速度的有效值。详见振动等级对照表

表2.1 振动等级对照表

注释:Ⅰ级小型机械,功率小于15Kw;Ⅱ级中型机械,300kW以下机械;Ⅲ级大型机械,重型刚性基础;Ⅳ级大型机械,较软基础。振动测定范围为10-1000Hz。

区域A:振动状态良好。

区域B:振动状态可接受,能长期运行。

区域C:振动值在该区域的机器可短期运行,但须加强监测并采取措施。

区域D:已达到足够烈度,可引起机器损坏。

三、金风风力发电机组振动故障案例

(一)、石碑山A0701机组

发电机前轴承温度高故障

1、机组信息

故障前:功率168kW,风速7.8m/s,温度29度

恢复后:功率183kW,风速8.3m/s,温度30度

2、故障信息

石碑山A0701机组频报电机前轴承温度高报警,且传动部分异响很大。

3、诊断结论

登机检查后发现电机前轴承运行中存在转子滚动异音。判断发电机前轴承NU2226存在故障。如图3.1。

图3.1 磨损轴承

4、处理措施

拆检发电机前轴承,发现前轴承磨损。更换新轴承,加注发电机润滑脂后,运行机组,异响消失。

(二)、石碑山B1004机组

振动保护模块故障

1、机组信息

故障前:功率51kW,风速4.3m/s,温度30℃

恢复后:功率58kW,风速4.4m/s,温度30℃

2、故障信息

故障数据采集时间为2010年9月25日,风速:4.2m/s,功率:53kW。机舱内感觉不到振动。振动信号故障灯亮,复位后很快又报同一故障。

3、故障分析

报故障时风速为4.2m/s,不属于大风速,登机后再机舱内未感觉到振动,因此排除振动信号真实的可能性;检查振动保护传感器及其接线,未发现有虚接点及断点;检查振动模块上几个插头的接线,24V电源线等,接触良好,没有虚接现象。检查后判定为振动模块损坏,换上新的振动模块后,机组正常运行。

四、金风风力发电机组减振措施与保护

(一)、对中概念

金风风力发电机组的对中指的是发电机转子、联轴器、齿轮箱三者轴心线重合,即三者的轴中心在同一直线上。不对中分为平行不对中、角度不对中和水平、角度综合不对中。

(二)、造成不对中的原因

从一台风机的安装,到经过20年的使用寿命后报废,这期间都会造成风机不对中。归纳出造成风机不对中的原因有以下几点:

1、风机安装时的不对中从塔架,塔筒一直到机舱以至机舱内的齿轮箱、发电机,无不使用吊车进行安装,机械替代双手的工作,必然导致发电机与齿轮箱的不对中。

2、塔架不均匀变形风机安装完成,经过对中之后,并网运行。随时间的积累,大风期间塔架的晃动,造成塔架不均匀变形,导致风机不对中。这也是为什么在机组运

行一定时间后要求对机组重新对中的原因吧。

3、阻尼器失效使自由振动衰减的各种摩擦和其他阻碍作用,我们称之为阻尼。齿轮箱和发电机地脚底座上的弹性支撑在齿轮箱、发电机高速运转时起到了缓冲振动的作用,类似于阻尼器。倘若弹性支撑老化失效,势必造成四个地脚受力不均匀,导致风机不对中。

4、轴承故障齿轮箱主轴、发电机转子都有轴承支撑,一旦轴承受损或变形,都会造成轴心偏移,使得风机不对中。

(三)、不对中对风机的影响

齿轮箱、联轴器、发电机三者的不对中对风机的影响是很大的,主要体现在以下几个方面:

1、在转子中产生交变载荷齿轮箱和发电机轴心偏移,当风机运转时,就会导致转子受到不均匀的力,且力的大小和方向周期变化。转子受力不均匀将会对轴承造成损坏,严重时将影响发电机转子,造成转子变形。

2、引起风机的振动风机不对中会造成齿轮箱和发电机的振动,严重时将引起整个风机机舱的振动,这对风机的使用寿命和工作人员的维护工作影响都是很大的。

3、加剧轴承和齿轮箱失效齿轮箱的作用就是将叶轮获得的低转速通过齿轮箱的传速比,转换成高转速,带动发电机转子高速运转。假若不对中,势必造成受力不均匀,应有的高转速不能完全带动发电机转子,同时由于受力的不均匀,对齿轮箱轴承和发电机轴承造成的损坏也将加快。

4、产生噪声齿轮箱和发电机不对中,运转过程中必然会产生转轴与轴承的碰撞,这不但加剧轴承与转轴的损坏,同时也会产生噪声,对环境也是一种污染。

(四)、金风风力发电机组的减振措施

尽管振动对于风力发电机来说是不可避免的,但是金风的风力发电机组还是做了很多减振措施,来减少由于振动产生的损害。

1、在S43/600Kw的风力发电机组中,对机舱罩与机舱的接合处加装了橡皮垫,用来缓冲机舱罩的振动,同时由于橡皮的弹性作用,使得机舱罩与机舱接合无缝隙,防止雨水进入机舱,避免了渗水造成的部件生锈等不必要的损坏。

2、在大部件方面,无论是金风S48/750Kw机组,还是S43/600Kw机组,都对齿轮

箱、发电机、液压站安装了弹性支撑、减振元件,有效地减弱了由于正常停机或紧急停机的惯性带来的冲击,避免齿轮箱和发电机与机舱底座直接的刚性碰撞。

3、金风风力发电机组在联轴器上也做了减振措施,S43/600Kw机组使用的是万向联轴器,如图4.1。

图4.1 万向联轴器

其1端与齿轮箱侧连接,2端与发电机转子连接。1、2两端均可做4个方向弯曲,因此称之为万向联轴器。由于S43/600Kw发电机组对中用的是百分表,精确度没有激光对中仪高,所以选用万向联轴器。此联轴器对于精确度要求相对较低的600Kw机组来说,能起到一个缓和作用,避免了当齿轮箱和发电机存在轻微偏差时对转轴及轴承造成过大的损坏。

而金风S48/750Kw机组在容量上是600Kw的一个升级,同时在技术及设计上一样超越了S43/600Kw机组。一个很大的变化就是在联轴器上。750Kw机组使用的是膜片联轴器,如图4.2。

与600Kw机组的万向联轴器相比,具有高刚性、高转矩、低惯性的特点,同时KTR —膜片还能补偿径向、角向、轴向偏差,对振动能起到一定的缓冲作用。不仅如此,膜片联轴器还省去了联轴器油脂,维护起来更方便、简单。金风S48/750Kw机组采用激光对中,对中偏差极小,再配合上膜片联轴器,使得750Kw机组的效率及稳定性远远优越600Kw机组。

图4.2 膜片联轴器

1、高速刹车盘;

2、联轴器;

3、发电机转轴;

4、KTR-膜片

(五)、独立于系统的硬件保护

金风风力发电机组的安全保护系统分三层结构:计算机系统(控制器)、独立于控制器的紧急停机链、和个体硬件保护措施。振动保护被串接在独立于计算机系统的紧急停机链中,与机舱急停、左右偏航、扭缆开关(S43/600Kw机组)、凸轮计数器、看门狗、控制柜急停、主控开一起构成了的安全链。当机组发生振动幅度触发振动开关动作时,安全链断开,机组进入紧急停机,防止由于发生强烈振动导致风机出现不必要的故障与损失。

五、小结

时间过得很快,不知不觉到项目现场工作已经四个月了,首先要在此感谢项目上同事们的关心、照顾和指导。让我在短短的四个月内学到了在校园内学不到的技术和理论,对于刚毕业的我来说这是最大的收获。

投身风电、为风电服务是一项高尚的职业,至今我仍为我的选择而感到自豪。

经过四个月的学习和实践,使我对风机的结构、性能、原理等,有了很大的认识与掌握,但是由于金风风电机组应用到的知识面广,可学习的东西还有很多,四个月的学习还是远远不够的。本文只是我的一个粗浅的认识,文中有不准确之处还望前辈们指点

与教导。

通过这次论文,提高了我语言组织能力,同时加深了我对金风风力发电机组的认识,使我在日后的维护工作中能更得心应手,把维护工作做得更好,争取在日常工作中扩展自己的思维,提高自己的创新意识,为公司、为客户创造最大的价值。

参考文献

[1] 北京天源科创风电技术有限责任公司.《金风S48/750Kw风力发电机组维护指南》,2008

[2] 金风科技股份有限公司.《石碑山项目培训资料》,2005

[3] 殷伟.《振动检测基础知识》,2010

[4] 殷伟.《振动数据分析与识别》,2010

(完整版)水轮发电机组振动标准的探讨

水轮发电机组振动标准的探讨 一、概述 水轮发电机组的振动由于其所具有机组在制造厂不能进行运行试验、各机组构造和支承条件各异的特点,设计单位和制造厂所编制的振动预测往往和机组的振动状态有着较大程度的差异。多年来国际电工委员会(IEC)和国际标准化组织(ISO)也曾组织制定过相关规程,有关国家先后提出过若干提案,但至今都未形成正式的国际标准。 1. 目前,在国内外广泛使用于水轮发电机组的振动判断标准如表1。 表1

二、国际电工委员会(IEC)和国际标准化组织(ISO)汇集各国、各知名标准化协会提案提炼的相关标准铸就了水轮发电机组振动测量、评判标准系列的基石 1.ISO 10816-5(2000)《在非旋转部件上测量和评价机器的机械振动第 5部分:水力发电厂和泵站机组》是目前最具权威性的轴承座振动评定标准之一(目前,ISO 10816已替代了ISO 2372 和ISO 3945)。 GB/T 6075.5-2002《在非旋转部件上测量和评价机器的机械振动第 5部分:水力发电厂和泵站机组》实际上相当于ISO 10816-5(2000)的中译本,因此,完全可以GB/T 6075.5-2002替代国际标准化组织的相关标准ISO 10816-5(2000)。 相关的主要内容是: 1)对轴承座绝对振动的测量,通常用惯性传感器测量振动速度V rms,单位为mm/s(对于300~1800r/min的中高速机组而言,低于300r/min机组建议测量振动位移S P-P,单位为μm)。在支架振动响应可以忽略的情况下,也可将位移传感器固定在刚性支架上,直接测量振动位移S P-P。 2)上下导轴承座均支撑于基础上的立式机组,水轮机工况的推荐值参见表3、图1。 表3 的推荐值参见表4、图2。

设备振动标准

“刚性连接”中,相对的连接件之间不得有位移,在大多数的紧固中都是这样的连接。 “挠性连接”中,相对的连接件既有约束或传递动力的关系,又可以有一定程度的相对位移。 如常见的联轴器,刚性联轴器将两个部分用螺栓紧固,这样的安装要求同心度极高,稍有误差,机械就会震动,而且寿命不长。 挠性联轴器就有措施,在联轴器的两部分之间,使用滑块、弹性柱销、木销或万向节等,即传递了动力,也满足了设备的使用要求。 刚性联轴器不具有补偿被联两轴轴线相对偏移的能力,也不具有缓冲减震性能;但结构简单,价格便宜。只有在载荷平稳,转速稳定,能保证被联 两轴轴线相对偏移极小的情况下,才可选用刚性联轴器。属于刚性联轴器的 有套筒联轴器、夹壳联轴器和凸缘联轴器等。其它联轴器都是挠性联轴器了. 企业设备振动故障诊断 相对标准的建立及应用 陈兆虎李兰儒张红 摘要本文结合克拉玛依石化厂实际情况,从安全性、经济性出发,叙述建立适合现代企业设备管理维修的动设备振动故障诊断相对标准的方法,以及相对标准应用效果。 一、设备振动故障诊断标准 1.标准的类型及理论依据 标准有绝对标准和相对标准两大类型。绝对标准就是人们常说的国际标准。各种转动机械的振源主要来自结构设计,制造、安装质量,调试情况和环境本身。振动的存在必然不同程度引起设备自身及其附属管线的结构疲劳和损伤。美国齿轮制造协会(AGMA)提出在低频域(10Hz以下),以位移作为振动标准;中频域(10Hz~1kHz),以速度作为振动标准;而高频域(1kHz以上)则以加速度作为标准。 理论已经证明,振动部件的疲劳与振动速度成正比,振动所产生的能量与振动速度的平方成正比,能量传递的结果必然造成磨损或其它缺陷。因此,在振动判断标准中,无论从疲劳损伤还是磨损等缺陷来说,以振动速度标准最为适宜。 )标准mm/s 表1 电动机器振动(v rms

水轮发电机组振动危害性分析及预防

水轮发电机组振动危害性分析及预防 水轮发电机组在运行中产生振动现象是不可避免的,这是由多种因素引发机组振荡的综合效应。在设备运行生产管理工作中,应注意加强对机组振动现象及其危害性的分析与预防。 1 水轮发电机组振动类型 1.1 机械类振动。由于机械部分的平衡力引起的振动称为机械类振动。例如,转动部分重量不平衡、轴线偏差、摆动过大等。其主要特点是振动频率与机组转速一致,有时振幅与转速成正比。 1.2 电气类振动。由于电气方面的原因造成发电机磁场不平衡而引起的振动称为电气振动。例如,发电机在三相电流不对称情况下运行磁场不均匀,发电机短路故障等。其主要特点是振幅与励磁电流大小成正比。 1.3 水施类振动。由于某些原因引起水轮机蜗壳内受力不平衡而造成的振动称为水施类振动。例如,尾水涡带、叶片水卡门涡列、转轮圆圈边间隙不均匀、转轮气蚀等。其特点是振幅与导叶开度有关,往往开度愈大,振幅愈大。 2 水轮机组振动所带来的危害 2.1 引起机组零部件金属和焊缝间疲劳破坏区的形成和扩大,从而使之产生裂纹,甚至断裂损坏而报废。 2.2 使机组部分紧固部件松动,不仅会导致这些紧固件本身的断裂,而且加剧被其连接部分的振动,促使它们加速损坏。 2.3 加速机组转动部分相互磨损程度。如大轴剧烈摆动可使轴与轴瓦

的温度升高,使轴瓦烧毁;发电机转子振动过大增加滑环电刷磨损程度,并使温度升高,使轴瓦烧毁;发电机转子振动过大增加滑环电刷磨损程度,并使电刷火花不断增大。 2.4 尾水管中形成的涡流脉动压力可使尾水管壁产生裂缝,严重时可使整体尾水设施遭到破坏。 2.5 水轮机组共振引起的后果更加严重。如机组设备与厂房的共振,可使整个设备和厂房遭到不同程度的损坏。 3 引起振动的原因及预防措施 3.1 机械方面的因素有:①由于主轴的弯曲或挠曲、推力轴承调整不良、轴承间隙过大、主轴法兰连接不紧和机组几何线中心点不准引起空载低速时的振动;②因转轮等旋转件与静止件相碰而引起的振动; ③转动部分重量不平衡引起的振动,且随转速上升振动增大而与负荷无关,这是常见的,特别是焊补转轮或更换浆叶后更容易发生。 对机械原因引起的振动应采取的措施:通过动平衡、调整轴线或调整轴瓦间隙等来提高相对同心度和精密度。 3.2 水施方面的因素有:①尾水管中水流涡带所引起的压力脉动诱发的水轮机振动,严重的还引起厂房共振;②卡门涡列引起的振动,当水流流经非流线型障碍物时,在其后面尾流中分裂一系列变态旋涡,即所谓卡门涡列,这种涡列交替地作顺时针或反时针方向旋转,在其不断旋转与消失过程中,会在垂直于主流方向发生交变力导致的叶片振动,严重时会发出响声,甚至使叶片根部振裂;③转轮止漏间隙不均匀引起的振动,间隙大处其流速较小而压力较大,其振频与止漏环

机械设备振动标准

机械设备振动标准 它是指导我们的状态监测行为的规范 最终目标:我们要建立起自己的每台设备的标准(除了新安装的设备)。 ?监测点选择、图形标注、现场标注。 ?振动监测参数的选择:做一些调整:长度、频率范围 ?状态判断标准和报警的设置 1 设备振动测点的选择与标注 1.1监测点选择 测点最好选在振动能量向弹性基础或系统其他部分进行传递的地方。对包括回转质量的设备来说,建议把测点选在轴承处或机器的安装点处。也可以选择其他的测点,但要能够反映设备的运行状态。在轴承处测量时,一般建议测量三个方向的振动。铅垂方向标注为V,水平方向标注为H,轴线方向标注为A,见图6-1。 图6-1 监测点选择

图6-2在机器壳体上测量振动时,振动传感器定位的示意图 1.2 振动监测点的标注 (1)卧式机器 这个数字序列从驱动器非驱动侧的轴承座赋予数字001开始,朝着被驱动设备,按数字次序排列,直到第一根轴线的最后一个轴承。在多根轴线的(齿轮传动)机器上,轴承座的次序从驱动器开始,按数字次序继续沿着第二根轴线到被驱动器往下排列,接着再沿着第三根轴线往下排列,直到机组的末端为止。常见的几种标注方法见图6-3~6-5。 图6-3 振动监测点的标注 图6-4 振动监测点的标注

图6-5 振动监测点的标注 (2)立式机器 遵循与卧式机器同样的约定。 1.3 现场机器测点标注方法 机壳振动测点的标注可以用油漆标注,也可以在机壳上粘贴钢盘来标注振动测点,最好采用后一种方法标注。采用钢盘时,机壳要得到很好的处理。钢盘规格为厚度5mm,直径30mm,用强度较好的粘接剂粘接,以保证良好的振动传递特性。 2 设备振动监测周期的确定 振动监测周期设置过长,容易捕捉不到设备开始劣化信息,周期设置过短,又增加了监测的工作量和成本。因此应根据设备的结构特点、传动方式、转速、功率以及故障模式等因素,合理选定振动监测周期。当设备处于稳定运行期时,监测周期可以长一些;当设备出现缺陷和故障时,应缩短监测周期。在确定设备监测周期时,应遵守以下原则; 1)安装设备或大规模维修后的设备运行初期,周期要短(如每天监测一次),待设备进入稳定运行期后,监测周期可以适当延长。 2)检测周期应尽量固定。 3)对点检站专职设备监测,多数设备监测周期一般可定为7至14天;对接近或高于3000转/分的高速旋转设备,应至少每周监测1次。 4)对车间级设备监测,监测周期一般可定为每天1次或每班1次。 5)实测的振动值接近或超过该设备报警标准值时,要缩短监测周期。如果实测振动值接近或超过该设备停机值,应及时停机安排检修。如果因生产原因不能停机时,要加强监测,监测周期可缩短为1天或更短。 3 设备振动监测信息采集 3.1 振动监测参数的选择

汽轮发电机组的振动

汽轮发电机组的振动 第一节概述 汽轮发电机组在运行中总会存在一定程度的振动,关键在于应使机组振动值维持在允许范围内。机组振动是评价机组运行可靠性的重要依据之一,机组振动异常是运行中的常见故障。强烈振动表明机组内存在缺陷,如在此情况下不采取措施而继续运行,由于振动力的作用,会使机组各连接部位松动,削弱了连接刚性,振动将随之进一步加剧。振动过大会使机组动静部分及松动部位互相摩擦、轴承合金破坏、转子大轴疲劳甚至出现裂纹、叶片断裂、危急保安器误动作。为此,汽轮机组振动过大,应正确分析振动产生原因、振动性质,判断造成振动过大的部位,并采取相应措施,使振动减小到允许范围。汽轮机检修工作应掌握产生振动的规律及与振动联系密切的设备,提高检修质量,防止出现异常振动。 机组产生振动异常原因是多方面的,情况复杂,它涉及到机组制造、安装、检修和运行各个方面,所以无论是检修人员、还是运行人员均应具备这方面的基本知识。 机组振动过大,将引起设备损坏,甚至造成严重后果。振动过大的危害性主要表现在以下几个方面。 1 .直接造成机组停机事故 当机组振动过大,尤其在高压端振动过大,有可能引起危急保安器遮断油门动作而停机。 2 .机组振动造成动静部分摩擦

机组强烈振动会使轴封、隔板汽封产生磨损,间隙增加,使机组运行经济性下降、轴向推力上升甚至造成推力瓦块损坏。如果磨损严重还会造成转子弯曲,当热应力超过屈服极限,将使转子产生永久性弯曲。如果振动发生在发电机侧,会加速滑环与碳刷的磨损,线圈电气绝缘磨损而造成电气事故,最后导致机组火灾,这种事故在电厂时有发生。 3 .振动导致机组零部件损坏 振动过大动应力增加,会使叶片、围带等转动零件损坏,叶片、围带断裂又引起更大的质量不平衡振动。振动过大也会损坏轴承合金。 4 .振动使各连接件松动 机组振动过大时,将使轴承上的连接件、主油泵、凝汽器及发电机冷却管、法兰连接螺栓振松或损坏,甚至造成基础裂纹。 第二节振动标准 机组振动是客观存在的,振动过大会造成极大危害,所以运行中的机组振动值必须保持在一定范围内,这个范围就是振动的标准,我国电力部颁布了汽轮发电机组振动的振幅值标准,见表4-l 。 表4-1 汽轮发电机组振动标准(水电部1980年颁发) 机组的振动状况,应在额定转速下,通过测量任何运行工况时轴承座的振动峰值来评定,并以轴承座的垂直(⊥)、水平(一)、轴向(☉)

水轮发电机组振动分析

水轮发电机组振动分析 水轮发动机组振动有诸多原因以及危害。由于破坏了转轮结构和固定导叶,这种振动现象会威胁水电站运行的安全性和稳定性,降低水电站的经济效益。文章阐述了水轮发电机组原理、原因以及危害等问题,为了提高机组安全稳定运行延长机组使用寿命,我们要减少水轮发电机组振动这种现象。 标签:水轮发电机组振动;原理;振动;危害 1 概述 随着社会的发展,水利工程对人们的生活至关重要,我们应该采取有效措施保障水利工程项目内部机电设备的正常运行。为了提高水轮发电机组的稳定性,对水轮发电机组振动进行分析与研究。 2 水轮发电机组振动原理 在机组运转的状态下,在水轮机作为其原动力的前提下,水能的作用能够直接有效激发水轮发电机组振动,还能够间接维持机组振动。流体、机械、电磁三者是相互影响相互作用的,由于气隙在不对称的状态下,由于发电机定子与转子之间的磁拉力不平衡的情况,当流体激起机组转动部分振动时会造成机组转动部分的振動,而发电机的磁场和水轮机的水流流场也会受到转动部分的运动状态的影响。 3 关于水轮发电机组振动的原因 3.1 机械原因 (1)机组轴线不同心。因为轴心线受到水轮机轴与发电机轴不同心的现象导致不正,因此出现振动,造成机械故障。它的主要振动特征1倍频和2倍频为径向振动的主要频率;2倍频分量与轴系不对中成正比,2倍频分量比例越大,轴系不对中越的现象越显著,一般会超过1倍频分量。 (2)不平衡的转子质量。水轮发电机组转子质量不平衡是是旋转机械最常见的故障,也是导致机组振动的常见原因之一。其转子质量不平衡振动现象表现有三点:随着转速增加振动频率也随之增加;以圆或椭圆为轴心轨迹;以转频为主要振动频率。 (3)轴承缺陷。引起发生干摩擦的原因:导轴间隙过大、松动、润滑不好,或轴承与固定止漏环轴线不正等,这些因素都会使机组横向振动。为了解决机械原因引起的振动等问题不影响精密度和相对同心度的降低,需要利用动平衡来调节轴瓦间隙和轴线等。

风力发电机标准IEC中文版

IEC61400-1第三版本2005-08 风机-第一分项:设计要求 1.术语和定义 1.1声的基准风速acoustic reference wind speed 标准状态下(指在10m高处,粗糙长度等于0.05m时),8m/s的风速。它为计算风力发电机组视在声功率级提供统一的根据。注:测声参考风速以m/s表示。 1.2年平均annual average 数量和持续时间足够充分的一组测试数据的平均值,用来估计均值大小。用于估计年平均的测试时间跨度应是一整年,以便消除如季节性等非稳定因素对均值的影响。 V annual average wind speed 1.3年平均风速 ave 基于年平均定义的平均风速。 1.4年发电量annual energy production 利用功率曲线和在轮毂高度处不同风速频率分布估算得到的一台风力发电机组一年时间内生产的全部电能。假设利用率为100%。 1.5视在声功率级apparent sound power level 在测声参考风速下,被测风力机风轮中心向下风向传播的大小为1pW点辐射源的A—计权声级功率级。注:视在声功率级通常以分贝表示。 1.6自动重合闸周期auto-reclosing cycle 电路发生故障后,断路器跳闸,在自动控制的作用下,断路器自动合闸,线路重新连接到电路。这过程在约0.01秒到几秒钟内即可完成。 1.7可利用率(风机)availability 在某一期间内,除去风力发电机组因维修或故障未工作的时数后余下的小时数与这一期间内总小时数的比值,用百分比表示。 1.8锁定(风机)blocking 利用机械销或其它装置,而不是通常的机械制动盘,防止风轮轴或偏航机构运动,一旦锁定发生后,就不能被意外释放。 1.9制动器(风机)brake 指用于转轴的减速或者停止转轴运转的装置。注:刹车装置利用气动,机械或电动原理来控制。 1.10严重故障(风机)catastrophic failure 零件或部件严重损坏,导致主要功能丧失,安全受到威胁。 1.11特征值characteristic value 在给定概率下不能达到的值(如超越概率,超越概率指出现的值大于或等于给定值的概率)。

试论述引起水轮发电机组振动的原因

试论述引起水轮发电机组振动的原因、振动机理及相应振动故障的处理措施 水轮发电机组的振动与一般动力机械振动有一定差异,机组振动的现象是比较明显的,但振源往往是隐蔽的,除了机器本身转动或固定部分引起的振动外,还需考虑发电机电磁力以及作用于水轮机过流部分的流动压力对系统及其部件振动的影响。引起水轮发电机组振动的原因多种多样,往往是几种振源同时存在,通常认为使机组产生振动的干扰力源主要来自水力、机械和电气三个方面,三者相互影响、相互作用,常常交织在一起,形成耦合振动。 水轮发电机组的一般振动不会危害机组,但当机组振动超过允许值,尤其是长期振动及发生共振时,对供电质量、机组使用寿命、附属设备及仪器是性能、机组基础和周围的建筑物,甚至对整个水电站的安全经济运行等,都会带来严重的危害。 其危害性大致有以下几类: 1)引起机组零部件金属和焊缝间疲劳破坏区的形成和扩大,从而使之产生裂纹,甚至 断裂损坏而报废。 2)使机组部分紧固部件松动,不仅会导致这些紧固件本身的断裂,而且加剧被其连接 部分的振动,促使它们加速损坏。 3)加速机组转动部分相互磨损程度。如大轴剧烈摆动,可使轴与轴瓦的温度升高,使 轴瓦烧毁;发电机转子振动过大增加滑环与电刷的磨损程度,并使温度升高,使轴瓦烧毁,并使电刷火花不断增大 4)尾水管中形成的涡流脉动压力,可使过水系统发生振荡,机组出力摆动,使尾水管 壁产生裂缝,严重时可使整体尾水设施遭到破坏。 5)水轮机组共振引起的后果更加严重。如机组设备与厂房的共振,可使整个设备和厂 房遭到不同程度的损坏 1、水力方面 水力振动由水轮机水力部分的动水压力的干扰造成的振动叫水力振动。产生振动的水力因素主要有:尾水管内低频涡带、卡门涡列、叶道涡引起的水力不稳定、过度过程中

风电标准大全

风电标准大全 电工术语 发电、输电及配电 通用术语 电工术语风力发电机组 风力发电机组型式与基本参数 离网型风力发电机组用发电机 第1部分:技术条件 离网型风力发电机组用发电机 第2部分:试验方法 风力机设计通用要求 小型风力发电机组安全要求 风力发电机组安全要求 风力发电机组功率特性试验 风电场风能资源测量方法 风电场风能资源评估方法 离网型风力发电机组第 1部分:技术条件 离网型风力发电机组第 2部分:试验方法 离网型风力发电机组第 3部分:风洞试验方法 风力发电机组控制器技术条件 风力发电机组控制器试验方法 风力发电机组 异步发电机第1部分:技术条件 风力发电机组 异步发电机第2部分:试验方法 风力发电机组塔架 风力发电机组齿轮箱 离网型户用风光互补发电系统 第1部分:技术条件 离网型户用风光互补发电系统 第2部分:试验方法 风力发电机组装配和安装规范 风力发电机组第1部分:通用技术条件 风力发电机组第2部分:通用试验方法 风电场接入电力系统技术规定 风力发电机组验收规范 GB/T 2900.50-1998 GB/T 2900.53-2001 GB/T 8116-87 GB/T 10760.1-2003 GB/T 10760.2-2003 GB/T 13981-1992 GB 17646-1998 GB 18451.1-2001 GB/T 18451.2-2003 GB/T 18709-2002 GB/T 18710-2002 GB/T 19068.1-2003 GB/T 19068.2-2003 GB/T 19068.3-2003 GB/T 19069-2003 GB/T 19070-2003 GB/T 19071.1-2003 GB/T 19071.2-2003 GB/T 19072-2003 GB/T 19073-2003 GB/T 19115.1-2003 GB/T 19115.2-2003 GB/T 19568-2004 GB/T 19960.1-2005 GB/T 19960.2-2005 GB/Z 19963-2005 GB/T 20319-2006 GB/T 20320-2006

汽轮发电机组振动的各种因素

汽轮发电机组振动的各种因素 【摘要】汽轮机组从设计到运行的过程都可能产生振动,必将影响整个系统的功能发挥,对此,必须引起管理部门的重视,本文从其设计,制造,安装和检修几方面进行分析,找出了影响机组振动的因素,提出具有针对性的措施。 【关键词】汽轮发电机振动影响因素 汽轮机组的轴承振动程度直接影响到机组整体的运行情况,只有保证安全的运行,才能保证收益,引起发电机组异常振动的原因很多,可能是由于振动制造的问题,或者是安装检修不当造成的振动,本文就对其进行详细的分析。 1 设计制造不当导致的机组振动 汽轮发电机属于调整运转的机械,一旦质子与旋转中心无法重合,会产生离心力,对轴承产生激振力而使之引起机组振动异常,这就要求在安装时要对每片叶片进行平衡检查,保证其不平衡的数值在合格的范围内。 从制造的角度上来看,造成汽轮发电机组转子不平衡的原因是由于对机械的精度处理不当,装配工艺无法满足生产需要,因此,必须提高机械加工的精度,保证质量,降低转子的原始不平衡。 设计不当也会引起机组振动,轴承的选取,稳定性不足都会导致振动,引发机组运转危险。 2 安装检修不当导致的振动 安装与检修过程中的工艺质量对于机组振动的影响十分大,经过实践分析,由于安装和检修引起振动的情况十分普遍,其中主要有以下几个方面: 2.1 标高安装不当 由于轴承的标高没有按照设计的要求安装将会导致两端不平衡,引发自激振动,油膜振动和汽流激振等;而负面较重的一边,由于吃力太大,会引起轴瓦温度升高,当轴瓦乌金温度达到一定值时,很容易产生轴瓦乌金过热现象,从而造成机组的振动。这就要求在安装过程根据设计的要求进行安装,结合现场的实际情况调整标高,保持平衡。 2.2 轴承自身特征决定 轴承的轴瓦、顶隙对轴承的稳定性有一定的影响,外界因素影响下极容易导致振动。而其连接状况则主要影响其刚度,如果刚度不足,引起的异常振动将较大,这就要求必须做好刚度的控制。

水轮发电机组振动原因分析

水轮发电机组振动原因 分析 集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

水轮发电机组振动原因分析水轮发电机组的振动问题与一般动力机械的振动有一定差异,除了机器本身转动或固定部分引起的振动外,尚需考虑发电机的电磁力以及作用于水轮机过流部分的流动压力对系统及其部件振动的影响。在机组运转的状态下,流体—机械—电磁三部分是相互影响的。例如,当水流流动激起机组转动部分振动时,在发电机转子与定子之间会导致气隙不对称变化,由此产生的磁拉力不平衡也会造成机组转动部分的振动,而转动部分的运动状态出现某些变化后,又会对水轮机的水流流场及发电机的磁场产生影响。因此,水轮机的振动是电气、机械、流体等多种原因引起的。可见,完全按照这三者的相互关系来研究系统的振动是不够的。鉴于问题的复杂性,将引起水轮机组振动原因大致分为机械、水力、电气三方面的因素来研究,为水电厂生产管理、运行、检修人员提供参考意见,以便制定出相应的预防和消振措施。 1水轮发电机组振动的危害振动是旋转机械不可避免的现象,若能将其振幅限制在允许范围内,就能确保机组安全正常运行。但较大振动对机组安全是不利的,会造成如下危害:

a)使机组各连接部件松动,使各转动部件与静止部件之间产生摩擦甚至扫膛而损坏; b)引起零部件或焊缝的疲劳、形成并扩大裂缝甚至断裂; c)尾水管低频压力脉动可使尾水管壁产生裂缝;当其频率与发电机或电力系统的自振频率接近时,将发生共振,引起机组出力大幅度波动,可能会造成机组从电力系统中解列,甚至危及厂房及水工建筑物。下面简单介绍几起天桥水电厂机组振动引起的事故,以便从中了解机组振动的起因。 a)20世纪80年代初,天桥水电站多次发生因振动摆度过大而引起的设备损坏事故。1980年8月3号机由于上导轴承摆度大导致4个上导瓦背垫块断裂;1982年10月3号机发生发电机扫膛严重事故,上导瓦架与上机架固定螺栓8只中的5只被剪断,1只定位销剪断、瓦架变形。上机架振幅达022mm,水导轴承处振幅达020mm。水轮机轴与发电机大轴法兰联接处摆度为074mm,后经测量分析为机组轴承中心不正,发电机转子外圆度超标,空气间隙不匀等原因所致。

机械设备振动标准

机械设备振动标准 1 设备振动测点的选择与标注 1.1 监测点选择 测点最好选在振动能量向弹性基础或系统其他部分2进行传递的地方。对包括回转质量的设备来说,建议把测点选在轴承处或机器的安装点处。也可以选择其他的测点,但要能够反映设备的运行状态。在轴承处测量时,一般建议测量三个方向的振动。水平方向标注为H,铅垂方向标注为V ,轴线方向标注为A,见图6-1。 图6-1 监测点选择 图6-2 在机器壳体上测量振动时,振动传感器定位的示意图

1.2 振动监测点的标注(1)卧式机器 这个数字序列从驱动器非驱动侧的轴承座赋予数字001 开始,朝着被驱动设备,按数字次序排列,直到第一根轴线的最后一个轴承。在多根轴线的(齿轮传动)机器上,轴承座的次序从驱动器开始,按数字次序继续沿着第二根轴线到被驱动器往下排列,接着再沿着第三根轴线往下排列,直到机组的末端为止。常见的几种标注方法见图6-3 ~6-5 。 图6-3 振动监测点的标注 图6-4 振动监测点的标注 (2)立式机器遵循与卧式机器同样的约定 1.3 现场机器测点标注方法机壳振动测点的标注可以用油漆标注(最简单的一种方 法),标注大小与传感 器磁座大小相似;也可以在机壳上粘贴钢盘来标注振动测点,最好采用后一种方法标

注。采用钢盘时,机壳要得到很好的处理。钢盘规格为厚度5mm,直径 30mm, 用强度较好的粘接剂粘接,以保证良好的振动传递特性。 2 设备振动监测周期的确定振动监测周期设置过长,容易捕捉不到设备开始劣化信息,周期设置过短,又增加了监测的工作量和成本。因此应根据设备的结构特点、传动方式、转速、功率以及故障模式等因素,合理选定振动监测周期。当设备处于稳定运行期时,监测周期可以长一些;当设备出现缺陷和故障时,应缩短监测周期。在确定设备监测周期时,应遵守以下原则; 1)安装设备或大规模维修后的设备运行初期,周期要短(如每天监测一次),待设备进入稳定运行期后,监测周期可以适当延长。 2)检测周期应尽量固定。 3)对点检站专职设备监测,多数设备监测周期一般可定为7 至14 天;对接 近或高于3000转/ 分的高速旋转设备,应至少每周监测 1 次。 4)对车间级设备监测(指运行人员),监测周期一般可定为每天1 次或每班1 次。 5)实测的振动值接近或超过该设备报警标准值时,要缩短监测周期配件;如果实测振动值接近或超过该设备停机值,应及时停机安排检修;如果因生产原因不能停机时,要加强监测,监测周期可缩短为 1 天或更短。 3 设备振动监测信息采集 3.1 振动监测参数的选择对于超低频振动,建议测量振动位移和速度;对于低频振动, 建议测量振动 速度和加速度;对于中高频振动和高频振动,建议测量振动加速度。说明如下:(1)设备振动按频率分类。根据振动的频率,设备振动可以分为以下几种:1)超低频振动,振动频率在10Hz 以下。 2)低频振动,振动频率在10Hz 至1000Hz。 3)中高频振动,振动频率在1000Hz至10000Hz。 4)高频振动,振动频率在10000Hz以上。 (2)位移为峰峰值;速度为有效值;加速度为有效值;有时根据需要,速度和加速度还要测量峰值。 3.2 振动监测中的几个“同” 为保证测量结果的可比性,在振动监测中要注意做到以下 几个“同” : 1 )测量仪器同; 2 )测量仪器设置同; 3 )测点位置、方向同; 4 )设备工况同; 5 )背景振动同。并尽量由同一个人测量。 3.3 振动数据采集应严格按监测路径和监测周期对设备进行定期监测。采集设备振动数据时,通常还需要记录设备的其他过程参数,如温度、压力和流量等,以便于比较和趋

水轮发电机振动原因分析及处理

水轮发电机振动原因分析及处理 响洪甸水电站装有4台HL-211-LJ-200水轮发电机,每台机的容量为10 MW,于1958—1961年分批投入生产。 3号水轮发电机组于1960年7月投产,1987年底进行定、转子绝缘的更新改造,更换了定子铁芯,并对定位筋位置进行了修正。 1 振动概况 1991-05-16,运行人员发现3号机下导机架靠4号机方向的一条腿松动。检查后,用现场加焊补强的方法作了暂时处理。在经历了前所未有的高水头运行后,运行及检修人员发现该机振动加剧,再次检查发现,下机架的4条腿与基础之间均存在相互蠕动现象。 1991-10-25,用不同手段在不同工况下对3号机振动情况进行了测量。测量结果表明,3号机的水平振动和垂直振动在大部分工况下都已达到甚至超过规程规定的允许范围(水平0.07 mm,垂直0.03 mm),特别是转轮压水调相工况时,水平振动达到0.085 mm,垂直振动达0.065 mm。 1991-11-05,对电机气隙进行了测量。通过对28个磁极气隙测量,发现靠下游侧至2号机侧的半圆气隙普遍偏大,一般在12 mm左右,而另半圆的气隙则在8 mm左右,这个趋势和励磁机的气隙变化基本一致,说明3号发电机的某一部分由于某种原因发生了位移,位移幅度可能在2 mm左右。 2 振动原因分析 1992年9月下旬,对3号机组进行了较全面的振动和摆度测试,并做了频谱分析,得到了幅值和频率等实测数据。通过研究分析,得出机组振动的原因如下。 (1) 从上机架的垂直振动测量分析出机组在各种测试工况下都存在着明显的8倍转频的振动。这表明镜板与推力头之间的环氧玻璃垫板有气蚀磨损、镜板与推力头结合面有不平缺陷。由于镜板与推力头的连接螺栓是8个,故使镜板在运转中呈现8个波浪式变形。由于推力瓦块数是8块,因此镜板旋转时会受到8倍转频的轴向振动力,并且镜板联接螺栓与推力瓦块数相等,使得每块瓦对镜板产生的轴向振动力是同步的,从而加剧了振动力。久而久之,造成垫板严重气蚀磨损,并使联接螺栓产生疲劳,严重时发生断裂。 镜板与推力头结合面的不平缺陷,加剧了垫板的气蚀磨损,垫板的磨损使机组的振动变大,这是3号机振动增大的主要原因(在机组大修时检查证明了垫板确实严重气蚀)。 (2) 水导摆度在各种工况下都较大,达到0.45~0.51 mm,超出了允许值,表明橡胶水导瓦间隙变大,需更换或调整。 (3) 上导摆度在2.5 MW负荷工况下达到0.48 mm,超出了允许值;在7.5 MW 大负荷工况下仅为0.14 mm。 (4) 变速试验中,上机架径向振动的转频幅值几乎相同,小于0.04 mm,表明转子机械平衡性能良好,无需再做平衡试验。

.MW海上风电机组的汇总

海上风电机组的概念设计 目前,海上风力发电机组的主流机型是2.3~5MW双馈或半直驱机型,已交付或已有订单的机型主要如下表所示: 公司名称机组型号已交付使用正在安装已有订单丹麦vestas V90 /3MW257台260台(含V112)西门子公司SWT-2.3311台90台 西门子公司SWT-3.6151台593台 德国REpower5M8台351台 德国Multibrid M500027台245台德国Enercon E-126/6MW8台 GE公司GE 3.6sl 7台130台 华锐公司3MW 34台 德国BARD VM5MW 5台80台 德国Nordex2MW 8台 德国Nordex 2.5MW 11台 芬兰WinWind 3MW 10台 由上表可见丹麦vestas 的V90 /3MW,西门子公司的SWT-3.6,德国REpower的5M,德国Multibrid的M5000,GE公司的GE 3.6sl和德国BARD公司的VM5MW机组被市场认可,由此可见3MW以上风电 机组是最近几年海 上风力发电机组的 主力机型。 V90 /3MW机 组是vestas在2002 年5月开始试制 的,右图为V90 /3MW的示意图。 V90 /3MW机

组是首台采用紧凑型结构的风力发电机组,可以认为是取消了低速轴。2009年9月vestas又研制出了V112-3.0MW离岸型风力发电机组,这是V90-3.0MW的改进型,其安全等级为IECS,适于在平均风速9.5m/s的海上使用,这种机组采用三级增速齿轮箱,永磁同步发电机,短低速轴。该机型应该是维斯塔斯准备大批量生产的产品,下图为V112-3.0MW的外形图。 V112-3.0MW机组计划安装在英国沃尔尼第二海上风力发电场,2011年年底交付使用。V112-3.0MW技术参数如下表所示: 序号部件单位数值 1 机组数据 1.1 制造厂家/型号V112-3.0MW 1.2 额定功率kW 3000 1.3 轮毂高度(推荐方案)m 84.94/119 1.4 切入风速m/s 3 1.5 额定风速m/s 12 1.6 切出风速(10分钟平均值)m/s 25 1.7 极端(生存)风速(3秒最大值)m/s 59.5(IECIIA)5 2.5(IECIIIA) 1.8 预期寿命y 20 2 风轮

(完整版)风力发电场安全规程DLT796-2012

风机发电场安全规程 1 范围 本标准规定了风力发电场人员、环境、安全作业的基本要求,风力发电机组安装、调试、检修和维护的安全要求,以及风力发电机组应急处理的相关安全要求。 本标准适用于陆上并网型风力发电场。 2 规范性引用文件 下列文件对于本文件的应用时必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡不是注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB 2894 安全标志及其使用导则 GB/T 2900.53 电工术语风力发电机组 GB/T6096安全带测试方法 GB 7000.1 灯具第一部分:一般要求与试验 GB 18451.1 风力发电机组设计要求 GB19155 高处作业吊篮 GB/T20319 风力发电机组验收规范 GB 26164.1电业安全工作规程第一部分:热力和机械 GB 26859电力安全工作规程电力线路部分 GB 26860 电力安全工作规程发电厂和变电站电气部分

GB 50016 建筑设计防火规范 GB 50140建筑灭火器配置设计规范 GB 50303建筑电气工程施工质量验收规范 DL/T 572 电力变压器运行规程 DL/T 574 变压器分接开关运行维修导则 DL/T 587 微机继电保护装置运行管理规程 DL/T 741 架空输电线路运行规程 DL/T 969 变电站运行导则 DL/T 5284 履带起重机安全操作规程 DL/T 5250 汽车起重机安全操作规程 JGJ 46 施工现场临时用电安全技术规范 3 术语和定义 下列术语和定义适用于本标准 3.1 风电场输变电设备 风电场升压站电气设备、集电线路、风力发电机组升压变等。3.2 坠落悬挂安全带 高出作业或登高人员发生坠落时,将坠落人员安全悬挂的安全带。 3.3

小型水轮发电机组运行中的振动分析正式样本

文件编号:TP-AR-L1191 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编制:_______________ 审核:_______________ 单位:_______________ 小型水轮发电机组运行中的振动分析正式样本

小型水轮发电机组运行中的振动分 析正式样本 使用注意:该解决方案资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 水轮发电机组振动是水电站存在的一个普遍问 题,有设计、制造、安装、检修、运行等方面的原因. 运行中的机组不同程度都存在着振动,电站规定振动 值在某一允许范围内,当振动超过规定的允许值时,便 会影响机组的安全运行和机组的寿命,需及时找出原 因并采取措施消除.同时水轮发电机组的振动是一个 复杂的问题,但从振动的原因来看,一般有机械、水力 及电磁等方面的原因.笔者结合实践谈谈水轮发电机 组运行中的振动问题.机械掘动由于机组机械部分的 惯性力、摩擦力及其他力的干扰造成的振动叫做机械

振动.引起机械振动的因素有:转子质量不平衡、机组轴线不正、导轴承缺陷等.特子质量不平衡.由于转子质量不平衡,转子重心与轴心产生一个偏心距.当主轴旋转时,由于失衡质量离心惯性力的作用,主轴将产生弯曲变形.轴变形越大,振动也越严重.在制造时,要进行转于的静平衡、动平衡试验,使不平衡重量尽可能小,从根本上消除这种振动的原因. 轴线不正.机组轴线不正会引起两种形式的振动,弓状回旋.由于转子、转轮几何中心偏离旋转中心,运行中会产生横向及纵向振动,直接形成回旋对推力轴承、导轴承均构成威胁,还能增大离心惯性力,两者都使振幅增大.从运行角度分析,一般出现在投运年限较长,各导轴承间隙大,没能及时修复,或者检修质量不良等情况下.

水轮发电机组振动原因分析

水轮发电机组振动原因分析 水轮发电机组的振动问题与一般动力机械的振动有一定差异,除了机器本身转动或固定部分引起的振动外,尚需考虑发电机的电磁力以及作用于水轮机过流部分的流动压力对系统及其部件振动的影响。在机组运转的状态下,流体一机械一电磁三部分是相互影响的。例如,当水流流动激起机组转动部分振动时,在发电机转子与定子之间会导致气隙不对称变化,由此产生的磁拉力不平衡也会造成机组转动部分的振动,而转动部分的运动状态出现某些变化后,又会对水轮机的水流流场及发电机的磁场产生影响。因此,水轮机的振动是电气、机械、流体等多种原因引起的。可见,完全按照这三者的相互关系来研究系统的振动是不够的。鉴于问题的复杂性,将引起水轮机组振动原因大致分为机械、水力、电气三方面的因素来研究,为水电厂生产管理、运行、检修人员提供参考意见,以便制定出相应的预防和消振措施。 1水轮发电机组振动的危害振动是旋转机械不可避免的现象,若能将其振幅限制在允许范围内,就能确保机组安全正常运行。但较大振动对机组安全是不利的,会造成如下危害: 务)使机组各连接部件松动,使各转动部件与静止部件之间产生摩擦甚至扫膛而损坏; b)引起零部件或焊缝的疲劳、形成并扩大裂缝甚至断裂;

C )尾水管低频压力脉动可使尾水管壁产生裂缝;当其频率与发电机或电力系统的白振频率接近时,将发生共振,引起机组出力大幅度波动,可能会造成机组从电力系统中解列,甚至危及厂房及水工建筑物。下面简单介绍几起天桥水电厂机组振动引起的事故,以便从中了解机组振动的起因。 a )20世纪80年代初,天桥水电站多次发生因振动摆度过大而引起的设备损坏事故。1980年8月3号机由于上导轴承摆度大导致4个上导瓦背垫块断裂;1982年10月3号机发生发电机扫膛严重事故,上导瓦架与上机架固定螺栓8只中的5只被剪断,1只定位销剪断、瓦架变形。上机架振幅达022m m,水导轴承处振幅达020m m。水轮机轴与发电机大轴法兰联接处摆度为074mm,后经测量分析为机组轴承中心不正,发电机转子外圆度超标,空气间隙不匀等原因所致。 b )1997年2月天桥水电站4号机尾水管锥管段不锈钢衬板与普通钢衬板衔接处(高程8087m )以下约有23m 2普通钢板沿环向脱落。其主要原因是由于叶片翼端间隙射流及尾水管涡带产生的低频水压脉动相互作用,引起锥管段钢板振动,焊缝疲劳破坏后被撕裂或脱落。 c )2000年11月天桥水电站1号机大修后,发生发电机推力瓦12 块被烧毁的严重事故,因推力瓦水平调整不好,轴系中心不正及调速系统失调所致。 d )2002年5月天桥水电站3号机大修检查发现尾水管弯管段垂直

风力发电机组验收标准

国电电力山西新能源开发有限公司 风力发电机组验收规范为确保风力发电机组在现场安装调试完成后,综合检验风电机组的安全性、功率特性、电能质量、可利用率和噪声水平,并形成稳定生产能力,制定本验收标准。 一、编制依据: 1、风力发电机组验收规范 GB/T20319-2006 2、建筑工程施工质量验收统一标准GB50300 3、风力发电场项目建设工程验收规程 DL/T5191-2004 4、电气设备交接试验标准GB50150 5、电气装置安装工程接地装置施工及验收规范GB50169 6、电气装置安装工程盘、柜及二次回路结线施工及验收规范GB50171 7、电气装置安装工程低压电器施工及验收规范GB50254 8、电器安装工程高压电器施工及验收规范GBJ147 9、建筑电气工程施工质量验收规范GB50303 10、风力发电厂运行规程DL/T666 11、电力建设施工及验收技术规程DL/T5007 12、联合动力风电机组技术说明书、使用手册和安装手册

13、风电机组订货合同中的有关技术性能指标要求 14、风力发电机组塔架及其基础设计图纸与有关标准 二、验收组织机构 风电机组工程调试完成后,建设单位组建验收领导小组,设组长1名、副组长4名、组员若干名,由建设、设计、监理、施工、安装、调试、生产厂家等有关单位负责人及有关专业技术人员组成。 三、验收程序 1 现场调试 (1)风力发电机组安装工程完成后,设备通电前应符合下列要求: (a)现场清扫整理完毕; (b)机组安装检查结束并经确认(内容见附表1); (c)机组电气系统的接地装置连接可靠,接地电阻经检测符合机组的设计要求(小于4欧姆); (d) 测定发电机定子绕组、转子绕组的对地绝缘电阻,符合机组的设计要求; (e) 发电机引出线相序正确,固定牢固,连接紧密; (f) 照明、通讯、安全防护装置齐全。 (2) 机组启动前应进行控制功能和安全保护功能的检查和试验,确认各项控制功能好安全保护动作准确、可靠。

DLT 556-94 水轮发电机组振动监测装置设置导则

1 主题内容及适用范围 2 定义 3 测量方式 4 测点设置 5 传感器选择 6 监测装置设置 附加说明 打印 刷新 水轮发电机组振动监测装置 设置导则 DL/T556—94 1994-07-01发布1995-01-01实施 中华人民共和国电力工业部发布 中华人民共和国电力工业部 关于发布《水轮发电机组振动监测装置 设置导则》DL/T556-94电力行业标准的通知 电技[1994]549号 各网、省局,水电规划设计总院,各水电建设单位,各水电勘测设计院,各水电厂,各水电工程局,各有关科研院所,各有关大专院校: 《水轮发电机组振动监测装置设置导则》电力行业标准经审查通过,批准为推荐性标准,现予发布,该标准编号为DL/T556-94,自1995年1月1日起实施。 请将执行中的问题和意见告电力工业部水电站水轮发电机标委会(挂靠在中国水利水电工程总公司)。 该标准由电力出版社出版和发行。 1994年9月26日 1主题内容及适用范围 1.1本导则适用于单机容量10MW及以上的立式混流式、轴流式水轮发电机组和可逆式抽水蓄能机组的振动监测装置的设置。 1.2其他类型机组可参考本导则按现场条件设置。 1.3引用标准。本导则主要引用了下列标准: (1)GB8564-88《水轮发电机组安装技术规范》 (2)GB2298《振动,冲击有关术语》 (3)VDI2059《水力机组轴振动测量及评价规范》 (4)IEC4(45)1986《水力机械振动和脉动现场测量国际规程》 2定义

2.1电涡流位移传感器 由激励线圈与导体表面之间间隙的变化而引起电涡流的变化来进行测量的传感器,其输出量与输入的振动位移成正比。 2.2磁电惯性式速度传感器 利用电磁感应原理由惯性系统中有关元件的相对运动将振动的速度转换成电信号输出的传感器,其输出量与输入的振动速度成正比。 2.3加速度传感器 将振动的加速度转换成电信号输出的传感器,其输出量与输入的振动加速度成正比。 2.4单元式振动监测仪 单元式振动监测仪功能上以获得振动位移幅值为主要监测目的,结构上一般为1~2个通道的简单振动监测装置。 2.5智能式振动监测仪 利用单板机或单片机实现智能化,一般设有多个通道,具有一定的处理与分析功能:可打印测量数据,绘制各种曲线,一般可显示振动位移幅值、相位和转速。 2.6振动监测系统 将单元式或智能式振动监测仪通过标准模拟量输出接口与电站计算机相连,或者测振传感器直接与计算机相连,加上控制与分析软件构成振动监测系统,在各工况下可对机组的振动参数进行数据采集、贮存、处理、分析等。 3测量方式 3.1相对值测量。以机组固定部件为参照系(如轴承盖、机架等)来测量旋转部件的振动。 3.2绝对值测量。以大地为参照系(如机坑、墙壁等)来测量机组各部件的振动。 3.3凡对同一测项设置两个传感器的,按同一水平面互成90o布置。 3.4不同水平面布置的传感器应在同一垂面上。 3.5固定部件振动测点设置尽量靠近转轴。 3.6除设置单元式振动监测仪以外都应设置测量机组转速和相位的电涡流位移 传感器,该传感器应布置在测量传感器所在的某一垂面上。 4测点设置 4.1容量小于30MW的机组 一般只设轴径向振动测点,在各导轴承处设置两个传感器,进行相对值测量。 4.2容量为30~100MW的机组 轴径向振动在各导轴承处设置两个传感器,进行相对值测量。 固定部件测点设置:对装有导轴承的支架设置一个水平振动传感器,装有带推力轴承的支架设置一个垂直振动传感器。固定部件的测点全部进行绝对值测量。 4.3容量为100~300MW的机组 轴径向振动在各导轴承处设置两个传感器,进行相对值测量。 固定部件测点设置:对装有导轴承的支架设置一个水平振动传感器;装有带推力轴承的支架设置一个垂直振动传感器;水轮机顶盖设置一个垂直振动传感器;定子铁心或机座设置垂直、水平振动各一个传感器。固定部件的测点全部进行绝对值测量。 4.4容量大于300MW的机组 轴径向振动在各导轴承处设置两个传感器,进行相对值测量。 固定部件测点设置:对装有导轴承的支架设置两个水平振动传感器;装有带推力轴承的支架设置两个垂直振动传感器;水轮机顶盖设置两个垂直振动传感器;定子铁

相关主题
文本预览
相关文档 最新文档