当前位置:文档之家› 氨基酸脱氨基

氨基酸脱氨基

氨基酸脱氨基
氨基酸脱氨基

氨基酸脱氨基

1、转氨基作用转氨酶催化某一氨基酸的α-氨基转移到另一种α-酮酸的酮基上,生成相应的氨基酸;原来的氨基酸则转变成α-酮酸。既是氨基酸的分解代谢过程,也是体内某些氨基酸合成的重要途径。除赖氨酸、脯氨酸及羟脯氨酸外,体内大多数氨基酸可以参与转氨基作用。如:谷氨酸+丙酮酸谷丙转氨酶(ALT) α-酮戊二酸+丙氨酸

谷氨酸+草酰乙酸谷草转氨酶(AST)α-酮戊二酸+天冬氨酸

转氨酶的辅酶是维生素B6的磷酸酯,即磷酸吡哆醛。

2、L-谷氨酸氧化脱氨基作用

L-谷氨酸 L-谷氨酸脱氢酶α-酮戊二酸+NH3

NADH

3、联合脱氨基作用

NH3+NADH

α-酮酸谷氨酸NAD+ 4、嘌呤核苷酸循环

上述联合脱氨基作用主要在肝、肾等组织中进行。骨骼肌和心肌中主要通过嘌呤核苷酸循环脱去氨基。

氨基酸

次黄嘌呤核苷酸NH3

GTP (IMP)

酸腺嘌呤核苷酸

(AMP)

延胡索酸α-酮酸 L-谷氨酸草酰乙酸

苹果酸5、氨基酸脱氨基后生成的α-酮酸可以转变成糖及脂类,在体内可以转变成糖的氨基酸称为生糖氨基酸;能转变成酮体者称为生酮氨基酸;二者兼有者称为生糖兼生酮氨基酸。只要记住生酮氨基酸包括:亮、赖;生糖兼生酮氨基酸包括异亮、苏、色、酪、苯丙;其余为生糖氨基酸。

氨基酸

氨基酸 氨基酸定义 氨基酸(amino acids):含有氨基和羧基的一类有机化合物的通称。生物功能大分子蛋白质的基本组成单位,是构成动物营养所需蛋白质的基本物质。是含有一个碱性氨基和一个酸性羧基的有机化合物,氨基一般连在α-碳上。 氨基酸的结构通式:构成蛋白质的氨基酸都是一类含有羧基并在与羧基相连的碳原子下连有氨基的有机化合物,目前自然界中尚未发现蛋白质中有氨基和羧基不连在同一个碳原子上的氨基酸。 氨基酸分类 天然的氨基酸现已经发现的有300多种,其中人体所需的氨基酸约有22种,分非必需氨基酸和必需氨基酸(人体无法自身合成)。另有酸性、碱性、中性、杂环分类,是根据其化学性质分类的。 1、必需氨基酸(essential amino acid):指人体(或其它脊椎动物)不能合成或合成速度远不适应机体的需要,必需由食物蛋白供给,这些氨基酸称为必需氨基酸。共有8种其作用分别是: ①赖氨酸(Lysine ):促进大脑发育,是肝及胆的组成成分,能促进脂肪代谢,调节松果腺、乳腺、黄体及卵巢,防止细胞退化; ②色氨酸(Tryptophane):促进胃液及胰液的产生; ③苯丙氨酸(Phenylalanine):参与消除肾及膀胱功能的损耗; ④蛋氨酸(又叫甲硫氨酸)(Methionine);参与组成血红蛋白、组织与血清,有促进脾脏、胰脏及淋巴的功能; ⑤苏氨酸(Threonine):有转变某些氨基酸达到平衡的功能; ⑥异亮氨酸(Isoleucine ):参与胸腺、脾脏及脑下腺的调节以及代谢;脑下腺属总司令部作用于甲状腺、性腺; ⑦亮氨酸(Leucine ):作用平衡异亮氨酸; ⑧缬氨酸(Viline):作用于黄体、乳腺及卵巢。 其理化特性大致有: 1)都是无色结晶。熔点约在230°C以上,大多没有确切的熔点,熔融时分解并放出CO2;都能溶于强酸和强碱溶液中,除胱氨酸、酪氨酸、二碘甲状腺素外,均溶于水;除脯氨酸和羟脯氨酸外,均难溶于乙醇和乙醚。 2)有碱性[二元氨基一元羧酸,例如赖氨酸(lysine)];酸性[一元氨基二元羧酸,例如谷氨酸(Glutamic acid)];中性[一元氨基一元羧酸,例如丙氨酸(Alanine)]

氨基酸的常见化学反应

氨基酸的常见化学反应 ? -氨基的反应 ?亚硝酸反应 ?范围:可用于Aa定量和蛋白质水解程度的测定(Van slyke法) ?注意:生成的氮气只有一半来自于Aa,ε氨基酸也可反应,速度较 慢. ?与酰化试剂的反应 ?Aa+酰氯,酸酐-→Aa被酰基化 ?丹磺酰氯用于多肽链末端Aa的标记和微量Aa的定量测量. ?烃基化反应 ?Aa的氨基的一个氢原子可被羟基(包括环烃及其衍生物)取代. ?与2,4-二硝基氟苯(DNFB,FDNB)反应 ?最早Sanger用来鉴定多肽或蛋白质的氨基末端的Aa ?与苯异硫氰酸酯(PITC)的反应 ?Edman用于鉴定多肽或蛋白质的N末端Aa.在多肽和蛋白 质的Aa顺序分析方面占有重要地位(Edman降解法) ?形成西佛碱反应 ?Aa的α-NH2能与醛类化合物反应生成弱碱,即西佛碱(schiff ‘s base) ?前述甲醛滴定:甲醛与H2N-CH2-COO-结合,有效地减低了后者的 浓度,所以对于加入任何量的碱, [H2N-CH2-COO- ]/ [+H3N-CH2-COO- ]的比值总要比不存在甲醛的情况下小得多。加入 甲醛的甘氨酸溶液用标准盐酸滴定时,滴定曲线B并不发生改变。 ?脱氨基反应 ?Aa在生物体内经Aa氧化酶催化即脱去α-NH2而转变成酮酸 ?α-COOH参加的反应 ?成盐和成酯反应 ?Aa + 碱-→盐 ?Aa + NaOH -→氨基酸钠盐(重金属盐不溶于水) ?Aa-COOH + 醇-→酯 ?Aa+ EtOH ---→氨基酸乙酯的盐酸盐 ?当Aa的COOH变成甲酯,乙酯或钠盐后,COOH的化学反 应性能被掩蔽或者说COOH被保护,NH2的化学性能得到 了加强或活化,易与酰基结合。Aa酯是制备Aa的酰氨or 酰肼的中间物 ?成酰氯反应 ?当氨基酸的氨基用适当的保护基保护以后,其羧基可与二氯亚砜作 用生成酰氯 ?用于多肽人工合成中的羧基激活 ?叠氮反应 ?氨基酸的氨基通过酰化保护后,羧基经酯化转变为甲酯,然后与肼 和亚硝酸变成叠氮化合物 ?用于多肽人工合成中的羧基激活 ?脱羧基反应

生物化学氨基酸代谢知识点汇总

生物化学氨基酸代谢知识点汇总

————————————————————————————————作者:————————————————————————————————日期:

第九章氨基酸代谢 第一节:蛋白质的生理功能和营养代谢 蛋白质重要作用 1.维持细胞、组织的生长、更新和修补 2.参与多种重要的生理活动(免疫,酶,运动,凝血,转运) 3.氧化供能 氮平衡 1.氮总平衡:摄入氮= 排出氮(正常成人) 氮正平衡:摄入氮> 排出氮(儿童、孕妇等) 氮负平衡:摄入氮< 排出氮(饥饿、消耗性疾病患者)2.意义:反映体内蛋白质代谢的慨况。 蛋白质营养价值 1.蛋白质的营养价值取决于必需氨基酸的数量、种类、量质比 2.必需氨基酸-----甲来写一本亮色书、假设梁借一本书来 3.蛋白质的互补作用,指营养价值较低的蛋白质混合食用,其必需氨 基酸可以互相补充 而提高营养价值。 第二节:蛋白质的消化、吸收与腐败 外源性蛋白消化 1.胃:壁细胞分泌的胃蛋白酶原被盐酸激活,水解蛋白为多肽和氨基

酸,主要水解芳香族氨基酸 2.小肠:胰液分泌的内、外肽酶原被肠激酶激活,水解蛋白为小肽和氨基酸;生成的寡肽继续在小肠细胞内由寡肽酶水解成氨基酸 氨基酸和寡肽的主动吸收 1.吸收部位:小肠,吸收作用在小肠近端较强 2.吸收机制:耗能的主动吸收过程 ○1通过转运蛋白(氨基酸+小肽):载体蛋白与氨基酸、Na+组成三联体,由ATP供能将氨基酸、Na+转入细胞内,Na+再由钠泵排出细胞。○2通过r-谷氨酰基循环(氨基酸):关键酶----r--谷氨酰基转移酶, 具体过程参P199图

各种氨基酸的生产工艺

各种氨基酸的生产工艺 1、谷氨酸 (1)等电离交工艺方法——从发酵液中提取谷氨酸,即将谷氨酸发酵液降温并用硫酸调PH值至谷氨酸等电点(pH3.0- 3.2),温度降到10 以下沉淀,离心分离谷氨酸,再将上清液用硫酸调pH至1.5上732强酸性阳离子交换树脂,用氨水调上清液pH10进行洗脱,洗脱下来的高流分再用硫酸调pH1.0返回等电车间加入发酵液进行等电提取,离交车间的上柱后的上清液及洗柱水送去环保车间进行废水处理。 该工艺方法的缺点是:废水量大,治理成本高,酸碱用量大。 (2)连续等电工艺——将谷氨酸发酵液适当浓缩后控制40℃左右,连续加入有晶种的等电罐中,同时加入硫酸,控制等电罐中PH值维持在3.2左右,温度40℃进行结晶。 该工艺方法废的优点是:水量相对较少;缺点是:氨酸提取率及产品质量较差。 (3)发酵法生产谷氨酸的谷氨酸提取工艺——谷氨酸发酵液经灭菌后进入超滤膜进行超滤,澄清的谷氨酸发酵液在第一调酸罐中被调整pH值为3.20~3.25,然后进入常温的等电点连续蒸发降温结晶装置进行结晶,分离、洗涤,得到谷氨酸晶体和母液,将一部分母液进入脱盐装置,脱盐后的谷氨酸母液一部分与超滤后澄清的谷氨酸发酵液合并;另一部分在第二调酸罐中被调整pH值至4.5~7,蒸发、浓缩、再在第三调酸罐中调pH值至3.20~3.25后,进入低温的等电点连续蒸发降温结晶装置,使母液中的谷氨酸充分结晶出来,低温的等电点连续蒸发降温结晶装置排出的晶浆被分离、洗涤,得到谷氨酸晶体和二次母液。(4)水解等电点法 发酵液-----浓缩(78.9kPa,0.15MPa蒸汽)----盐酸水解(130 ℃,4h )----过滤-----滤液脱色-----浓缩-----中和,调pH至3.0-3.2(NaOH或发酵液) -----低温放置,析晶-------谷氨酸晶体 此工艺的优点:设备简单、废水量减少、生产成本低、酸碱用量省 (5)低温等电点法 发酵液-----边冷却边加硫酸调节pH4.0-4.5-----加晶种,育晶2h-----边冷却边加硫酸调至pH3.0-3.2------冷却降温------搅拌16h------4 ℃静置4h------离心分离 --------谷氨酸晶体 此工艺的优点:设备简单、废水量减少、生产成本低、酸碱用量省 (6)直接常温等电点法 发酵液-----加硫酸调节pH4.0-4.5-----育晶2-4h-----加硫酸调至pH3.5-3.8------育晶2h------加硫酸调至pH3.0-3.2------育晶2h------冷却降温------搅拌16-20h------沉淀2-4h-------谷氨酸晶体 此工艺的优点:设备简单、操作容易、生产周期短、酸碱用量省。 2、L-亮氨酸 (1)浓缩段 原料:蒸汽 将一次母液通入浓缩罐内,通入蒸汽,温度120度,气压-0.09Mpa,浓缩时间6h,结晶。终点产物:结晶液(去一次中和段) (2)一次中和段 辅料:硫酸,纯水 结晶液进入一次中和罐,通入硫酸,纯水,温度80,中和时间4h,过滤 终点产物:1,滤液(回收利用)2,滤渣(去氨解段)

氨基酸脱氨基产生的胺类可引起脑功能异常

氨基酸脱氨基产生的胺类可引起脑功能异常 一.摘要 正常情况下,中枢递质几乎都不能通过血脑屏障,这有利于维持脑内中枢递质水平的稳定,排除脑外刺激因素的干扰。所以能如此,可能与脑毛细血管内皮细胞中的酶系统有关,已经发现其中含有单胺氧化酶,而多种中枢递质是单胺类化合物,如儿茶酚胺、5羟色胺、组织胺等,都可被单胺氧化酶灭活,这种内皮细胞胞浆内的生物化学转化作用加强了血脑屏障的功能,从而可使脑组织内环境保持稳定,少受一般循环血液中有强烈生理作用的物质含量剧烈变动的干扰。然而,中枢神经系统疾病常引起血脑屏障结构和功能的剧烈变化,从而进一步影响脑功能的异常。 二.选题依据 假性神经递质神经冲动的传导是通过递质来完成的。神经递质分兴奋和抑制两类,正常时两者保持生理平衡。兴奋性神经递质有儿茶酚胺中的多巴胺和去甲肾上腺素,乙酰胆碱、谷氨酸和门冬氨酸等;抑制性神经递质只在脑内形成。食物中的芳香族氨基酸、如酪氨酸、苯丙氨基酸等,经肠菌脱羧酶的作用分别转变为酪胺和苯乙胺。正常时这两种胺在肝内被单胺氧化酶分解清除,肝功能衰竭时,清除发生障碍,此二种胺可进入脑组织,在脑内经β羟化酶的作用分别形成胺(β-羟酪胺)和苯乙醇胺。后二者的化学结构与正常神经递质去甲肾上腺素相似,但不能传递神经冲动或作用很弱,因此称为假性神经递质。当假性神经递质被脑细胞摄取并取代了突触中的正常递质,则神经传导发生障碍,兴奋冲动不能正常地传至大脑皮层而产生异常抑制;出现意识障碍与昏迷。 三.解决方案及可行性分析 由于氨中毒是肝性脑病的主要原因,因此减少氨的吸收和加强氨的排出是药物治疗的主要手段。 1.乳果糖(β- 半乳糖果糖)是一种合成的双糖,口服后在小肠不会被分解,到达结肠后可被乳酸杆菌、粪肠球菌等细菌分解为乳酸、乙酸而降低肠道的pH 值。肠道酸化后对产尿素酶的细菌生长不利,但有利于不产尿素酶的乳酸杆菌的生长,使肠道细菌所产的氨减少;此外,酸性的肠道环境可减少氨的吸收,并促进血液中的氨渗入肠道排出。 2.L- 鸟氨酸-L- 门冬氨酸是一种鸟氨酸和门冬氨酸的混合制剂,能促进体内的尿素循环(鸟氨酸循环)而降低血氨。 3.谷氨酸与氨结合形成谷氨酰胺而降低血氨,有谷氨酸钾和谷氨酸钠两种,可根据血钾和血钠调整两者的使用比例。谷氨酸盐为碱性,使用前可先注射3~5g维生素C,碱血症者不宜使用。 4.GABA/BZ 复合受体拮抗剂氟马西尼(flumazenil),可以拮抗内源性苯二氮卓所致的神经抑制。对于Ⅲ~Ⅳ期患者具有促醒作用。静脉注射氟马西尼起效快,往往在数分钟之内,但维持时间很短,通常在4 小时之内。其用量为0.5 ~1mg 静脉注射;或1mg/h持续静脉滴注。 5.减少或拮抗假神经递质支链氨基酸(BCAA)制剂是一种以亮氨酸、异亮氨酸、缬安酸等BCAA 为主的复合氨基酸。其机制为竞争性BCAA 为主的复合氨基酸。其机制为竞争性抑制芳香族氨基酸进入大脑,减少假神经递质的形成,其疗效尚有争议,但对于不能耐受蛋白质的营养不良者,补充BCAA 有助于改善其氮平衡。 四.预期结果 利用以上药物进行治疗后,可明显消除假神经递质对儿茶酚胺的竞争性干扰,从而使

第8章 氨基酸代谢

第8章氨基酸代谢 ──形成性评价 一. 选择题 1. 生物体内大多数氨基酸脱去氨基生成α-酮酸是通过下面哪种作用完成的?( C )P202 A. 氧化脱氨基 B. 还原脱氨基 C. 联合脱氨基 D. 转氨基 E. 嘌嘌呤核苷酸循环 2. 下列哪一种氨基酸可以通过转氨基作用生成α-酮戊二酸?(A )P202 A. Glu B. Ala C. Asp D. Ser E. His 3. 以下对L-谷氨酸脱氢酶的描述,哪一项是错误的?( D )P199 A. 它催化的是氧化脱氨反应 B. 它的辅酶是NAD+或NADP+ C. 它和相应的转氨酶共同催化联合脱氨基作用 D. 它的辅酶是FMN或FAD E. 其催化的反应是可逆的 4. 下列氨基酸代谢可以产生一碳单位的是( B )P214 A. Pro B. Ser C. Glu D. Thr E. Ala 5. 鸟氨酸循环中,尿素生成需要的2分子氨,其中一分子来源于( C )P209 A. 鸟氨酸 B. 精氨酸 C. 天冬氨酸 D. 瓜氨酸 E. 以上都不是 6. L-谷氨酸脱氢酶的辅酶是(A )P199 A. NAD(P)+ B. FAD C. FMN D. CoA E. TPP 7. 血清中的AST活性异常升高,主要表示哪种器官的细胞损伤?(A )P201 A. 心肌细胞 B. 肝细胞 C. 肺细胞 D. 肾细胞 E. 脑细胞 8. 血清中的ALT活性异常升高,主要表示哪种器官的细胞损伤?( B )P201 A. 心肌细胞 B. 肝细胞 C. 肺细胞 D. 肾细胞 E. 脑细胞 9. 体内蛋白质分解代谢的最终产物是( C ) A. 氨基酸 B. 肽类 C. CO2、H2O和尿素 D. 氨基酸、胺类、尿酸 E. 肌酐、肌酸 10. 人体内氨基酸脱氨基的主要方式是(C )P202 A. 转氨基作用 B. 氧化脱氨基作用 C. 联合脱氨基作用 D. 还原脱氨 E. 嘌呤核苷酸循环脱氨基作用 11. 在下列氨基酸中,可通过转氨基作用生成草酰乙酸的是( C )P200 A. 丙氨酸 B. 谷氨酸 C. 天冬氨酸 D. 苏氨酸 E. 脯氨酸 12. 转氨酶的辅酶中含有的维生素是( E )P200 A. VitB12 B. VitB1 C. VitA D. VitD E. VitB6 13.人体内合成尿素的主要脏器是(D )P205 A. 脑 B. 肌组织 C. 肾 D. 肝 E. 心 14. 体内代谢过程中NH3的主要来源是( C )P205上 A. 肠道吸收 B. 肾脏产氨 C. 氨基酸脱氨基 D. 胺分解 E. 碱基分解 15. 体内氨的主要去路是(B )P205下图最大箭头指向 A. 合成谷氨酰胺 B. 合成尿素 C. 生成铵盐 D. 生成非必需氨基酸 E. 参与嘌呤、嘧啶合成 16. 脑中氨的主要去路是(C )P206中 A. 合成尿素 B. 扩散入血 C. 合成谷氨酰胺 D. 合成氨基酸 E. 合成嘌呤

氨基酸的代谢

一、氨基酸代谢的概况 ?重点、难点 ?第一节蛋白质的营养作用 ?第二节蛋白质的消化,吸取 ?第三节氨基酸的一般代谢 ?第四节个别氨基酸代谢 食物蛋白质经过消化吸收后进人体内的氨基酸称为外源性氨基酸。机体各组织的蛋白质分解生成的及机体合成的氨基酸称为内源性氨基酸。在血液和组织中分布的氨基酸称为氨基酸代谢库(aminoacidmetabolic pool)。各组织中氨基酸的分布不均匀。氨基酸的主要功能是合成蛋白质,也参与合成多肽及其它含氮的生理活性物质。除维生素外,体内的各种含氮物质几乎都可由氨基酸转变而来。氨基酸在体内代谢的基本情况概括如图。大部分氨基酸的分解代谢在肝脏进行,氨的解毒过程也主要在肝脏进行。 图8-2 氨基酸代谢库 二、氨基酸的脱氨基作用 脱氨基作用是指氨基酸在酶的催化下脱去氨基生成α—酮酸的过程,是体内氨基酸分解代谢的主要途径。脱氨基作用主要有氧化脱氨基、转氨基、联合脱氨基、嘌呤核苷酸循环和非氧化脱氨基作用。 (一)氧化脱氨基作用

氧化脱氨基作用是指在酶的催化下氨基酸在氧化的同时脱去氨基的过程。组织中有几种催化氨基酸氧化脱氨的酶,其中以L-谷氨酸脱氢酶最重要。L-氨基酸氧化酶与D-氨基酸氧化酶虽能催化氨基酸氧化脱氨,但对人体内氨基酸脱氨的意义不大。 1.L-谷氨酸氧化脱氨基作用由 L谷氨酸脱氢酶(L-glutamatedehydrogenase)催化谷氨酸氧化脱氨。谷氨酸脱氢使辅酶NAD+还原为NADH+H+并生成α-酮戊二酸和氨。谷氨酸脱氢酶的辅酶为NAD+。 谷氨酸脱氢酶广泛分布于肝、肾、脑等多种细胞中。此酶活性高、特异性强,是一种不需氧的脱氢酶。谷氨酸脱氢酶催化的反应是可逆的。其逆反应为α-酮戊二酸的还原氨基化,在体内营养非必需氨基酸合成过程中起着十分重要的作用。 (二)转氨基作用 转氨基作用:在转氨酶(transaminase ansaminase)的催化下,某一氨基酸的a-氨基转移到另一种a-酮酸的酮基上,生成相应的氨基酸;原来的氨基酸则转变成a-酮酸。转氨酶催化的反应是可逆的。因此,转氨基作用既属于氨基酸的分解过程,也可用于合成体内某些营养非必需氨基酸。 图8-4 转氨基作用 除赖氨酸、脯氨酸和羟脯氨酸外,体内大多数氨基酸可以参与转氨基作用。人体内有多种转氨酶分别催化特异氨基酸的转氨基反应,它们的活性高低不一。其中以谷丙转氨酶(glutamicpyruvic transaminase,GPT,又称ALT)和谷草转氨酶(glutamic oxaloacetictransaminase,GOT,又称AST)最为重要。它们催化下述反应。 转氨酶的分布很广,不同的组织器官中转氨酶活性高低不同,如心肌GOT最丰富,肝中则GPT最丰富。转氨酶为细胞内酶,血清中转氨酶活性极低。当病理改变引起细胞膜通透性增高、组织坏死或细胞破裂时,转氨酶大量释放,血清转氨酶活性明显增高。如急性肝炎病人血清GPT活性明显升高,心肌梗死病人血清GOT活性明显升高。这可用于相关疾病的临床诊断,也可作为观察疗效和预后的指标。 各种转氨酶的辅酶均为含维生素B6的磷酸吡哆醛或磷酸吡哆胺。它们在转氨基反应中起着氨基载体的作用。在转氨酶的催化下,α—氨基酸的氨基转移到磷酸吡哆醛分子上,生成磷酸吡哆胺和相应的α—酮酸;而磷酸吡哆胺又可将其氨基转移到另一α—酮酸分子上,生成磷酸吡哆醛和相应的α—氨基酸(图8—6),可使转氨基反应可逆进行。

氨基酸的保护

保护氨基酸:是指氨基酸的功能基团与其它基团反应而封闭了氨基酸功能基 团活性的氨基酸衍生物,都能叫保护氨基酸。包括a氨基和羧基,以及侧链功能基团。 氨基保护基的选择策略: 选择一个氨基保护基时,必须仔细考虑到所有的反应物,反应条件及所设计的反应过程中会涉及的底物中的官能团。 最好的是不保护. 若需要保护,选择最容易上和脱的保护基,当几个保护基需要同时被除去时,用相同的保护基来保护不同的官能团是非常有效。要选择性去除保护基时,就只能采用不同种类的保护基。 要对所有的反应官能团作出评估,确定哪些在所设定的反应条件下是不稳定并需要加以保护的,选择能和反应条件相匹配的氨基保护基。 还要从电子和立体的因素去考虑对保护的生成和去除速率的选择性 如果难以找到合适的保护基,要么适当调整反应路线使官能团不再需要保护或使原来在反应中会起反应的保护基成为稳定的;要么重新设计路线,看是否有可能应用前体官能团(如硝基等);或者设计出新的不需要保护基的合成路线。 Ⅰ氨基酸的保护基(保护羧基) (一)叔丁基tBu - (tert-butyl) ester 标准保护程序: 在N-保护的氨基酸的溶液中,加入DMAP(0.5当量)和叔丁醇(1.2当量)在干燥的DCM (DCM是一氧化二碳?),0℃在惰性气氛下,加入EDCI(1.1当量),并搅拌2小时。然后将混合物在室温下,搅拌直到TLC通过(通常是14小时),在真空下浓缩。将残余物再溶解在乙酸乙酯中,用水萃取两次,然后用饱和碳酸氢钠水溶液萃取两次。将有机溶液干燥(硫酸镁)并真空浓缩。如果必要将残留物通过快速色谱法(SiO)纯化。 脱保护: 将该化合物溶解在甲酸中在室温下搅拌直至反应完成(TLC通过)(通常是12小时)。然后将溶液浓缩,并重复加入甲苯浓缩数次。如有必要,可以将所得残余物通过快速色谱法(SiO)进行纯化。 (二)苄基Bn - (benzyl) ester 标准保护程序: 氨基酸在惰性气氛下搅拌用无水THF和O的苄基N,N'-diisopropylisourea(见文献进行合成)在室温下,直到完成通过TLC(通常为2天)。将混合物冷却至-20℃,并过滤。将滤液真空浓缩,并在必要时通过快速色谱法(SiO)纯化。 去除 氨基酸衍生物溶解在1:1的甲醇:叔丁醇和Pd(OH)2-C在氢气气氛下加入。将混合物搅拌,直到完全通过TLC(通常>3小时),然后过滤并浓缩。将所得残余物然后可以通过快

氨基酸代谢 重要知识点

蛋白质降解及氨基酸代谢 1、细胞内的蛋白质降解 (1)不依赖ATP的溶酶体途径,主要降解细胞通过胞吞作用摄取的外源蛋白、膜蛋白及长寿命的细胞内蛋白。在营养充足的细胞内没有选择性。饥饿细胞:选择性降解含有五肽Lys-Phe-Glu-Arg-Gln或相关的序列的胞内蛋白。 (2)依赖ATP的泛素途径,在胞质中进行,主要降解异常蛋白和短寿命蛋白(调节蛋白),此途径在不含溶酶体的红细胞中尤为重要。(选择性降解) 2、细胞内蛋白质降解的意义 (1)清除异常蛋白; (2)细胞对代谢进行调控的一种方式; (3)在需要时降解供肌体需要。 3、氨基酸的分解代谢主要在肝脏中进行。包括:脱氨基作用(最主要的反应)和脱羧基作用。 4、氧化脱氨基作用:α-氨基酸在酶的催化下氧化生成α-酮酸,此时消耗氧并产生氨。 5、L谷氨酸——α-酮戊二酸+ NH3 是L-Glu脱氢酶催化下的可逆反应,一般情况下偏向于谷氨酸的合成,因为高浓度氨对机体有害。L-谷氨酸脱氢酶为不需氧脱氢酶,辅酶为NAD+或NADP+,此酶为别构酶,此反应与能量代谢密切相关,ADP、GDP是其别构激活剂。

6、转氨基作用:指在转氨酶催化下将α-氨基酸的氨基转给另一个α-酮酸,结果原来的α-氨基酸生成相应的α-酮酸,而原来的α-酮酸则形成了相应的α-氨基酸。它是体内各种氨基酸脱氨基的主要形式,其逆反应也是体内生成非必需氨基酸的途径。 7、转氨酶种类很多:其中谷草转氨酶(GOT)在心脏中活力最大,其次为肝脏;谷丙转氨酶(GPT)在肝脏中活力最大,用于诊断肝功能。转氨酶的辅酶均为磷酸吡哆醛(VB6的磷酸酯)。 8、联合脱氨基作用:(1)转氨酶与L-谷氨酸脱氢酶作用相偶联:大多数转氨酶优先利用α-酮戊二酸作为氨基的受体,生成Glu,约占生物体的10%;(2)转氨基作用与嘌呤核苷酸循环相偶联:肝脏中90%谷氨酸经转氨基作用转化为天冬氨酸。 9、脱羧基作用:氨基酸经脱羧基作用生成伯胺类化合物和CO2。AA脱羧酶专一性很强,每一种AA都有一种脱羧酶,辅酶都是磷酸吡哆醛。AA脱羧反应广泛存在于动、植物和微生物中,有些产物具有重要生理功能。但大多数胺类对动物有毒。体内的胺氧化酶能将胺氧化为醛和氨,醛进一步氧化成脂肪酸。 10、NH3去向。(1)重新利用:合成AA、核酸。(2)贮存:高等植物将氨基氮以Gln和Asn的形式储存在体内。(3)排出体外:高等动物通过尿素循环在肝中将NH3生成尿素,通过肾脏排出体外。 11、尿素循环(鸟氨酸循环):在排尿动物体内由NH3合成尿素是在肝脏中通过一个循环机制完成的,这一个循环称为尿素循环。 过程:(1)NH3、CO2与鸟氨酸作用合成瓜氨酸;(2)瓜氨酸与天

氨基酸的代谢

一、选择题 1.转氨酶的辅酶是()。E A、NAD+ B、NADP+ C、FAD D、FMN E、磷酸吡哆醛 2. 氨的主要去路是()。A A、合成尿素 B、合成谷氨酰胺 C、合成丙氨酸 D、合成核苷酸 E、合成非必需氨基酸 3. 1mol尿素的合成需消耗ATP摩尔数是()。C A、2 B、3 C、4 D、5 E、6 4.有关鸟氨酸循环,下列说法哪一个是错的。()A A 循环作用部位是肝脏线粒体 B、氨基甲酰磷酸合成所需的酶存在于肝脏线粒体 C、尿素由精氨酸水解而得 D、每合成1mol尿素需消耗4molATP E、循环中产生的瓜氨酸不参与天然蛋白质合成 5.参与尿素循环的氨基酸是()。B A、蛋氨酸 B、鸟氨酸 C、脯氨酸 D、丝氨酸 E、丙氨酸 6. 一碳单位的载体是()。B A、二氢叶酸 B、四氢叶酸 C、生物素 D、焦磷酸硫胺素 E、硫辛酸 7 . 在鸟氨酸循环中,尿素有下列哪种物质水解而得。()C A、鸟氨酸 B、半胱氨酸 C、精氨酸 D、瓜氨酸 E、谷氨酸 8 . 参与转变作用的氨基酸是()。D A、Tyr B、Trp C、Glu D、Cys E、Ser 9. 人类营养必需氨基酸指()。A A、Val,Leu B、Trp,Pro C、Phe,Tyr D、Met,Cys E、Ser,Trp 10 .尿素循环与三羧酸循环是通过哪些中间产物的代谢连接起来的。()C A、Asp B 、草酰乙酸C、Asp和延胡索酸D、瓜氨酸E、Asp和瓜氨酸 11 .尿素循环中,能自由通过线粒体膜的物质是()。B A、氨基甲酰磷酸 B、鸟氨酸和瓜氨酸 C、精氨酸和延胡索酸 D、精氨酸和代琥珀酸 E、尿素和鸟氨酸 12 .联合脱氨作用所需的酶有()。B A、转氨酶和D-氨基酸氧化酶 B、转氨酶和L-谷氨酸脱氢酶 C、转氨酶和腺苷酸脱氢酶 D、腺苷酸脱氢酶和L-谷氨酸脱氢酶 E、以上都是 13. 不能脱下游离氨的氨基酸脱氨方式是()。B A、氧化脱氨基 B、转氨基 C、联合脱氨基 D、嘌呤核苷酸循环 E、以上都是 14. 能增加尿中酮体排出量的氨基酸是()。A A、Leu B、Gly C、His D、Ser E、Ala 15. 即增加尿中葡萄糖也增加尿中酮体的排出量的氨基酸是()。E A、Ile B、Trp C、Tyr D、Thr E、以上都是 16. 动物体内转氨酶的种类虽然很多,但就其辅酶来说仅有一种,即()。E A、磷酸 B、辅酶A C、辅酶Ⅰ D、辅酶Ⅱ E、磷酸吡哆醛

氨基酸的常见化学反应

-氨基的反应 亚硝酸反应 范围:可用于Aa定量和蛋白质水解程度的测定(Van slyke法) 注意:生成的氮气只有一半来自于Aa,ε氨基酸也可反应,速度较 慢. 与酰化试剂的反应 Aa+酰氯,酸酐-→Aa被酰基化 丹磺酰氯用于多肽链末端Aa的标记和微量Aa的定量测量.烃基化反应 Aa的氨基的一个氢原子可被羟基(包括环烃及其衍生物)取代. 与2,4-二硝基氟苯(DNFB,FDNB)反应 最早Sanger用来鉴定多肽或蛋白质的氨基末端的Aa 与苯异硫氰酸酯(PITC)的反应 Edman用于鉴定多肽或蛋白质的N末端Aa.在多肽和蛋白 质的Aa顺序分析方面占有重要地位( Edman降解法)形成西佛碱反应 Aa的α-NH2能与醛类化合物反应生成弱碱,即西佛碱(schiff ‘s base) 前述甲醛滴定:甲醛与H2N-CH2-COO-结合,有效地减低了后者的浓 度,所以对于加入任何量的碱, [H2N-CH2-COO- ]/ [+H3N-CH2-COO- ] 的比值总要比不存在甲醛的情况下小得多。加入甲醛的甘氨酸溶液 用标准盐酸滴定时,滴定曲线B并不发生改变。 脱氨基反应 Aa在生物体内经Aa氧化酶催化即脱去α-NH2而转变成酮酸 α-COOH参加的反应 成盐和成酯反应 Aa + 碱-→盐 Aa + NaOH -→氨基酸钠盐(重金属盐不溶于水) Aa-COOH + 醇-→酯 Aa+ EtOH ---→氨基酸乙酯的盐酸盐 当Aa的COOH变成甲酯,乙酯或钠盐后,COOH的化学反应性 能被掩蔽或者说COOH被保护,NH2的化学性能得到了加强或 活化,易与酰基结合。Aa酯是制备Aa的酰氨or酰肼的中间 物 成酰氯反应 当氨基酸的氨基用适当的保护基保护以后,其羧基可与二氯亚砜作 用生成酰氯 用于多肽人工合成中的羧基激活 叠氮反应 氨基酸的氨基通过酰化保护后,羧基经酯化转变为甲酯,然后与肼 和亚硝酸变成叠氮化合物

氨基酸的讲解

氨基酸的讲解 一、判断题 ()1.蛋白质的营养价值主要决定于氨基酸酸的组成和比例。 ()2.谷氨酸在转氨作用和使游离氨再利用方面都是重要分子。 ()3.氨甲酰磷酸可以合成尿素和嘌呤。 ()4.半胱氨酸和甲硫氨酸都是体内硫酸根的主要供体。 ()5.限制性蛋白水解酶的催化活性比非限制性的催化活性低。 ()6.磷酸吡哆醛只作为转氨酶的辅酶。 ()7.在动物体内,酪氨酸可以经羟化作用产生去甲肾上腺素和肾上腺素。 ()8.尿素的N原子分别来自谷氨酰胺和天冬氨酸。

()9.芳香族氨基酸都是通过莽草酸途径合成的。 ()10.丝氨酸能用乙醛酸为原料来合成。 二、选择题(单选题) 1.生物体内氨基酸脱氨基的主要方式为: A.氧化脱氨基B.还原脱氨基C.直接脱氨基D.转氨基E.联合脱氨基 2.成人体内氨的最主要代谢去路为: A.合成非必需氨基酸B.合成必需氨基酸C.合成NH4+随尿排出D.合成尿素E.合成嘌呤、嘧啶、核苷酸等 3.转氨酶的辅酶组分含有: A.泛酸B.吡哆醛(或吡哆胺)C.尼克酸D.核黄素E.硫胺素

4.GPT(ALT)活性最高的组织是: A.心肌B.脑C.骨骼肌D.肝E.肾 5.嘌呤核苷酸循环脱氨基作用主要在哪些组织中进行? A.肝B.肾C.脑D.肌肉E.肺 6.嘌呤核苷酸循环中由IMP生成AMP时,氨基来自: A.天冬氨酸的α-氨基B.氨基甲酰磷酸C.谷氨酸的α-氨基D.谷氨酰胺的酰胺基E.赖氨酸上的氨基 7.在尿素合成过程中,下列哪步反应需要ATP? A.鸟氨酸+氨基甲酰磷酸→瓜氨酸+磷酸B.瓜氨酸+天冬氨酸→精氨酸代琥珀酸 C.精氨酸代琥珀酸→精氨酸+延胡素酸D.精氨酸→鸟氨酸+尿素E.草酰乙酸+谷氨酸→天冬氨酸+α-酮戊二酸

生物化学知识实验一蛋白质和氨基酸的呈色反应.doc

实验一 蛋白质和氨基酸的呈色反应 一、目的要求 验证蛋白质特性;学习和掌握蛋白质呈色反应的原理和方法;学习几种常用 的鉴定蛋白质和氨基酸的方法。 二、实验原理 蛋白质中的某些化学键或氨基酸残基中的某些化学基团可以与某些特殊试 剂形成特定的有色物质。这些反应称为蛋白质的呈色反应。 各种蛋白质的氨基酸残基不完全相同。因此,呈色反应产物的颜色也不完全 一样。呈色反应不是蛋白质所特有,一些非蛋白物质也能呈现类似的呈色反应。因此,不能仅以呈色反应结果来判别被测物质是否为蛋白质。 三、呈色反应 双缩脲反应 1.原理 两分子尿素经加热至180°C 后可以缩合成一分子双缩脲,并放出一分子氨。 双缩脲在碱性溶液中与铜离子结合生成紫红色络合物,此反应称为双缩脲反应。 多肽及所有蛋白质均具有肽键,与双缩脲分子中亚酰胺键结构相同,也能发 生此反应,因此,蛋白质在碱性溶液中与铜离子也能呈现出类似于双缩脲的颜色反应。 2.器材与试剂 1)器材 试管、药匙、电炉、试管夹、滴管。 2)试剂 〈1〉蛋白质溶液(10%卵清蛋白溶液):吸取鸡蛋清溶液10ml ,加蒸馏水稀 释,定容至100ml 。 〈2〉10%氢氧化钠溶液。 〈3〉1%硫酸铜(CuSO4)溶液。 〈4〉0.1%甘氨酸(Gly)溶液:称0.1g 甘氨酸溶于蒸馏水中,稀释至100ml 。 〈5〉结晶尿素。 3.实验步骤 双缩脲反应实验 1234 尿素+ 加热后的尿素+ 蛋白质溶液/滴3 0.1%Gly/滴3 10%NaOH/滴5555 1%CuSO 4/滴1111 显色现象 试管 试剂/滴 (1)制备双缩脲:取结晶尿素少许(约火柴头大小),放入干燥的小试管中。 微火加热至尿素熔解至硬化,刚硬化时立即停止加热,尿素放出氨,此时双缩脲

不同种类氨基酸和糖的美拉德反应

1 美拉德反应概述 美拉德反应又称羰氨反应,指含有氨基的化合物和含有羰基的化合物之间经缩合、聚合而生成类黑精的反应。此反应最初是由法国化学家美拉德于1912年在将甘氨酸与葡萄糖混合共热时发现的,故称为美拉德反应。由于产物是棕色的,也被称为褐变反应。反应物中羰基化合物包括醛、酮、还原糖,氨基化合物包括氨基酸、蛋白质、胺、肽。反应的结果使食品颜色加深并赋予食品一定的风味,如:面包外皮的金黄色、红烧肉的褐色以及它们浓郁的香味。 和焦糖化反应(caramelization)相比,美拉德反应发生在较低的温度和较稀的溶液中。研究证明,美拉德反应的程度与温度、时间、系统中的组分、水的活度、以及pH有关。当美拉德反应温度提高或加热时间增加时,表现为色度增加,碳氮比、不饱和度、化学芳香性也随之增加。在单糖中,五碳糖(如核糖)比六碳糖(如葡萄糖)更容易反应;单糖比双糖(如乳糖)较容易反应;在所有的氨基酸中,赖氨酸(lysine)参与美拉德反应,可获得更深的色泽。而半胱氨酸(cysteine)反应,获得最浅的色泽。总之,富含赖氨酸蛋白质的食品,如奶蛋白易于产生褐变反应。糖类对氨基酸化合物的比例变化也会影响色素的发生量。例如,葡萄糖和甘氨酸体系,含水65%,于65℃储存时,当葡萄糖对甘氨酸比值从10:1或2:1减至1:1或1:5时,即甘氨酸比重大幅增加时,色素形成迅速增加。如果要防止食品中美拉德反应的生成,就必须除去其中之一,即除去高碳水化合物食物中的氨基酸化合物,或者高蛋白食品中的还原糖。在高水分活度的食品中,反应物稀释后分散于高水分活度的介质中,并不容易发生美拉德反应;在低水分活度的食品中,尽管反应物浓度增加,但反应物流动转移受限制。所以,美拉德反应在中等程度水分活度的食品中最容易发生,具有实用价值的是在干的和中等水分的食品中。pH对美拉德反应的影响并不十分明显。一般随着pH的升高,色泽相对加深。在糖类和甘氨酸系统中,不同糖品在不同pH时,色度产生依次为: pH<6时:木糖>果糖>葡萄糖>乳糖>麦芽糖; pH>6时:木糖>葡萄糖>果糖>乳糖>麦芽糖。 在日常生活中,也经常接触到美拉德反应。面食烘烤产生棕黄色和香味,就是面团中糖类和氨基酸或蛋白质反应的结果,这也是食用香料合成的途径之一。

氨基的保护及脱保护

经典化学合成反应标准操作氨基的保护及脱保护策略 编者:彭宪 药明康德新药开发有限公司化学合成部

目录 1.氨基的保护及脱保护概要 (2) 2.烷氧羰基类 2-1. 苄氧羰基(Cbz) (4) 2-2. 叔丁氧羰基(Boc)……………………………………………… 16 2-3. 笏甲氧羰基(Fmoc) (28) 2-4. 烯丙氧羰基(Alloc)………………………………………… 34 2-5. 三甲基硅乙氧羰基(Teoc)…………………………………… 36 2-6. 甲(或乙)氧羰基…………………………………………… 40 3.酰基类 3-1. 邻苯二甲酰基(Pht)…………………………………………… 43 3-2. 对甲苯磺酰基(Tos)………………………………………… 49 3-3. 三氟乙酰基(Tfa)………………………………………… 53 4.烷基类

4-1. 三苯甲基(Trt)……………………………………………… 57 4-2. 2,4-二甲氧基苄基(Dmb)…………………………………… 63 4-3. 对甲氧基苄基(PMB) (65) 4-4. 苄基(Bn) (70)

1.氨基的保护及脱保护概要 选择一个氨基保护基时,必须仔细考虑到所有的反应物,反应条件及所设计的反应过程中会涉及的所有官能团。首先,要对所有的反应官能团作出评估,确定哪些在所设定的反应条件下是不稳定并需要加以保护的,并在充分考虑保护基的性质的基础上,选择能和反应条件相匹配的氨基保护基。其次,当几个保护基需要同时被除去时,用相同的保护基来保护不同的官能团是非常有效(如苄基可保护羟基为醚,保护羧酸为酯,保护氨基为氨基甲酸酯)。要选择性去除保护基时,就只能采用不同种类的保护基(如一个Cbz保护的氨基可氢解除去,但对另一个Boc保护的氨基则是稳定的)。此外,还要从电子和立体的因素去考虑对保护的生成和去除速率的影响(如羧酸叔醇酯远比伯醇酯难以生成或除去)。最后,如果难以找到合适的保护基,要么适当调整反应路线使官能团不再需要保护或使原来在反应中会起反应的保护基成为稳定的;要么重新设计路线,看是否有可能应用前体官能团(如硝基,亚胺等);或者设计出新的不需要保护基的合成路线。 在合成反应中,伯胺、仲氨、咪唑、吡咯、吲哚和其他芳香氮杂环中的氨基往往是需要进行保护的。已经使用过的氨基保护基很多,但归纳起来,可以分为烷氧羰基、酰基和烷基三大类。烷氧羰基使用最多,因为N-烷氧羰基保护的氨基酸在接肽时不易发生消旋化。伯胺、仲氨、咪唑、吡咯、吲哚和其他芳香氮氢都可以选择合适的保护基进行保护。下表列举了几种代表性的常用的氨基保护基。

第五章 氨基酸代谢

第五章氨基酸代谢 1

讲授新课: 第五章氨基酸代谢 蛋白质是生物体最重要的大分子之一,是一切生命活动的物质基础。在生物体内,蛋白质不断地进行着分解和合成代谢,使物质得到有效分配和利用,使生命得到体现。 蛋白质的降解产物氨基酸,不仅能重新合成蛋白质,而且是许多重要生物分子的前体,例如:嘌呤、嘧啶、卟啉、某些维生素和激素等。当机体摄取的氨基酸过量时,氨基酸可以发生脱氨基作用,产生的酮酸可以通过糖异生途径转变为葡萄糖,也可以通过三羧酸循环氧化成二氧化碳和水,并为机体提供所需能量。 不同生物体利用氮源合成氨基酸的能力不同。脊椎动物不能合成全部20种蛋白质氨基酸。高等动物能利用铵离子合成氨基酸,但不能利用硝酸、亚硝酸和大气中的氮气。高等植物能合成全部蛋白质氨基酸,也能利用氨、硝酸和亚硝酸作为氮源,许多豆科植物还能通过共生关系利用大气中的氮气。微生物合成氨基酸及对氮源的利用能力差异很大,例如溶血链球菌需要17种氨基酸,大肠杆菌能合成全部蛋白质的氨基酸,固氮微生物能利用大气氮合成氨及氨基酸。 第一节蛋白质的酶促降解 人和动物要不断地从食物中摄取蛋白质,食物中蛋白质进入人体后,在消化道中经过一系列复杂的水解反应降解成氨基酸才能被组织利用。 在植物体内,特别是当种子萌发时,蛋白质发生强烈的降解作用,产生的氨基酸被重新利用形成幼苗中的蛋白质。可见蛋白质的酶促降解是生命活动的重要组成部分。1979年国际生化协会命名委员会将作用于肽键的酶归属于第三大类(水解酶类)第四亚类(EC 3. 4),而根据蛋白酶水解多肽的部位可分为蛋白酶和肽酶两个亚亚类。 一、蛋白酶 蛋白酶又称肽链内切酶,它可作用于肽链内部的肽键,生成长度较短的含氨基酸分子数较少的肽链。蛋白酶对不同氨基酸所形成的肽键有专一性。例如胰蛋白酶水解由碱性氨基酸的羧基所形成的肽键,胰凝乳蛋白酶水解由芳香族氨基酸的羧基所形成的肽键,而胃蛋白酶能迅速水解由芳香族氨基酸的氨基和其它氨基酸形成的肽键,也能较缓慢地水解其它一些氨基酸(如亮氨酸)和酸性氨基酸参与形成的肽键。根据蛋白酶的催化机理可将其分为4类(表5-1)。在生物体内,蛋白酶可将蛋白质水解为许多小的片段,但要彻底水解为氨基酸还需要肽酶的作用。 表5-1 蛋白酶的种类 编号名称作用特征例子 EC 3. 4. 21丝氨酸蛋白酶类 (serine proteinase)在活性中心含组氨酸和丝氨酸胰凝乳蛋白酶、胰蛋白酶、 凝血酶 EC 3. 4. 22硫醇蛋白酶类 (thiol proteinae)在活性中心含半胱氨酸木瓜蛋白酶、无花果蛋白 酶、菠萝蛋白酶 EC 3. 4. 23羧基(酸性)蛋白酶类 [carboxyl(acid)proteinase] 最适pH在5以下胃蛋白酶、凝乳酶 EC 3. 4. 24金属蛋白酶类 (metalloproteinase)含有催化活性所必需的金属枯草杆菌中性蛋白酶、脊椎 动物胶原酶 2

氨基酸的代谢概述

第三节氨基酸的一般代谢 一、氨基酸的来源与去路 (一)氨基酸的来源 1.食物蛋白质经消化被吸收的氨基酸 2.体内组织蛋白质的降解产生氨基酸 3.体内合成非必需氨基酸 (二)氨基酸去路 1.合成蛋白质和多肽 2.氨基酸分解代谢 3.转变成含氮化合物、嘌呤、嘧啶、肾上腺素等

二、氨基酸的分解代谢 (一)氨基酸的脱氨基作用 有4种: 氨基酸氧化脱氨基作用 转氨基作用 联合脱氨基作用 嘌呤核苷酸循环。

1.氨基酸氧化脱氨基作用 通式: 体内存在酶有3种: L-氨基酸氧化酶(animo aci oxideativese ) D-氨基酸氧化酶 L-谷氨酸脱氢酶(L-glutamate dehydrogenase ) R-CH-COOH NH 2 氨基酸氨基酸氧化酶 -2H R-C-COOH NH 亚氨酸H 2O NH 3R-C-COOH O -酮酸α

L-谷氨酸脱氢酶(L-glutamate dehydrogenase)

2.转氨基作用 ⑴转氨基作用的概念 在转氨酶的作用下,可逆地把氨基酸的α-氨基转移到另一种α-酮酸的酮基上,生成相应的氨基酸;原来的氨基酸则转变成α-酮酸(α-ketoacid)。故为转氨基作用。 氨基酸α-酮酸 COOH H2N H R1+ R2 + 转氨酶 C COOH H2N H C COOH R1 C O COOH R2 C O

⑵转氨基作用的特点: ①转氨酶(transaminase)。其辅酶为磷酸吡 哆醛,属于维生素B6。其作用机制: ②转氨基作用是合成非必需氨基酸的重要途径。 ③体内存在多种转氨酶。其中最重要的酶是: 谷丙转氨酶(glutamic pyruvic transaminase, GPT,又称ALT )和谷草转氨酶(glutamic oxaloacetic transaminase,GOT又称AST)。 ④转氨酶在体内广泛存在,但各组织中含量不等。 应用的意义:可作为临床上疾病诊断和预后 的指标之一。

氨基酸代谢习题

氨基酸代谢习题 (一)填空(42分) 1.氨基酸的降解反应包括()和()作用。 2.转氨酶和脱羧酶的辅酶通常是()。 3.谷氨酸经脱氨后产生()和氨,前者进入()进一步代谢。 4.尿素循环中产生的()和()两种氨基酸不是蛋白质氨基酸。 5.尿素分子中两个N原子,分别来自()和()。 6.氨基酸脱下氨的主要去路有()、()和()。 7.生物体中活性蛋氨酸是(),它是活泼()的供应者。 (二)选择题(24分) 1.转氨酶的辅酶是: A.NAD+ B.NADP+ C.FAD D.磷酸吡哆醛 2.参与尿素循环的氨基酸是: A.组氨酸B.鸟氨酸C.蛋氨酸D.赖氨酸 3.γ-氨基丁酸由哪种氨基酸脱羧而来: A.Gln B.His C.Glu D.Phe 4.L-谷氨酸脱氢酶的辅酶含有哪种维生素: A.维生素B1 B.维生素B2 C.泛酸D.维生素PP 5.在尿素循环中,尿素由下列哪种物质产生: A.鸟氨酸B.精氨酸C.瓜氨酸D.半胱氨酸 6.下列哪种氨基酸是其前体参入多肽后生成的: A.脯氨酸B.羟脯氨酸C.天冬氨酸D.异亮氨酸 7.组氨酸经过下列哪种作用生成组胺的: A.还原作用B.羟化作用C.转氨基作用D.脱羧基作用8.氨基酸脱下的氨基通常以哪种化合物的形式暂存和运输: A.尿素B.氨甲酰磷酸C.谷氨酰胺D.天冬酰胺 (三)是非判断题(15分) ()1.蛋白质的营养价值主要决定于必需氨基酸的组成和比例。 ()2.谷氨酸在转氨作用和使游离氨再利用方面都是重要分子。 ()3.氨甲酰磷酸可以合成尿素和嘌呤。

()4.磷酸吡哆醛只作为转氨酶的辅酶。 ()5.在动物体内,酪氨酸可以经羟化作用产生去甲肾上腺素和肾上腺素。(四)问答题(19分) 1.什么是尿素循环,有何生物学意义?(9分) 2.为什么说转氨基反应在氨基酸合成和降解过程中都起重要作用?(10分)

相关主题
文本预览
相关文档 最新文档