当前位置:文档之家› 扩散工艺知识

扩散工艺知识

扩散工艺知识
扩散工艺知识

第三章 扩散工艺

在前面“材料工艺”一章,我们就曾经讲过一种叫“三重扩散”的工艺,那是对衬底而言相同导电类型杂质扩散。这样的同质高浓度扩散,在晶体管制造中还常用来作欧姆接触,如做在基极电极引出处以降低接触电阻。除了改变杂质浓度,扩散的另一个也是更主要的一个作用,是在硅平面工艺中用来改变导电类型,制造PN 结。 第一节 扩散原理

扩散是一种普通的自然现象,有浓度梯度就有扩散。扩散运动是微观粒子原子或分子热运动的统计结果。在一定温度下杂质原子具有一定的能量,能够克服某种阻力进入半导体,并在其中作缓慢的迁移运动。

一.扩散定义

在高温条件下,利用物质从高浓度向低浓度运动的特性,将杂质原子以一定的可控性掺入到半导体中,改变半导体基片或已扩散过的区域的导电类型或表面杂质浓度的半导体制造技术,称为扩散工艺。

二.扩散机构

杂质向半导体扩散主要以两种形式进行:

1.替位式扩散

一定温度下构成晶体的原子围绕着自己的平衡位置不停地运动。其中总有一些原子振动得较厉害,有足够的能量克服周围原子对它的束缚,跑到其它地方,而在原处留下一个“空位”。这时如有杂质原子进来,就会沿着这些空位进行扩散,这叫替位式扩散。硼(B )、磷(P )、砷(As )等属此种扩散。

2.间隙式扩散

构成晶体的原子间往往存在着很大间隙,有些杂质原子进入晶体后,就从这个原子间隙进入到另一个原子间隙,逐次跳跃前进。这种扩散称间隙式扩散。金、铜、银等属此种扩散。

三. 扩散方程

扩散运动总是从浓度高处向浓度低处移动。运动的快慢与温度、浓度梯度等有关。其运动规律可用扩散方程表示,具体数学表达式为:

N D t

N 2?=?? (3-1) 在一维情况下,即为: 22x

N D t N ??=?? (3-2) 式中:D 为扩散系数,是描述杂质扩散运动快慢的一种物理量;

N 为杂质浓度;

t 为扩散时间;

x 为扩散到硅中的距离。

四.扩散系数

杂质原子扩散的速度同扩散杂质的种类和扩散温度有关。为了定量描述杂质扩散速度,引入扩散系数D 这个物理量,D 越大扩散越快。其表达式为:

KT E

e D D ?-=0 (3-3)

这里:D 0——当温度为无穷大时,D 的表现值,通常为常数;

K ——玻尔兹曼常数,其值为8.023×10-5ev/oK ;

T —— 绝对温度,单位用“oK ”表示;

E ?——有关扩散过程的激活能,实际上就是杂质原子扩散时所必须克服的某种势垒。

扩散系数除与杂质种类、扩散温度有关,还与扩散气氛、衬底晶向、晶格完整性、衬底材料、本体掺杂浓度N B 及扩散杂质的表面浓度N S 等有关。

五.扩散杂质分布

在半导体器件制造中,虽然采用的扩散工艺各有不同,但都可以分为一步法扩散和二步法扩散。二步法扩散分预沉积和再分布两步。一步法与二步法中的预沉积属恒定表面源扩散。而二步法中的再扩散属限定表面源扩散。由于恒定源和限定源扩散两者的边界和初始条件不同,因而扩散方程有不同的解,杂质在硅中的分布状况也就不同。

1.恒定源扩散

在恒定源扩散过程中,硅片的表面与浓度始终不变的杂质(气相或固相)相接触,即在整个扩散过程中硅片的表面浓度N S 保持恒定,故称为恒定源扩散。

恒定源扩散的杂质浓度分布的表达式是:

erfc N t x N S ?=),(Dt

x 2 (3-4) 式中:),(t x N 表示杂质浓度随杂质原子进入硅体内的距离x 及扩散时间t 的变化关系;

N S 为表面处的杂质浓度;

D 为扩散系数。

erfc 为余误差函数。

因此恒定源扩散杂质浓度分布也称余误差分布。图3-1为恒定源扩散杂质分布示意图:

从图上可见,在不同扩散时间表面浓度N S 的值不变。也就是说,N S 与扩散

时间无关,但与扩散杂质的种类、杂质在硅内的固溶度和扩散温度有关。硅片内的杂质浓度随时间增加而增加,随离开硅表面的距离增加而减少。图中N B 为衬

底原始杂质浓度,简称衬底浓度,其由单晶体拉制时杂质掺入量决定。

由恒定源扩散杂质分布表达式中可知道,当表面浓度N S 、杂质扩散系数D

和扩散时间t 三个量确定以后,硅片中的杂质浓度分布也就确定。经过恒定源扩散之后进入硅片单位面积内的杂质原子数量可由下式给出:

Dt N Dt N Q S S 13.12==π (3-5)

式中:Q 为单位面积内杂质原子数或杂质总量。

2.限定源扩散

在限定源扩散过程中,硅片内的杂质总量保持不变,它没有外来杂质的补充,只依靠预沉积在硅片表面上的那一层数量有限的杂质原子向硅内继续进行扩散,这就叫限定源扩散或有限源扩散。其杂质浓度分布表达式为:

e Dt x Dt Q t x N 42),(-=

π (3-6)

式中的e Dt x 42-为高斯函数,故这种杂质分布也叫高斯分布。

图3-2是限定源扩散杂质分布示意图。由于扩散过程中杂质总量保持不变,图中各条曲线下面的面积相等。当扩散温度恒定时,随扩散时间t 的增加,一方面杂质扩散进硅片内部的深度逐渐增加;另一方面,硅片表面的杂质浓度将不断下降。

在讨论限定源扩散,即两步法的再分布时,必须考虑的一个因素是分凝效应。

在“氧化工艺”中曾经分析过,由于热氧化,在再分布时杂质在硅片表面氧化层中会出现“吸硼排磷”现象,我们不能忽略这个因素;并且应当利用这些规律来精确的控制再分布的杂质表面浓度。

第二节扩散条件

扩散条件选择,主要包括扩散杂质源的选择和扩散工艺条件的确定两个方面。

一.扩散源的选择

选取什么种类的扩散杂质源,主要根据器件的制造方法和结构参数确定。具体选择还需要遵循如下原则:

1.导电类型与衬底相反;

2.先扩散的扩散系数要比后扩散的小;

3.杂质与掩模之间的配合要协调,扩散系数在硅中要比在掩模中大得多;

4.要选择容易获得高浓度、高蒸汽压、且使用周期长的杂质源;

5.在硅中的固溶度要高于所需要的表面杂质浓度;

6.毒性小,便于工艺实施。

从杂质源的组成来看,有单元素、化合物和混合物等多种形式。从杂质源的状态来看,有固态、液态、气态多种。

二.扩散条件的确定

扩散的目的在于形成一定的杂质分布,使器件具有合理的表面浓度和结深,而这也是确定工艺条件的主要依据。此外如何使扩散结果具有良好的均匀性、重复性也是选择工艺条件的重要依据。具体讲有:

1.温度

对扩散工艺参数有决定性影响。对浅结器件一般选低些;对很深的PN 结选高些。此外还需根据工艺要求实行不同工艺系列的标准化,以有利于生产线的管理。

2.时间

调节工艺时间往往是调节工艺参数的主要手段,扩散时间的控制应尽量减少人为的因素。

3.气体流量

流量是由掺杂气体的类别和石英管直径确定的,只有使扩散的气氛为层流型,才能保证工艺的稳定性,流量控制必须采用质量流量控制器MFC 。

第三节 扩散参数及测量

扩散工艺中有三个参数非常重要,它们是扩散结深、薄层电阻及表面浓度,三者之间有着一个十分密切的有机联系。

一.扩散结深

结深就是PN 结所在的几何位置,它是P 型与N 型两种杂质浓度相等的地方到硅片表面的距离,用j x 表示,单位是微米(μμ或m )其表达式为:

Dt A x j ?= (3-7)

式中A 是一个与N S 、N B 等有关的常数,对应不同的杂质浓度分布,其表达

式不同。

余误差分布时:

S B N N erfc A 1

2-=

(3-8)

高斯分布时:

2

1

2?

?

?

??

?

=

B

S

n

N

N

A (3-9)

这里erfc-1为反余误差函数,可以查反余误差函数表。㏑为以e为底的自然对数,可以查自然对数表。

此外,A也可以通过半导体手册A~

B

S

N

N曲线表直接查出。

实际生产中j x直接通过测量显微镜测量。具体方法有磨角染色法、滚槽法、阳极氧化法等。

二.方块电阻

扩散层的方块电阻又叫薄层电阻,记作R

或R

S

,其表示表面为正方形的扩散薄层在电流方向(平行于正方形的边)上所呈现的电阻。

由类似金属电阻公式

S

L

=可推出薄层电阻表达式为:

__

__

__1

σ

ρ

ρ

j

j

j

S

x

x

L

x

L

R=

=

=

(3-10)

式中:__ρ、__σ分别为薄层电阻的平均电阻率和电导率。为区别于一般电阻,其单位用Ω/□表示。

由于:

__

_______

__

)

(

1

μ

ρ

?

?

=

x

N

q

(3-11)q为电子电荷量,______)

(x

N为平均杂质浓度,

__

μ为平均迁移率。

R

S

可变换为:

城市规划基础学习知识原理(第四版),第六章

第六章:经济与产业 第一节:经济增长与城市发展 ①.经济视角的城市 城市的经济特征:从经济产业角度看,城市有着区别于乡村的三个基本特征 A:城市是人口和经济活动的高度密集区。 B:城市以农村剩余为存在前提,以第二产业和第三产业为发展基础。 C:城市是专业化网络市场分工的交易中心。 2.城市的空间范围 在行政意义上有“建市制”和“建制镇”但从经济角度看,一个城市的影响力并不局限在其行政边界内。行政边界只是基于历史边缘,文化习俗以及行政管理的需要而划定的空间范围。 3.城市的维系和成长 为什么城市能够维系自身的存在?为什么部分城市会持续成长,有的甚至成为人口超千万的特大城市?一个简短的回答是:“集聚经济”。集聚经济,或者说不同经济活动的频繁接触时城市经济的基本特征,也是城市形成,生存和发展的重要动力和基础。 ②城市和经济

1.城市发展离不开经济增长 城市经济增长可以从多个方面来衡量,首先,可以用地区生产总值(GDP)来衡量,其次,增长也反映城市平均工资的增长或人均收入的增长,除此之外,传统的,非地理意义的经济增长来源主要包括以下几个方面。 A:资本构成深化。物质资本包括,人类用一生恒产所有产品和服务的物质资料。 B:人力资本增长,人力资本包括人的知识和技能,是通过教育,培训和时实践获取。 C:技术流程 2.城市是经济发展的只要发生地 工业化—城镇化,服务化—城镇化的关系已经密不可分。 3.把握城市发展需要认识经济活动 A:推动和塑造城市化的核心动力是经济活动。 B:城市规划以土地使用规划为核心,传统的土地利用规划机制仅仅能够有效防止不合需要的发展不会发生,但不能保证真正需要的发展在他们所需要的地方和时间发生。 4.城市规划机制是基于市场失灵 A:一般认为,市场机制是社会资源配置最具效率的机制,所以市场机制要在资源配置中起基础性作用。

扩散基本知识

扩散基本知识 一、半导体基本知识 太阳电池是用半导体材料硅做成的。容易导电的是导体,不易导电的是绝缘体,即不像导体那样容易导电又不像绝缘体那样不容易导电的物体叫半导体,譬如:锗、硅、砷化缘等。 世界上的物体都是由原子构成的,从原子排列的形式来看,可以把物体分成2大类,晶体和非晶体。晶体通常都有特殊的外形,它内部的原子按照一定的规律整齐地排列着;非晶体内部原子排列乱七八糟,没有规则;大多数半导体都是晶体。半导体材料硅是原子共价晶体,在晶体中,相邻原子之间是以共用电子结合起来的。硅是第四族元素,硅原子的电子层结构为2、8、4,它的最外层的四个电子是价电子。因此每个硅原子又分别与相邻的四个原子形成四个共价键,每个共价键都是相邻的两个原子分别提供一个价电子所组成的。 如果硅晶体纯度很高,不含别的杂质元素,而且晶体结构很完美,没有缺陷,这种半导体叫本征半导体,而且是单晶体。而多晶体是由许多小晶粒聚合起来组成的,每一晶体又由许多原子构成。原子在每一晶粒中作有规则的整齐排列,各个晶粒中原子的排列方式都是相同的。但在一块晶体中各个晶粒的取向(方向)彼此不同,晶粒与晶粒之间并没有按照一定的规则排列,所以总的来看,原子的排列是杂乱无章的,这样的晶体,我们叫它多晶体。 半导体有很特别的性质:导电能力在不同的情况下会有非常大的差别。光照、温度变化、适当掺杂都会使半导体的导电能力显著增强,尤其利用掺杂的方法可以制造出五花八门的半导体器件。但掺杂是有选择的,只有加入一定种类和数量的杂质才能符合我们的要求。 我们重点看一下硼和磷这两种杂质元素。硼是第三族主族元素,硼原子的电子层结构为2、3,由于硼原子的最外电子层只有三个电子,比硅原子缺少一个最外层电子,因此当硼原子的三个最外层价电子与周围最邻近的三个硅原子的价电子结合成共价键时,在与第四个最邻近的硅原子方向留下一个空位。这个空位叫空穴,它可以接受从邻近硅原子上跳来的电子,形成电子的流动,参与导电。硼原子在硅晶体中起着接受电子的作用,所以叫硼原子为受主型杂质。掺有受主型杂质的半导体,其导电率主要是由空穴决定的,这种半导体又叫空穴型或P型半导体。 磷是周期表中第五族元素,磷原子的电子层结构为2、8、5,它的最外层的五个电子是价电子。由于磷原子比硅原子多一个最外层电子,因此当磷原子的四个价电子与周围最邻近的四个硅原子的价电子形成共价键后,还剩余一个价电子。这个价电子很容易成为晶体中的自由电子参与导电。磷原子在硅晶体中起施放电子的作用,所以叫磷原子为施主型杂质。掺有施主型杂质的半导体,其导电率主要是由电子决定的,这种半导体又叫电子型半导体或n型半导体。 二、扩散基本知识 我们知道,太阳能电池的心脏是一个PN结。我们需要强调指出,PN结是不能简单地用两块不同类型(p型和n型)的半导体接触在一起就能形成的。要制造一个PN结,必须使一块完整的半导体晶体的一部分是P型区域,另一部分是N型区域。也就是在晶体内部实现P型和N型半导体的接

扩散工艺知识

第三章 扩散工艺 在前面“材料工艺”一章,我们就曾经讲过一种叫“三重扩散”的工艺,那是对衬底而言相同导电类型杂质扩散。这样的同质高浓度扩散,在晶体管制造中还常用来作欧姆接触,如做在基极电极引出处以降低接触电阻。除了改变杂质浓度,扩散的另一个也是更主要的一个作用,是在硅平面工艺中用来改变导电类型,制造PN 结。 第一节 扩散原理 扩散是一种普通的自然现象,有浓度梯度就有扩散。扩散运动是微观粒子原子或分子热运动的统计结果。在一定温度下杂质原子具有一定的能量,能够克服某种阻力进入半导体,并在其中作缓慢的迁移运动。 一.扩散定义 在高温条件下,利用物质从高浓度向低浓度运动的特性,将杂质原子以一定的可控性掺入到半导体中,改变半导体基片或已扩散过的区域的导电类型或表面杂质浓度的半导体制造技术,称为扩散工艺。 二.扩散机构 杂质向半导体扩散主要以两种形式进行: 1.替位式扩散 一定温度下构成晶体的原子围绕着自己的平衡位置不停地运动。其中总有一些原子振动得较厉害,有足够的能量克服周围原子对它的束缚,跑到其它地方,而在原处留下一个“空位”。这时如有杂质原子进来,就会沿着这些空位进行扩散,这叫替位式扩散。硼(B )、磷(P )、砷(As )等属此种扩散。 2.间隙式扩散 构成晶体的原子间往往存在着很大间隙,有些杂质原子进入晶体后,就从这个原子间隙进入到另一个原子间隙,逐次跳跃前进。这种扩散称间隙式扩散。金、铜、银等属此种扩散。 三. 扩散方程 扩散运动总是从浓度高处向浓度低处移动。运动的快慢与温度、浓度梯度等有关。其运动规律可用扩散方程表示,具体数学表达式为: N D t N 2?=?? (3-1) 在一维情况下,即为: 22x N D t N ??=?? (3-2) 式中:D 为扩散系数,是描述杂质扩散运动快慢的一种物理量; N 为杂质浓度; t 为扩散时间; x 为扩散到硅中的距离。 四.扩散系数 杂质原子扩散的速度同扩散杂质的种类和扩散温度有关。为了定量描述杂质扩散速度,引入扩散系数D 这个物理量,D 越大扩散越快。其表达式为: KT E e D D ?-=0 (3-3)

船舶建造工艺流程简要介绍知识学习

船舶建造工艺流程简要介绍 一、船舶建造工艺流程层次上的划分为: 1、生产大节点:开工——上船台(铺底)——下水(出坞)——航海试验——完工交船生产大节点在工艺流程中是某工艺阶段的开工期(或上一个节点的完工期),工艺阶段一般说是两个节点间的施工期。生产大节点的期限是编制和执行生产计划的基点,框定了船舶建造各工艺阶段的节拍和生产周期;节点的完成日也是船东向船厂分期付款的交割日。 2、工艺阶段:钢材予处理——号料加工——零、部件装配——分段装焊——船台装焊(合拢)——拉线镗孔——船舶下水——发电机动车——主机动车——系泊试验——航海试验——完工交船 3、以上工艺阶段还可以进一步进行分解。 4、是以上工艺阶段是按船舶建造形象进度划分的,造船工艺流程是并行工程,即船体建造与舾装作业是并行分道组织,涂装作业安排在分道生产线的两个小阶段之间,船体与舾装分道生产线在各阶段接续地汇入壳舾涂一体化生产流程。 二、船舶建造的前期策划 船舶设计建造是一项复杂的系统工程,在开工前船厂必须组织前期策划,一是要扫清技术障碍;二是要解决施工难点。 1、必须吃透“技术说明书”(设计规格书)。 技术说明书是船东提出并经双方技术谈判,以相应国际规范及公约为约束的船舶设计建造的技术要求。船厂在新船型特别是高附加值船舶的承接中必须慎重对待:必须搞清重要设备运行的采用标准情况、关键技术的工艺条件要求,特别是要排查出技术说明书中暗藏的技术障碍(不排除某些船东存有恶意意图), 2、对设计工作的组织。 船舶设计工作分三阶段组织进行——初步设计、详细设计、生产设计。初步设计:是从收到船东技术任务书或询价开始,进行船舶总体方案的设计。提供出设计规格说明书、总布置图、舯剖面图、机舱布置图、主要设备厂商表等。详细设计:在初步设计基础上,通过对各个具体技术专业项目,进行系统原理设计计算,绘制关键图纸,解决设计中的技术问题,

扩散原理及技术介绍

扩散原理及技术介绍 袁泽锐 2011.01.17

主要内容 扩散的微观规律 扩散的宏观规律 扩散对电性能的影响 扩散对晶体缺陷的影响 2

一、扩散的微观规律 扩散和布朗运动 扩散机制 晶体中的扩散 晶格原子的扩散 影响扩散系数的因素 3

1.1 扩散和布朗运动 布朗运动又称热运动,不仅在气体和液体中有,在固体中也同样存在;在固体中原子不断地从一个平衡位置跃迁到另一个平衡位置。例如,1223K时碳原子在 γ-Fe中每秒钟要跃迁1010次。 在晶格中原子每次跃迁的距离就是该方向上的原子间距a。一个原子经过多次跃迁才出现一个净位移,如下图所示。但单位时间内原子跃迁的次数愈多造成较大净位移的可能性愈大,或者说回到原来位置的可能性愈小。 所以可以认为单位时间内的净位移愈大,表征布朗运动愈 强烈。这种净位移的大小与浓度梯度的存在与否无关。没 有浓度梯度时原子的布朗运动照样存在,只是不出现定向 扩散流。 4

5 平均平方位移 各原子净位移,从统计观点看,由于有正有负,加起来为零。为了表征布朗运动的强弱,特引入平均平方位移。 平均平方位移的计算方法为:把每个杂质原子净位移的平方加起来再除以杂质原子总数。表示如下: 2222 12N X X X X N +++= 每个杂质原子平方位移和每次跃迁的关系式为: ()1 2 22121 11 2n n n i n j j k j j k j X s s s s s s ?===+=+++=+∑∑ ∑ 上式中,不可能为零,所以n 愈大,愈大,即的大小反映了布朗 运动的强弱。 2j s 2i X 2 X

熔炼工艺基本知识的讲解

熔炼基本知识的讲解 工艺操作规程: 熔炼 配料装炉熔铸扒渣 炒灰 精炼 静置扒渣精炼合金化 铸造锯切交付 概述 一、熔炼目的 熔炼的基本目的是,制造出化学成分符合要求,并且熔体纯洁度高的合金,为铸成各种形状的铸锭创造有利条件.具体说来有: (1) 为了获得化学成分均匀并且符合要求的合金 合金材料的组织和性能,除了工艺条件的影响而外,首先要靠化学成分来保证。如果某一成分或杂质—旦超出标准,就要按化学成分废品处理,造成很大的损失。很明显,控制好合金成分有着重要的意义,同时在合金成分范围内调整好一些元素的含量,可以大大减少铸造的裂纹废品。 (2) 通过精炼以获得纯洁度高的合金熔体 冶炼厂供应的电解铝液或者回炉的废料,往往含有杂质、气体、氧化夹渣物,必须通过熔炼过程,藉助物理的或化学的精炼作用,以排除这些杂质、气体、氧化物等,以提高熔体金属的纯洁度。 (3) 除上述目的外,熔铸车间还有将回收的废料复化的任务 这些回收的废料往往由于管理不严被混杂,成分不清,或者被油等杂物污染、或者是碎屑不能直接用于成品合金的生产,必须藉助熔炼过程(双室炉)以获得准确的化学成分,并铸成适用于再次入炉的铸锭。 二、熔炼炉的准备 为保证金属和合金的铸锭质量,并且要做到安全生产,事先对熔炼炉必需做好各项准备工作.这些工作包括烘炉,洗炉及清炉。 1.烘炉 凡新修或中修过的炉子,在进行生产前需要烘炉,以便清除炉中的湿气。 2.洗炉

实际生产中住往需要用一台炉子熔炼多种合金,由一种含金改为生产另一种合金时往往需要洗炉。 ①洗炉的目的 洗炉就是将残留在熔池内各处的金属和炉渣清除出炉外,以免污染另一种合金,确保产品的化学成分。另外对新修的炉子,可减少非金属夹杂物。 ②洗炉原则 1) 新修,中修和大修后的炉子生产前应进行洗炉; 2) 长期停歇的炉子可以根据炉内清洁情况和要熔化的合金制品来决定是否需要冼炉; 3) 前一炉的合金元素为后一炉的杂质时应该洗炉; 4) 由杂质高的合金转换熔炼纯度高的合金时需要洗炉. ③洗炉时用料原则 1) 向高纯度和特殊合金转换时,必须用100%的原铝或者铝锭; 2) 新炉开炉,一般合金转换时,可采用原铝锭或纯铝的一级废料; 3) 中修或长期停炉后,如单纯为清洗炉内脏物,可用纯铝或一级废料进行; 4) 洗炉时洗炉料用量不得少于炉子容量的40%。 ④洗炉时的要求 1) 装洗炉料前和洗炉后都必须放干,大清炉; 2) 洗炉时的熔体温度控制在800-850℃,在达到此温度时,应彻底搅拌熔体,其次数不少于三次,每次搅拌间隔时间半小时。 3.清炉 清炉就是将炉内残存的结渣彻底清除炉外。每当金属出炉后,都要进行一次清炉.当合金转换,一般制品连续生产5-15炉,特殊制品每生产一炉,都要进行大清炉。大清炉时,应先均匀向炉内撒入一层粉状熔剂,并将炉膛温度升至800℃以上,然后用三角铲将炉内各处残存的结渣彻底清除。 三、熔炼工艺流程和操作 熔炼时要控制好合金成分,除了采用措施控制烧损以外,还要做好几项工作,原材料的检查,合理的加料顺序,做好炉前的成分分析和调整等。 1. 检查原材料 炉料配到熔炼加料点,由于配料计算,称重及吊运等都可能发生差错,甚至还可能出现缺料或多料的情况。如果不进行检查,就可能使合金元素的含量超出或低于控制成分所要求的范围,甚至造成整炉的化学成分不符的废品。因此对原材料的检查这一工作是熔炼生产时的重要工序之一。 1) 清洁无腐蚀 所配入的原材料要求表面清洁无腐蚀,炉料要做到三无(无灰,无油污、无水),否则将会影响合金熔体的纯洁度。 2) 成分符合要求 如果原材料的成分不符合要求,就会直接影响合金成分的控制.为此: ①对于无印记、或印记不清的炉料,在未确定成分前严禁入炉; ②对于中间合金应有成分分析单,或标明炉号熔次,否则不准入炉; ③另外,加工方法和材料的供应状态不同,对成分的要求也就不同。 3) 重量要准确 原材料的重量准确与否,不但影响合金的成分,而且影响铸锭的尺寸。因此

机械原理基础知识点总结,复习重点

机械原理知识点总结 第一章平面机构的结构分析 (3) 一. 基本概念 (3) 1. 机械: 机器与机构的总称。 (3) 2. 构件与零件 (3) 3. 运动副 (3) 4. 运动副的分类 (3) 5. 运动链 (3) 6. 机构 (3) 二. 基本知识和技能 (3) 1. 机构运动简图的绘制与识别图 (3) 2.平面机构的自由度的计算及机构运动确定性的判别 (3) 3. 机构的结构分析 (4) 第二章平面机构的运动分析 (6) 一. 基本概念: (6) 二. 基本知识和基本技能 (6) 第三章平面连杆机构 (7) 一. 基本概念 (7) (一)平面四杆机构类型与演化 (7) 二)平面四杆机构的性质 (7) 二. 基本知识和基本技能 (8) 第四章凸轮机构 (8) 一.基本知识 (8) (一)名词术语 (8) (二)从动件常用运动规律的特性及选用原则 (8) 三)凸轮机构基本尺寸的确定 (8) 二. 基本技能 (9) (一)根据反转原理作凸轮廓线的图解设计 (9) (二)根据反转原理作凸轮廓线的解析设计 (10) (三)其他 (10) 第五章齿轮机构 (10) 一. 基本知识 (10) (一)啮合原理 (10) (二)渐开线齿轮——直齿圆柱齿轮 (11) (三)其它齿轮机构,应知道: (12) 第六章轮系 (14) 一. 定轴轮系的传动比 (14) 二.基本周转(差动)轮系的传动比 (14)

三.复合轮系的传动比 (15) 第七章其它机构 (15) 1.万向联轴节: (15) 2.螺旋机构 (16) 3.棘轮机构 (16) 4. 槽轮机构 (16) 6. 不完全齿轮机构、凸轮式间歇运动机构 (17) 7. 组合机构 (17) 第九章平面机构的力分析 (17) 一. 基本概念 (17) (一)作用在机械上的力 (17) (二)构件的惯性力 (17) (三)运动副中的摩擦力(摩擦力矩)与总反力的作用线 (17) 二. 基本技能 (18) 第十章平面机构的平衡 (18) 一、基本概念 (18) (一)刚性转子的静平衡条件 (18) (二)刚性转子的动平衡条件 (18) (三)许用不平衡量及平衡精度 (18) (四)机构的平衡(机架上的平衡) (18) 二. 基本技能 (18) (一)刚性转子的静平衡计算 (18) (二)刚性转子的动平衡计算 (18) 第十一章机器的机械效率 (18) 一、基本知识 (19) (一)机械的效率 (19) (二)机械的自锁 (19) 二. 基本技能 (20) 第十二章机械的运转及调速 (20) 一. 基本知识 (20) (一)机器的等效动力学模型 (20) (二)机器周期性速度波动的调节 (20) (三)机器非周期性速度波动的调节 (20) 二. 基本技能 (20) (一)等效量的计算 (20) (二)飞轮转动惯量的计算 (20)

【CN109962012A】一种N型电池的共扩散工艺【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910145703.6 (22)申请日 2019.02.27 (71)申请人 晶科能源科技(海宁)有限公司 地址 314416 浙江省嘉兴市海宁市袁花镇 联红路89号 申请人 浙江晶科能源有限公司 (72)发明人 宫欣欣 张林 张昕宇 金浩  武禄 盛浩杰 张波  (74)专利代理机构 杭州永航联科专利代理有限 公司 33304 代理人 侯兰玉 (51)Int.Cl. H01L 21/223(2006.01) H01L 31/18(2006.01) (54)发明名称 一种N型电池的共扩散工艺 (57)摘要 本发明涉及一种电池的制造工艺,特别涉及 一种N型电池的共扩散工艺,属于太阳能电池领 域。一种N型电池的共扩散工艺,该工艺包括如下 步骤,i)制绒:硅片清洗制绒,表面形成金字塔结 构;ii)硼源沉积:采用APCVD的方法在硅片绒面 沉积一层BSG,通入SiH 4及B 2H 6气体,沉积温度为 250-270℃,沉积厚度为50-70nm;iii)硼磷共扩 散:将带有单面BSG的硅片放入管式炉中,先升温 至980-1000℃,在氮气或氧气环境下,推进硼的 扩散,时间为25-35min;降温至850-860℃,通入 磷源,沉积一层PSG,时间为8-12min;高温共推进 工艺,温度为945-960℃,时间为25- 35min。权利要求书1页 说明书5页 附图2页CN 109962012 A 2019.07.02 C N 109962012 A

1.一种N型电池的共扩散工艺,其特征在于:该工艺包括如下步骤, i)制绒:硅片清洗制绒,表面形成金字塔结构; ii)硼源沉积:采用APCVD的方法在硅片绒面沉积一层BSG,通入SiH4及B2H6气体,沉积温度为250-270℃,沉积厚度为50-70nm; iii)硼磷共扩散: 1.将带有单面BSG的硅片放入管式炉中,先升温至980-1000℃,在氮气或氧气环境下,推进硼的扩散,时间为25-35min; 2.降温至850-860℃,通入磷源,沉积一层PSG,时间为8-12min; 3.高温共推进工艺,温度为945-960℃,时间为25-35min。 2.根据权利要求1所述的N型电池的共扩散工艺,其特征在于:所述的升温速率为8-12℃/min。 3.根据权利要求1所述的N型电池的共扩散工艺,其特征在于该工艺还包括: iv)BSG/PSG去除工艺:采用HF清洗BSG、PSG,HF:H2O体积比为4 ~8:32,清洗时间为5 ~ 10min,直至硅片表面疏水为止。 4.根据权利要求1所述的N型电池的共扩散工艺,其特征在于该工艺还包括: v)钝化工艺:于清洗后的硅片表面正面沉积6 ~10nmAlOx及80nm的SiNx薄膜,背面沉积 80nm厚的SiNx薄膜。 5.根据权利要求1所述的N型电池的共扩散工艺,其特征在于该工艺还包括: vi)丝网印刷及测试:于SiNx薄膜表面印刷用于导电的浆料,烧结后进行测试分选,得到扩散后的硅片。 权 利 要 求 书1/1页 2 CN 109962012 A

(完整版)机械原理知识点归纳总结

第一章绪论 基本概念:机器、机构、机械、零件、构件、机架、原动件和从动件。 第二章平面机构的结构分析 机构运动简图的绘制、运动链成为机构的条件和机构的组成原理是本章学习的重点。 1. 机构运动简图的绘制 机构运动简图的绘制是本章的重点,也是一个难点。 为保证机构运动简图与实际机械有完全相同的结构和运动特性,对绘制好的简图需进一步检查与核对(运动副的性质和数目来检查)。 2. 运动链成为机构的条件 判断所设计的运动链能否成为机构,是本章的重点。 运动链成为机构的条件是:原动件数目等于运动链的自由度数目。 机构自由度的计算错误会导致对机构运动的可能性和确定性的错误判断,从而影响机械设计工作的正常进行。 机构自由度计算是本章学习的重点。 准确识别复合铰链、局部自由度和虚约束,并做出正确处理。 (1) 复合铰链 复合铰链是指两个以上的构件在同一处以转动副相联接时组成的运动副。 正确处理方法:k个在同一处形成复合铰链的构件,其转动副的数目应为(k-1)个。 (2) 局部自由度 局部自由度是机构中某些构件所具有的并不影响其他构件的运动的自由度。局部自由度常发生在为减小高副磨损而增加的滚子处。 正确处理方法:从机构自由度计算公式中将局部自由度减去,也可以将滚子及与滚子相连的构件固结为一体,预先将滚子除去不计,然后再利用公式计算自由度。 (3) 虚约束 虚约束是机构中所存在的不产生实际约束效果的重复约束。 正确处理方法:计算自由度时,首先将引入虚约束的构件及其运动副除去不计,然后用自由度公式进行计算。 虚约束都是在一定的几何条件下出现的,这些几何条件有些是暗含的,有些则是明确给定的。对于暗含的几何条件,需通过直观判断来识别虚约束;对于明确给定的几何条件,则需通过严格的几何证明才能识别。 3. 机构的组成原理与结构分析 机构的组成过程和机构的结构分析过程正好相反,前者是研究如何将若干个自由度为零的基本杆组依次联接到原动件和机架上,以组成新的机构,它为设计者进行机构创新设计提供了一条途径;后者是研究如何将现有机构依次拆成基本杆组、原动件及机架,以便对机构进行结构分类。 第三章平面机构的运动分析 1.基本概念:速度瞬心、绝对速度瞬心和相对速度瞬心(数目、位置的确定),以及“三心定理”。 2.瞬心法在简单机构运动分析上的应用。 3.同一构件上两点的速度之间及加速度之间矢量方程式、组成移动副两平面运动构件在瞬时重合点上速度之间和加速度的矢量方程式,在什么条件下,可用相对运动图解法求解? 4.“速度影像”和“加速度影像”的应用条件。 5.构件的角速度和角加速度的大小和方向的确定以及构件上某点法向加速度的大小和方向的确定。 6.哥氏加速度出现的条件、大小的计算和方向的确定。 第四章平面机构的力分析 1.基本概念:“静力分析”、“动力分析”及“动态静力分析” 、“平衡力”或“平衡力矩”、“摩擦角”、“摩擦锥”、“当量摩擦系数”和“当量摩擦角”(引入的意义)、“摩擦圆”。 2.各种构件的惯性力的确定: ①作平面移动的构件; ②绕通过质心轴转动的构件;

材料科学基础之金属学原理扩散习题及答案

《材料结构》习题:固体中原子及分子的运动 1. 已知Zn在Cu中扩散时D0= 2.1×10-5m2/s,Q=171×103J/mol。试求815℃时Zn在Cu中的扩散系数。 2. 已知C在γ铁中扩散时D0=2.0×10-5m2/s,Q=140×103J/mol; γ铁中Fe自扩散时 D0=1.8×10-5m2/s,Q=270×103J/mol。试分别求出927℃时奥氏体铁中Fe的自扩散系数和碳的扩散系数。若已知1%Cr可使碳在奥氏体铁中的扩散激活能增加为Q=143×103J/mol,试求其扩散系数的变化和对比分析以上计算结果。 3. 若将铁棒置于一端渗碳的介质中,其表面碳浓度达到相应温度下奥氏体的平衡浓度C S。试求 (1)结合铁-碳相图,试分别示意绘出930℃和800℃经不同保温时间(t1

习题4答案: 1.解:根据扩散激活能公式得 3-5132017110exp() 2.110exp 1.2610m /s 8.314(815273)-???=-=??-=? ??+?? Cu Zn Q D D RT 2.解:根据扩散激活能公式得 3γ-5172027010exp() 1.810exp 3.1810m /s 8.314(927273)-???=-=??-=? ??+??Fe Q D D RT 3γ-5112014010exp() 2.010exp 1.6110m /s 8.314(927273)-???=-=??-=? ??+??C Q D D RT 已知1%Cr 可使碳在奥氏体铁中的扩散激活能增加为Q =143×103J/mol , 所以,3γ-51120143.310exp() 2.010exp 1.1610m /s 8.314(927273)-???'=-=??-=? ??+??C Q D D RT 由此可见,1%Cr 使碳在奥氏体铁中的扩散系数下降,因为Cr 是形成碳化物的元素,与碳的亲和力较大,具有降低碳原子的活度和阻碍碳原子的扩散的作用。 3.(1)参见204页。 (2)若渗碳温度低于727℃,不能达到渗碳目的。因为在727℃以下,铁为α相,而C 在α-Fe 中的溶解度非常小(最高为在727℃时为0.0218%)。 4.解:(1)在870℃下, 3γ-5122014010exp() 2.010exp 8.010m /s 8.314(870273)-???=-=??-=? ??+??C Q D D RT 在930℃下, 3γ-5112014010exp() 2.010exp 1.6710m /s 8.314(930273)-???=-=??-=? ??+??C Q D D RT (2)低碳钢渗碳的扩散方程解为 0()erf =--S S C C C C 所以,渗层厚度∝x = 所以,1122112 1 1.67101020.9h 8.010--??===?D t t D 。 (3 )根据低碳钢渗碳的扩散方程解0()erf S S C C C C =--得,

机械原理知识点

1构件:具有确定运动的单元体组成的,这些运动单元体称为构件 零件:组成构件的制造单元体 运动副:两构件直接接触的可动联接 构件的自由度:构件的独立运动数目 运动链:若干个构件通过运动副所构成的系统 机架:固定的构件 原动件:机构中做独立运动的构件 从动件:机构中除原动件外其余的活动构件 运动链→机构:将运动链中的一个构件固定,并且它的一个或几个构件作给定的独立运动时,其余构件便随之作确定的运动,这样运动链就成了机构 2机构运动简图:表示机构中各构件间相对运动关系的简单图形。机构运动简图必须与原机械具有完全相同的运动特性。 示意图:只为了表明机械的结构,不按比例来绘制简图 3约束和自由度的关系:增加一个约束,构件就失去一个自由度 4机构具有确定运动的条件:机构自由度等于机构的原动件数 5瞬心:在任一瞬间,两构件的运动都可以看作是绕某一重合点的相对转动,该重合点称为他们的瞬心速度中心 绝对瞬心:运动构件上瞬时绝对速度为零的点 相对瞬心:两运动构件上瞬时绝对速度相等的重合点 6摩擦力增大并不是运动副元素材料间摩擦因数发生了变化,而是运动副元素的几何结构形状发生变化所致。 7摩擦圆:对于一具体的轴颈,r和fv为定值,因此ρ为定值,以轴心O 为圆心,ρ为半径做一圆,该圆成为摩擦圆。 8机械自锁:由于摩擦的存在,会出现无论施加多大的驱动力,都不能使机械沿驱动方向产生运动的现象。自锁条件:η≤0 机械发生自锁 9连杆机构(低副机构):若干个构件通过低副联接所组成的机构 10平面四杆机构基本形式:铰链四杆机构 11曲柄:在两连杆中能做整周回转机构 摇杆:只能在一定角度范围内摆动的构件 周转副:将两构件能做360°相对转动的转动副 摆动副:不能将两构件能做360°相对转动的转动副 12铰链四杆机构的曲柄存在条件:1最短杆与最长杆长度之和小于或等于其他两杆长度之和 2连架杆和机架中有一杆是最短杆 13最短杆为连杆时,该机构为双摇杆机构;最短杆为连架杆时,该机构为曲柄摇杆机构;最短杆为机架时,该机构为双曲柄机构; 14有急回运动:θ≠0时,偏置曲柄滑块机构和导杆机构 无急回运动:对心曲柄滑块机构和双摇杆机构

扩散膜涂布工艺

扩散膜涂布工艺 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

在LCD背光源的材料组成中,扩散膜几乎是必不可少的材料之一。扩散膜按制作方法分类,有涂布式及非涂布式两种。其中涂布式扩散膜具有透光率较高,雾度调节范围大,外观质量好,为高端背光源产品的扩散膜首选品种。扩散膜按形态分,有卷料和片料两种。本文只介绍涂布式卷料扩散膜(简称扩散膜)的生产技术。 据调查,业内人士对扩散膜的了解分为三个层次:使用者为第一层次,裁切者为第二层次,涂布者为第三层次。鉴于业内大多数人士对前两个层次了解较多,本文将不作介绍。扩散膜涂布,具有技术含量较高,资金投入较大,生产效率极高,经济效益非常可观的特点。因而国内有一部分人总想涉足而又不敢轻易涉足。本文将特别介绍这第三层次,希望对想涉足的这一部人有一定参考价值。 第三层次也可以叫做母卷制作。目前世界上主要扩散膜生产厂家有:日本的惠和(KEIWA)、智积电(TSUJIDEN)及KIMOTO;韩国的SKC、新和(shinwha)及世韩 (Seahan);我国台湾省的长兴化工、宣茂科技、华宏新技及岱棱等;国内目前尚处于起步阶段,暂无较大批量供货厂家。 近两年来,笔者作为国内行业的先行者,经历了从扩散膜初探到量产的全过程。如今,各项技术指标全面达到日本同类扩散膜产品水平。实现了初期确定的质优价廉目标。 扩散膜生产技术涉及膜片设计、设备选型、材料与配方、涂覆工艺、质量管控等工作。知识范畴包括:应用光学、有机化学、精密机械、净化工程及背光源技术、涂布工艺学等。接下来将分六个部分进行介绍,这五个部分是:

机械原理知识点归纳总结

机械原理知识点归纳总结 第一章绪论 基本概念:机器、机构、机械、零件、构件、机架、原动件和从动件。 第二章平面机构的结构分析 机构运动简图的绘制、运动链成为机构的条件和机构的组成原理是本章学习的重点。 1. 机构运动简图的绘制 机构运动简图的绘制是本章的重点,也是一个难点。 为保证机构运动简图与实际机械有完全相同的结构和运动特性,对绘制好的简图需进一步检查与核对(运动副的性质和数目来检查)。 2. 运动链成为机构的条件 判断所设计的运动链能否成为机构,是本章的重点。 运动链成为机构的条件是:原动件数目等于运动链的自由度数目。 机构自由度的计算错误会导致对机构运动的可能性和确定性的错误判断,从而影响机械设计工作的正常进行。 机构自由度计算是本章学习的重点。 准确识别复合铰链、局部自由度和虚约束,并做出正确处理。 (1) 复合铰链 复合铰链是指两个以上的构件在同一处以转动副相联接时组成的运动副。 正确处理方法: k个在同一处形成复合铰链的构件,其转动副的数目应为(k-1)个。 (2) 局部自由度 局部自由度是机构中某些构件所具有的并不影响其他构件的运动的自由度。局部自由度常发生在为减小高副磨损而增加的滚子处。 正确处理方法:从机构自由度计算公式中将局部自由度减去,也可以将滚子及与滚子相连的构件固结为一体,预先将滚子除去不计,然后再利用公式计算自由度。

(3) 虚约束 虚约束是机构中所存在的不产生实际约束效果的重复约束。 正确处理方法:计算自由度时,首先将引入虚约束的构件及其运动副除去不计,然后用自由度公式进行计算。 虚约束都是在一定的几何条件下出现的,这些几何条件有些是暗含的,有些则是明确给定的。对于暗含的几何条件,需通过直观判断来识别虚约束;对于明确给定的几何条件,则需通过严格的几何证明才能识别。 3. 机构的组成原理与结构分析 机构的组成过程和机构的结构分析过程正好相反,前者是研究如何将若干个自由度为零的基本杆组依次联接到原动件和机架上,以组成新的机构,它为设计者进行机构创新设计提供了一条途径;后者是研究如何将现有机构依次拆成基本杆组、原动件及机架,以便对机构进行结构分类。 第三章平面机构的运动分析 1.基本概念:速度瞬心、绝对速度瞬心和相对速度瞬心(数目、位置的确定),以及“三心定理”。 2.瞬心法在简单机构运动分析上的应用。 3.同一构件上两点的速度之间及加速度之间矢量方程式、组成移动副两平面运动构件在 瞬时重合点上速度之间和加速度的矢量方程式,在什么条件下,可用相对运动图解法求解? 4.“速度影像”和“加速度影像”的应用条件。 5.构件的角速度和角加速度的大小和方向的确定以及构件上某点法向加速度的大小和方 向的确定。 6.哥氏加速度出现的条件、大小的计算和方向的确定。 第四章平面机构的力分析 1.基本概念:“静力分析”、“动力分析”及“动态静力分析” 、“平衡力”或“平衡力矩”、“摩 擦角”、“摩擦锥”、“当量摩擦系数”和“当量摩擦角”(引入的意义)、“摩擦圆”。 2.各种构件的惯性力的确定: ①作平面移动的构件;

(新)机械原理基础知识点

《机械原理》基础知识点 1构件:具有确定运动的单元体组成的,这些运动单元体称为构件 零件:组成构件的制造单元体 运动副:两构件直接接触的可动联接 构件的自由度:构件的独立运动数目 运动链:若干个构件通过运动副所构成的系统 机架:固定的构件 原动件:机构中做独立运动的构件 从动件:机构中除原动件外其余的活动构件 运动链→机构:将运动链中的一个构件固定,并且它的一个或几个构件作给定的独立运动时,其余构件便随之作确定的运动,这样运动链就成了机构 2机构运动简图:表示机构中各构件间相对运动关系的简单图形。机构运动简图必须与原机械具有完全相同的运动特性。 示意图:只为了表明机械的结构,不按比例来绘制简图 3约束和自由度的关系:增加一个约束,构件就失去一个自由度 4机构具有确定运动的条件:机构自由度等于机构的原动件数 5瞬心:在任一瞬间,两构件的运动都可以看作是绕某一重合点的相对转动,该重合点称为他们的瞬心速度中心 绝对瞬心:运动构件上瞬时绝对速度为零的点 相对瞬心:两运动构件上瞬时绝对速度相等的重合点 6摩擦力增大并不是运动副元素材料间摩擦因数发生了变化,而是运动副元素的几何结构形状发生变化所致。 7摩擦圆:对于一具体的轴颈,r和fv为定值,因此ρ为定值,以轴心O为圆心,ρ为半径做一圆,该圆成为摩擦圆。 8机械自锁:由于摩擦的存在,会出现无论施加多大的驱动力,都不能使机械沿驱动方向产生运动的现象。自锁条件:η≤0 机械发生自锁 9连杆机构(低副机构):若干个构件通过低副联接所组成的机构 10平面四杆机构基本形式:铰链四杆机构 11曲柄:在两连杆中能做整周回转机构 摇杆:只能在一定角度范围内摆动的构件 周转副:将两构件能做360°相对转动的转动副 摆动副:不能将两构件能做360°相对转动的转动副 12铰链四杆机构的曲柄存在条件:1最短杆与最长杆长度之和小于或等于其他两杆长度之和 2连架杆和机架中有一杆是最短杆 13最短杆为连杆时,该机构为双摇杆机构;最短杆为连架杆时,该机构为曲柄摇杆机构;最短杆为机架时,该机构为双曲柄机构; 14有急回运动:θ≠0时,偏置曲柄滑块机构和导杆机构

机械原理考试知识点.doc

机械原理》考试知识点 第一篇基本机构及常用机构的运动学设计 第一章绪论 1.了解机械原理的研究对象及主要内容; 2.了解机械原理的地位和作用;3.了解机械原理的学习目的和方法。 第二章机构的结构分析与综合 1.掌握有关机构的概念,如构件、运动副、运动链、杆组等;2.掌握平面机构运动简图的绘制方法和步骤,能根据实际机械正确绘制机构运 动简图; 3.掌握机构具有确定运动的条件及平面机构自由度的计算,并注意复合铰 链、局部自由度和虚约束等情况; 4.掌握平面机构中高副低代的方法,要求代替前后,机构的自由度和机构的瞬 时运动不变; 5.掌握平面低副机构的结构分析和组成原理,能根据给定的机构运动简图进行 拆杆组,进行机构的结构分析,并确定机构的级别。 第三章平面连杆机构及其设计 1.了解平面连杆机构的类型、应用及其主要特点; 2.掌握平面连杆机构特别是它的基本形式——平面铰链四杆机构的一些基本概 念和基本知识及其演化方法和应用; 3.掌握平面连杆机构的运动特性和传力特性:如有曲柄的条件、急回特性和行 程速度变化系数、压力角与传动角、死点位置、运动连续性等; 4.掌握等视角定理及几何法刚体导引机构的设计;5.掌握机构的刚化反转法及几何法函数生成机构的设计;6.掌握急回机构的设计;

7.掌握用速度瞬心法作平面机构的速度分析方法; 8.掌握用相对运动图解法进行机构的运动分析方法; 9.掌握用复数矢量法进行机构的运动分析的方法。 第四章 凸轮机构及其设计 1.掌握凸轮机构的基本概念、凸轮机构的分类及应用; 2.掌握从动件常用的运动规律及从动件运动规律的设计原则; 3.掌握凸轮机构的反转法原理; 4.掌握图解法设计平面凸轮轮廓曲线的设计方法; 5.掌握解析法设计平面凸轮轮廓曲线的设计方法; 6.掌握凸轮机构的压力角及基本尺寸的设计。 第五章 齿轮机构及其设计 10. 掌握标准直齿圆锥齿轮的传动特点及其基本尺寸的计算。 第六章 轮系及其设计 1.掌握轮系的类型及功用; 1. 了解齿轮机构的类型和应用; 2. 3. 掌握齿廓啮合基本定律; 掌握渐开线的形成及其性4. 5. 掌握渐开线标准直齿圆柱齿轮的基本参数和几何尺寸计算; 掌握渐开线直齿圆柱齿轮的啮合传动特点,包括: 1)定传动比; 2)啮合线 与啮合角; 3)中心距的可分性; 3)正确啮合条件; 4)连续传动条件; 标准中心距和安装中心距; 6)无侧隙啮合条件等。 6. 掌握渐开线齿轮的范成法切齿原理、根切现象及最少齿数; 7. 8. 掌握渐开线齿轮的变位和变位齿轮的几何尺寸计算; 掌握平行轴斜齿圆柱齿轮齿廓曲面的形成、啮合、传动特点及标准几何尺寸计算; 9. 掌握蜗杆蜗轮传动的特点及其基本尺寸的计算;

材料成形工艺知识点

一.铸造成型 1.1收缩:铸造合金在液态、凝固态和固态的冷却过程中,由于温度降低而引起的体积减小的现象,称为收缩。 缩松缩孔:铸件在冷却和凝固过程中,由于合金的液态和凝固收缩,往往在铸件最后凝固的部分出现空洞。容积大而集中孔洞称为缩孔,细小而分散的孔洞称为缩松。 影响缩孔和缩松的因素及防止措施: 因素:浇筑温度,合金的结晶范围,铸型的冷却能力越大 防止措施:用顺序凝固方法 1.1.5铸造应力怎么产生的: 铸件凝固后在冷却过程中,由于温度下降将继续收缩。有些合金还会发生固态相变而引起收缩或膨胀,这导致铸件的体积和长度发生变化,若这种变化受到阻碍,就会在铸件内产生应力,称为铸造应力。 1.2砂型铸造 剖面示意图:上型下型,明冒口,出气冒口,浇口杯,型砂,砂箱,直浇道,横浇道,暗冒口,内浇口,型腔,型芯,分型面。 工艺流程! 1.3金属型铸造 金属型铸造又称硬模铸造,它是将金属液浇入金属型中,以获得金属铸件的一种工艺方法。(永久型铸造) 1.4熔模铸造:熔模铸造又称失蜡铸造,通常是在蜡模表面涂上数层耐火材料,待其硬化干燥后,将其中的蜡模熔去而制成型壳,再经过焙烧,然后进行浇注,而获得铸件的一种方法。熔模铸造工艺(重点) 1.5压力铸造:在高压作用下,使得液态或半液态金属以较高的速度充填压铸模型腔,并在压力下成形和凝固。 1.6铸造工艺设计 1.6.2铸件结构的工艺性。 1.铸造结构形式:结构外形应方便起模,尽可能减少和简化分型面,铸件的内腔应尽量不用或少用型芯。 2.合理的铸件壁厚:铸件壁厚过小,易产生浇不到、冷隔等缺陷;壁厚过大,易产生缩孔、缩松、气孔等缺陷。壁厚应均匀。 3.铸件壁的链接:连接处或者转角处应有结构圆角。,厚壁与薄壁间的链接要逐步过渡。 4.铸件应尽量避免有过大的平面 1.6.4型芯设计的作用是形成铸件的内腔、孔洞、形状复杂阻碍取模部分的外形以及铸型中有特殊要求的部分。 1.6.5浇注系统设计:浇口杯,直浇道,横浇道,内浇道。 金属型的浇筑位置一般分为三种:顶注式、底注式和侧注式。 基本要求: 1.防止浇不足缺陷 2.液态金属平稳地流入型腔 3.能把混入合金液中的熔渣挡在浇筑系统中 4能够合理地控制和调节铸件各部分的温度分布,减少或消除缩松缩孔 5.结构简单,体积小

扩散理论整理

煤层气扩散理论 2008年6月,闫宝珍、王延斌、倪小明通过计算研究表明,储层条件下,煤纳米级孔隙中甲烷存在3种扩散模式,且3种模式的扩散系数差别不大,比地表条件下扩散系数低1~2个数量级。 2008年8月,易俊、姜永东、鲜学福、张渝提出了利用温度梯度扩散模型建立超声热效应促进煤层瓦斯解吸一扩散的热平衡方程和物质平衡方程,应用Matlab工具实现了声场促进煤层瓦斯解吸扩散的数值模拟。为超声波促进煤层瓦斯解吸一扩散,提高煤层瓦斯抽采率提供了分析的理论基础。 2009年3月,张时音、桑树勋应用扩散理论模型模拟吸附扩散过程,研究吸附扩散的规律。研究表明:煤的孔隙结构是影响煤吸附扩散过程的主要因素。液态水对煤的润湿性随煤级增高而降低,对吸附扩散过程的影响逐渐减小,大孔和中孔发育的煤扩散速率较快,扩散系数高,过渡孔和微孔发育的煤相对扩散速率较慢,扩散系数低。 2009年3月,易俊、姜永东、鲜学福在分析煤层微观孔隙结构,以及煤层气以游离气形式存在煤的大孔隙和吸附状态分布在微孔隙中的基础上,提出了反映煤层气在煤层微孔中吸附-扩散的简化双孔隙扩散数学模型;给出了煤层气吸附-扩散过程的视扩散系数概念,以及数值模拟方法。 2010年1月,陈富勇、琚宜文等指出构造煤的变形和结构变化以及吸附势场的转换才是构造煤吸附与解吸的内在因素,是导致解吸过程不可逆性的根本原因。构造煤气体扩散机理主要是由孔隙形状、大小、连通性和多元气体性质和状态所决定的。 2011年6月,石丽娜、杜庆军、同登科建立了双重介质煤层气藏拟稳态渗流数学模型。采用该模型研究了窜流和扩散机理对开发效果的影响。 2011年7月,李建楼、严家平等通过模拟试验结果表明:对于刚性围岩中的煤体,当煤体瓦斯从游离态向吸附态转化过程中,煤体总应力略微降低,孔隙压力和有效应力随时间分别按照对数规律减小和增大;煤体瓦斯向煤体外放散阶段,瓦斯压力和煤体总应力随时间按照负指数规律降低,有效应力随时间略有降低,瓦斯放散速度随时间按照对数规律降低。

相关主题
文本预览
相关文档 最新文档