当前位置:文档之家› 创新实验报告

创新实验报告

创新实验报告
创新实验报告

专业综合实验

学院:电气工程及自动化学院

专业:测控技术与仪器

姓名:赵闯

学号:1090110304

一.研究背景

STM32系列基于专为要求高性能、低成本、低功耗的嵌入式应用专门设计的ARM Cortex-M3内核。按性能分成两个不同的系列:STM32F103“增强型”系列和STM32F101“基本型”系列。增强型系列时钟频率达到72MHz,是同类产品中性能最高的产品;基本型时钟频率为36MHz,以16位产品的价格得到比16位产品大幅提升的性能,是16位产品用户的最佳选择。两个系列都内置32K到128K的闪存,不同的是SRAM的最大容量和外设接口的组合。时钟频率72MHz时,从闪存执行代码,STM32功耗36mA,是32位市场上功耗最低的产品,相当于0.5mA/MHz。

在STM32F105和STM32F107互连型系列微控制器之前,意法半导体已经推出STM32基本型系列、增强型系列、USB基本型系列和增强型系列;新系列产品沿用增强型系列的72MHz 处理频率。内存包括64KB到256KB闪存和 20KB到64KB嵌入式SRAM。新系列采用LQFP64、LQFP100和LFBGA100三种封装,不同的封装保持引脚排列一致性,结合STM32平台的设计理念,开发人员通过选择产品可重新优化功能、存储器、性能和引脚数量,以最小的硬件变化来满足个性化的应用需求。

截至2010年7月1日,市面流通的型号有:

基本型:STM32F101R6 STM32F101C8 STM32F101R8 STM32F101V8 STM32F101RB

STM32F101VB

增强型:STM32F103C8 STM32F103R8 STM32F103V8 STM32F103RBSTM32F103VB STM32F103VE STM32F103ZE

STM32型号的说明:以STM32F103RBT6这个型号的芯片为例,该型号的组成为7个部分,其命名规则如下:

(1)STM32:STM32代表ARM Cortex-M3内核的32位微控制器。

(2)F:F代表芯片子系列。

(3)103:103代表增强型系列。

(4)R:R这一项代表引脚数,其中T代表36脚,C代表48脚,R代表64脚,V代表100脚,Z代表144脚。

(5)B:B这一项代表内嵌Flash容量,其中6代表32K字节Flash,8代表64K字节Flash,B代表128K字节Flash,C代表256K字节Flash,D代表384K字节Flash,E代表512K字节Flash。

(6)T:T这一项代表封装,其中H代表BGA封装,T代表LQFP封装,U代表VFQFPN 封装。

(7)6:6这一项代表工作温度范围,其中6代表-40——85℃,7代表-40——105℃。二.跑马灯实验

1.STM32 IO简介

STM32的IO口可以由软件配置成8种模式:

1、输入浮空

2、输入上拉

3、输入下拉

4、模拟输入

5、开漏输出

6、推挽输出

7、推挽式复用功能

8、开漏复用功能

每个IO口可以自由编程,单IO口寄存器必须要按32位字被访问。STM32的很多IO口都是5V兼容的,这些IO口在与5V电平的外设连接的时候很有优势,具体哪些IO口是5V兼容的,可以从该芯片的数据手册管脚描述章节查到(I/O Level标FT的就是5V电平兼容的)。

STM32的每个IO端口都有7个寄存器来控制。他们分别是:配置模式的2个32位的端口配置寄存器CRL和CRH;2个32位的数据寄存器IDR和ODR;1个32位的置位/复位寄存器BSRR;一个16位的复位寄存器BRR;1个32位的锁存寄存器LCKR;这里我们仅介绍常用的几个寄存器,我们常用的IO端口寄存器只有4个:CRL、CRH、IDR、ODR。 CRL和CRH控制着每个IO口的模式及输出速率。

STM32的IO口位配置表如表1所示:

表1 STM32的IO口位配置表

STM32输出模式配置如表2所示:

表2 STM32输出模式配置表

接下来我们看看端口低配置寄存器CRL的描述,如下图所示:

表3 端口低配置寄存器CRL各位描述

该寄存器的复位值为0X4444 4444,从上图可以看到,复位值其实就是配置端口为浮空输入模式。从上图还可以得出:STM32的CRL控制着每个IO端口(A~G)的低8位的模式。每个IO端口的位占用CRL的4个位,高两位为CNF,低两位为MODE。这里我们可以记住几个常用的配置,比如0X0表示模拟输入模式(ADC用)、0X3表示推挽输出模式(做输出口用,50M速率)、0X8表示上/下拉输入模式(做输入口用)、0XB表示复用输出(使用IO口的第二功能,50M速率)。

CRH的作用和CRL完全一样,只是CRL控制的是低8位输出口,而CRH控制的是高8位输出口。这里我们对CRH就不做详细介绍了。

给个实例,比如我们要设置PORTC的11位为上拉输入,12位为推挽输出。代码如下:GPIOC->CRH&=0XFFF00FFF;//清掉这2个位原来的设置,同时也不影响其他位的设置GPIOC->CRH|=0X00038000; //PC11输入,PC12输出

GPIOC->ODR=1<<11;//PC11上拉

通过这3句话的配置,我们就设置了PC11为上拉输入,PC12为推挽输出。

IDR是一个端口输入数据寄存器,只用了低16位。该寄存器为只读寄存器,并且只能以16位的形式读出。该寄存器各位的描述如下图所示:

图1 端口输入数据寄存器IDR各位描述

要想知道某个IO口的状态,你只要读这个寄存器,再看某个位的状态就可以了。使用起来是比较简单的。

ODR是一个端口输出数据寄存器,也只用了低16位。该寄存器为可读写,从该寄存器读出来的数据可以用于判断当前IO口的输出状态。而向该寄存器写数据,则可以控制某个IO 口的输出电平。该寄存器的各位描述如下图所示:

图2 端口输出数据寄存器ODR各位描述

在此,我们可以总结一下,对于学过AVR的人来说,我们都知道AVR的IO口由3个寄存器控制:DDR、PORT、PIN。这里我们可以拿STM32的IO控制寄存器和AVR的来个类比:

1.STM32的CRL和CRH就相当于AVR的DDR寄存器,用来控制IO口的方向,只不过

STM32的CRL和CRH功能更强大一点罢了。

2.STM32的ODR就相当于AVR的PORT,都是用来控制IO口的输出电平或者上下拉电阻

的。

3.STM32的IDR就相当于AVR的PIN,都是用来存储IO口当前的输入状态(高低电平)

的。

除此之外,STM32还有BSRR、BRR、LCKR等几个寄存器用于控制IO口,这点是AVR 所没有的。

2.硬件设计

该实验的硬件电路在ALIENTEM Mini STM32开发板上默认是已经连接好了的。DS0接PA8,DS1接PD2。所以在硬件上不需要动任何东西。其连接原理图如下:

图3 LED与STM32连接原理图

3.软件设计

(1)与硬件相关的代码

#include

#include "led.h"

void LED_Init(void)

{

RCC->APB2ENR|=1<<2; //使能PORTA时钟

RCC->APB2ENR|=1<<5; //使能PORTD时钟

GPIOA->CRH&=0XFFFFFFF0;

GPIOA->CRH|=0X00000003;//PA8 推挽输出

GPIOA->ODR|=1<<8; //PA8 输出高

GPIOD->CRL&=0XFFFFF0FF;

GPIOD->CRL|=0X00000300;//PD.2推挽输出

GPIOD->ODR|=1<<2; //PD.2输出高

}

将这段代码保存在HARDWARE->LED文件夹下面,保存为led.c。

该代码里面就包含了一个函数void LED_Init(void),该函数的功能就是用来实现配置PA8和PD2为推挽输出。在配置STM32外设的时候,任何时候都要先使能该外设的时钟!APB2ENR是APB2总线上的外设时钟使能寄存器,其各位的描述如下:

图4 寄存器APB2ENR各位描述

我们要使能的PORTA和PORTD的时钟使能位,分别在bit2和bit5,只要将这两位置1就可以使能PORTA和PORTD的时钟了。在设置完时钟之后就是配置完时钟之后,LED_Init配置了PA8和PD2的模式为推挽输出,并且默认输出1。这样就完成了对这两个IO口的初始化。

保存led.c代码,然后我们按同样的方法,新建一个led.h文件,也保存在LED文件夹下面。在led.h中输入如下代码:

#ifndef __LED_H

#define __LED_H

#include "sys.h"

//LED端口定义

#define LED0 PAout(8)// PA8

#define LED1 PDout(2)// PD2

void LED_Init(void);//初始化

#endif

(2)主程序流程图

图5 程序流程图(3)主程序

#include

#include "sys.h"

#include "usart.h"

#include "delay.h"

#include "led.h"

int main(void)

{

Stm32_Clock_Init(9); //系统时钟设置

delay_init(72); //延时初始化

LED_Init(); //初始化与LED连接的硬件接口

while(1)

{

LED0=0;

LED1=1;

delay_ms(300);

LED0=1;

LED1=0;

delay_ms(300);

}

}

4.实验现象

开发板上两个LED交替闪烁,形成流水灯现象。

三.串口实验

1.串口介绍

STM32的串口资源相当丰富的,功能也相当强劲。STM32最多可提供5路串口(ALIENTEK Mini STM32使用的是STM32F103RBT6,只有3个串口),有分数波特率发生器、支持同步单线通信和半双工单线通讯、支持LIN、支持调制解调器操作、智能卡协议和IrDA SIR ENDEC规范(仅串口3支持)、具有DMA等。

串口最基本的设置,就是波特率的设置。STM32的串口使用起来还是蛮简单的,只要您开启了串口时钟,并设置相应IO口的模式,然后配置一下波特率,数据位长度,奇偶校验位等信息,就可以使用了。下面,我们就简单介绍下这几个与串口基本配置直接相关的寄存器。

1,串口时钟使能。串口作为STM32的一个外设,其时钟由外设时钟使能寄存器控制,这里我们使用的串口1是在APB2ENR寄存器的第14位。APB2ENR寄存器在之前已经介绍过了,这里不再介绍。只是说明一点,就是除了串口1的时钟使能在APB2ENR寄存器,其他串口的时钟使能位都在APB1ENR寄存器。

2,串口复位。当外设出现异常的时候可以通过复位寄存器里面的对应位设置,实现该外设的复位,然后重新配置这个外设达到让其重新工作的目的。一般在系统刚开始配置外设的时候,都会先执行复位该外设的操作。串口1的复位是通过配置APB2RSTR寄存器的第14位来实现的。APB2RSTR寄存器的各位描述如下图所示:

图6 APB2RSTR寄存器各位描述

串口1的复位设置位在APB2RSTR的第14位。通过向该位写1复位串口1,写0结束复位。其他串口的复位位在APB1RSTR里面。

3,串口波特率设置。每个串口都有一个自己独立的波特率寄存器USART_BRR,通过设置该寄存器就可以达到配置不同波特率的目的。

4,串口控制。STM32的每个串口都有3个控制寄存器USART_CR1~3,串口的很多配置都是通过这3个寄存器来设置的。这里我们只要用到USART_CR1就可以实现我们的功能了,该寄存器的各位描述如下图所示:

图7 USART_CR寄存器各位描述

该寄存器的高18位没有用到,低14位用于串口的功能设置。UE为串口使能位,通过该位置1,以使能串口。M为字长选择位,当该位为0的时候设置串口为8个字长外加n个停止位,停止位的个数(n)是根据USART_CR2的[13:12]位设置来决定的,默认为0。PCE为校验使能位,设置为0,则禁止校验,否则使能校验。PS为校验位选择,设置为0则为偶校验,否则为奇校验。TXIE为发送缓冲区空中断使能位,设置该位为1,当USART_SR中的TXE位为1时,将产生串口中断。TCIE为发送完成中断使能位,设置该位为1,当USART_SR中的TC 位为1时,将产生串口中断。RXNEIE为接收缓冲区非空中断使能,设置该位为1,当USART_SR中的ORE或者RXNE位为1时,将产生串口中断。TE为发送使能位,设置为1,将开启串口的发送功能。RE为接收使能位,用法同TE。

5,数据发送与接收。STM32的发送与接收是通过数据寄存器USART_DR来实现的,这是一个双寄存器,包含了TDR和RDR。当向该寄存器写数据的时候,串口就会自动发送,

当收到收据的时候,也是存在该寄存器内。该寄存器的各位描述如下图所示:

图8 USART_DR寄存器各位描述

可以看出,虽然是一个32位寄存器,但是只用了低9位(DR[8:0]),其他都是保留。

DR[8:0]为串口数据,包含了发送或接收的数据。由于它是由两个寄存器组成的,一个给发送用(TDR),一个给接收用(RDR),该寄存器兼具读和写的功能。TDR寄存器提供了内部总线和输出移位寄存器之间的并行接口。RDR寄存器提供了输入移位寄存器和内部总线之间的并行接口。

当使能校验位(USART_CR1种PCE位被置位)进行发送时,写到MSB的值(根据数据的长度不同,MSB是第7位或者第8位)会被后来的校验位该取代。当使能校验位进行接收时,读到的MSB位是接收到的校验位。

6,串口状态。串口的状态可以通过状态寄存器USART_SR读取。USART_SR的各位描述如下图所示:

图9 USART_SR寄存器各位描述

这里我们关注一下两个位,第5、6位RXNE和TC。

RXNE(读数据寄存器非空),当该位被置1的时候,就是提示已经有数据被接收到了,并且可以读出来了。这时候我们要做的就是尽快去读取USART_DR,通过读USART_DR可以将该位清零,也可以向该位写0,直接清除。

TC(发送完成),当该位被置位的时候,表示USART_DR内的数据已经被发送完成了。如果设置了这个位的中断,则会产生中断。该位也有两种清零方式:1)读USART_SR,写USART_DR。2)直接向该位写0。

通过以上一些寄存器的操作外加一下IO口的配置,我们就可以达到串口最基本的配置了。

2.硬件设计

该实验的硬件配置不同于前两个实验,串口1与USB串口默认是分开的,并没有在PCB 上连接在一起,需要通过跳线帽来连接一下。这里我们把P4的RXD和TXD用跳线帽与P3的PA9和PA10连接起来。如下图所示:

图10 硬件连接图

3.软件设计

打开TEST工程,然后在SYSTEM组下双击usart.c,我们就可以看到该文件里面的代码,先介绍uart_init函数,该函数代码如下:

//初始化IO 串口1

//pclk2:PCLK2时钟频率(Mhz)

//bound:波特率

void uart_init(u32 pclk2,u32 bound)

{

float temp;

u16 mantissa;

u16 fraction;

temp=(float)(pclk2*1000000)/(bound*16);//得到USARTDIV

mantissa=temp; //得到整数部分

fraction=(temp-mantissa)*16; //得到小数部分

mantissa<<=4;

mantissa+=fraction;

RCC->APB2ENR|=1<<2; //使能PORTA口时钟

RCC->APB2ENR|=1<<14; //使能串口时钟

GPIOA->CRH=0X444444B4;//IO状态设置

RCC->APB2RSTR|=1<<14; //复位串口1

RCC->APB2RSTR&=~(1<<14);//停止复位

//波特率设置

USART1->BRR=mantissa; // 波特率设置

USART1->CR1|=0X200C; //1位停止,无校验位.

#ifdef EN_USART1_RX //如果使能了接收

//使能接收中断

USART1->CR1|=1<<8; //PE中断使能

USART1->CR1|=1<<5; //接收缓冲区非空中断使能

MY_NVIC_Init(3,3,USART1_IRQChannel,2);//组2,最低优先级

#endif

}

从该代码可以看出,其初始化串口的过程,和我们前面介绍的一致先计算得到USART1->BRR的内容。然后开始初始化串口引脚,接着把USART1复位,然之后设置波特率和奇偶校验等。

这里需要注意一点,因为我们使用到了串口的中断接收,必须在usart.h里面定义EN_USART1_RX 。该函数才会配置中断使能,以及开启串口1的NVIC中断。这里我们把串口1中断放在组2,优先级设置为组2里面的最低。

再介绍一下串口1的中断服务函数USART1_IRQHandler,该函数的名字不能自己定义了,MDK已经给每个中断都分配了一个固定的函数名,我们直接用就可以了。具体这些函数的名字是什么,我们可以在MDK提供的例子里面,找到stm32f10x_it.c,该文

件里面包含了STM32所有的中断服务函数。USART1_IRQHandler的代码如下:void USART1_IRQHandler(void)

{

u8 res;

if(USART1->SR&(1<<5))//接收到数据

{

res=USART1->DR;

if((USART_RX_STA&0x80)==0)//接收未完成

{

if(USART_RX_STA&0x40)//接收到了0x0d

{

if(res!=0x0a)USART_RX_STA=0;//接收错误,重新开始

else USART_RX_STA|=0x80; //接收完成了

}

else //还没收到0X0D

{

if(res==0x0d)USART_RX_STA|=0x40;

else

{

USART_RX_BUF[USART_RX_STA&0X3F]=res;

USART_RX_STA++;

if(USART_RX_STA>63)USART_RX_STA=0;//接收数据错误,重

新开始接收

}

}

}

}

}

该函数的重点就是判断接收是否完成,通过检测是否收到0X0D、0X0A的连续2个字节(0X0D后跟0X0A表示回车键)来检测是否结束。当检测到这个结束序列之后,就会置位

USART_RX_STA 的最高为来标记已经收到了一次数据。之后等待外部函数清空该位之后才开始第二次接收。所接收的数据全部存放在USART_RX_BUF 里面,一次接收数据不能超过64个字节,否则被丢弃。

介绍完了这两个函数,我们回到test.c 。其流程图为:

图11 流程图

代码为:

#include #include "sys.h" #include "usart.h" #include "delay.h" #include "led.h" #include "key.h" int main(void)

no

{

u8 t;

u8 len;

u16 times=0;

Stm32_Clock_Init(9); //系统时钟设置

delay_init(72); //延时初始化

uart_init(72,9600); //串口初始化为9600

LED_Init(); //初始化与LED连接的硬件接口

while(1)

{

if(USART_RX_STA&0x80)

{

len=USART_RX_STA&0x3f;//得到此次接收到的数据长度

printf("\n您发送的消息为:\n");

for(t=0;t

{

USART1->DR=USART_RX_BUF[t];

while((USART1->SR&0X40)==0);//等待发送结束}

printf("\n\n");//插入换行

USART_RX_STA=0;

}

else

{

times++;

if(times%5000==0)

{

printf("\nMiniSTM32开发板串口实验\n");

printf("正点原子@ALIENTEK\n\n\n");

}

if(times%200==0)printf("请输入数据,以回车键结束\n");

if(times%30==0)LED0=!LED0;//闪烁LED,提示系统正在运行.

delay_ms(10);

}

}

}

4.实验现象

未发送数据时串口助手显示如下:

图12 未发送数据时串口调试助手收到的信息

在输入发送的文字,并按下回车键时候,串口助手显示如下:

图13 发送数据后串口助手显示

四.自主创新实验

本实验设计在串口实验的基础上添加了控制功能。当控制开关按下,指示灯亮,方可进行数据发送,否则即便在发送区输入文字,显示区也不会显示。

#include

#include "sys.h"

#include "usart.h"

#include "delay.h"

#include "led.h"

#include "key.h"

int main(void)

{

u8 t,m,n

u8 len;

u16 times=0;

Stm32_Clock_Init(9); //系统时钟设置

delay_init(72); //延时初始化

uart_init(72,9600); //串口初始化为9600

LED_Init(); //初始化与LED连接的硬件接口

KEY_Init(); //初始化与按键连接的硬件接口

while(1)

{

m=KEY_Scan();//得到键值

while(m==1)

{

LED0=0;

n= KEY_Scan();

if(n==2) break;

if(USART_RX_STA&0x80)

{

len=USART_RX_STA&0x3f;//得到此次接收到的数据长度

printf("\n您发送的消息为:\n");

for(t=0;t

{

USART1->DR=USART_RX_BUF[t];

while((USART1->SR&0X40)==0);//等待发送结束}

printf("\n\n");//插入换行

USART_RX_STA=0;

}

else

{

times++;

if(times%5000==0)

{

printf("\nMiniSTM32开发板串口实验\n");

printf("正点原子@ALIENTEK\n\n\n");

物理创新设计实验报告 大学物理

浙江海洋学院 物理创新设计实验报告 实验名称:利用霍尔效应法测量空间的磁场分布指导教师:鲁晓东 专业:数学与数学应用 班级:B10数学 实验者:于祥雨吴联帅 学号:100601108 100601118 实验日期:2011年12月01日

利用霍尔效应法测量空间的磁场分布 实验者:于祥雨 同组实验者:吴联帅 指导老师:鲁晓东 (B10数学 100601108 654495 ;B10数学 100601118 670903) 【摘要】通过霍尔效应法测量霍尔电流和励磁电流的方法,并使用“对称测量法”消除副效应的影响,最终通过多组数据的处理,得出空间磁场分布。 【关键词】霍尔效应;霍尔电流;对称测量法;磁场分布 一、引言 空间磁场实际存在,但是人眼看不到,因此用直接的方法测量是行不通的。本实验正是考虑了这点,通过测量霍尔电流和励磁电流的方式,通过霍尔电流、励磁电流和磁场强度的关系,间接的测出磁场强度。并结合多组数据的处理,最大程度减小误差,使实验更加科学、严谨,从而使得实验方法具有可实施性和借鉴性。 二、设计原理 2.1简介 置于磁场中的载流体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,这一现象是霍普金斯大学研究生霍尔于1879年发现的,后被称为霍尔效应。如今霍尔效应不但是测定半导体材料电学参数的主要手段,而且利用该效应制成的霍尔器件已广泛用于非电量的电测量、自动控制和信息处理等方面。在工业生产要求自动自动检测和控制的今天,作为敏感元件之一的霍尔器件,将有更广泛的应用前景。掌握这一富有实用性的实验,对日后的工作将有益处。 2.2霍尔效应 霍尔效应是磁电效应的一种,当电流垂直于外磁场通过导体时,在导体的垂直于磁场和电流方向的两个端面之间会出现电势差,这个电势差就被叫做霍尔电势差。 导体中的载流子在外加磁场中运动时,因为受到洛仑兹力的作用而使轨迹发生偏移,并在材料两侧产生电荷积累,形成垂直于电流方向的电场,最终使载流子受到的洛仑兹力与电场斥力相平衡,从而在两侧建立起一个稳定的电势差即霍尔电压。正交电场和电流强度与磁场强度的乘积之比就是霍尔系数。平行电场和电流强度之比就是电阻率。 因此,对于一个已知霍尔系数的导体,通过一个已知方向、大小的电流,同时测出该导体两侧的霍尔电势差的方向与大小,就可以得出该导体所处磁场的方向和大小。 2.3实验原理 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛伦兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场H E 。如图2-1所示的半导体式样,若在X 方向通以电流H I ,在Z 方向加磁场B ,则在Y 方向即试样2-4电极两侧就开始聚集异号电荷而产生相应的附加电场。电场的指向取决于试样的导电类型。对图2-1所示的N 型试样,霍尔电场为Y -方向。显然,霍尔电场H E 是阻止载流子继续向侧面偏移,当载流子所受的横向电场力H eE 与洛伦兹力evB 相等,样品两侧电荷的积累就达到动态平衡,故: H eE evB = (2.3.1) 其中H E 为霍尔电场,v 是载流子在电流方向上的平均漂移速度。

大学物理仿真实验报告材料-碰撞与动量守恒

大学物理仿真实验报告 实验名称 碰撞与动量守恒 班级: : 学号: 日期:

碰撞和动量守恒 实验简介 动量守恒定律和能量守恒定律在物理学中占有非常重要的地位。力学中的运动定理和守恒定律最初是冲牛顿定律导出来的,在现代物理学所研究的领域中存在很多牛顿定律不适用的情况,例如高速运动物体或微观领域中粒子的运动规律和相互作用等,但是能量守恒定律仍然有效。因此,能量守恒定律成为了比牛顿定律更为普遍适用的定律。 本实验的目的是利用气垫导轨研究一维碰撞的三种情况,验证动量守恒和能量守恒定律。定量研究动量损失和能量损失在工程技术中有重要意义。同时通过实验还可提高误差分析的能力。 实验原理 如果一个力学系统所受合外力为零或在某方向上的合外力为零,则该力学系统总动量守恒或在某方向上守恒,即 (1) 实验中用两个质量分别为m1、m2的滑块来碰撞(图4.1.2-1),若忽略气流阻力,根据动量守恒有 (2) 对于完全弹性碰撞,要求两个滑行器的碰撞面有用弹性良好的弹簧组成的缓冲器,我们可用钢圈作完全弹性碰撞器;对于完全非弹性碰撞,碰撞面可用尼龙搭扣、橡皮泥或油灰;一般非弹性碰撞用一般金属如合金、铁等,无论哪种碰撞面,必须保证是对心碰撞。 当两滑块在水平的导轨上作对心碰撞时,忽略气流阻力,且不受他任何水平方向外力的影响,因此这两个滑块组成的力学系统在水平方向动量守恒。由于滑块作一维运动,

式(2)中矢量v可改成标量,的方向由正负号决定,若与所选取的坐标轴方向相同则取正号,反之,则取负号。 1.完全弹性碰撞 完全弹性碰撞的标志是碰撞前后动量守恒,动能也守恒,即 (3) (4) 由(3)、(4)两式可解得碰撞后的速度为 (5) (6) 如果v20=0,则有 (7) (8) 动量损失率为 (9) 能量损失率为 (10) 理论上,动量损失和能量损失都为零,但在实验中,由于空气阻力和气垫导轨本身的原因,不可能完全为零,但在一定误差围可认为是守恒的。 2.完全非弹性碰撞 碰撞后,二滑块粘在一起以10同一速度运动,即为完全非弹性碰撞。在完全非弹性碰撞中,系统动量守恒,动能不守恒。 (11) 在实验中,让v20=0,则有 (12) (13) 动量损失率 (14) 动能损失率 (15) 3.一般非弹性碰撞

创新性小实验实验报告

湖南城市学院实验报告2012年度第二学期 实验项目名称:建筑环境测试技术实验专业:建筑环境与设备工程班级:0902301 指导老师:周卫平 份数: 2 成绩单: 组长:向华 组员:罗丹何竞昌龙秒舟 日期:2012 年04 月12 日

实验一噪声环境监测报告 实验目的: 1、学习区域环境噪声的监测方法,并对校园生活区、教学区等不同功能区噪声污染进行评价; 2、熟悉声级计的使用; 3、掌握对非稳态的噪声监测数据的处理方法。 实验仪器: 噪声声级计、计算机 实验原理: 1 采样点设置 布点方法: 本次噪声监测所采用的方法是网格法,即在校园内外共分12个网格,网格按顺序编号,测量点选在每个网格中心,因此共设12个监测点。监测点分别为: 2 噪声评价方法: 评价采用等效连续声级法。等效连续声级法就是把实地监测所得到的Leq值做算术平均运算,所得到的平均值代表该区域的噪声水平,该平均值可以对照《城市区域环境噪声标准》(GB3096—93),评价该区域的声环境质量是否符合标准。

城市区域环境噪声分类标准(dB) 类别0类1类2类3类4类 昼间50 55 60 65 70 夜间40 45 50 55 55 1类标准适用于以居住、文教机关为主的区域;乡村居住环境可参照执行该类标准。 2类标准适用于居住、商业、工业混杂区。 3类标准适用于工业区。 4类标准适用于城市中的道路交通干线道路两侧区域,穿越城区的内河航道两侧区域,穿越城区的铁路主、次干线两侧区域的背景噪声(指不通过列车时的噪声水平)限值也执行该类标准。 操作步骤: 器或者其他声压校准仪器对声级计进行校准。A、监测方法: 测量一般选在8:00—23:00;分五个时间段,十个点。监测结果为区域内所有网格等效连续声级的平均值。测量中,每隔5s读取一个瞬时A声级,连续读取120个数据。读数的同时记录附近主要噪声来源和天气条件。天气条件要求在无雨无雪的时间,声级计应保持传声器膜片清洁,风力在三级以上必须加风罩(以避免风噪声的干扰),五级以上大风则应停止测量。测量过程中,一人手持仪器测量,另一人记录瞬时声级,传声器要求距离地面1.2m,测量时噪声仪距任意建筑物不得小于1m,传声器对准声源方向。 注:校门口必须布点,且由于其交通车辆的干扰,声级变化较大,

《物理实验教学中培养学生的创造能力的研究》开题报告

《物理实验教学中培养学生的创造能力的研究》开题报告 一、课题提出的背景 “面对世界科技飞速发展的挑战,我们必须把增强民族创新能力提到关系中华民族兴衰存亡的高度来认识。教育在培养民族创新精神和培养创造性人才方面,肩负着特殊的使命。”推进素质教育,提高全民族素质,培养具有创新精神和实践能力的人才已经成为二十一世纪教育的主要目标。心理学认为,没有创造思维,就不可能有创新,就不可能获得较强的创造能力和实践能力,显然创新能力、创造能力、实践能力是以创造思维为前提的。传授物理知识、训练技能、进行方法教育的同时,培养学生的创造思维能力和进行科学精神、科学价值观的教育,是基础物理学的主要目的之一,也是当今物理教学改革、进行素质教育的核心问题之一。所以,对学生进行创造思维能力的培养是教育发展的要求,是素质教育的要求,是物理教学的根本任务。 (一)社会需要创新人才 21世纪是一个充满了挑战与危机的新世纪,也是高新技术和知识经济迅猛发展的世纪,这个新的世纪对人的能力和素质提出了更高的要求,同时也对教育提出了更高的要求。社会需要具有创造性、能与人合作共事和拥有高尚道德情操的新型人才。联合国“国际21世纪教育委员会”提出了教育的“四大支柱”,这四大支柱导出教育的最终目的,就是让学生学会认知、学会做事、学会生存和学会共同生活,其中的三项能力(学会认知、学会做事和学会生存)可以用“创新能力”来概括。另外,美国教育技术CEO论坛第4年度(2001)报告中也明确指出,“21世纪的能力素质”应包括以下5个方面:基本学习技能、信息素养、创新思维能力、人际交往与合作精神、实践能力。再如,1991年10月召开的国际创造学大会上各国代表所取得的共识是“创造力开发是民族生死存亡的关键。”我国政府也日益重视创造性人才的培养。如国家主席江泽民在1998年2月的一次讲话中指出:“创新是一个民族进步的灵魂,是国家兴旺发达的不竭动力。一个没有创新能力的民族难以屹立于世界民族之林。”在1999年6月的全国第三次教育工作会议上江泽民主席又进一步强调指出“面对世界科技飞速发展的挑战,我们必须把增强民族创新能力提到关系中华民族兴衰存亡的高度来认识。教育在培育民族创新精神和培养创造性人才方面,肩负着特殊的使命。”由此可见,“创新”不但已成为时代发展的必然需要,而且也成为国际竞争的必然要求,社会需要具有创新精神的创造性人才。 (二)学校已有的研究基础 1、课题研究 《中学生主动学习和主动发展研究》,原国家教委“九五”规划重点课题《义务教育阶段学生“学会学习”研究》的子课题,后来改为《利用现代教育技术促进学生主动学习和主动发展研究》课题。科学研究实验课题《利用现代教育媒体培养学生作文能力》、《运用现代教育媒体培养学生言语交际能力》和《高中语文活动课实践与探索》。2001年8月,三各课题结题,均通过专家组鉴定。2001年10月,均被巴中市人民政府评为巴中市首届普教教学成果三等奖。 《利用多媒体技术优化物理教学减轻学生负担提高教学质量》(平昌县“十五”期间科学研究实验课题)。研究周期为2000年至2002年。2003年5月,通过专家组鉴定。 《利用现代教育技术促进学生自主学习和自主探知研究》(教育部中央电化教育馆“十五”教育技术研究规划课题)。该课题于2003年9月结题,结题材料已上报,在鉴定之中。 巴中市“十五”期间首批现代教育技术科研课题《运用现代教育媒体促进学生学会学习研究》)和平昌县“十五”期间科学研究实验课题《电化教学设计整体优化中学地理教学的方法和作

大物实验模拟仿真实验报告

西安交通大学实验报告 课程:数据结构实验实验名称:利用单摆测量重力加速度 系别:实验日期: 专业班级:实验报告日期: 姓名:学号: 第 1页 / 共3页 一、实验简介 单摆实验是个经典实验,许多著名的物理学家都对单摆实验进行过细致的研究。本实验的目的是学习进行简单设计性实验的基本方法,根据已知条件和测量精度的要求,学会应用误差均分原则选用适当的仪器和测量方法,学习累积放大法的原理和应用,分析基本误差的来源及进行修正的方法。 二、实验原理 单摆的结构参考图1单摆仪,一级近似的周期公式为 由此通过测量周期摆长求重力加速度。 三、实验内容 1、设计要求: (1) 根据误差均分原理,自行设计试验方案,合理选择测量仪器和方法. (2) 写出详细的推导过程,试验步骤. (3) 用自制的单摆装置测量重力加速度g,测量精度要求△g/g < 1%. 2、可提供的器材及参数: 游标卡尺、米尺、千分尺、电子秒表、支架、细线(尼龙线)、钢球、摆幅测量标尺(提供硬白纸板自制)、天平(公用).

假设摆长l≈70.00cm;摆球直径D≈2.00cm;摆动周期T≈1.700s; 米尺精度△米≈ 0.05cm;卡尺精度△卡≈0.002cm;千分尺精度△千≈0.001cm;秒表精度△秒≈0.01s;根据统计分析,实验人员开或停秒表反应时间为0.1s左右,所以实验人员开,停秒表总的反应时间近似为△人≈0.2s. 3、对重力加速度g的测量结果进行误差分析和数据处理,检验实验结果是否达到设计要求. 4、自拟实验步骤研究单摆周期与摆长,摆角,悬线的质量和弹性系数,空气阻力等因素的关系,试分析各项误差的大小. 5、自拟试验步骤用单摆实验验证机械能守恒定律. 四、实验仪器 单摆仪,摆幅测量标尺,钢球,游标卡尺 五、实验操作 1. 用米尺测量摆线长度; 2. 用游标卡尺测量小球直径; 3. 把摆线偏移中心不超过5度,释放单摆,开始计时,单摆摆过50个周期后停止计时,记录所用时间; 六、实验结果

大学物理创新实验报告

大学物理创新实验报告 篇一:大学物理创新实验报告 大学物理实验报告总结 一:物理实验对于物理的意义 物理学是研究物质的基本结构,基本的运动形式,相互作用及其转化规律的一门科学。它 的基本理论渗透在基本自然科学的各个领域,应用于生产部门的诸多领域,是自然科学与 工程科学的基础。物理学在本质上是一门实验学科,物理规律的发现和物理理论的建立都 必须以物理实验为基础,物理学中的每一项突破都与实验密切相关。物理概念的确立,物 理规律的发现,物理理论的确立都有赖于物理实验。 二:物理实验对于学生的意义 大学物理实验已经进行了两个学期,在这两个学期,通过二十几个物理实验,我们对物理 学的理解和认识又更上了一步台阶。通过对物理实验的熟悉,可以帮助我们掌握基本的物 理实验思路和实验器材的操作,进一步稳固了对相关的定理的理解,锻炼理性思维的能力。在提高我们学习物理物理兴趣的同时,培养我们的科学思维和创新意识,掌握实验研究的 基本方法,提高基本科学实验能力。它也是我们进入大学接触的第一门实践性教学环节, 是我们进行系统的科学实验方法和技能训练的重要必修课。它还能培养我们“实事求是的 科学态度、良好的实验习惯、严谨踏实的工作作风、主动研究的创新与探索精神、爱护公 物的优良品德”。 三:我眼中的物理实验的缺陷 1:实验目的与性质的单一性 21世纪的学科体系中,多种学科是相互结合,相互影响的,没有一门学科能独立于其他 学科而单独生存,但是在我们的实验过程中,全都是关于物理,这一单科的实验内容,很 少牵涉到其他。有些实验完全是为了实验而实验,根本不追求与其他学科的联系与结合。2:实验的不及时性及实验信息的不对称性 物理是一门以实验为基础的基本学科,在我们所学的物理内容中,更多的是关于公式定理的,这些需要及时的理解和记忆,最简单的方式是通过实验来进行。但是我们所做的实验,都是学过很久以后,甚至是已经学完物理学科后进行的,这就造成我们对物理知识理解的 不及时性,不能达到既定的效果。而且,我们重复科学实验伟人的实验很大程度上是得知结论后凭借少量的实验数据轻易得出相似的结论,与前人广袤的数据量不可同日而语,这就造成实验信息的不对称性, 不利于从本质上提高我们的实验能力。

创新性实验

国家大学生创新性实验计划典型案例 点击数: 2391 作者:佚名来源:本站原创发布时间:2009年04月16日 ZnX(X=O, S, Se, Te)半导体纳米材料的电化学制备 中山大学化学与化学工程学院 一、摘要 中山大学是教育部首批十所国家大学生创新训练计划试点高校之一,化学与化学工程学院2004级应用化学专业本科生卢锡洪等5名同学申请的“ZnX(X=O, S, Se, Te)半导体纳米材料的电化学制备研究”获得“国家大学生创新训练计划”项目立项资助,指导教师为物理化学专业的童叶翔教授和李高仁博士。 ZnX(X=O, S, Se, Te) 是一种新型的Ⅱ-Ⅵ 族直接带隙半导体材料,具有优良的光电、压电特性,在探测器件、发光器件、表面声波器件、气敏传感器以及太阳能电池等领域有重要的应用前景。本项目旨在利用电化学方法制备纳米ZnO 和ZnO掺杂稀磁材料等系列纳米材料,并对其进行形貌表征、光学和磁学性质研究。 通过此项目的开展,项目组学生根据国际相关领域研究热点,采用电化学方法制备出具有新颖纳米结构及实用意义的ZnO系列纳米材料,有机会利用多种先进表面物理技术对这些纳米材料进行了具有国际水平的表征和研究,到目前为止共在国际重要学术刊物J. Phys. Chem. C, Cryst. Growth Des.; Electrochem. Commun., Electrochim. Acta发表SCI收录的论文7篇。此项目的实施成效显着,

培养了学生对科学研究的兴趣,熟悉了科研的过程,拓宽了学生的知识视野,提高了学生的科研素质,为其进一步深造和提高创新能力打下坚实基础。“国家大学生创新训练计划”的实施为本科生创新能力培养提供了制度保证和经费支持。 二、案例正文 (一)项目选题背景 化学与化学工程学院2004级应用化学专业本科生卢锡洪等5名同学修完了《物理化学》等基础理论和实验课后,掌握了材料制备、表征等领域的基本理论和实践知识,对处于宏观和微观之间的介观化学充满了向往和兴趣。ZnX(X=O, S, Se, Te) 是一种新型的Ⅱ-Ⅵ 族直接带隙半导体材料,具有优良的光电、压电特性,在探测器件、发光器件、表面声波器件、气敏传感器以及太阳能电池等领域有重要的应用前景,近年来此类纳米结构材料的制备和性质已引起了国内外学者的广泛关注,根据此国际纳米材料领域的研究热点,项目组选择采用电化学方法制备具有新颖纳米结构及实用意义的ZnX(X=O, S, Se, Te)纳米材料为题,得到了任课教师童叶翔教授和李高仁博士的大力支持,他们从2006年9月直接进入项目组实验室开展研究工作。同学们在教师指导下,通过查阅和研读文献、对ZnO纳米材料的电化学制备和表征进行详细了解;自学新的知识,开始实验方案设计,并反复推敲和论证,撰写了“国家大学生创新训练计划”申请报告,获得教育部首批立项资助。 (二)项目成员的组成、特长、分工及成员间相互协调配和情况、导师指导情况本项目的申请由柯志海,卢锡洪,李林朋,包云玉,孔培健等5名同学共同提

单项变压器并联运行创新性实验报告

山东科技大学电工电子实验教学中心创新性实验研究报告 实验项目名称单相变压器的并联运行 专题电机与拖动 姓名学号 手机Email 专业电气定单及其自动化_班级 指导教师及职称___胡晓君_______ 开课学期2011 至_2012 学年_二学期 提交时间2012 年 6 月22 日

一、实验摘要 研究变压器投入并联运行的方法及并联运行时阻抗电压对负载分配的影响。 1)阻抗电压相等的两台单相变压器并联运行,研究其负载分配情况。 2)阻抗电压不相等的两台单相变压器并联运行,研究其负载分配情况。 二、实验目的 1、学习变压器投入并联运行的方法。 2、研究并联运行时阻抗电压对负载分配的影响 三、实验场地及仪器、设备和材料: 1、场地 电机与拖动实验室 2、仪器、设备和材料 序号型号名称数量 1 D33 交流电压表1件 2 D32 交流电流表1件 3 DJ11 三相组式变压器1件 4 D41 三相可调电阻器1件 5 D51 波形测试及开关板1件 四、实验内容 1、实验原理 变压器的并联运行是指在一定条件下将两台或多台变压器的一、二次绕组分别接在公共母线上,同时对负载供电。 对变压器的并联运行来说,理想的情况应该是 (1)空载时,并联的各变压器二次侧绕组之间不产生循环电流; (2)负载时,负载电流能按各台变压器容量大小成比例的分配;

(3)负载时各台变压器二次电流的相位相等。这样,才能避免因并联引起的额外损耗,并使变压器的容量得到充分利用。要达到理想并联运行,需满足下列条件: 1).各台变压器的额定电压与电压比要相等。 2).各台变压器的连接组别必须相等。 3).各台变压器的短路阻抗标幺值应相等。 2、实验内容 (1)将两台单相变压器投入并联运行。 (2)阻抗电压相等的两台单相变压器并联运行,研究其负载分配情况。 (3)阻抗电压不相等的两台单相变压器并联运行,研究其负载分配情况。 3、实验步骤 图3-19 单相变压器并联运行接线图 实验线路如图3-19所示。图中单相变压器1、2选用三相组式变压器DJ11中任意两台,变压器的高压绕组并联接电源,低压绕组经开关S 1并联后,再由开关S 3接负载电阻R L 。由于负载电流较大,R L 可采用并串联接法(选用D41的90Ω与90Ω并联再与180Ω串联,共225Ω阻值)的变阻器。为了人为地改变变压器2的阻抗电压,在其副方串入电阻R(选用D41的90Ω与90Ω并联的变阻器)。 1、两台单相变压器空载投入并联运行步骤。 (1) 检查变压器的变比和极性。 1) 将开关S 1、S 3打开,合上开关S 2。 2) 接通电源,调节变压器输入电压至额定值,测出两台变压器副方电压 U V W V 1A 1X 2A 2X 2x R S 2 2a A I 2 1x 1a A I 1 S 3 A I R L

初中物理实验教学工作总结5篇

初中物理实验教学工作总结5篇 初中物理实验教学工作总结1 一、思想方面 一个学期以来,我思想积极要求进步。爱岗敬业。努力工作。工作中关心自己任教的班级,爱护自己所教的学生。服从领导,团结同志。每天早来晚走。主动承担教研组内的服务性工作。身受学校领导、同志的好评和同学们的欢迎。 二、教学方面 1、做到了精心备课。 一个学期以来,我积极参加集体备课。认真与组内同志一起研究制定学期工作计划。研究新课程标准,研读新教材。与组内同志在结合我校实际情况和研究学生实际情况的前提下,一起落实每一个单元、每一课时教学内容的三维教学目标、教学的重点和难点、教师教的方法和学生学的方法。确定科学的能够创设教学情境、便于组织学生合作学习的教学模式。做到了集众家教学之长处,克己之短处。非常明显的提高了自己的备课质量。 2、做到了认真上课 上好课是干好教学工作的重要环节。本学期我非常重视上课这项工作。每节课都提前5分钟进入教室等候上课。以自己的行为扼制了学生上课迟到的现象。同时,也满足了学校的“上满40分钟课”的要求。课堂上我面向全体学生。尽最大努力让每一名学生得到发展。

给他们搭建展示自我的平台。创造获得成功的机会。通过创设教学情境,激发学生的学习热情。努力做到课开始,趣以生;课进行,趣正浓;课结束,趣尤存。课堂上我注重培养每一名学生的个性特长。尽最大努力让每一名学生的天资通过组织合作学习的方式在课堂上得到利用。同时,让同学们的合作意识和团队精神在组织合作学习中得以培养和锻炼。同学们在教师的引导下互相学习,互相帮助。一部分学生真正充当了课堂上小先生的作用。学生的各方面能力、各方面水平在合作学习中都得到了不同程度的提高。 3、积极参加物理科研工作 本学期我代表我们学校去参加地区的说课比赛,从中我学到了很多新的教育理念,并且取的了较好的成绩。对于我个人的业务水平是一个很大的提高。 一个学期的工作做了许多,回顾起来确实有许多工作值得我去回味。有成功让我高兴的地方,也有失败让我痛心的地方。成功的地方在今后的工作中去发扬光大。失败的地方就有待于在今后的工作中去补充完善。以上,是我一个学期工作的总结。 初中物理实验教学工作总结2 实验是物理教学中的主要方法,也是使学生提高学习兴趣、建立基本概念、培养科技精神的一个重要手段。在教学的全过程中要贯穿实验这一条主线,要想达到这一目标,必须把握好“演示实验”、“分组实验”和“探究实验”这三个关键环节。 1演示实验教学要做到“精、真、显”

物理仿真实验报告1

物理仿真实验报告1

物理仿真实验报告 受迫振动 班级应物01 姓名赵锦文 学号10093020

一、实验简介 在本实验中,我们将研究弹簧重物振动系统的运动。在这里,振动中系统除受弹性力和阻尼力作用外,另外还受到一个作正弦变化的力的作用。这种运动是一类广泛的实际运动,即一个振动着的力学体系还受到一个作周期变化的力的作用时的运动的一种简化模型。如我们将会看到的,可以使这个体系按照与施加力相同的频率振动,共振幅既取决于力的大小也取决于力的频率。当力的频率接近体系的固有振动频率时,“受迫振动”的振幅可以变得非常大,这种现象称为共振。共振现象是重要的,它普遍地存在于自然界,工程技术和物理学各领域中.共振概念具有广泛的应用,根据具体问题中共振是“利”还是“害”,再相应地进行趋利避害的处理。 两个相互耦合的简谐振子称为耦合振子,耦合振子乃是晶体中原子在其平衡位置附近振动的理想模型。 本实验目的在于研究阻尼振动和受迫振动的特性,要求学生测量弹簧重物振动系统的阻尼常数,共振频率。 二、实验原理 1.受迫振动 砝码和挂钩 弹簧 弹簧 振荡器 图13.1 受迫振动 质量M 的重物按图1放置在两个弹簧中间。静止平衡时,重物收到的合外力为0。当重物被偏离平衡位置时,系统开始振动。由于阻尼衰减(例如摩擦力),最终系统会停止振动。振动频率较低时,可以近似认为阻力与振动频率成线性关系。作用在重物上的合力: x M x Kx x x k x k F 21=--=---=ββ 其中k1, k2是弹簧的倔强系数。

K = k1+ k2是系统的等效倔强系数。 x 是重物偏离平衡位置的距离, β 是阻尼系数。 因此重物的运动方程可表示为: 22 0=++x x x ωγ 其中 γβ=M and ω02 =K M 。 在欠阻尼状态时(ωγ0>),方程解为: ) cos(22 0 φγωγ+-=-t Ae x t A, φ 由系统初始态决定。方程的解是一个幅度衰减的谐振动,如图2所示。 T 图13.2 衰减振动 振动频率是: f T = =-11202 2π ωγ (13.1) 如果重物下面的弹簧1k 由一个幅度为a 的振荡器驱动,那么这个弹簧作用于重物的力是) cos (1x t a k -ω。此时重物的运动方程为: M t a k x x x cos 212 0ωωγ= ++ . 方程的稳态解为: ) cos(4)(2 2 2 22 1θωω γωω-+-= t M a k x (13.2) 其中 )2(tan 2 201 ωωγω θ-=-。图13.3显示振动的幅度与频率的关系。

物理实验创新学习心得体会

物理实验教具创新心得体会物理教学界流传着这样一种说法:“没有演示实验的一堂课是不可想象的。”由此可见,演示实验在物理教学中的地位和作用是不容置疑的。而物理的实验教学能够很好的完成这项任务。所以在物理实验教学中要在科学探究中将教学仪器的创新,如何对已有物理试验器材进行近一步的完善,让学生更容易操作.我认为可以从下面几个方面入手。 1.自制仪器模型要增强演示效果,增大演示可见度,激发学生学习物理兴趣 在中学物理教学中,演示实验不仅是验证原理,更是使学生对教学内容获得直观感性认识的重要手段,是培养学生学习物理兴趣的重要手段.一个成功的演示实验,不仅有利于加深对书本知识的理,也有利于解激发学生学习物理的兴趣。因此,增大实验的可见度,是我们创新物理实验的主要方面.我在实际教学中进行了碰到了一些困难,也进行了一些尝试,且取得了较好的效果。例如我本次的实验创新,在教材的原实验中存在一些不足: (1) 难以控制小车做匀速直线运动. (2)难以控制拉力方向和摩擦力在一条直线上 (3) 不能连续操作,记录数据误差大. 针对以上不足,我收集相关资料,精心设计了一套简易装置. 转动把手,使传送带运动,小车和传送带间存在滑动摩擦力;小车相对地面静止,处于平衡状态,利用弹簧测力计测量滑动摩擦力

大小. 这个实验器材克服了原实验器材的不足, (1) 变小车匀速运动为传送带运动,便于控制. (2)可以连续操作,操作简单. (3)可以静止读数.实验简单易操作,全班同学都能看清楚老师演示起来也得心应手。 例如:气体对外做功、内能减小实验原实验如图所示: 实验中存在一些不足: 1、实验时间较长。 2、产生的雾气很少、持续时间短、现象不明显。 3、存在安全隐患(高温水蒸气易伤人)。 那么针对不足,我们可以如下改进:如图 气体对瓶塞做功,瓶塞冲出,瓶内气体内能减少,温度降低,蒸汽遇冷液化。实验现象明显,学生易接受. 2.实验器材的原理易懂,不能增加学生理解的难度. 在实验创新中有的老师发费很大的精力著作了一些精密的实验器材,但是却增加了学生理解的负担.如研究摩擦力方向的实验,有的老师制作了一个一部小车,在小车的内部装上电路,如图: 小车的运动情况确实可以体现摩擦力的方向,但是学生却不能理解,为什么,将电路夹杂在里面反而增大学生的理解难度. 3.实验器材制作简单,取材方便,便于实验推广. 例如,在探究“浮力的大小产生的原因”的实验中,如图所示:

西安交大物理仿真实验实验报告

西安交通大学实验报告 第 1 页(共10 页)课程:_____大学物理实验____ 实验日期 : 2014 年 11月 30日 专业班号______组别__无___ 交报告日期: 2012 年 12 月 4 日 姓名___ 学号______ 报告退发:(订正、重做) 同组者____________________________ 教师审批签字: 实验名称:超声波测声速 一、实验目的: 1。了解超声波的产生、发射、和接收方法; 2.用驻波法、相位比较法测量声速。 二、实验仪器: SV—DH系列声速测试仪,示波器,声速测试仪信号源. 三、实验原理: 由波动理论可知,波速与波长、频率有如下关系:v = f λ,只要知道频率 和波长就可以求出波速.本实验通过低频信号发生器控制换能器,信号发生器的 输出频率就是声波频率。声波的波长用驻波法(共振干涉法)和行波法(相位比 较法)测量.下图是超声波测声速实验装置图.

1。驻波法测波长 由声源发出的平面波经前方的平面反射后,入射波与发射波叠加,它们波动方程分别是: 叠加后合成波为: 振幅最大的各点称为波腹,其对应位置: 振幅最小的各点称为波节,其对应位置: 因此只要测得相邻两波腹(或波节)的位置Xn、Xn—1即可得波长. 2。相位比较法测波长

从换能器S1发出的超声波到达接收器S2,所以在同一时刻S1与S2处的波有一相位差:。因为x改变一个波长时,相位差就改变2π。利用李萨如图形就可以测得超声波的波长. 四、实验内容 1.接线 2.调整仪器 (1)示波器的使用与调整 使用示波器时候,请先调整好示波器的聚焦.然后鼠标单击示波器的输入信号的接口,把信号输入示波器.接着调节通道1,2的幅度微调,扫描信号的时基微调。最后选择合适的垂直方式选择开关,触发源选择开关,内触发源选择开关,Auto-Norm-X—Y开关,在示波器上显示出需要观察的信号波形。输入信道的信号是由实验线路的连接决定的。 (2)信号发生器的调整 根据实验的要求调整信号发生器,产生频率大概在35KHz左右,幅度为5V 的一个正弦信号。由于本实验测声速的方法需要通过换能器(压电陶瓷)共振把电信号转为声信号,然后再转为电信号进行的,所以在开始测量前需要调节信号的频率为换能器的共振频率。在寻找共振频率时,通过调节信号发生器的微调旋钮,观察示波器上信号幅度是否为最大来逐步寻找的。 (3)超声速测定仪的使用 在超声速测定仪中,左边的换能器是固定的,右边的换能器是与游标卡尺的滑动部分连接在一起的。这样,左右换能器间的距离就可以通过游标卡尺来测量出来,在上图的下半部分是一个放大的游标卡尺的读数图. 3.实验内容 寻找到超声波的频率(就是换能器的共振频率)后,只要测量到信号的波长就可以求得声速.我们采用驻波法和相位比较法来测量信号波长: (1)驻波法 信号发生器产生的信号通过超声速测定仪后,会在两个换能器件之间产生驻波。改变换能器之间的距离(移动右边的换能器)时,在接收端(把声信号转为电信号的换能器)的信号振幅会相应改变。当换能器之间的距离为信号波长的一

创新实验报告

专业综合实验 学院:电气工程及自动化学院 专业:测控技术与仪器 姓名:赵闯 学号:1090110304

一.研究背景 STM32系列基于专为要求高性能、低成本、低功耗的嵌入式应用专门设计的ARM Cortex-M3内核。按性能分成两个不同的系列:STM32F103“增强型”系列和STM32F101“基本型”系列。增强型系列时钟频率达到72MHz,是同类产品中性能最高的产品;基本型时钟频率为36MHz,以16位产品的价格得到比16位产品大幅提升的性能,是16位产品用户的最佳选择。两个系列都内置32K到128K的闪存,不同的是SRAM的最大容量和外设接口的组合。时钟频率72MHz时,从闪存执行代码,STM32功耗36mA,是32位市场上功耗最低的产品,相当于0.5mA/MHz。 在STM32F105和STM32F107互连型系列微控制器之前,意法半导体已经推出STM32基本型系列、增强型系列、USB基本型系列和增强型系列;新系列产品沿用增强型系列的72MHz 处理频率。内存包括64KB到256KB闪存和 20KB到64KB嵌入式SRAM。新系列采用LQFP64、LQFP100和LFBGA100三种封装,不同的封装保持引脚排列一致性,结合STM32平台的设计理念,开发人员通过选择产品可重新优化功能、存储器、性能和引脚数量,以最小的硬件变化来满足个性化的应用需求。 截至2010年7月1日,市面流通的型号有: 基本型:STM32F101R6 STM32F101C8 STM32F101R8 STM32F101V8 STM32F101RB STM32F101VB 增强型:STM32F103C8 STM32F103R8 STM32F103V8 STM32F103RBSTM32F103VB STM32F103VE STM32F103ZE STM32型号的说明:以STM32F103RBT6这个型号的芯片为例,该型号的组成为7个部分,其命名规则如下: (1)STM32:STM32代表ARM Cortex-M3内核的32位微控制器。 (2)F:F代表芯片子系列。 (3)103:103代表增强型系列。 (4)R:R这一项代表引脚数,其中T代表36脚,C代表48脚,R代表64脚,V代表100脚,Z代表144脚。 (5)B:B这一项代表内嵌Flash容量,其中6代表32K字节Flash,8代表64K字节Flash,B代表128K字节Flash,C代表256K字节Flash,D代表384K字节Flash,E代表512K字节Flash。

小度写范文大学物理创新实验报告模板

大学物理创新实验报告 篇一:大学物理设计性实验报告 大学物理设计性实验报告 课题________________ 学院________________ 班级________________ 姓名________________ 学号________________ 【实验目的】 1. 掌握多种测定重力加速度的方法。 2. 正确进行数据处理和误差分析。 【实验器材】 秒表、倾角固定的斜面(倾角未知)、木块、米尺 【实验原理】 借用一道测定木块与斜面之间动摩擦因数进行知识的迁移与转换,运用牛顿第二定律及运动学公式可测定出重力加速度。在B点给木块一初速度让其沿 斜面匀减速上滑,记下到达最高点的时间t1,并测出BD长度s。将木块由D点静止释放让其沿斜面匀加速下滑,记下 到达B点的时间t2。由牛顿第二定律易知上滑、下滑的加速度分别为 1a2t22 2 hsl11 解得g?(2?2) ,sin??

lht1t2s? a1?gsin??mgcos?、a2?gsin??mgcos?。由运动学公式,有s? 12a1t1,2 运用水滴法测重力加速度测出水滴间隔时间以及掉落高度,运用牛顿第二定律以及运动学公式可测出重力加速度。 【实验内容】 1.测出斜面的高 H、斜面的长L 2.给木块一初速度,记录到达最高点的时间 3.将木块静止释放,使其下滑,记录下滑到点B的时间 4.多次重复步骤2、3,记录多组数据。 5.在自来水龙头下面固定一个盘子,使水一滴一滴连续地滴到盘子里,仔细调节水龙头,使得耳朵刚好听到前一个水滴滴到盘子里声音的同时,下一个水滴刚好开始下落。 6.量出水龙头口离盘子的高度h,再用停表计时。 7.当听到某一水滴滴在盘子里的声音的同时,开启停表开始计 时,并数“1”,以后每听到一声水滴声,依次数“2、3??”一直数到“n”,按下停表按钮停止计时,读出停表的示数t。 8.记录并分析数据。 9.比较实验记录分析不同方法得出的重力加速度,掌握相关的测量特点 表一: H=__________ L=__________g=__________g=___________ 篇二:大学物理上实验报告(共2篇)

西安交大创新物理实验综述报告题库

创新物理实验综述报告 硕4006班周阳3114008003 1.磁共振系列实验 1.1词条解释 外文名:Spin Magnetic Resonance Phenomenon 磁共振指的是自旋磁共振(spin magnetic resonance)现象。其意义上较广,包含核磁共振(nuclear magnetic resonance, NMR)、电子顺磁共振(electron paramagnetic resonance, EPR)或称电子自旋共振(electron spin resonance, ESR)。 此外,人们日常生活中常说的磁共振,是指磁共振成像(Magnetic Resonance Imaging,MRI),其是利用核磁共振现象制成的一类用于医学检查的成像设备。 1.2发展简史 磁共振是在固体微观量子理论和无线电微波电子学技术发展的基础上被发现的。1945年首先在顺磁性Mn盐的水溶液中观测到顺磁共振,第二年,又分别用吸收和感应的方法发现了石蜡和水中质子的核磁共振;用波导谐振腔方法发现了Fe、Co和Ni薄片的铁磁共振。1950年在室温附近观测到固体Cr2O3的反铁磁共振。1953年在半导体硅和锗中观测到电子和空穴的回旋共振。1953年和1955年先后从理论上预言和实验上观测到亚铁磁共振。随后又发现了磁有序系统中高次模式的静磁型共振(1957)和自旋波共振(1958)。1956年开始研究两种磁共振耦合的磁双共振现象。这些磁共振被发现后,便在物理、化学、生物等基础学科和微波技术、量子电子学等新技术中得到了广泛的应用。例如顺磁固体量子放大器,各种铁氧体微波器件,核磁共振谱分析技术和核磁共振成像技术及利用磁共振方法对顺磁晶体的晶场和能级结构、半导体的能带结构和生物分子结构等的研究。原子核和基本粒子的自旋、磁矩参数的测定也是以各种磁共振原理为基础发展起来的。 磁共振成像技术由于其无辐射、分辨率高等优点被广泛的应用于临床医学与医学研究。一些先进的设备制造商与研究人员一起,不断优化磁共振扫描仪的性能、开发新的组件。例如:德国西门子公司的1.5T 超导磁共振扫描仪具有神经成像组件、血管成像组件、心脏成像组件、体部成像组件、肿瘤程序组件、骨关节及儿童成像组件等。其具有高分辨率、磁场均匀、扫描速度快、噪声相对较小、多方位成像等优点。1.3基本原理 磁共振(回旋共振除外)其经典唯象描述是:原子、电子及 核都具有角动量,其磁矩与相应的角动量之比称为磁旋比γ。磁 矩M 在磁场B中受到转矩MBsinθ(θ为M与B间夹角)的作用。 此转矩使磁矩绕磁场作进动运动,进动的角频率ω=γB,ωo称为 拉莫尔频率。由于阻尼作用,这一进动运动会很快衰减掉,即M 达到与B平行,进动就停止。但是,若在磁场B的垂直方向再加 一高频磁场b(ω)(角频率为ω),则b(ω)作用产生的转矩 使M离开B,与阻尼的作用相反。如果高频磁场的角频率与磁矩进

大物仿真实验实验报告

学院数统学院专业信计21 姓名倪皓洋学号 2120602015 实验名称:刚体的转动惯量 一实验简介: 在研究摆的中心升降问题时,惠更斯发现了物体系的重心与后来欧勒称之为转动惯量的量。转动惯量是表征刚体转动惯性大小的物理量,它与刚体的质量、质量相对于转轴的分布有关。 二实验目的: 1.用实验方法验证转动惯量,并求转动惯量。 2.观察转动惯量与质量的分布关系。 3.学习作图的曲线改直法,并由作图法处理实验数据。 三实验原理: 1. 刚体的转动定律 具有确定转轴的刚体,在外力矩作用下,将获得较加速度β,其值与外力矩成正比,与刚体的转动惯量成反比即有刚体的转动定律: M=Iβ 利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动惯量。 2.应用转动定律求转动惯量 如图所示,待测刚体由塔轮,伸杆及杆上的配重物组成。刚体将在砝码的拖动下绕竖直轴转动 设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度a下落,其运动方程为mg-t=ma,在t时间内下落的高度为h=at2/2。刚体收到张力的力矩为T r和轴摩擦力力矩M f。由转动定律可得到刚体的转动运动方程:T r--M f=I β。绳与塔轮间无相对滑动时有a =rβ,上述四个方程得到: m(g - a)r - Mf = 2hI/rt2 (2) M f与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有a<

的方法求得转动惯量I。 3.验证转动定律,求转动惯量 从(3)出发,考虑用以下两种方法: A.作m – 1/t2图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r 和砝码下落高度h,(3)式变为: M = K1/ t2 (4) 式中K1 =2hI/ gr2为常量。上式表明:所用砝码的质量与下落时间t的平方成反比。实验中选用一系列的砝码质量,可测得一组m与1/t2的数据,将其在直角坐标系上作图,应是直线。即若所作的图是直线,便验证了转动定律。 从m – 1/t2图中测得斜率K1,并用已知的h、r、g值,由K1 =2hI/gr2求得刚体的I。 B.作r – 1/t图法:配重物的位置不变,即选定一个刚体,取砝码m和下落高度h为固定值。将式(3)写为: r = K2/ t (5) 式中K2 = (2hI/ mg)1/2是常量。上式表明r与1/t成正比关系。实验中换用不同的塔轮半径r,测得同一质量的砝码下落时间t,用所得一组数据作r-1/t图,应是直线。即若所作图是直线,便验证了转动定律。 从r-1/t图上测得斜率,并用已知的m、h、g值,由K2 = (2hI/ mg)1/2求出刚体的I。 四实验仪器: 刚体转动仪,滑轮,秒表,砝码 其中刚体转动仪包括: A.、塔轮,由五个不同半径的圆盘组成。上面绕有挂小砝码的细线,由它对刚体施加外力矩。 B、对称形的细长伸杆,上有圆柱形配重物,调节其在杆上位置即可改变转动惯量。与A和配重物构成一个刚体。 C.、底座调节螺钉,用于调节底座水平,使转动轴垂直于水平面。 此外还有转向定滑轮,起始点标志,滑轮高度调节螺钉等部分 。 双击刚体转动仪底座下方的旋钮,会弹出底座放大窗口和底座调节窗口,在底座调节窗口的旋钮上点击鼠标左、右键,可以调整底座水平。在底座放大窗口上单击右键可以转换视角。(如下图)

相关主题
文本预览
相关文档 最新文档