当前位置:文档之家› 晶体缺陷和强度理论

晶体缺陷和强度理论

晶体缺陷和强度理论
晶体缺陷和强度理论

非晶合金的强度研究及进展

非晶合金,又称金属玻璃,由于具有优异的物理、化学、光学、磁学和力学性能,受到人们的普遍关注,成为材料领域的研究热点之一。大量的研究与开发工作表明,非晶合金材料在许多实用性能方面具有十分明显的优势,具有良好的应用前景。非晶合金研究的进展,不仅突破了长期以来金属合金只能以结晶态形式凝固这一传统认识,丰富了合金液固相变理论,而且在合金的非晶形成能力、非晶合金的相结构及其相演化过程、非晶合金的性能等方面的研究都取得了大量成果。

1非晶合金的发展历史

自从1960 年首次用熔体快速凝固方法制备出Au-Cu 非晶合金以来,在随后的30 年里,大量的非晶合金已经被制备出来。众所周知,在1990年以前可以用105K/s 的冷却速率制备出Fe 基、Co 基和Ni 基非晶合金,但这些合金的厚度都小于50 μm,其中,作为特例的贵金属基Pd-Ni-P 和Pt-Ni-P 合金系,其临界冷却速度也在103 K/s 的数量级。在1974 年Chen对Pb-T-P(T=Ni, Co, Fe)合金进行了系统的研究并制备出了厚度为 1 mm 的非晶合金。在1982 年,可以制备出临界尺寸较大的Au55 Pd22.5 Sb22.5非晶合金。虽然在大块非晶合金的研究中取得了突出的进展,但是这些合金的成本昂贵,在长达十几年的时间内,利用非贵金属制备大块非晶合金的愿望始终未能实现,使非晶合金的应用范围受到很大限制。

上世纪八十年代后期,日本学者 A. Inoue(井上明久)领导的课题组首先在非贵金属系大块非晶合金制备方面取得了突破,并受到同行的关注。自从1988 年以来,发现可以用更低的临界冷却速率制备出新的多组元合金体系,包括Mg 基、Zr基、Fe 基、Pd基[、La 基、Ti基和Ni 基合金体系。由于发现了具有很强的非晶形成能力的合金体系,使得在临界冷却速度低于102 K/s 的条件下,用一般的工艺方法(铜模铸造方法等)即可获得三维尺寸在毫米以上量级的大块非晶合金。

目前人们所研究的大块非晶合金体系中,Pd系、La 系和Zr系多组元合金具有优秀的非晶形成能力,其中美国Johnson 课题组开发的Zr-Ti-Cu-Ni-Be 和日本

Inoue 课题组开发Pd-Ni-Cu-P 合金的非晶形成能力最好。但Pd系合金价格昂贵,La 系合金性能较差,这两类非晶合金难以被广泛应用。Zr系大块非晶合金具有良好的性能和应用前景。镍基大块非晶合金在力学性能和抗腐蚀性能等方面有突出的表现,缺点是其非晶形成能力不够优秀,目前还难以制备成大尺寸的大块非晶合金样品。近年来Cu基合金又成为大块非晶合金研究的另一个热点。此外二元大块非晶合金的制备方面也取得了进展。

2非晶态材料具有三个基本特征

①只存在小区间内的短程序,而没有任何长程序;波矢 k不再是一个描述运动状态的好量子数。

②它的电子衍射、中子衍射和 X射线衍射图是由较宽的晕和弥散的环组成;用电子显微镜看不到任何由晶粒间界、晶体缺陷等形成的衍衬反差。

③任何体系的非晶态固体与其对应的晶态材料相比,都是亚稳态。当连续升温时,在某个很窄的温区内,会发生明显的结构变化,从非晶态转变为晶态,这个晶化过程主要取决于材料的原子扩散系数、界面能和熔解熵。

3非晶合金的性能

作为一种新开发出来的先进材料,非晶合金具有优异的力学性能、耐磨损性能、耐腐蚀性能和特殊的磁学性能等,因此,有极好的应用前景。在力学性能方面,合金的力学性能指标中最重要的是强度和塑性。新型非晶合金的抗张强度要大于同类晶态合金,如Mg 基非晶合金室温下的抗张强度大大超过抗张强度最大的晶态Mg 基合金。Zr基大块非晶合金的显微硬度为 6 GPa,强度可达 3 GPa,弹性变形能力可达 2 %,其强度已接近工程陶瓷材料。大块非晶合金中不存在晶体中的滑移,在高温下具有很大的粘滞流动性,可在所谓的过冷液相区进行超塑性变形,这是一般超塑性晶态合金所无法实现的。

非晶合金是亚稳液态结构的固态金属,在电导方面表现为金属性,但有很高的电阻值,而且电阻与温度的关系与普通合金不同。Fe-TM-B(TM 为过渡族金属)大块非晶不但具有高强度、抗腐蚀性,还有优良的软磁性能。通过碳掺杂及晶化的方法,可由大块非晶合金得到大块纳米晶材料,这些纳米晶材料表现了出优良的力学性质、硬软磁性能及高的催化性能。

另外,大块非晶还具有耐磨、抗疲劳、抗腐蚀等优良的性能。最近,制备出

的Ti 基、Mg 基大块非晶合金具有轻型、抗辐照、高强度的优点,在航天领域有很好的应用前景。

从以上大块非晶合金的性能不难看出这种新材料的工业潜力及应用前景。Johnson 教授将Zr基大块非晶合金应用到了高尔夫球运动器材中,并使之产业化。此外,大块非晶合金作为穿甲弹芯材料的研究已经引起了各国的关注,有望成为新一代穿甲弹芯材料。

晶体的主要特征是其中原子(或分子)的规则排列,但实际晶体中的原子排列会由于各种原因或多或少地偏离严格的周期性,于是就形成了晶体的缺陷,晶体缺陷的存在,破坏了完美晶体的有序性,引起晶体内能U和熵S增加。按缺陷在空间的几何构型可将缺陷分为点缺陷、线缺陷、面缺陷和体缺陷。

点缺陷

1、点缺陷定义

由于晶体中出现填隙原子和杂质原子等等,它们引起晶格周期性的破坏发生在一个或几个晶格常数的限度范围内,这类缺陷统称为点缺陷。这些空位和填隙原子是由热起伏原因所产生的,因此又称为热缺陷。

2、空位、填隙原子和杂质

空位:晶体内部的空格点就是空位。由于晶体中原子热运动,某些原子振动剧烈而脱离格点跑到表面上,在内部留下了空格点,即空位。

填隙原子:由于晶体中原子的热运动,某些原子振动剧烈而脱离格点进入晶格中的间隙位置,形成了填隙原子。即位于理想晶体中间隙中的原子。杂质原子:杂质原子是理想晶体中出现的异类原子。

3、几种点缺陷的类型

弗仑克尔缺陷:原子(或离子)在格点平衡位置附近振动,由于非线性的影

响,使得当粒子能量大到某一程度时,原子就会脱离格点,而到达邻近的原子空隙中,当它失去多余动能后,就会被束缚在那里,这样产生一个暂时的空位和一个暂时的填隙原子,当又经过一段时间后,填隙原子会与空位相遇,并同空位复合;也有可能跳到较远的间隙中去。若晶体中的空位与填隙原子的数目相等,这样的热缺陷称为弗仑克尔缺陷。

肖特基缺陷:空位和填隙原子可以成对地产生(弗仑克尔缺陷),也可以在晶体内单独产生。若脱离格点的原子变成填隙原子,经过扩散跑到晶体表面占据正常格点位置,则在晶体内只留下空位,而没有填隙原子,仅由这种空位构成的缺陷称之为肖特基缺陷.形成填隙原子时,原子挤入间隙位置所需的能量比产生肖特基缺陷空位所需的能量大,一般地,当温度不太高时,肖特基缺陷的数目要比弗仑克尔缺陷的数目大得多。

杂质原子:实际晶体中存在某些微量杂质。一方面是晶体生长过程中引入的;另一方面是有目的地向晶体中掺入的一些微量杂质。当晶体存在杂质原子时,晶体的内能会增加,由于少量的杂质可以分布在数量很大的格点或间隙位置上,使晶体组态熵的变化也很大。因此温度T下,杂质原子的存在也可能使自由能降低。(F=U-TS)当杂质原子取代基质原子占据规则的格点位置时,形成替位式杂质,如图a;若杂质原子占据间隙位置,形成间隙式杂质。

对一定晶体,杂质原子是形成替位式杂质还是间隙式杂质,主要取决于杂质原子与基质原子几何尺寸的的相对大小及其电负性。杂质原子比基质原子小得多时,形成间隙式杂质;替位式杂质在晶体中的溶解度也决定于原子的几何尺寸和化学因素。

线缺陷

1、线缺陷的定义:

当晶格周期性的破坏发生在晶体内部一条线的周围则称为线缺陷,通常又称之为位错。它是由于应力超过弹性限度而使晶体发生范性形变所产生的,从晶体内部看,它就是晶体的一部分相对于另一部分发生滑移,以致在滑移区的分界线上出现线状缺陷。

2、位错的基本类型:

常见的位错有两种形式:刃位错和螺位错。

刃位错:亦称棱位错。其特点是:原子的滑移方向与位错线的方向相垂直。

螺位错:特点:是原子的滑移方向与位错线平行,且晶体内没有多余的半个晶面。垂直于位错线的各个晶面可以看成由一个晶面以螺旋阶梯的形式构成。当晶体中存在螺位错时,原来的一族平行晶面就变成为以位错线为轴的螺旋面。

位错线的特征:

1.滑移区与未滑移区的分界线;

2.位错线附近原子排列失去周期性;

3.位错线附近原子受应力作用强,能量高,位错不是热运动的结果;

4.位错线的几何形状可能很复杂,可能在体内形成闭合线,可能在晶体表面露头,不可能在体内中断。

刃型位错的特点是位错线垂直于滑移矢量b;螺型位错的特点是位错线平行于滑移矢量b。

b又称为伯格斯(Burgers)矢量,它的模等于滑移方向上的平衡原子间距,它的方向代表滑移方向。

除此之外,还存在位错线于滑移矢量既不平行又不垂直的混合型位错。混合位错的原子排列介于刃型位错和螺型位错之间,可以分解为刃型位错和螺型位错。

面缺陷

1、面缺陷的定义:

当晶格周期性的破坏发生在晶体内部一个面的周围则称为面缺陷。2、常见的面缺陷的类型:

层错:是由于晶面堆积顺序发生错乱而引入的面缺陷,又称堆垛层错。小角晶界:具有完整结构的晶体两部分彼此之间的取向有着小角度θ的倾斜,在角θ

里的部分是由少数几个多余的半晶面所组成的过渡区,这个区域称小角晶界。

体缺陷

在体缺陷中比较重要的是包裹体。包裹体是晶体生长过程中界面所捕获的夹杂物。它可能是晶体原料中某一过量组分形成的固体颗粒,也可能是晶体生产过程中坩埚材料带入的杂质微粒。

强度理论在理论研究、工程应用和有效利用材料等方面都具有很重要的意义。现在,强度理论或屈服准则和破坏准则在物理、力学、材料科学、地球科学和工

程中得到广泛的应用,本文讲述了强度理论的概念,强度理论在不同方式下的分类,纳米金属材料的强度与Hall-Petch公式的关系以及强度理论的展望与应用。

晶体缺陷习题与答案

晶体缺陷习题与答案 1 解释以下基本概念 肖脱基空位、弗仑克尔空位、刃型位错、螺型位错、混合位错、柏氏矢量、位错密度、位错的滑移、位错的攀移、弗兰克—瑞德源、派—纳力、单位位错、不全位错、堆垛层错、汤普森四面体、位错反应、扩展位错、表面能、界面能、对称倾侧晶界、重合位置点阵、共格界面、失配度、非共格界面、内吸附。 2 指出图中各段位错的性质,并说明刃型位错部分的多余半原子面。 3 如图,某晶体的滑移面上有一柏氏矢量为b 的位错环,并受到一均匀切应力τ。(1)分析该位错环各段位错的结构类型。(2)求各段位错线所受的力的大小及方向。(3)在τ的作用下,该位错环将如何运动?(4)在τ的作用下,若使此位错环在晶体中稳定不动,其最小半径应为多大? 4 面心立方晶体中,在(111)面上的单位位错]101[2a b =,在(111)面上分解为两个肖克莱不全位错,请写出该位错反应,并证明所形成的扩展位错的宽度由下式给出πγ242Gb s d ≈ (G 切变 模量,γ层错能)。 5 已知单位位错]011[2a 能与肖克莱不全位错]112[6 a 相结合形成弗兰克不全位错,试说明:(1)新生成的弗兰克不全位错的柏氏矢量。(2)判定此位错反应能否进行?(3)这个位错为什么称固定位错? 6 判定下列位错反应能否进行?若能进行,试在晶胞上作出矢量图。 (1)]001[]111[]111[2 2a a a →+ (2)]211[]112[]110[662a a a +→ (3)]111[]111[]112[263a a a →+ 7 试分析在(111)面上运动的柏氏矢量为]101[2a b =的螺位错受阻时,能否通过交滑移转移

单晶硅生长技术的研究与发展

单晶硅生长技术的研究与发展 摘要:综述了单晶硅生长技术的研究现状。对改良热场技术、磁场直拉技术、真空高阻技术以及氧浓度的控制等技术进行了论述。 关键词:单晶硅;真空高阻;磁场;氧含量;氮掺杂 一、前言 影响国家未来在高新技术和能源领域实力的战略资源。作为一种功能材料,其性能应该是各向异性的,因此半导体硅大都应该制备成硅单晶,并加工成抛光片,方可制造IC器件,超过98%的电子元件都足使用硅单晶”引。生产单晶硅的原料主要包括:半导体单晶硅碎片,半导体单晶硅切割剩余的头尾料、边皮料等。目前,单晶硅的生长技术主要有直拉法(CZ)和悬浮区熔法(FZ)。在单晶硅的制备过程中还可根据需要进行掺杂,以控制材料的电阻率,掺杂元素一般为Ⅲ或V主族元素.生长制备后的单晶硅棒还需经过切片、打磨、腐蚀、抛光等工序深加工后方可制成用作半导体材料的单晶硅片。随着单晶硅生长及加工处理技术的进步,单晶硅正朝着大直径化(300ram以上)、低的杂质及缺陷含晕、更均匀的分布以及生产成本低、效率高的方向发展。 二、单晶硅的生长原理 在单晶硅生长过程中,随着熔场温度的下降,将发生由液态转变到固态的相变化。对于发生在等温、等压条件下的相变化,不同相之间的相对稳定性可由吉布斯自由能判定。AG可以视为结晶驱动力。 △G=△H—TAS (1) 在平衡的熔化温度瓦时,固液两相的自由能是相等的,即AG=0,因此 △G=AH一瓦X AS---O (2) 所以,AS=AH/T= (3) 其中,AH即为结晶潜热。将式(3)代入式(1)可得 (4) 由式(4)可以看出,由于AS是一个负值常数,所以△兀即过冷度)可被视为结晶的唯一驱动力。 以典型的CZ长晶法为例,加热器的作用在于提供系统热量,以使熔硅维持在高于熔点的温度。如果在液面浸入一品种,在品种与熔硅达到热平衡时,液面会靠着表面张力的支撑吸附在晶种下方。若此时将晶种往上提升,这些被吸附的液体也会跟着晶种往上运动,而形成过冷状态。这节过冷的液体由于过冷度产生的驱动力而结晶,并随着晶种方向长成单晶棒。在凝固结晶过程中,所释放出的潜热是一个间接的热量来源,潜热将借着传导作用而沿着晶棒传输。同时,晶棒表面也会借着热辐射与热对流将热量散失到外围,另外熔场表面也会将热量散失掉。于是,在一个固定的条件下,进入系统的热能将等于系统输出的热能陟。 三、硅单晶生长方法 1直拉(CZ)法 直拉法的生产过程简单来说就是利用旋转的籽晶从熔硅中提拉制备单晶硅。此法产量大、成本低,国内外大多数太阳能单晶硅片厂家多采用这种技术。目前,直拉法生产工艺的研究热点主要有:先进的热场构造、磁场直拉法以及对单晶硅中氧浓度的控制等方面。 (1)先进的热场构造 在现代下游IC产业对硅片品质依赖度日益增加的情况下,热场的设计要求越来越高。好的

晶体生长方法

晶体生长方法 一、提拉法 晶体提拉法的创始人是J. Czochralski,他的论文发表于1918年。提拉法是熔体生长中最常用的一种方法,许多重要的实用晶体就是用这种方法制备的。近年来,这种方法又得到了几项重大改进,如采用液封的方式(液封提拉法,LEC),能够顺利地生长某些易挥发的化合物(GaP等);采用导模的方式(导模提拉法)生长特定形状的晶体(如管状宝石和带状硅单晶等)。所谓提拉法,是指在合理的温场下,将装在籽晶杆上的籽晶下端,下到熔体的原料中,籽晶杆在旋转马达及提升机构的作用下,一边旋转一边缓慢地向上提拉,经过缩颈、扩肩、转肩、等径、收尾、拉脱等几个工艺阶段,生长出几何形状及内在质量都合格单晶的过程。这种方法的主要优点是:(a)在生长过程中,可以方便地观察晶体的生长情况;(b)晶体在熔体的自由表面处生长,而不与坩埚相接触,这样能显著减小晶体的应力并防止坩埚壁上的寄生成核;(c)可以方便地使用定向籽晶与“缩颈”工艺,得到完整的籽晶和所需取向的晶体。提拉法的最大优点在于能够以较快的速率生长较高质量的晶体。提拉法中通常采用高温难熔氧化物,如氧化锆、氧化铝等作保温材料,使炉体内呈弱氧化气氛,对坩埚有氧化作用,并容易对熔体造成污杂,在晶体中形成包裹物等缺陷;对于那些反应性较强或熔点极高的材料,难以找到合适的坩埚来盛装它们,就不得不改用其它生长方法。 二、热交换法

热交换法是由D. Viechnicki和F. Schmid于1974年发明的一种长晶方法。其原理是:定向凝固结晶法,晶体生长驱动力来自固液界面上的温度梯度。特点:(1) 热交换法晶体生长中,采用钼坩埚,石墨加热体,氩气为保护气体,熔体中的温度梯度和晶体中的温度梯度分别由发热体和热交换器(靠He作为热交换介质)来控制,因此可独立地控制固体和熔体中的温度梯度;(2) 固液界面浸没于熔体表面,整个晶体生长过程中,坩埚、晶体、热交换器都处于静止状态,处于稳定温度场中,而且熔体中的温度梯度与重力场方向相反,熔体既不产生自然对流也没有强迫对流;(3) HEM法最大优点是在晶体生长结束后,通过调节氦气流量与炉子加热功率,实现原位退火,避免了因冷却速度而产生的热应力;(4) HEM可用于生长具有特定形状要求的晶体。由于这种方法在生长晶体过程中需要不停的通以流动氦气进行热交换,所以氦气的消耗量相当大,如Φ30 mm的圆柱状坩埚就需要每分钟38升的氦气流量,而且晶体生长周期长,He气体价格昂贵,所以长晶成本很高。 三、坩埚下降法 坩埚下降法又称为布里奇曼-斯托克巴格法,是从熔体中生长晶体的一种方法。通常坩埚在结晶炉中下降,通过温度梯度较大的区域时,熔体在坩埚中,自下而上结晶为整块晶体。这个过程也可用结晶炉沿着坩埚上升方式完成。与提拉法比较该方法可采用全封闭或半封闭的坩埚,成分容易控制;由于该法生长的晶体留在坩埚中,因而适于生长大块晶体,也可以一炉同时生长几块晶体。另外由于工艺条件

浅谈晶体缺陷及其应用

浅谈晶体缺陷及其应用 1103011036 周康粉体一班 摘要:晶体缺陷对晶体的力学性能既有有利的方面,也有不利的方面。少量晶体缺陷对于晶体的物理性能能够产生重要影响,所以可以根据不同的晶体缺陷,开发利用其产生的影响,充分发挥可能产生的作用,研究并制备具有不同性能的材料,以适应人们不同的实际需要和时代的发展需求。 关键词:晶体缺陷; 性能; 铁磁性; 电阻; 半导体材料;杂质 引言:在讨论晶体结构时,我们认为晶体的结构是三维空间内周期有序的,其内部质点按照一定的点阵结构排列。这是一种理想的完美晶体,它在现实中并不存在,只作为理论研究模型。相反,偏离理想状态的不完整晶体,即有某些缺陷的晶体,具有重要的理论研究意义和实际应用价值。所有的天然和人工晶体都不是理想的完整晶体,它们的许多性质往往并不决定于原子的规则排列,而决定于不规则排列的晶体缺陷。 晶体缺陷对晶体生长、晶体的力学性能、电学性能、磁学性能和光学性能等均有着极大影响,在生产上和科研中都非常重要,是固体物理、固体化学、材料科学等领域的重要基础内容。研究晶体缺陷因此具有了尤其重要的意义。本文着重对晶体缺陷及其对晶体的影响和应用进行阐述。 1.晶体缺陷的定义和分类 1.1 晶体缺陷的定义 在理想的晶体结构中,所有的原子、离子或分子都处于规则的点阵结构的位置上,也就是平衡位置上。1926 年弗仑克尔l首先指出,在任一温度

下,实际晶体的原子排列都不会是完整的点阵,即晶体中一些区域的原子的正规排列遭到破坏而失去正常的相邻关系。我们把实际晶体中偏离理想完整点阵的部位或结构称为晶体缺陷. 1.2 晶体缺陷的分类 1.2.1、按缺陷的几何形态分类可分为四类:点缺陷、线缺陷、面缺陷、体缺陷。 1.点缺陷(零维缺陷):缺陷尺寸处于原子大小的数量级上,即三维方向上缺陷的尺寸都很小。包括:空位(vacancy)、间隙原子(interstitial particle)、异类原子(foreign particle)。 点缺陷与材料的电学性质、光学性质、材料的高温动力学过程等有关。2..线缺陷(一维缺陷):指在一维方向上偏离理想晶体中的周期性、规则性排列所产生的缺陷,即缺陷尺寸在一维方向较长,另外二维方向上很短。线缺陷的产生及运动与材料的韧性、脆性密切相关。 3.面缺陷:面缺陷又称为二维缺陷,是指在二维方向上偏离理想晶体中的周期性、规则性排列而产生的缺陷,即缺陷尺寸在二维方向上延伸,在第三维方向上很小。如晶界、相界、表面、堆积层错、镶嵌结构等。面缺陷的取向及分布与材料的断裂韧性有关。 固体材料中最基本和最重要的晶体缺陷是点缺陷,包括本征缺陷和杂质缺陷等。 1.2.2、按缺陷产生的原因分类: 热缺陷、杂质缺陷、非化学计量缺陷、其它原因(如电荷缺陷,辐照缺陷等)。

晶体中的缺陷

第三章晶体中的缺陷 第一节概述 一、缺陷的概念 大多数固体是晶体,晶体正是以其特殊的构型被人们最早认识。因此目前(至少在80年代以前>人们理解的“固体物理”主要是指晶体。当然这也是因为客观上晶体的理论相对成熟。在晶体理论发展中,空间点阵的概念非常重要。 空间点阵中,用几何上规则的点来描述晶体中的原子排列,并连成格子,这些点被称为格点,格子被称为点阵,这就是空间点阵的基本思想,它是对晶体原子排列的抽象。空间点阵在晶体学理论的发展中起到了重要作用。可以说,它是晶体学理论的基础。现代的晶体理论基于晶体具有宏观平移对称性,并因此发展了空间点阵学说。 严格地说对称性是一种数学上的操作,它与“空间群”的概念相联系,对它的描述不属本课程内容。但是,从另一个角度来理解晶体的平移对称性对我们今后的课程是有益的。 所谓平移对称性就是指对一空间点阵,任选一个最小基本单元,在空间三维方向进行平移,这个单元能够无一遗漏的完全复制所有空间格点。考虑二维实例,如图3-1所示。 图3-1 平移对称性的示意图 在上面的例子中,以一个基元在二维方向上平移完全能复制所有的点,无一遗漏。这种情况,我们说具有平移对称性。这样的晶体称为“理想晶体”或“完整晶体”。

图3-2 平移对称性的破坏 如果我们对上述的格点进行稍微局部破坏,那么情况如何?请注意以下的复制过程,如图3-2所示。从图中我们看出:因为局部地方格点的破坏导致平移操作无法完整地复制全部的二维点阵。这样的晶体,我们就称之为含缺陷的晶体,对称性破坏的局部区域称为晶体缺陷。 晶体缺陷的产生与晶体的生长条件,晶体中原子的热运动以及对晶体的加工工艺等有关。事实上,任何晶体即使在绝对零度都含有缺陷,自然界中理想晶体是不存在的。既然存在着对称性的缺陷,平移操作不能复制全部格点,那么空间点阵的概念似乎不能用到含有缺陷的晶体中,亦即晶体理论的基石不再牢固。 幸运的是,缺陷的存在只是晶体中局部的破坏。作为一种统计,一种近似,一种几何模型,我们仍然继承这种学说。因为缺陷存在的比例毕竟只是一个很小的量(这指的是通常的情况)。例如20℃时,Cu的空位浓度为3.8×10-17,充分退火后Fe 中的位错密度为1012m-2<空位、位错都是以后要介绍的缺陷形态)。现在你对这些数量级的概念可能难以接受,那没关系,你只须知道这样的事实:从占有原子百分数来说,晶体中的缺陷在数量上是微不足道的。 因此,整体上看,可以认为一般晶体是近乎完整的。因而对于实际晶体中存在的缺陷可以用确切的几何图形来描述,这一点非常重要。它是我们今后讨论缺陷形态的基本出发点。事实上,把晶体看成近乎完整的并不是一种凭空的假设,大量的实验事实

单晶制备方法综述

单晶材料的制备方法综述 前言:单晶(single crystal),即结晶体内部的微粒在三维空间呈有规律地、周期性地排列,或者说晶体的整体在三维方向上由同一空间格子构成,整个晶体中质点在空间的排列为长程有序。单晶整个晶格是连续的,具有重要的工业应用。因此对于单晶材料的的制备方法的研究已成为材料研究的主要方向之一。本文主要对单晶材料制备的几种常见的方法进行介绍和总结。 单晶材料的制备也称为晶体的生长,是将物质的非晶态、多晶态或能够形成该物质的反应物通过一定的化学的手段转变为单晶的过程。单晶的制备方法通常可以分为熔体生长、溶液生长和相生长等[1]。 一、从熔体中生长单晶体 从熔体中生长晶体的方法是最早的研究方法,也是广泛应用的合成方法。从熔体中生长单晶体的最大优点是生长速率大多快于在溶液中的生长速率。二者速率的差异在10-1000倍。从熔体中生长晶体的方法主要有焰熔法、提拉法、冷坩埚法和区域熔炼法。 1、焰熔法[2] 最早是1885年由弗雷米(E. Fremy)、弗尔(E. Feil)和乌泽(Wyse)一起,利用氢氧火焰熔化天然的红宝石粉末与重铬酸钾而制成了当时轰动一时的“日内瓦红宝石”。后来于1902年弗雷米的助手法国的化学家维尔纳叶(V erneuil)改进并发展这一技术使之能进行商业化生产。因此,这种方法又被称为维尔纳也法。 1.1 基本原理 焰熔法是从熔体中生长单晶体的方法。其原料的粉末在通过高温的氢氧火焰后熔化,熔滴在下落过程中冷却并在籽晶上固结逐渐生长形成晶体。 1.2 合成装置和过程: 维尔纳叶法合成装置

振动器使粉料以一定的速率自上而下通过氢氧焰产生的高温区,粉体熔化后落在籽晶上形成液层,籽晶向下移动而使液层结晶。此方法主要用于制备宝石等晶体。 2、提拉法[2] 提拉法又称丘克拉斯基法,是丘克拉斯基(J.Czochralski)在1917年发明的从熔体中提拉生长高质量单晶的方法。2O世纪60年代,提拉法进一步发展为一种更为先进的定型晶体生长方法——熔体导模法。它是控制晶体形状的提拉法,即直接从熔体中拉制出具有各种截面形状晶体的生长技术。它不仅免除了工业生产中对人造晶体所带来的繁重的机械加工,还有效的节约了原料,降低了生产成本。 2.1、提拉法的基本原理 提拉法是将构成晶体的原料放在坩埚中加热熔化,在熔体表面接籽晶提拉熔体,在受控条件下,使籽晶和熔体的交界面上不断进行原子或分子的重新排列,随降温逐渐凝固而生长出单晶体。 2.2、合成装置和过程 提拉法装置 首先将待生长的晶体的原料放在耐高温的坩埚中加热熔化,调整炉内温度场,使熔体上部处于过冷状态;然后在籽晶杆上安放一粒籽晶,让籽晶接触熔体表面,待籽晶表面稍熔后,提拉并转动籽晶杆,使熔体处于过冷状态而结晶于籽晶上,在不断提拉和旋转过程中,生长出圆柱状晶体。 在提拉法制备单晶时,还有几种重要的技术:(1)、晶体直径的自动控制技术:上称重和下称重;(2)、液封提拉技术,用于制备易挥发的物质;(3)、导模技术。

晶体缺陷和强度理论

非晶合金的强度研究及进展 非晶合金,又称金属玻璃,由于具有优异的物理、化学、光学、磁学和力学性能,受到人们的普遍关注,成为材料领域的研究热点之一。大量的研究与开发工作表明,非晶合金材料在许多实用性能方面具有十分明显的优势,具有良好的应用前景。非晶合金研究的进展,不仅突破了长期以来金属合金只能以结晶态形式凝固这一传统认识,丰富了合金液固相变理论,而且在合金的非晶形成能力、非晶合金的相结构及其相演化过程、非晶合金的性能等方面的研究都取得了大量成果。 1非晶合金的发展历史 自从1960 年首次用熔体快速凝固方法制备出Au-Cu 非晶合金以来,在随后的30 年里,大量的非晶合金已经被制备出来。众所周知,在1990年以前可以用105K/s 的冷却速率制备出Fe 基、Co 基和Ni 基非晶合金,但这些合金的厚度都小于50 μm,其中,作为特例的贵金属基Pd-Ni-P 和Pt-Ni-P 合金系,其临界冷却速度也在103 K/s 的数量级。在1974 年Chen对Pb-T-P(T=Ni, Co, Fe)合金进行了系统的研究并制备出了厚度为 1 mm 的非晶合金。在1982 年,可以制备出临界尺寸较大的Au55 Pd22.5 Sb22.5非晶合金。虽然在大块非晶合金的研究中取得了突出的进展,但是这些合金的成本昂贵,在长达十几年的时间内,利用非贵金属制备大块非晶合金的愿望始终未能实现,使非晶合金的应用范围受到很大限制。 上世纪八十年代后期,日本学者 A. Inoue(井上明久)领导的课题组首先在非贵金属系大块非晶合金制备方面取得了突破,并受到同行的关注。自从1988 年以来,发现可以用更低的临界冷却速率制备出新的多组元合金体系,包括Mg 基、Zr基、Fe 基、Pd基[、La 基、Ti基和Ni 基合金体系。由于发现了具有很强的非晶形成能力的合金体系,使得在临界冷却速度低于102 K/s 的条件下,用一般的工艺方法(铜模铸造方法等)即可获得三维尺寸在毫米以上量级的大块非晶合金。 目前人们所研究的大块非晶合金体系中,Pd系、La 系和Zr系多组元合金具有优秀的非晶形成能力,其中美国Johnson 课题组开发的Zr-Ti-Cu-Ni-Be 和日本

晶体生长机理与晶体形貌的控制

晶体生长机理与晶体形貌的控制 张凯1003011020 摘要:本文综述了晶体生长与晶体形貌的基本理论和研究进展,介绍了层生长理论,分析了研究晶体宏观形貌与内部结构关系的3种主要理论,即布拉维法则、周期键链理论和负离子配位多面体生长基元理论。 关键词:晶体生长机理晶体结构晶体形貌晶体 1.引言 固态物质分为晶体和非晶体。从宏观上看,晶体都有自己独特的、呈对称性的形状。晶体在不同的方向上有不同的物理性质,如机械强度、导热性、热膨胀、导电性等,称为各向异性。晶体形态的变化,受内部结构和外部生长环境的控制。晶体形态是其成份和内部结构的外在反映,一定成份和内部结构的晶体具有一定的形态特征,因而晶体外形在一定程度上反映了其内部结构特征。今天,晶体学与晶体生长学都发展到了非常高的理论水平,虽然也不断地有一些晶体形貌方面的研究成果,但都停留在观察、测量、描述、推测生长机理的水平上。然而,在高新技术与前沿理论突飞猛进的今天,晶体形貌学必然也会受到冲击与挑战,积极地迎接挑战,与前沿科学理论技术接轨,晶体形貌学就会有新的突破,并且与历史上 一样也会对其它科学的发展做出贡献。 2.层生长理论 科塞尔(Kossel,1927)首先提出,后经斯特兰斯基(Stranski)加以发展的晶体的层生长理论亦称为科塞尔—斯特兰斯基理论。 它是论述在晶核的光滑表面上生长一层原子面时,质点在界面上进入晶格"座位"的最佳位置是具有三面凹入角的位置。质点在此位置上与晶核结合成键放出的能量最大。因为每一个来自环境相的新质点在环境相与新相界面的晶格上就位时,最可能结合的位置是能量上最有利的位置,即结合成键时应该是成键数目最多,释放出能量最大的位置。质点在生长中的晶体表面上所可能有的各种生长位置:k为曲折面,具有三面凹人角,是最有利的生长位置;其次是S阶梯面,具有二面凹入角的位置;最不利的生长位置是A。由此可以得出如下的结论即晶体在理想情况下生长时,先长一条行列,然后长相邻的行列。在长满一层面网后,再开始长第二层面网。晶面(最外的面网)是平行向外推移而生长的。这就是晶体的层生长理论,用它可以解释如下的一些生长现象。 1)晶体常生长成为面平、棱直的多面体形态。 2)在晶体生长的过程中,环境可能有所变化,不同时刻生成的晶体在物性(如颜色)和成分等方面可能有细微的变化,因而在晶体的断面上常常可以看到带状

晶体缺陷

晶体的缺陷及其在半导体中的应用 内容摘要 缺陷对晶体来说是很难被消除的,缺陷的存在会影响晶体的某些性质。晶体中的缺陷包括点缺陷、线缺陷、面缺陷以及体缺陷。不管是哪种类型的缺陷,它都会对晶体材料的性质产生影响。人们可以根据实际需要,通过人为地向晶体引入缺陷来开发制备出对人们有用的材料。该文简要介绍了缺陷的类型、定义、运动以及一些缺陷的简单应用。 【关键词】缺陷运动半导体影响

Crystal defects and the application of defects in semiconductor Abstract Defects in the crystal is very difficult to be eliminated, the defect will affect some properties of the crystal. Crystal defects including point defects, line defects, surface defects and bulk defects. No matter what type of defect, it will affect some properties of the crystal . People can produce some crystal material which is useful by artificially introducing defects to the crystal according to actual needs. This paper briefly describes the type of defect, definitions, sports, and some applications of defects. 【Key Words】Defects Movement Semiconductor Impact

第四章 晶体缺陷

第四章晶体缺陷(Defects in crystals) 推荐书:《金属物理》、《物理金属学》,冯端著 缺陷的魅力所在:钻石中的杂质产生五颜六色。 本征缺陷(Intrinsic defects)是满足物理规律要求所必须存在的缺陷,外来缺陷(Extrinsic defects)占大部分。 为什么重要?很少量都对材料性能产生很大影响。 没有缺陷,固态电子器件就不存在,金属不能更强,陶瓷会更硬,晶体无颜色。 斯梅克耳(A. Smeikel)将固体的性能分为两类:一类是非结构敏感的,如弹性模量、密度、热容量等,对于同一种材料的不同样品进行测量的结果差别不大,而且和将晶体视为理想的完整晶体的理论计算结果基本相符;另一类是结构敏感的,如屈服强度与断裂强度,对于同一种材料的不同样品测得的结果往往差异很大,而且和根据理想完整晶体的理论计算结果有显著的分歧,例如实际晶体的屈服强度只有理论值的千分之一左右。虽然这种区分并不是绝对的。 实质上,所谓结构敏感性,无非是反映了晶体中的缺陷对于性能的影响,因此绝对的非结构敏感的性能是不存在的。每一种性能都或多或少地受到晶体缺陷的影响。研究结构敏感的性能,晶体的缺陷分布和运动对其起了关键性的作用,必须通过细致的实验来揭示晶体中缺陷的具体情况,再在晶体缺陷的基础上进行理论的解释。 晶体的缺陷是指实际晶体结构中和理想的点阵结构发生偏差的

区域。由于晶体结构具有规律性,结构中出现缺陷的形式往往可以归结为几种标准的类型,而每一种都可以用相当确切的几何图象加以描述。按照缺陷在空间分布的情况,可以将晶体结构中存在的缺陷分为三类: (1)点缺陷(Point Defect),它们在三维空间的尺寸很小(和原子大小相同的量级),相对于整个晶体来说,可以把它们看成是零维的,即看成是1个点,故称点缺陷。晶体中的空位、间隙原子、杂质原子等是点缺陷。 (2)线缺陷(line Defect),它们在二维方向上的尺寸很小,仅在1个方向上的尺寸较大,相对于整个晶体来说,可以把它们看成是一维的,即看成一根线,故称线缺陷。晶体中的位错就是线缺陷,包括刃型位错(Edge dislocation)和螺型位错(Screw dislocation),后者在晶体生长中很重要。 (3)面缺陷(Plane Defect),它们在一维方向上的尺寸很小,而在其它二维方向上的尺寸比较大,相对于整个晶体来说,可以把它们看成是二维的,即看成是一个面,故称面缺陷。晶体中的晶界、相界(Phase boundaries)、孪晶界、堆垛层错等是面缺陷。 缺陷的尺度:点缺陷约0.1nm;线缺陷约10nm(位错);界面(Interfacial defects)约10-100nm;体缺陷约0.01-1mm。 在晶体中,缺陷并不是静止地、稳定不变地存在着,而是随着各种条件的改变而不断变动的,它们可以产生、发展、运动和交互作用,而且能合并和消失。尽管从整个晶体来看,原子(离子,原子团)是

《固体物理学》房晓勇主编教材-习题解答参考04第四章 晶体结构中的缺陷

第四章 晶格结构中的缺陷 4.1 试证明,由N 个原子组成的晶体,其肖托基缺陷数为 s B k T s n Ne μ?= 其中s μ是形成一个空位所需要的能量。 证明:设由N 个原子组成的晶体,其肖托基缺陷数为s n ,则其微观状态数为 !()!s ! s s N P N n n =? 由于s μ个空位的出现,熵的改变 []!ln ln ln ()ln()ln ()!! B s B B s s s s s s N S k P k k N N N n N n n n N n n Δ===????? 晶体的自由能变化为 []ln ()ln()ln s s s s B s s s F n T S n k T N N N n N n n n μμ=?Δ=?????s 要使晶体的自由能最小 B ()ln 0s s s s T n F u k T n N ?????Δ=+=??????????n 整理得 s B k T s s n e N n μ ?=? 在实际晶体中,由于, s n N <

人工晶体植入术

人工晶体植入术 人工晶状体是目前矫正无晶状体眼屈光的最有效的方法,它在解剖上和光学上取代了原来的晶状体,构成了一个近似正常的系统,尤其是固定在正常晶状体生理位置上的后房型人工晶状体。可用于单眼,术后可迅速恢复视力,易建立双眼单视和立体视觉。 疾病简介 自从英国著名眼科医生Ridley找到合适的人工晶状体材料,并于1949年植入第一例硬性人工晶状体以来,已有五代人工晶状体问世。第四代后房型人工晶状体可植入囊袋内,术后可以散瞳,便于检查眼底。第五代折叠式人工晶状体可从小切口植入,与角膜内皮接触损伤小,重量轻,在术后短期内能恢复稳定的视力。制造最接近生理状态且具有调节功能的人工晶状体,一直是眼科专家梦寐以求的目的。目前已研制出了多焦点人工晶状体﹑可调节人工晶状体以及可以矫正散光的Toric人工晶状体等。 人工晶状体分类 1)按人工晶状体在眼内的固定位置分类:可分为前房型人工晶状体和后房型人工晶状体。前房型人工晶状体因术后并发症多,现多植入后房人工晶状体。 2)按制作人工晶状体的材料分类 A. 聚甲基丙烯酰甲酯(PMMA):聚甲基丙烯酰甲酯是最先用来制造人工晶状体的材料,为硬性人工晶状体的首选材料,其性能稳定﹑质轻﹑透明度好﹑不会被机体的生物氧化反应所降解,屈光指数为1.49。缺点是不耐高温高压消毒,目前多用环氧乙烷气体来消毒,柔韧性差。临床用有两种:一是用PMMA材料一次铸压成型的人工晶状体,称一片式;二是用PMMA 制成晶状体光学部分,用聚丙烯制成支撑襻,称三片式。 B.硅凝胶:是软性人工晶状体的主要材料,热稳定性好,可高压煮沸消毒,分子结构稳定,抗老化性好,生物相容性好,柔软,弹性大,可经小切口植入。屈光指数为1.41~1.46。缺点是韧性差,受机械力作用可变性,且易产生静电效应,容易吸附异物。 C.水凝胶:聚甲基丙烯酸羟乙酯,是一种亲水性材料,含水量一般为38%~55%,可高达60%,稳定性好,生物相容性好,耐高温,韧性大。人工晶状体可脱水植入,复水后恢复软性并且线性长度增加15%。因其富含渗水性,眼内代谢物可进入内部而粘附污染,影响透明度。D.丙烯酸酯:是苯乙基丙烯酸酯和苯乙基甲基丙烯酸组成的共聚体,具有与PMMA相当的光学和生物学特性,但又具有柔软性。屈光指数1.51,人工晶状体较薄,折叠后的人工晶状体能柔软而缓慢的展开。 度数的测算与选择 1)正视眼的标准度数:后房型需+19D。

第四章 晶体结构缺陷习题与解答

第四章晶体结构缺陷习题与解答 4.1 名词解释(a)弗伦克尔缺陷与肖特基缺陷;(b)刃型位错和螺型位错 解:(a)当晶体热振动时,一些能量足够大的原子离开平衡位置而挤到晶格点的间隙中,形成间隙原子,而原来位置上形成空位,这种缺陷称为弗伦克尔缺陷。如果正常格点上原子,热起伏后获得能量离开平衡位置,跃迁到晶体的表面,在原正常格点上留下空位,这种缺陷称为肖特基缺陷。(b)滑移方向与位错线垂直的位错称为刃型位错。位错线与滑移方向相互平行的位错称为螺型位错。 4.2试述晶体结构中点缺陷的类型。以通用的表示法写出晶体中各种点缺陷的表示符号。试举例写出CaCl2中Ca2+置换KCl中K+或进入到KCl间隙中去的两种点缺陷反应表示式。 解:晶体结构中的点缺陷类型共分:间隙原子、空位和杂质原子等三种。在MX 晶体中,间隙原子的表示符号为MI或XI;空位缺陷的表示符号为:VM或VX。如果进入MX晶体的杂质原子是A,则其表示符号可写成:AM或AX(取代式)以及Ai(间隙式)。 当CaCl2中Ca2+置换KCl中K+而出现点缺陷,其缺陷反应式如下: CaCl2++2Cl Cl CaCl2中Ca2+进入到KCl间隙中而形成点缺陷的反应式为: CaCl2+2+2Cl Cl 4.3在缺陷反应方程式中,所谓位置平衡、电中性、质量平衡是指什么? 解:位置平衡是指在化合物MaXb中,M格点数与X格点数保持正确的比例关系,即M:X=a:b。电中性是指在方程式两边应具有相同的有效电荷。质量平衡是指方程式两边应保持物质质量的守恒。 4.4(a)在MgO晶体中,肖特基缺陷的生成能为6ev,计算在25℃和1600℃时热缺陷的浓度。(b)如果MgO晶体中,含有百万分之一mol的Al2O3杂质,则在1600℃时,MgO晶体中是热缺陷占优势还是杂质缺陷占优势?说明原因。解:(a)根据热缺陷浓度公式: exp(-) 由题意△G=6ev=6×1.602×10-19=9.612×10-19J K=1.38×10-23 J/K T1=25+273=298K T2=1600+273=1873K 298K:exp=1.92×10-51 1873K:exp=8×10-9 (b)在MgO中加入百万分之一的Al2O3杂质,缺陷反应方程为:

直拉硅单晶生长的现状与发展

直拉硅单晶生长的现状与发展 摘要:综述了制造集成电路(IC)用直拉硅单晶生长的现状与发展。对大直径生长用磁场拉晶技术,硅片中缺陷的控制与利用(缺陷工程),大直径硅中新型原生空位型缺陷,硅外延片与SOI片,太阳电池级硅单和大直径直拉硅生长的计算机模拟,硅熔体与物性研究等进行了论述。 关键词:直拉硅单晶;扩散控制;等效微重力;空洞型缺陷;光电子转换效率;硅熔体结构 前言 20世纪中叶晶体管、集成电路(IC)、半导体激光器的问世,导致了电子技术、光电子技术的革命,产生了半导体微电子学和半导体光电子学,使得计算机、通讯技术等发生了根本改变,有力地推动了当代信息(IT)产业的发展.应该强调的是这些重大变革都是以半导体硅材料的技术突破为基础的。2003年全世界多晶硅的消耗,达到了19 000 t,但作为一种功能材料,其性能应该是各向异性的.因此半导体硅大都应该制备成硅单晶,并加工成硅抛光片,方可制造I C 器件。 半导体硅片质量的提高,主要是瞄准集成电路制造的需要而进行的。1956年美国仙童公司的“CordonMoore”提出,IC芯片上晶体管的数目每隔18~24个月就要增加一倍,称作“摩尔”定律。30多年来事实证明,IC芯片特征尺寸(光刻线宽)不断缩小,微电子技术一直遵循“摩尔定律”发展。目前,0.25 μm、0.18μm线宽已进入产业化生产。这就意味着IC的集成度已达到108~109量级,可用于制造256MB的DRAM和速度达到1 000MHE的微处理芯片。目前正在研究开发0.12 μm到0.04μm的MOS器件,预计到2030年,将达到0.035μm 水平。微电子芯片技术将从目前器件级,发展到系统级,将一个系统功能集成在单个芯片上,实现片上系统(SOC)。 这样对半导体硅片的高纯度、高完整性、高均匀性以及硅片加工几何尺寸的精度、抛光片的颗粒数和金属杂质的沾污等,提出了愈来愈高的要求。 在IC芯片特征尺寸不断缩小的同时,芯片的几何尺寸却是增加的。为了减少周边损失以降低成本,硅片应向大直径发展。在人工晶体生长中,目前硅单晶尺寸最大。 当代直拉硅单晶正在向着高纯度、高完整性、高均匀性(三高)和大直径(一大)发展。 磁场直拉硅技术 硅单晶向大直径发展,投料量急剧增加。生长φ6″、φ8″、φ12″、φ16″硅单晶,相应的投料量应为60 kg、150 kg、300 kg、500 kg。大熔体严重的热对流,不但影响晶体质量,甚至会破坏单晶生长。热对流驱动力的大小,可用无量纲Raylieh数表征:

第二章晶体结构与晶体中的缺陷

内容提要:通过讨论有代表性的氧化物、化合物和硅酸盐晶体结构, 用以掌握与本专业有关的各种晶体结构类型。介绍了实际晶体中点缺陷分 类;缺陷符号和反应平衡。固熔体分类和各类固熔体、非化学计量化学化 合物的形成条件。简述了刃位错和螺位错。 硅酸盐晶体结构是按晶体中硅氧四面体在空间的排列方式为孤岛状、组群状、链状、层装和架状五类。这五类的[SiO4]四面体中,桥氧的数目也依次由0增加到4, 非桥氧数由4减至0。硅离子是高点价低配位的阳离子。因此在硅酸盐晶体中,[SiO4] 只能以共顶方式相连,而不能以共棱或共面方式相连。表2-1列出硅酸盐晶体结构类型及实例。 表2-1 Array硅酸 盐晶 体的 结构 类型

真实晶体在高于0K的任何温度下,都或多或少地存在着对理想晶体结构的偏离,即存在着结构缺陷。晶体中的结构缺陷有点缺陷、线缺陷、面缺陷和复合缺陷之分,在无机材料中最基本和最重要的是点缺陷。 点缺陷根据产生缺陷的原因分类,可分为下列三类: (1)热缺陷(又称本征缺陷) 热缺陷有弗仑克儿缺陷和肖特基缺陷两种基本形式。 弗仑克儿缺陷是指当晶格热震动时,一些能量足够大的原子离开平衡位置而挤到晶格点的间隙中,形成间隙原子,而原来位置上形成空位,这种缺陷称为弗仑克儿缺陷。 肖特基缺陷是指如果正常格点上原子,热起伏后获得能量离开平衡位置,跃迁到晶体的表面,而在原正常格点上留下空位,这种缺陷称为肖特基缺陷。 (2)杂质缺陷(非本征缺陷) (3)非化学计量化学化合物 为了便于讨论缺陷反应,目前广泛采用克罗格-明克(Kroger-Vink)的点缺陷符号(见表2-2)。 表2-2 Kroger-Vink缺陷符号(以M2+X2-为例)

晶体生长机理研究综述

晶体生长机理研究综述 摘要 晶体生长机理是研究金属材料的基础,它本质上就是理解晶体内部结构、缺陷、生长条件和晶体形态之间的关系。通过改变生长条件来控制晶体内部缺陷的形成从而改善和提高晶体的质量和性能使材料的强度大大增强开发材料的使用潜能。本文主要介绍了晶体生长的基本过程和生长机理,晶体生长理论研究的技术和手段,控制晶体生长的途径以及控制晶体生长的途径。 关键词:晶体结构晶界晶须扩散成核 一、晶体生长基本过程 从宏观角度看,晶体生长过程是晶体-环境相、蒸气、溶液、熔体、界面向环境相中不断推移的过程,也就是由包含组成晶体单元的母相从低秩序相向高度有序晶相的转变从微观角度来看,晶体生长过程可以看作一个基元过程,所谓基元是指结晶过程中最基本的结构单元,从广义上说,基元可以是原子、分子,也可以是具有一定几何构型的原子分子聚集体所谓的基元过程包括以下主要步骤:(1)基元的形成:在一定的生长条件下,环境相中物质相互作用,动态地形成不同结构形式的基元,这些基元不停地运动并相互转化,随时产生或消失(2)基元在生长界面的吸附:由于对流~热力学无规则的运动或原子间的吸引力,基元运动到界面上并被吸附 (3)基元在界面的运动:基元由于热力学的驱动,在界面上迁移运动 (4)基元在界面上结晶或脱附:在界面上依附的基元,经过一定的运动,可能在界面某一适当的位置结晶并长入固相,或者脱附而重新回到环境相中。 晶体内部结构、环境相状态及生长条件都将直接影响晶体生长的基元过程。环境相及生长条件的影响集中体现于基元的形成过程之中;而不同结构的生长基元在不同晶面族上的吸附、运动、结晶或脱附过程主要与晶体内部结构相关联。不同结构的晶体具有不同的生长形态。对于同一晶体,不同的生长条件可能产生不同结构的生长基元,最终形成不同形态的晶体。同种晶体可能有多种结构的物相,即同质异相体,这也是由于生长条件不同基元过程不同而导致的结果,生长机理如下: 1.1扩散控制机理从溶液相中生长出晶体,首要的问题是溶质必须从过饱和溶液中运送到晶体表面,并按照晶体结构重排。若这种运送受速率控制,则扩散和对流将会起重要作用。当晶体粒度不大于1Oum时,在正常重力场或搅拌速率很低的情况下,晶体的生长机理为扩散控制机理。 1.2 成核控制机理在晶体生长过程中,成核控制远不如扩散控制那么常见但对于很小的晶体,可能不存在位错或其它缺陷。生长是由分子或离子一层一层

角膜屈光术后人工晶体度数的计算

角膜屈光术后人工晶体度数的计算 角膜屈光手术如放射状角膜切开术RK准分子角膜切削术PRK激光角膜原位磨 镶术LASIK激光角膜热成形术LTK在矫正屈光不正方面取得良好效果但是随着时 间的推移该类患者中发生白内障的数量将愈来愈多从我们的临床实践和相关文献报道 常规人工晶体计算方法造成IOL度数不足白内障术后有不同程度的远视影响病人的生活质量本文主要从角膜生物物理行为的改变角膜屈光度的计算眼轴的测量计算公式的 选择几方面讨论它们对该类手术的影响 一角膜生物物理行为的改变 放射状角膜切开术RK是通过角膜放射状切口使角膜中央区变得扁平从而矫正屈光 不正,其切口较深中央光学区在3至4毫米左右 1 Koch报告四例RK术后的白内障患者行白内障摘除术并人工晶体植入术后发生短期远视漂移高达+6D可能是因为放射状切口的机械不稳定性和角膜水肿所致这些变化是可逆的,几周内随角膜水肿的减退视力逐渐提 高同时视力也有昼夜波动12但是对于PRK/LASIK术后白内障的病人来说植入按常规方法计算得出的人工晶体术后角膜保持稳定的状态将造成持续的远视状态22 二角膜屈光度的计算 1正常角膜屈光度的测量 角膜曲率计及角膜地形图是通过测量光线投射到角膜表面的反射像的大小计算出该点 角膜曲率再转换为屈光度可表达为 P=N -1/R 1 其中,P为角膜屈光度N为屈光指数R为该点所在曲面的半径 100年前Javal光学系统假想中央区角膜为近视球面或者为一球柱面通过测量值近似地将角膜前表面曲率半经定为7.5毫米并且相当于45D屈光度2由公式1计算出 45= N -1/0.0075 N=1.3375 对于每一个所测定的角膜曲率R相对应的屈光度为: P=0.3375/R (2) 公式(2)的缺陷在于未能够充分考虑空气—泪膜界面泪膜—角膜界面角膜—房水界 面角膜厚度的作用(如图1-B)根据Gobbi泪膜角膜界面屈光度+5.20D可被角膜房水界面的屈光度-5.88D所大致抵消5因此光学上角膜屈光度计算应该以下公式为基础如图 1-A P= N 2-N1/R1+N 3-N2/R2 3

IOL-Master A超 B超 人工晶体度数操作流程

IOL-Master A超B超人工晶体度数操作流程 IOL-Master 眼轴长度: 1 告知患者检查项目,取得患者配合; 2 输入患者姓名、出生年月日; 3 请患者坐在仪器前(年幼儿请家属抱坐于检查凳,行动不便患者直接推轮椅置于仪器前),调节座椅和仪器的高度,帮助患者取得舒适坐位; 4 用75%酒精棉球擦拭干净下颌托和额托,嘱咐患者将下颌搭到下颌托里,额头顶住额托,调节下颌托的位置,使得患者眼睛位于可操作范围内; 5 嘱咐患者盯住仪器中的固视灯(视力不佳或斜视的患者辅助其调整眼位),保持不动,确保眼位正,以保证测量数值的准确性、可靠性; 6 测量患者眼睛轴长:根据患者眼睛情况,选择测量参数,每只眼睛测5次,取平均值; 7 告知患者检查完成,请等待报告单; 8 核对打印出的报告单,操作者签字并交给患者。 IOL-Master人工晶体度数: 1 告知患者检查项目,取得患者配合; 2 输入患者姓名、出生年月日; 3 请患者坐在仪器前(年幼儿请家属抱坐于检查凳,行动不便患者直接推轮椅置于仪器前),调节座椅和仪器的高度,帮助患者取得舒适坐位; 4 用75%酒精棉球擦拭干净下颌托和额托,嘱咐患者将下颌搭到下颌托里,额头顶住额托,调节下颌托的位置,使得患者眼睛位于可操作范围内; 5 嘱咐患者盯住仪器中的固视灯(视力不佳或斜视的患者辅助其调整眼位),保持不动,确保眼位正,以保证测量数值的准确性、可靠性。 6 测量患者眼睛轴长:根据患者眼睛情况,选择测量参数,每只眼睛测5次,取平均值; 7 测量患者眼睛角膜曲率:每只眼睛测3次,取平均值; 8 如有必要测量患者前房深度、白对白等数值; 9 告知患者检查完成,请等待报告单; 10 根据医生要求选择计算公式、IOL参数、保留度数,计算并打印结果; 11 核对打印出的报告单,操作者签字并交给患者。 注:如果仪器不能测出患者的眼轴长度,则换用接触性测量法或用B超测量;如果仪器不能测出患者的角膜曲率,则请医生另行测量曲率,输入相应公式,进行计算。 B超: 1 告知患者检查项目,取得患者配合; 2 输入患者姓名、年龄、性别; 3 请患者仰卧在检查床上(辅助行动不便患者平卧,辅助有疾患不能平卧的患者取适宜检查的舒适体位),头朝检查者。协助患者摆放好头位,嘱咐患者轻闭双眼不要睁开; 4 将适量耦合剂分别涂抹在患者双眼眼睑和探头上,探头用一次性塑料布包裹防止交叉感染; 5 检查前、检查期间与患者做必要的交流,对患眼情况有初步认识; 6 全面检查患者双眼,(如有必要嘱咐患者眼球转动、头部偏转或者取适宜体位进行检查,对于外伤、术后、眼痛强烈或角膜怀疑存在异物等特殊情的患者检查时轻压眼球,避免造成患者痛苦或二次损伤)。调节增益,对病变区进行多切面、多角度探查。截取有价值的图片供医生参考; 7 测量眼轴长度:嘱咐患者被检眼微闭,另眼注视正上方目标,确保测量眼正位。探头与被检眼眼睑垂直进行水平轴位扫描,截取晶状体及视神经同时显示在声像图中央时的图像。测量距最

相关主题
文本预览