当前位置:文档之家› 基于双目视觉的工业机器人运动轨迹准确度检测

基于双目视觉的工业机器人运动轨迹准确度检测

基于双目视觉的工业机器人运动轨迹准确度检测
基于双目视觉的工业机器人运动轨迹准确度检测

 万方数据

 万方数据

 万方数据

 万方数据

基于双目视觉的工业机器人运动轨迹准确度检测

作者:岁波, 都东, 陈强, 孙振国, 韩翔宇

作者单位:清华大学机械工程系,北京,100084

刊名:

机械工程学报

英文刊名:CHINESE JOURNAL OF MECHANICAL ENGINEERING

年,卷(期):2003,39(5)

被引用次数:13次

参考文献(5条)

1.Yuan Jing;Yu S L End-effector position-orientation measurement[外文期刊] 1999(03)

2.Bijan Shimzadeh Laser-interferometry-based tracking for dynamic measurement[外文期刊] 1998(01)

3.McNamee L P;Petriu E M;Spoelder H J W Photogrammetric calibration of a mobile robot model[外文会议] 2001(01)

4.Van Albada G D Low-cost pose-measuring system for robot calibration[外文期刊] 1995(03)

5.Janocha H;Diewald B New methods of measuring and calibrating robots 1995

本文读者也读过(4条)

1.刘常杰.杨学友.邾继贵.叶声华.LIU Chang-jie.YANG Xue-you.ZHU Ji-gui.YE Sheng-hua基于工业机器人白车身柔性坐标测量系统研究[期刊论文]-光电子·激光2006,17(2)

2.谭冠政.徐雄.肖宏峰.TAN Guan-Zheng.XU Xiong.XIAO Hong-feng工业机器人实时高精度路径跟踪与轨迹规划[期刊论文]-中南大学学报(自然科学版)2005,36(1)

3.陈伟.钟健面向工业机器人系统的三种可靠度配置策略的研究[期刊论文]-光学精密工程2002,10(2)

4.黄晨华.张铁.谢存禧工业机器人位姿误差建模与仿真[期刊论文]-华南理工大学学报(自然科学版)

2009,37(8)

引证文献(16条)

1.李召鑫.李海峰.郑臻荣.刘旭立体视觉测量系统的空间分辨力和结构参数设置[期刊论文]-光电工程 2012(1)

2.张娅丽.刘波.解周凯.王晓白空中目标姿态测量中的图像处理方法[期刊论文]-科学技术与工程 2010(10)

3.郑魁敬.王连峰双目主动视觉监测平台设计[期刊论文]-计算机集成制造系统 2010(4)

4.张娅丽.刘波.解周凯.王晓白基于投影匹配的目标姿态测量方法研究[期刊论文]-传感技术学报 2010(6)

5.崔彦平.葛杏卫.张洪亮机械零件直线边缘亚像素定位方法研究[期刊论文]-半导体光电 2010(5)

6.基于双目视觉的飞行目标落地速度测量方法研究[期刊论文]-传感器与微系统 2009(8)

7.崔彦平.葛杏卫基于双目视觉的空间直线重建方法研究[期刊论文]-半导体光电 2009(6)

8.王健强.吕游一种面向工业机器人智能抓取的视觉引导技术研究[期刊论文]-机械设计与制造 2009(9)

9.宗光华.邓鲁华.王巍基于激光扫描的移动机器人实时轨迹测量系统[期刊论文]-航空学报 2007(4)

10.崔彦平.林玉池.黄银国双目视觉飞行目标落地参数测量[期刊论文]-光电工程 2007(8)

11.傅其凤.崔彦平.葛杏卫空间轴对称目标三维姿态测量方法的研究[期刊论文]-传感器与微系统 2007(3)

12.崔彦平.林玉池.黄银国回转体目标空间三维姿态测量方法研究[期刊论文]-传感技术学报 2007(1)

13.孙洪淋机器人视觉伺服系统的自适应模糊控制方法研究[学位论文]硕士 2006

14.刘苏宜.王国荣.钟继光视觉系统在机器人焊接中的应用与展望[期刊论文]-机械科学与技术 2005(11)

15.张国贤.陈强.张文增.汤晓华宏-微机器人微动机构研制[期刊论文]-焊接学报 2005(12)

16.潘锋仿人眼颈视觉系统的理论与应用研究[学位论文]博士 2005

本文链接:https://www.doczj.com/doc/2e3909465.html,/Periodical_jxgcxb200305017.aspx

机器人视觉系统介绍

机器人视觉(Robot Vision)简介 机器视觉系统的组成 机器视觉系统是指用计算机来实现人的视觉功能,也就是用计算机来实现对客观的三维世界的识别。按现在的理解,人类视觉系统的感受部分是视网膜,它是一个三维采样系统。三维物体的可见部分投影到网膜上,人们按照投影到视网膜上的二维的像来对该物体进行三维理解。所谓三维理解是指对被观察对象的形状、尺寸、离开观察点的距离、质地和运动特征(方向和速度)等的理解。 机器视觉系统的输入装置可以是摄像机、转鼓等,它们都把三维的影像作为输入源,即输入计算机的就是三维管观世界的二维投影。如果把三维客观世界到二维投影像看作是一种正变换的话,则机器视觉系统所要做的是从这种二维投影图像到三维客观世界的逆变换,也就是根据这种二维投影图像去重建三维的客观世界。 机器视觉系统主要由三部分组成:图像的获取、图像的处理和分析、输出或显示。 将近80%的工业视觉系统主要用在检测方面,包括用于提高生产效率、控制生产过程中的产品质量、采集产品数据等。产品的分类和选择也集成于检测功能中。下面通过一个用于生产线上的单摄像机视觉系统,说明系统的组成及功能。 视觉系统检测生产线上的产品,决定产品是否符合质量要求,并根据结果,产生相应的信号输入上位机。图像获取设备包括光源、摄像机等;图像处理设备包括相应的软件和硬件系统;输出设备是与制造过程相连的有关系统,包括过程控制器和报警装置等。数据传输到计算机,进行分析和产品控制,若发现不合格品,则报警器告警,并将其排除出生产线。机器视觉的结果是CAQ系统的质量信息来源,也可以和CIMS其它系统集成。 图像的获取 图像的获取实际上是将被测物体的可视化图像和内在特征转换成能被计算机处理的一系列数据,它主要由三部分组成: *照明 *图像聚焦形成 *图像确定和形成摄像机输出信号

基于机器视觉的工件识别和定位文献综述

基于机器视觉的工件识别和定位文献综述 1.前言 1.1工业机器人的现状与发展趋势 机器人作为一种最典型的应用范围广、技术附加值高的数字控制装备,在现代先进生产制造业中发挥的作用越来越重要,机器人技术的发展将会对未来生产和社会发展起到强有力的推动作用。《2l 世纪日本创建机器人社会技术发展战略报告》指出,“机器人技术与信息技术一样,在强化产业竞争力方面是极为重要的战略高技术领域。培育未来机器人产业是支撑2l 世纪日本产业竞争力的产业战略之一,具有非常重要的意义。” 研发工业机器人的初衷是为了使工人能够从单调重复作业、危险恶劣环境作业中解脱出来,但近些年来,工厂和企业引进工业机器人的主要目的则更多地是为了提高生产效率和保证产品质量。因为机器人的使用寿命很长,大都在10 年以上,并且可以全天后不间断的保持连续、高效地工作状态,因此被广泛应用于各行各业,主要进行焊接、装配、搬运、加工、喷涂、码垛等复杂作业。伴随着工业机器人研究技术的成熟和现代制造业对自动生产的需要,工业机器人越来越被广泛的应用到现代化的生产中。 现在机器人的价格相比过去已经下降很多,并且以后还会继续下降,但目前全世界范围的劳动力成本都有所上涨,个别国家和地区劳动力成本又很高,这就给工业机器人的需求提供了广阔的市场空间,工业机器人销量的保持着较快速度的增长。工业机器人在生产中主要有机器人工作单元和机器人工作生产线这两种应用方式,并且在国外,机器人工作生产线已经成为工业机器人主要的应用方式。以机器人为核心的自动化生产线适应了现代制造业多品种、少批量的柔性生产发展方向,具有广阔的市场发展前景和强劲生命力,已开发出多种面向汽车、电气机械等行业的自动化成套装备和生产线产品。在发达国家,机器人自动化生产线已经应用到了各行各业,并且已经形成一个庞大的产业链。像日本的FANUC、MOTOMAN,瑞典的ABB、德国的KUKA、意大利的COMAU 等都是国际上知名的被广泛用于自动化生产线的工业机器人。这些产品代表着当今世界工业机器人的最高水平。 我国的工业机器人前期发展比较缓慢。当将被研发列入国家有关计划后,发展速度就明显加快。特别是在每次国家的五年规划和“863”计划的重点支持下,我国机器人技术的研究取得了重大发展。在机器人基础技术和关键技术方面都取得了巨大进展,科技成果已经在实际工作中得到转化。以沈阳新松机器人为代表的国内机器人自主品牌已迅速崛起并逐步缩小与国际品牌的技术差距。 机器人涉及到多学科的交叉融合,涉及到机械、电子、计算机、通讯、控制等多个方面。在现代制造业中,伴随着工业机器人应用范围的扩大和机器人技术的发展,机器人的自动化、智能化和网络化的程度也越来越高,所能实现的功能也越来越多,性能越来越好。机器人技术的内涵已变为“灵活应用机器人技术的、具有实在动作功能的智能化系统。”目前,工业机器人技术正在向智能机器和智能系统的方向发展,其发展趋势主要为:结构的模块化和可重构化;控制技术的开放化、PC 化和网络化;伺服驱动技术的数字化和分散化;多传感器融合技术的实用化;工作环境设计的优化和作业的柔性化以及系统的网络化和智能化等方面。 1.2机器视觉在工业机器人中的应用 工业机器人是FMS(柔性加工)加工单元的主要组成部分,它的灵活性和柔性使其成为自动化物流系统中必不可少的设备,主要用于物料、工件的装卸、分捡和贮运。目前在全世界有数以百万的各种类型的工业机器人应用在机械制造、零件加工和装配及运输等领域,

机器人视觉算法 参考答案

1.什么是机器视觉 【概述】 机器视觉就是用机器代替人眼来做测量和判断。机器视觉系统是指通过机器视觉产品(即图像摄取装置,分 CMOS 和 CCD 两种)将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。 机器视觉系统的特点是提高生产的柔性和自动化程度。在一些不适合于人工作业的危险工作环境或人工视觉难以满足要求的场合,常用机器视觉来替代人工视觉;同时在大批量工业生产过程中,用人工视觉检查产品质量效率低且精度不高,用机器视觉检测方法可以大大提高生产效率和生产的自动化程度。而且机器视觉易于实现信息集成,是实现计算机集成制造的基础技术。 正是由于机器视觉系统可以快速获取大量信息,而且易于自动处理,也易于同设计信息以及加工控制信息集成,因此,在现代自动化生产过程中,人们将机器视觉系统广泛地用于工况监视、成品检验和质量控制等领域。【基本构造】 一个典型的工业机器视觉系统包括:光源、镜头、 CCD 照相机、图像处理单元(或图像捕获卡)、图像处理软件、监视器、通讯 / 输入输出单元等。 系统可再分为: 主端电脑(Host Computer) 影像撷取卡(Frame Grabber)与影像处理器影像摄影机 CCTV镜头显微镜头照明设备: Halogen光源 LED光源 高周波萤光灯源闪光灯源其他特殊光源影像显示器 LCD 机构及控制系统 PLC、PC-Base控制器 精密桌台伺服运动机台 【工作原理】 机器视觉检测系统采用CCD照相机将被检测的目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号,图像处理系统对这些信号进行各种运算来抽取目标的特征,如面积、数量、位置、长度,再根据预设的允许度和其他条件输出结果,包括尺寸、角度、个数、合格 / 不合格、有 / 无等,实现自动识别功能。 【机器视觉系统的典型结构】 一个典型的机器视觉系统包括以下五大块: 1.照明 照明是影响机器视觉系统输入的重要因素,它直接影响输入数据的质量和应用效果。由于没有通用的机器视觉照明设备,所以针对每个特定的应用实例,要选择相应的照明装置,以达到最佳效果。光源可分为可见光和不可见光。常用的几种可见光源是白帜灯、日光灯、水银灯和钠光灯。可见光的缺点是光能不能保持稳定。如何使光能在一定的程度上保持稳定,是实用化过程中急需要解决的问题。另一方面,环境光有可能影响图像的质量,所以可采用加防护屏的方法来减少环境光的影响。照明系统按其照射方法可分为:背向照明、前向照明、结构光和频闪光照明等。其中,背向照明是被测物放在光源和摄像机之间,它的优点是能获得高对比度的图像。前向照明是光源和摄像机位于被测物的同侧,这种方式便于安装。结构光照明是将光栅或线光源等投射到被测物上,根据它们产生的畸变,解调出被测物的三维信息。频闪光照明是将高频率的光脉冲照射到物体上,摄像机拍摄要求与光源同步。 2.镜头FOV(Field Of Vision)=所需分辨率*亚象素*相机尺寸/PRTM(零件测量公差比)镜头选择应注意: ①焦距②目标高度③影像高度④放大倍数⑤影像至目标的距离⑥中心点 / 节点⑦畸变 3.相机 按照不同标准可分为:标准分辨率数字相机和模拟相机等。要根据不同的实际应用场合选不同的相机和高分辨率相机:线扫描CCD和面阵CCD;单色相机和彩色相机。 4.图像采集卡 图像采集卡只是完整的机器视觉系统的一个部件,但是它扮演一个非常重要的角色。图像采集卡直接决定了摄像头的接口:黑白、彩色、模拟、数字等等。 比较典型的是PCI或AGP兼容的捕获卡,可以将图像迅速地传送到计算机存储器进行处理。有些采集卡有内置的多路开关。例如,可以连接8个不同的摄像机,然后告诉采集卡采用那一个相机抓拍到的信息。有些采集卡有内置的数字输入以触发采集卡进行捕捉,当采集卡抓拍图像时数字输出口就触发闸门。 5.视觉处理器 视觉处理器集采集卡与处理器于一体。以往计算机速度较慢时,采用视觉处理器加快视觉处理任务。现在由于采集

基于双目视觉的工业机器人运动轨迹准确度检测

万方数据

万方数据

万方数据

万方数据

基于双目视觉的工业机器人运动轨迹准确度检测 作者:岁波, 都东, 陈强, 孙振国, 韩翔宇 作者单位:清华大学机械工程系,北京,100084 刊名: 机械工程学报 英文刊名:CHINESE JOURNAL OF MECHANICAL ENGINEERING 年,卷(期):2003,39(5) 被引用次数:13次 参考文献(5条) 1.Yuan Jing;Yu S L End-effector position-orientation measurement[外文期刊] 1999(03) 2.Bijan Shimzadeh Laser-interferometry-based tracking for dynamic measurement[外文期刊] 1998(01) 3.McNamee L P;Petriu E M;Spoelder H J W Photogrammetric calibration of a mobile robot model[外文会议] 2001(01) 4.Van Albada G D Low-cost pose-measuring system for robot calibration[外文期刊] 1995(03) 5.Janocha H;Diewald B New methods of measuring and calibrating robots 1995 本文读者也读过(4条) 1.刘常杰.杨学友.邾继贵.叶声华.LIU Chang-jie.YANG Xue-you.ZHU Ji-gui.YE Sheng-hua基于工业机器人白车身柔性坐标测量系统研究[期刊论文]-光电子·激光2006,17(2) 2.谭冠政.徐雄.肖宏峰.TAN Guan-Zheng.XU Xiong.XIAO Hong-feng工业机器人实时高精度路径跟踪与轨迹规划[期刊论文]-中南大学学报(自然科学版)2005,36(1) 3.陈伟.钟健面向工业机器人系统的三种可靠度配置策略的研究[期刊论文]-光学精密工程2002,10(2) 4.黄晨华.张铁.谢存禧工业机器人位姿误差建模与仿真[期刊论文]-华南理工大学学报(自然科学版) 2009,37(8) 引证文献(16条) 1.李召鑫.李海峰.郑臻荣.刘旭立体视觉测量系统的空间分辨力和结构参数设置[期刊论文]-光电工程 2012(1) 2.张娅丽.刘波.解周凯.王晓白空中目标姿态测量中的图像处理方法[期刊论文]-科学技术与工程 2010(10) 3.郑魁敬.王连峰双目主动视觉监测平台设计[期刊论文]-计算机集成制造系统 2010(4) 4.张娅丽.刘波.解周凯.王晓白基于投影匹配的目标姿态测量方法研究[期刊论文]-传感技术学报 2010(6) 5.崔彦平.葛杏卫.张洪亮机械零件直线边缘亚像素定位方法研究[期刊论文]-半导体光电 2010(5) 6.基于双目视觉的飞行目标落地速度测量方法研究[期刊论文]-传感器与微系统 2009(8) 7.崔彦平.葛杏卫基于双目视觉的空间直线重建方法研究[期刊论文]-半导体光电 2009(6) 8.王健强.吕游一种面向工业机器人智能抓取的视觉引导技术研究[期刊论文]-机械设计与制造 2009(9) 9.宗光华.邓鲁华.王巍基于激光扫描的移动机器人实时轨迹测量系统[期刊论文]-航空学报 2007(4) 10.崔彦平.林玉池.黄银国双目视觉飞行目标落地参数测量[期刊论文]-光电工程 2007(8) 11.傅其凤.崔彦平.葛杏卫空间轴对称目标三维姿态测量方法的研究[期刊论文]-传感器与微系统 2007(3) 12.崔彦平.林玉池.黄银国回转体目标空间三维姿态测量方法研究[期刊论文]-传感技术学报 2007(1) 13.孙洪淋机器人视觉伺服系统的自适应模糊控制方法研究[学位论文]硕士 2006 14.刘苏宜.王国荣.钟继光视觉系统在机器人焊接中的应用与展望[期刊论文]-机械科学与技术 2005(11) 15.张国贤.陈强.张文增.汤晓华宏-微机器人微动机构研制[期刊论文]-焊接学报 2005(12)

视觉检测系统报告

视觉检测系统报告 年春季学期研究生课程考核(阅读报告、研究报告)考核科目:视觉测量系统学所在院(系):电气工程及自动化学院学生所在学科:仪器科学与技术学生姓名:***学 号:10S001***学生类别:工学硕士考核结果: 阅卷人: 视觉测量系统课程报告第一部分视觉测量系统发展现状综述机器视觉自起步发展到现在,已有15年的发展历史。应该说机器视觉作为一种应用系统,其功能特点是随着工业自动化的发展而逐渐完善和发展的。 目前全球整个视觉市场总量大概在60~70亿美元,是按照每年 8、8%的增长速度增长的。而在中国,这个数字目前看来似乎有些庞大,但是随着加工制造业的发展,中国对于机器视觉的需求将承上升趋势。 一、机器视觉的定义及特点简言之,机器视觉就是用机器代替人眼来做测量和判断。机器视觉系统是指通过机器视觉产品(即图像摄取装置,分CMOS和CCD两种)将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。

机器视觉系统的特点是提高生产的柔性和自动化程度。在一些不适合于人工作业的危险工作环境或人工视觉难以满足要求的场合,常用机器视觉来替代人工视觉;同时在大批量工业生产过程中,用人工视觉检查产品质量效率低且精度不高,用机器视觉检测方法可以大大提高生产效率和生产的自动化程度。而且机器视觉易于实现信息集成,是实现计算机集成制造的基础技术。 正是由于机器视觉系统可以快速获取大量信息,而且易于自动处理,也易于同设计信息以及加工控制信息集成,因此,在现代自动化生产过程中,人们将机器视觉系统广泛地用于工况监视、成品检验和质量控制等领域。在中国,这种应用也在逐渐被认知,且带来最直接的反应就是国内对于机器视觉的需求将越来越多。 二、机器视觉在国内外的应用现状在国外,机器视觉的应用普及主要体现在半导体及电子行业,其中大概40%~50%都集中在半导体行业。具体如PCB印刷电路:各类生产印刷电路板组装技术、设备;单、双面、多层线路板,覆铜板及所需的材料及辅料;辅助设施以及耗材、油墨、药水药剂、配件;电子封装技术与设备;丝网印刷设备及丝网周边材料等。SMT表面贴装:SMT工艺与设备、焊接设备、测试仪器、返修设备及各种辅助工具及配件、SMT材料、贴片剂、胶粘剂、焊剂、焊料及防氧化油、焊膏、清洗剂等;再流焊机、波峰焊机及自动化生产线设备。电子生产加工设备:电子元件制造设备、半导体及集成电路制造设备、元

视觉检测原理介绍

技术细节 本项目应用了嵌入式中央控制及工业级图像高速传输控制技术,基于CCD/CMOS与DSP/FPGA的图像识别与处理技术,成功建立了光电检测系统。应用模糊控制的精选参数自整定技术,使系统具有对精确检测的自适应调整,实现产品的自动分选功能。 图1 控制系统流程图 光电检测系统主要通过检测被检物的一些特征参数(灰度分布,RGB分值等),从而将缺陷信息从物体中准确地识别出来,通过后续的系统进行下一步操作,主要分为以下几部分 CCD/CMOS图像采集部分 系统图像数据采集处理板中光信号检测元件CCD/CMOS采用进口的适合于高精度检测的动态分析单路输出型、保证实际数据输出速率为320MB/s的面阵CCD/CMOS。像素分别为4000*3000和1600*1200,帧率达到10FPS。使用CCD/CMOS 作为输入图像传感器,从而实现了图像信息从空间域到时间域的变换。为了保证所需的检测精度,需要确定合理的分辨率。根据被检测产品的大小,初步确定系统设计分辨率为像素为0.2mm。将CCD/CMOS接收的光强信号转换成电压幅值,再经过A/D转换后由DSP/ FPGA芯片进行信号采集,即视频信号的量化处理过程,图像采集处理过程如图所示:

图2 图像采集处理过程 数据处理部分 在自动检测中,是利用基于分割的图像匹配算法来进行图像的配对为基础的。图像分割的任务是将图像分解成互不相交的一些区域,每一个区域都满足特定区域的一致性,且是连通的,不同的区域有某种显著的差异性。分割后根据每个区域的特征来进行图像匹配,基于特征的匹配方法一般分为四个步骤:特征检测、建立特征描述、特征匹配、利用匹配的“特征对”求取图像配准模型参数。 算法基本步骤如下: 1)利用图像的色彩、灰度、边缘、纹理等信息对异源图像分别进行分割,提取区域特征; 2)进行搜索匹配,在每一匹配位置将实时图与基准图的分割结果进行融合,得到综合分割结果; 3)利用分割相似度描述或最小新增边缘准则找出正确匹配位置。 设实时图像分割为m个区域,用符号{A1,A2,… Am}表示,其异源基准图像分割为n个区域,用符号{B1,B2,…Bn}表示。分割结果融合方法如下: 在每一个匹配位置,即假设的图像点对应关系成立时,图像点既位于实时图中,又位于其异源基准图像中,则融合后区域点的标识记为:(A1B1,A1B2,…,A2B1,A2B2,…)。标识AiBj表示该点在实时图中位于区域i,在基准图中位于区域j。算法匹配过程如下图所示:

机器视觉检测技术在工业检测中的应用

机器视觉检测技术在工业检测中的应用 发表时间:2018-11-11T11:27:25.170Z 来源:《电力设备》2018年第17期作者:吴崇龙[导读] 摘要:机器视觉主要研究用计算机来模拟人的视觉功能,通过摄像机等得到图像,然后将它转换成数字化图像信号,再送入计算机,利用软件从中获取所需信息,做出正确的计算和判断,通过数字图像处理算法和识别算法,对客观世界的三维景物和物体进行形态和运动识别,根据识别结果来控制现场的设备动作。 (身份证号码:44080319880423xxxx) 摘要:机器视觉主要研究用计算机来模拟人的视觉功能,通过摄像机等得到图像,然后将它转换成数字化图像信号,再送入计算机,利用软件从中获取所需信息,做出正确的计算和判断,通过数字图像处理算法和识别算法,对客观世界的三维景物和物体进行形态和运动识别,根据识别结果来控制现场的设备动作。从功能上来看,典型的机器视觉系统可以分为:图像采集部分、图像处理部分和运动控制部分,计算机视觉是研究试图建立从图像或者多维数据中获取“所需信息”的人工智能识别系统。正广泛地应用于医学、军事、工业、农业等诸多领域中。 关键词:机器视觉;工业检测;应用视觉技术在国内外发展极其必要。2008年经济危机极大冲击了美国至全球的各个领域。美国汽车制造业“BigThree”频临破产,进一步自动化是唯一出路。美国政府推行“MadeinUS”计划。出台多个政策刺激鼓励企业技术发明创新,视觉技术的应用就显得非常必要。近年在国内,劳动力工资成本大幅提高,很多生产企业迁移到人力资源更低廉的国家和区域,食品、医药质量事件不断。“MadeinChina”在世界声誉亟需提高,为提高质量保持竞争力,各领域的视觉检测及高度自动化势在必行。视觉检测对工业自动化的重要性与日俱增,工业自动化需求对视觉技术的推动高度集成化。在工业生产中,相对于传统的一些测量方法,机器视觉最大的优点是快捷、安全、可靠性大,精确和智能化,机器视觉精准地采集图片和算法分析,提高了产品验证的一致性,无接触并适应各种高温低温环境的测量,提升了产品生产的安全性、降低工人劳动强度,更实现企业高效安全生产和自动化管理,这些都具是不可替代的。下面通过举例证明这些方面的应用。 1机器视觉检测技术具体应用随着社会生产的发展,人们对于口罩外观质量的要求日趋严格。无纺布口罩的生产流程主要有:口罩定型、口罩成型、焊接冲切、上鼻梁条、耳带焊接、文字移印共六道工序,在口罩焊接冲切的过程中,如果对杯型口罩本体和口罩外套进行压合、焊接、切边的操作的过程不当就会使口罩出现瑕疵,影响产品的品质及企业的信誉。因此在无纺布口罩生产的过程中,应当采取一定的措施检测并剔除含有毛发、污点的口罩,保证口罩的品质。无纺布口罩的成品和半成品在流水线上以每秒近十片的速度流转,有时运行速度超过了每分钟一千米,在这种速度下传统的人工检测技术无法适应高速生产线,而且人工检测方法效率低下,劳动成本高,容易漏检,给企业造成损失。所以通过机器视觉技术进行无纺布口罩表面瑕疵检测口罩质量检测提供了很好的方案。 机器视觉系统的工程顺序为:首先将标准的样品放到传送带上,将样品移动到高速CCD线阵照相机下方,照明系统发出的平行光源照亮物体,选用畸变小的光学镜头,将被检测样品的三维场景的图像采集到计算机内部,形成二维图像,精确地反映样品表面的实际情况,建立标准样本特征库。为了对样品进行精确的测量,可以在摄像机视场内不同方位对标定标准样品进行多次标定,然后求其均值作为最终的标定系数,这样既可消除镜头畸变引起的误差又可去掉标定过程引入的随机误差。这种标定方法具有标定精度高、过程简单、成本低廉的优势,相较于标准的网格平面体标定方式更加容易实现,以标准样品为标定物,保证了被测样品各位置的光学参数与标定得到的参数相一致,确保了应用系统的标定精度和稳定性。标定方法的确定为下一步样品的检测和相机抓拍的控制提供了基础。 其次采用闭环控制方法,精确抓拍高速运动工件的图像,以防止工件抓拍不完整为后续检测工作带来困难,其控制过程为:传感器检测到工件的工位信息后,将工件的工位信息发送给相机控制单元,相机控制单元控制相机快门开启,完成相机拍照(工件图像曝光),获取工件图像,该图像传送到工件图像分割与定位单元进行处理,定位出工件图像在整幅图像中的位置,计算出工件图像中心与整幅图像中心的位置偏差,将位置偏差反馈到相机控制单元,相机控制单元根据本次的位置偏差调整下次的相机快门开启时间,以便让工件图像处于整幅图像中心位置,实现相机精确抓拍工件图像的控制。 再次对工件图像进行快速处理,对这些信号进行各种运算来提取产品的异常特征,如表面是否有毛发、异物、污点,以及耳绳、鼻梁线等部件有无缺失等等。 最后将被检测工件图像与标准样本特征库中的特征进行对比,找出被检测工件图像特征与特征库中的特征不相符的部分,若不相符的部分超出规定的范围,即可以判定为瑕疵工件。通过系统设计的剔废机构自动将有异常特征的废件剔除,从而实现口罩缺陷的自动识别、剔废功能,检测精度达到纵横向均为0.01毫米。 2机器视觉识别技术应用实例当前,机器视觉已成功地应用于工业检测领域,大幅度地提高了产品的质量和生产效率。企业中用于检测输血袋编号。在血袋生产过程中,血袋上的字符编号的正确和唯一是必不可少的检测信息。依靠工人的肉眼逐条检测带状转印薄膜上的字符串,来追踪血袋编号是否错印,劳动强度大,效率低,不能从根本上保证检测质量。一旦血袋编号出现重印、错印将会发生严重医疗事故,因此一种基于机器视觉技术的血袋编号字符的提取、识别与错误反馈于一体的检测系统就适时、必要地诞生了,用以提高一次性血袋出厂编号的检测精度和自动化水平,保证产品质量,解决生产实际问题。 2.1字符在线识别系统组成 为达到识别目的,识别系统由硬件和软件构成。硬件系统主要有血袋编号检测台机械结构、LED阵列照明系统、血袋编号图像采集系统、摄像机和计算机等。软件部分是系统的核心,主要由图像预处理、字符定位、字符倾斜校正、字符分割、字符识别等部分组成。 2.2识别系统的实现 本系统基于labVIEW编程、图像处理、微型计算机接口技术等实现输血袋的文字在线识别。使用图像灰度化技术、平滑、校正、直方图均衡化等技术进行图像预处理。使用投影定位法等对字符进行定位。使用投影法、模版匹配等进行倾斜角度调整。使用垂直投影法对字符进行分割。使用了BP神经网络来识别分割后的字符。为提高识别率,设计训练了三个神经网络:字母网络、数字网络、字母与数字网络。 2.3实验结果

工业机器人视觉检测

项目一认识机器视觉系统 任务一连接视觉系统的周边设备 活动一连接相机 活动二连接光源 活动三连接手柄 活动四连接电源 活动五连接显示器 任务二调节相机 活动一调节相机 任务三调节光源 活动二调节光源 活动三操作手柄 任务三运行视觉软件 活动一运行软件 活动二修改语言 活动三创建一个新设定 任务四运行视觉系统的仿真 活动一安装软件 活动二注册图像 活动三运行仿真 任务五基恩士视觉与机器人通讯连接活动一确定本机通讯方式 活动二选择通讯方式 活动三通讯线安装 活动四连接通讯线 任务六基恩士与机器人通讯软件设置活动一进入通讯设置界面 活动二选择正确的通讯数据 活动三通讯测试 项目二基恩士视觉识别颜色

任务一进入新的设置 活动一创建新的设定窗口 活动二进入相机设定 活动三注册图像 任务二识别颜色的窗口设定 活动一设定前的准备 活动二设定检测范围 活动三设定判断值 活动四条件设定 任务三输出设置 活动一选择通讯方式 活动二设置判断值 任务四机器人控制概述 活动一机器人视觉控制指令运行 活动二机器人运行控制指令运行 活动三机器人运行控制编程 任务五整体编程运行 活动一两种颜色中确定所选颜色 活动二三种颜色中确定所选颜色 活动三四种颜色中确定两种所选的颜色项目三基恩士视觉识别大小 任务一进入新的设置 活动一创建新的设定窗口 活动二进入相机设定 活动三注册图像 任务二识别大小的窗口设定 活动一设定前的准备 活动二设定检测范围 活动三设定判断值 活动四条件设定

任务三输出设置 活动一选择通讯方式 活动二设置判断值 任务四在仿真中识别图像大小设置 活动一建立识别图像大小的仿真 活动二设置识别大小的仿真 活动三思考与原机的区别 任务五整体编程运行 活动一两种大小不同的工件进行选择 活动二三种不同大小的工件进行选择 活动三两种不同大小不同颜色的工件进行选择活动四三种不同大小不同颜色的工件进行选择项目四基恩士视觉识别形状 任务一进入新的设置 活动一创建新的设定窗口 活动二进入相机设定 活动三注册图像 任务二识别形状的窗口设定 活动一设定前的准备 活动二设定检测范围 活动三设定测量值 活动四条件设定 任务三输出设置 活动一选择通讯方式 活动二设置测量值 任务四机器人控制概述 活动一机器人视觉控制指令运行 活动二机器人运行控制指令运行 活动三机器人运行控制编程 任务五整体编程运行

机器视觉检测分解

研究背景: 产品表面质量是产品质量的重要组成部分,也是产品商业价值的重要保障。产品表面缺陷检测技术从最初的依靠人工目视检测到现在以CCD 和数字图像处理技术为代表的计算机视觉检测技术,大致经历了三个阶段,分别是传统检测技术阶段、无损检测技术阶段、计算机视觉检测技术阶段。[] 传统检测技术 (1)人工目视检测法 (2)频闪检测法 无损检测技术 (1)涡流检测法 (2)红外检测法 (3)漏磁检测法 计算机视觉检测技术 (1)激光扫描检测法 (2)CCD 检测法 采用荧光管等照明设备,以一定方向照射到物体表面上,使用CCD摄像机来扫描物体表面,并将获得的图像信号输入计算机,通过图像预处理、缺陷区域的边缘检测、缺陷图像二值化等图像处理后,提取图像中的表面缺陷的相关特征参数,再进行缺陷图像识别,从而判断出是否存在缺陷及缺陷的种类信息等。 优点:实时性好,精确度高,灵活性好,用途易于扩充,非接触式无损检测。 基于机器视觉的缺陷检测系统优点: 集成化生产缩短产品进入市场时间改进生产流程100%质量保证实时过程监控提高产量精确检测100%检测 由于经济和技术原因国内绝大多数图像处理技术公司都以代理国外产品为主,没有或者很少涉足拥有自主知识产权的机器视觉在线检测设备,对视觉技术的开发应用停留在比较低端的小系统集成上,对需要进行大数据量的实时在线检测的研究很少也很少有成功案例,但是随着国内经济发展和技术手段不断提高对产品质量检测要求就更高,对在线检测设备的需求也就更大具有巨大的市场潜力。 机器视觉图像处理技术是视觉检测的核心技术 铸件常见缺陷:砂眼气孔缩孔披缝粘砂冷隔掉砂毛刺浇不足缺陷变形 问题的提出: 1.水渍、污迹等不属于铸件缺陷,但由于其外观形貌与缺陷非常类似, 因此易被检测系统误识为缺陷。从目前发表的文献来看,对于伪缺陷的识别率较低。 2.不同种缺陷之间可能存在形状、纹理等方面的相似性,造成缺陷误判。 国外研究发展现状: 20 世纪90 年代后,基于机器视觉检测系统的自动化功能和实用化水平得到了进一步的提高。 1990 年芬兰Rautaruukki New Technology公司研制了Smartivis表面检测系统[],该系统具有自学习分类功能,应用机器学习方法对决策树结构进行自动设计优化。 1996 年美国Cognex公司研发了一套iLearn自学习分类器软件系统并应用于其研制了iS-2000 自动检测系统。通过这两套系统的无缝衔接,极大地提高了检测系统实时的运算速度,有效的改进了传统自学习分类方法在算法执行速度、数据实时吞吐量、样本训练集规模及模式特征自动选择等方面的不足之处[]。 2004 年Parsytec公司发布了新一代表面质量检测产品Parsytec5i,该系统运用了自学习神经

工业萘检测方法

附录A:工业萘检验方法 1 引用标准 当以下标准被修订时,使用本细则的各方应探讨使用下列标准最新版本的可能性: GB/T 萘结晶点的测定方法 GB/Y 2000-2000焦化产品固体类取样方法 GB/Y 2289-2000焦化产品粘油类取样方法 GB/Y 2305-2000焦化产品试验用温度计 2 外观 固体工业萘为白色,允许带微红或微黄色的片状或粉状结晶;液体工业萘颜色不作规定。 3 结晶点的测定 方法提要 液态萘冷却到一定温度时析出结晶,温度回升达到最高点即为萘的结晶点。可通过对萘结晶点的测定来确定其中的萘含量。 试剂和材料 无水硫酸铜:化学纯,在300℃高温炉中灼烧3h,冷却后保存于干燥器中。 仪器和设备 萘结晶点测定仪:如图1所示: 图1 萘结晶点测定仪 精密温度计:温度范围70℃~90℃,分格值℃,全长(270±10)mm,全浸(YB/T 2305中COK4C); 温度计:温度范围0℃~50℃,分格值1℃,全浸(YB/T 2305中COK23C); 熔萘试管:直径(35±1)mm,高(100±3)mm;

恒温水浴锅; 实验室一般仪器和设备。 试验步骤 取试样30~40g置于熔萘试管中,加入无水硫酸铜2g盖上盖,将试管置于85~90℃的恒温水浴中,待试样熔化后,谨慎混合并在恒温水浴中停留不少于5min。 将熔融萘清液迅速倒入预热至90℃的萘结晶点测定仪中,至刻线处,并立即用经预热至80~85℃带有精密温度计的塞子塞紧,精密温度计位于中心线,水银球底部距萘结晶点测定仪底部20mm处。 缓慢摇动测定仪,避免激烈振荡,每半分钟看一次温度。温度逐渐降低,当温度开始回升,并伴有结晶出现时,停止摇动,当温度达到最高点,并停留1min以上时,该温度即为结晶点,读记此温度,读数精确到℃。同时记录精密温度计水银柱外露部分中段附近的温度。 如在测定时未察觉温度回升或回升到最高温度停留时间少于1min,须重新试验。 试验结果计算 萘的结晶点按式(1)计算: t= t0+Δt1+Δt2 (1) 式中:t-萘的结晶点,℃; t0-萘结晶点的观察温度,℃; Δt1-精密温度计的校正值,按检定书进行校正,℃; Δt2-精密温度计水银柱外露部分的温度校正值,℃。 Δt2=(t0- t B) (2) 其中:H-精密温度计在软木塞上外露部分的水银柱高度,℃; t B-精密温度计水银柱外露部分中段附近的温度,℃。 允许差 取平行测定结果的算术平均值为测定结果,平行测定结果的绝对差值不大于℃。 根据测得的萘结晶点查表得出相应的萘含量 表1 工业萘的结晶温度与其百分含量关系表

国外CCD检测技术在工业中的应用与发展

国外CCD检测技术在工业中的应用与发展 刘征,彭小奇,丁剑,唐英时间:2010年02月26日 字体: 关键词:CCD图像传感器 0引言 电荷耦合器件(Charge Couple Device,CCD)是一种以电荷为信号载体的微型图像传感器,具有光电转换和信号 电荷存储、转移及读出的功能,其输出信号通常是符合电视标准的视频信号,可存储于适当的介质或输入计算机,便 于进行图像存储、增强、识别等处理[1]。 自CCD于1970年在贝尔实验室诞生以来,CCD技术随着半导体微电子技术的发展而迅速发展,CCD传感器的像素 集成度、分辨率、几何精度和灵敏度大大提高,工作频率范围显着增加,可高速成像以满足对高速运动物体的拍摄[2], 并以其光谱响应宽、动态范围大、灵敏度和几何精度高、噪声低、体积小、重量轻、低电压、低功耗、抗冲击、耐震动、抗电磁干扰能力强、坚固耐用、寿命长、图像畸变小、无残像、可以长时间工作于恶劣环境、便于进行数字化处 理和与计算机连接等优点,在图像采集、非接触测量和实时监控方面得到了广泛应用,成为现代光电子学和测试技术 中最活跃、最富有成果的研究领域之一[1,3]。 1CCD传感器的检测原理 CCD是由光敏单元、输入结构和输出结构等组成的一体化的光电转换器件,其突出特点是以电荷作为信号载体, 其基本工作原理见文献[4,5]。当入射光照射到CC D光敏单元上时,光敏单元中将产生光电荷Q,Q与光子流速率 Δn 0、光照时间TC、光敏单元面积A成正比,即: Q=ηqΔn0AT c (1) 其中η为材料的量子效率;q为电子电荷量。CCD图像传感器的光电转换特性如图1 如示,其中横坐标为照度,; 纵坐标为输出电压,V0在非饱和区满足: f(s)=d1sτ+d2(2) 式中,f(s)为输出信号电压(V);s为曝光量;d1为直线段的斜率(V/,表示CCD的光响应度;τ为光电转换系数, τ≈1;d2为无光照时CCD的输出电压,称为暗输出电压。特性曲线的拐点 G所对应的曝光量S E称为饱和曝光量,所 对应的输出电压V SAT称为饱和输出电压。曝光量高于S E后,CCD输出信号不再增加,可见,CCD图像传感器在非饱和区的光电转换特性接近于线性,因此,应将CCD的工作状态控制在非饱和区。 2CCD的应用状况 CCD检测技术作为一种能有效实现动态跟踪的非接触检测技术,被广泛应用于尺寸、位移、表面形状检测和温度 检测等领域。 尺寸测量 由CCD传感器、光学成像系统、数据采集和处理系统构成的尺寸测量装置,具有测量精度高、速度快、应用方便 灵活等特点,是现有机械式、光学式、电磁式测量仪器所无法比拟的。在尺寸测量中,通常采用合适的照明系统使被 测物体通过物镜成像在CCD靶面上,通过对CCD输出的信号进行适当处理,提取测量对象的几何信息,结合光学系统 的变换特性,可计算出被测尺寸[2]。 2.1.1°形变测量 尽管利用线阵CCD测量材料变形具有非接触、无磨损、精度高、不引入附加误差、能测量材料拉伸的全过程,特 别是测量材料在断裂前后的应力应变曲线,得到材料的各种极限特性参数等优点,但只能测量材料拉伸时在轴线方向 的均一形变。为此,Scheday,Miehe和Cheva lier等人[13]开展了采用面阵CCD测量材料形变的研究。在此基础上,Stefan Hart mann等人[14]借助面阵CCD研究了橡胶材料在拉伸和压缩时的形变情况。即在圆柱形黑色测试样品 的轴线方向等距标定几个白点,用CCD摄取相应图像并送入计算机进行处理,通过检测白点标记间的距离来计算样品 受力时轴向的形变,并通过轮廓检测算法得到轴对称的圆柱型样品的轮廓尺寸,经过数据校正,可计算出被测样品半

工业分析检测技术

工业分析检测技术 摘要:食品中添加的山梨酸超标严重,消费者长期服用,在一定程度上会抑制骨骼生长,危害肾、肝脏的健康,因此食品中山梨酸含量是一项极其重要的指标。本文采用分光光度[1-2]法测定食品中山梨酸的含量。以双氧水-硫酸溶液为山梨酸氧化体系,氧化产物丙二醛进一步与硫代巴比妥酸进行显色反应。在吸收波长530nm处,氧化反应温度60℃,显色剂用量4.0mL,0.15mol/LH2SO4溶液用量1.4mL测定效果最佳。山梨酸浓度在0~1.066μg/mL范围内呈线性相关,线性范围内吸光度与山梨酸浓度(μg/mL)间的关系为:A=0.3715c+0.0047,R2=0.9998,回收率为99.0%~101.1%。 关键词:分光光度法;山梨酸;过氧化氢-硫酸;硫代巴比妥酸 1、山梨酸简介 山梨酸及山梨酸钾[3-4](以下简称山梨酸及钾盐)是一种良好的食品防腐剂,在西方发达国家的应用量很大,但在中国国内的应用范围还不广。作为一种公认安全、高效防腐的食品添加剂,山梨酸在我国食品行业的应用必将会越来越广泛。为白色或微黄白色结晶性粉末;有特臭。本品在乙醇中易溶,在乙醚中溶解,在水中极微溶解。我们在选购包装(或罐装)食品时,配料一项中常常看到“山梨酸”的字样,人们往往会误认为可能是水果“梨”的成份。其实他们是常用的食品添加剂!不管他们对人体有没有危害,明明白白的消费确是非常必要的,以下是有关山梨酸的有关资料仅供参考: 山梨酸(化学名称:2,4~己二烯酸分子式:C6H8O2 〕 山梨酸是国际粮农组织和卫生组织推荐的高效安全的防腐保鲜剂,广泛应用于食品、饮料、烟草、农药、化妆品等行业,作为不饱和酸,也可用于树脂、香

工业机器人视觉系统

工业机器人及机器人视觉系统 人类想要实现一系列的基本活动,如生活、工作、学习就必须依靠自身的器官,除脑以外,最重要的就是我们的眼睛了,(工业)机器人也不例外,要完成正常的生产任务,没有一套完善的,先进的视觉系统是很难想象的。 机器视觉系统就是利用机器代替人眼来作各种测量和判断。它是计算科的一个重要分支,它综合了光学、机械、电子、计算机软硬件等方面的技术,涉及到计算机、图像处理、模式识别、人工智能、信号处理、光机电一体化等多个领域。图像处理和模式识别等技术的快速发展,也大大地推动了机器视觉的发展。 机器视觉系统的应用 在生产线上,人来做此类测量和判断会因疲劳、个人之间的差异等产生误差和错误,但是机器却会不知疲倦地、稳定地进行下去。一般来说,机器视觉系统包括了照明系统、镜头、摄像系统和图像处理系统。对于每一个应用,我们都需要考虑系统的运行速度和图像的

处理速度、使用彩色还是黑白摄像机、检测目标的尺寸还是检测目标有无缺陷、视场需要多大、分辨率需要多高、对比度需要多大等。从功能上来看,典型的机器视觉系统可以分为:图像采集部分、图像处理部分和运动控制部分 工作过程 ?一个完整的机器视觉系统的主要工作过程如下: ?1、工件定位检测器探测到物体已经运动至接近摄像系统的视野中心,向图像采集部分发送触发脉冲。 ?2、图像采集部分按照事先设定的程序和延时,分别向摄像机和照明系统发出启动脉冲。 ?3、摄像机停止目前的扫描,重新开始新的一帧扫描,或者摄像机在启动脉冲来到之前处于等待状态,启动脉冲到来后启动一帧扫描。 ?4、摄像机开始新的一帧扫描之前打开曝光机构,曝光时间可以事先设定。

机器视觉检测技术简介及其特点

机器视觉检测技术简介及其特点 中国纸板商城https://www.doczj.com/doc/2e3909465.html,2012年3月2日机器视觉印刷质量检测是一种模拟人工检测方法和判断逻辑,但同时又具有更高检测精度和更好一致性的自动化检测方法。 一、机器视觉检测的特点 1、机器视觉检测技术简介 机器视觉,简而言之就是利用机器代替人工进行目标识别、判断与测量。它是现代光学、电子学、软件工程、信号处理与系统控制技术等多学科的交叉与融合。 光学采集设备:由工业摄像机、光源及配套图像采集卡等硬件组成。主要作用是获取通过采集位置的标签的数字图像,为后续的分析与处理提供素材,相当于人工检测的眼睛。 判断识别:由工业控制计算机及植入的图像处理与分析软件、控制软件构成。是视觉检测的核心部分,最终形成缺陷的判断并能向后续执行机构发出指令。 自动控制:最终将检测系统的结果变换成具体操作的硬件,比如常见的声光报警器、废品剔除装置或作标记的装置(如喷墨机、贴标机等)。 除此之外,印刷检测设备还必须有一套稳定的机械传输控制平台,对于安装在印刷机上的在线检测系统而言,传输平台就是印刷机;而对于离线检测系统,则需要单独配置传输平台,如复卷机、单张传输平台等。 2、印刷缺陷检测原理 印刷缺陷检测主要依靠图像比对的方法进行。如图2所示,上部图像是通过相机采集到的实时图像,而下部图像为事先采集并存储下来的标准图像。检测时,首先将两幅图像通过定位等方法使其重合,然后进行逐点(逐像素)对比颜色(或亮度差异)。当他们之间的差异超出事先设定的范围时即判为缺陷。 3、机器视觉检测特点 一套高品质的机器视觉检测系统,必须具备以下几个必备条件: 1)高品质的成像系统 成像系统被称为视觉检测设备的“眼睛”,因此“眼睛”识别能力的好坏是评价成像系统的最关键指标。通常,成像系统的评价指标主要体现在三个方面: 能否发现存在的缺陷 基于图像方法进行的检测,所能够依据的最原始也是唯一的资料即是所采到的图像上的颜色(或者亮度)变化,除此之外,没有其他资料可供参考。所以,一个高品质的成像系统首先应该是一个能充分表现被检

基于双目视觉的双臂机器人协调控制方法与制作流程

图片简介: 本技术提供了一种基于双目视觉的双臂机器人协调控制方法,所述方法包括:构建双机械臂的数学模型;通过双目视觉获取待加工工件在双机械臂的坐标系中的初始位姿;设定双机械臂组合待加工工件的运动模式;根据双机械臂的数学模型、初始位姿和运动模式控制双机械臂对待加工工件进行组合;实时获取双机械臂在组合过程中受到的作用力并处理;根据处理后的作用力调整双机械臂在组合过程中的位姿。本技术能够协调控制双机械臂抓取、组合不规则物体,具有较好的实施性和协调性。 技术要求 1.一种基于双目视觉的双臂机器人协调控制方法,其特征在于,所述双臂机器人包括双机械臂,所述方法包括: 构建所述双机械臂的数学模型; 通过双目视觉获取待加工工件在所述双机械臂的坐标系中的初始位姿; 设定所述双机械臂组合所述待加工工件的运动模式; 根据所述双机械臂的数学模型、所述初始位姿和所述运动模式控制所述双机械臂对所述待加工工件进行组合; 实时获取所述双机械臂在组合过程中受到的作用力并处理; 根据处理后的所述作用力调整所述双机械臂在组合过程中的位姿。 2.根据权利要求1所述的基于双目视觉的双臂机器人协调控制方法,其特征在于,构建所述双机械臂的数学模型包括:通过D-H表示法建立所述双机械臂各关节的参考坐标系; 确定所述双机械臂的D-H参数; 根据所述D-H参数和所述参考坐标系得到所述双机械臂中相邻关节间的相对位置关系。 3.根据权利要求2所述的基于双目视觉的双臂机器人协调控制方法,其特征在于,所述相对位置关系的表达式为:

其中,Ai为关节i和i-1之间的相对位置关系,θi为关节i的旋转角,βi为关节i和关节i-1间的扭转角,αi为关节i的长度; di为关节i的偏距。 4.根据权利要求3所述的基于双目视觉的双臂机器人协调控制方法,其特征在于,通过双目视觉获取待加工工件在所述双机械臂的坐标系中的初始位姿包括: 通过单目视觉获取在世界坐标系中的所述待加工工件的顶面圆心和底面圆心在像平面上的平面坐标; 通过双目视觉根据所述平面坐标得到所述顶面圆心和所述底面圆心在世界坐标系中的三维坐标并计算所述待加工工件的倾斜角度; 根据所述三维坐标得到所述顶面圆心和所述底面圆心之间的高度差,以及所述顶面圆心和所述底面圆心在所述像平面上的投影距离; 根据所述三维坐标、所述高度差、所述投影距离和所述倾斜角度得到所述待加工工件在所述双机械臂的坐标系中的初始位姿。 5.根据权利要求4所述的基于双目视觉的双臂机器人协调控制方法,其特征在于,设定所述双机械臂组合所述待加工工件的运动模式包括: 通过单机械臂预组合所述待加工工件并得到预组合算法; 根据所述预组合算法对所述双机械臂中的第一机械臂进行示教编程,以得到所述第一机械臂的运动控制程序; 通过实验得到所述双机械臂中的第二机械臂的运动控制程序,以及所述第一机械臂和所述第二机械臂的预接触位置; 根据所述第一机械臂的运动控制程序、第二机械臂的运动控制程序和所述预接触位置设定所述双机械臂组合所述待加工工件的运动模式。 6.根据权利要求5所述的基于双目视觉的双臂机器人协调控制方法,其特征在于,获取所述双机械臂在所述组合过程中受到的作用力并处理包括:通过力传感器获取所述双机械臂在组合过程中受到的作用力,并对所述作用力进行标定和解耦。 7.根据权利要求6所述的基于双目视觉的双臂机器人协调控制方法,其特征在于,进行标定的表达式为: V×D=F F=(Fx Fy Fz Mx My Mz) V=(v1 v2 v3 v4 v5 v6)

相关主题
文本预览
相关文档 最新文档