当前位置:文档之家› 单相半桥无源逆变器设计

单相半桥无源逆变器设计

单相半桥无源逆变器设计
单相半桥无源逆变器设计

电气与电子信息工程学院

计算机控制课程设计

设计题目:单相半桥无源逆变电路设计

专业班级:电气工程及其自动化2010(专升本)班

学号: 201020210128

姓名:朱勇

同组人:严康孙希凯

指导教师:南光群黄松柏

设计时间:2011/11/13~2011/11/21 设计地点:电力电子室

电力电子课程设计成绩评定表

姓名朱勇学号201020210128

课程设计题目:单相半桥无源逆变电路设计

课程设计答辩或质疑记录:

1、单相半桥无源逆变电路的原理是什么?

答:见图1.2。在一个周期内,电力晶体管T1和T2的基极信号各有半周正偏,半周反偏,且互补。若负载为阻感负载,设t2时刻以前,T1有驱动信号导通,T2截止。t2时刻关断的T1,同时给T2发出导通信号。由于感性负载中的电流i。不能立即改变方向,于是D2导通续流。t3时刻i。降至零,D2截止,T2导通,i。开始反向增大。在t4时刻关断T2,同时给T1发出导通信号,由于感性负载中的电流i。不能立即改变方向,D1先导通续流;t5时刻i。降至零,T1导通。

2、将直流电转换为交流电的电路称为逆变电路,根据交流电的用途可分为哪几类?答:有源逆变和无源逆变。

成绩评定依据:

课程设计考勤情况(20%):

课程设计答辩情况(30%):

完成设计任务及报告规范性(50%):

最终评定成绩(以优、良、中、及格、不及格评定)

指导教师签字:

2011年12 月20 日

《电力电子课程设计》课程设计任务书

2011 ~2012 学年第1学期

学生姓名:朱勇专业班级电气工程及其自动化2010专升本

指导教师:南光群、黄松柏工作部门:电气学院电气自动化教研室

一、课程设计题目:

1. 单相桥式晶闸管整流电路设计

2. 三相半波晶闸管整流电路设计

3. 三相桥式晶闸管整流电路设计

4. 降压斩波电路设计

5. 升压斩波电路设计

6. 单相半桥无源逆变电路设计

7. 单相桥式无源逆变电路设计

8. 单相交流调压电路设计

9. 三相桥式SPWM逆变器设计

二、课程设计内容

1. 根据具体设计课题的技术指标和给定条件,能独立而正确地进行方案论证和电路设计,要求概念清楚、方案合理、方法正确、步骤完整;

2. 学会查阅有关参考资料和手册,并能正确选择有关元器件和参数;

3. 编写设计说明书,参考毕业设计论文格式撰写设计报告(5000字以上)。

注:详细要求和技术指标见附录。

三、进度安排

1.时间安排

序号内容学时安排(天)

1 方案论证和系统设计 1

2 主电路设计 1

3 保护电路设计 1

4 驱动电路设计 1

5 设计答辩 1

合计 5

设计指导答辩地点:电力电子室

2.执行要求

电力电子课程设计共9个选题,每组不得超过6人,要求学生在教师的指导下,独力完成所设计的系统主电路、控制电路等详细的设计(包括计算和器件选型)。严禁抄袭,严禁两篇设计报告基本相同,甚至完全一样。

四、基本要求

(1)参考毕业设计论文要求的格式书写,所有的内容一律打印;

(2)报告内容包括设计过程、电路元件参数的计算、系统仿真结果及分析;

(3)要有完整的主电路原理图和控制电路原理图;

(4)列出主电路所用元器件的明细表。

(5)参考文献

五、课程设计考核办法与成绩评定

根据过程、报告、答辩等确定设计成绩,成绩分优、良、中、及格、不及格五等。

评定项目基本内涵分值

设计过程考勤、自行设计、按进度完成任务等情况20分

设计报告完成设计任务、报告规范性等情况50分

答辩回答问题情况30分

90~100分:优;80~89分:良;70~79分:中;60~69分,及格;60分以下:不及格

六、课程设计参考资料

[1]王兆安,黄俊.电力电子技术(第四版).北京:机械工业出版社,2001

[2]王文郁.电力电子技术应用电路.北京:机械工业出版社,2001

[3]李宏.电力电子设备用器件与集成电路应用指南.北京:机械工业出版社,2001

[4] 石玉、栗书贤、王文郁.电力电子技术题例与电路设计指导. 北京:机械工业出版社,1999

[5] 赵同贺等.新型开关电源典型电路设计与应用.北京:机械工业出版社,2010

指导教师:南光群、黄松柏

2011年10月8日

教研室主任签名:胡学芝

2011年10 月9日

摘要

电力电子技术的应用已深入到国家经济建设,交通运输,空间技术,国防现代化,医疗,环保和人们日常生活的各个领域。进入新世纪后电力电子技术的应用更加广泛。以计算机为核心的信息科学将是21世纪起主导作用的科学技术之一,有人预言,电力电子技术和运动控制一起,将和计算机技术共同成为未来科学的两大支柱。

电力电子技术是应用于电力领域的电子技术。具体地说,就是使用电力电子器件对电能进行变换和控制的技术。通常把电力电子技术分为电力电子制造技术和变流技术两个分支。

变流技术也称为电力电子器件的应用技术,它包括用电力电子器件构成各种电力变换电路和对这些电路进行控制的技术,以及由这些电路构成电路电子装置和电力电子系统的技术。“变流”不仅指交直流之间的交换,也包括直流变直流和交流变交流的变换。

如果没有晶闸管及电力晶体管等电力电子器件,也就没有电力电子技术,而电力电子技术主要用于电力变换。因此可以认为,电力电子器件的制造技术是电力电子技术的基础,而变流技术则是电力电子技术的核心。电力电子器件制造技术的理论基础是半导体物理,而变流技术的理论基础是电路理论。

将直流电转换为交流电的电路称为逆变电路,根据交流电的用途可分为有源逆变和无源逆变。

本课程设计主要介绍单相半桥无源逆变电路。

关键词:整流、无源逆变、晶闸管

Abstract

The application of power electronics technology has penetrated into the national economic construction, transportation, space technology, the modernization of national defense, medical, environmental protection and people in all areas of daily life. After entering the new century electric power electronic technology is used more and more widely. Take the computer as the core information science will be twenty-first Century played a dominant role in the science and technology one, somebody is fatidical, power electronics and motion control and computer technology together, will become the two pillars of the future science.

The power electronic technology is applied in power electronics technology. Specifically, is the use of power electronic devices for power conversion and control technology. Usually the power electronic technology is divided into power electronics manufacturing technology and variable flow technology in the two branch. Converter technology is also known as the application of power electronic devices technology, it involves the use of power electronic devices of various electric power conversion circuit and the circuit control technology, as well as by the circuit circuit, electronic device and power electronic systems technology. " Flow" refers not only to the exchange between the AC and DC, including DC DC and AC AC converter.

If there is no thyristor and power transistors and power electronic devices, there is no power electronic technology, power electronic technology is mainly used for power converter. It can therefore be considered, the power electronic device manufacturing technology is the power of electronic technology foundation, and converter technology is the core of power electronic technology. Manufacture technique of power electronic device is based on the theory of semiconductor physics, and converter technology is based on the theory of circuit theory.

Changing DC into AC circuit called the inverter circuit, according to current use can be divided into active and passive inverter inverter.

This course is designed to introduce a single-phase half-bridge passive inverter circuit.

Key words: passive inverter, rectifier, thyristor

目录

第一章系统方案设计 (1)

1.1 系统方案 (1)

1.2 系统工作原理 (1)

第二章硬件电路设计与参数计算 (3)

2.1 系统硬件连接图 (3)

2.2 整流电路设计方案 (3)

2.2.1 整流变压器的参数运算 (3)

2.2.2 整流变压器元件选择 (4)

2.3.3 整流电路保护元件的选用 (5)

2.2 驱动电路设计方案 (6)

2.2.1 IGBT驱动器的基本驱动性能 (6)

2.2.2 驱动电路 (7)

2.3触发电路设计方案 (8)

第三章 MATLAB仿真 (9)

3.1 建立仿真模型 (9)

3.2 仿真结果分析 (10)

小结 (11)

参考文献 (12)

附录一:元器件清单 (13)

第一章系统方案设计

1.1 系统方案

系统方案如图1.1所示,在电路原理框图中,交流电源、整流、滤波和半桥逆变电路四个部分构成电路的主电路,驱动电源和驱动电路两部分构成指挥主电路中逆变桥正确工作的控制电路。其中,交流电源、整流、滤波三个部分的功能分别由交流变压器、全桥整流模块和两个串联的电解电容实现;

半桥逆变电路由半桥逆变和缓冲电路构成; 而驱动电源和驱动电路则需要根据实验电路的要求进行搭建。

图1.1 电路原理图

1.2 系统工作原理

图1.2 电压型半桥逆变电路及其电压电流波形

在一个周期内,电力晶体管T1和T2的基极信号各有半周正偏,半周反偏,

且互补。

若负载为阻感负载,设t2时刻以前,T1有驱动信号导通,T2截止,则

2

U U d

0=

。 t2时刻关断的T1,同时给T2发出导通信号。由于感性负载中的电流i 。

不能立即改变方向,于是D2导通续流,2

U U d

0-

= 。 t3时刻i 。降至零,D2截止,T2导通,i 。开始反向增大,此时仍然有

2

U U d

0-

=。 在t4时刻关断T2,同时给T1发出导通信号,由于感性负载中的电流i 。

不能立即改变方向,D1先导通续流,此时仍然有2

U U d

0=

; t5时刻 i 。降至零, T1导通,2

U U d

0=。

第二章 硬件电路设计与参数计算

2.1 系统硬件连接图

单相半桥无源逆变主电路如图2.1所示

图2.1单相半桥无源逆变主电路

2.2 整流电路设计方案

2.2.1 整流变压器的参数运算 1)变压器二次侧电压2U 的计算

2U 是一个重要的参数,选择过低就会无法保证输出额定电压。选择过大又

会造成延迟角α加大,功率因数变坏,整流元件的耐压升高,增加了装置的成本。

根据设计要求,采用公式:

()

B

A U U d

ε2.1~12= 由表查得 A=2.34;取ε=0.9;α角考虑10°裕量,则 B=cos α=0.985

()V U 150~125985.09.09.0100

2.1~12=??=

取2U =140V 。

电压比K=1U /2U =220/140=1.57。

2 )一次、二次电流1I 、2I 的计算

由R U P 20= 2

U U d 0=得Ω===

16.715050P U R 2

20 3A 16.7

50R U I 00===

A 632I 2I I 0d 2=?===

A 82.357

.16K I I 21===

考虑空载电流 取 A 4A 82.305.1I 1=?= 3)变压器容量的计算

V A 880A 4V 220111=?==I U S ;

V A 840A 6V 140222=?==I U S ; VA 860VA 8408802

1

)(2121=+=+=

)(S S S ;

2.2.2 整流变压器元件选择 1) 整流元件选择

二极管承受最大反向电压197V 140V 2U 2U 2DM =?==,考虑三倍裕量,则594V 197V 3U TN =?=,取600V 。该电路整流输出接有大电容,而且负载为纯电阻性负载,所以简化计算得

A A I d D 362

1

21I d =?==

A I d D 24.42

1I ==

A A I I D AV D 8.1457

.024

.4257.1)

2~5.1()(=?== 取15A 。 故选ZP-15A 整流二极管4只,并配15A 散热器。

2) 滤波电容的选择

滤波电容0C 一般根据放电时间常数计算,负载越大,要求纹波系数越小,电

容量越大。一般不作严格计算,多取2000F μ以上。因该系统负载不大,故取

0C =2200F μ

耐压按 ,234V V 1565.11.5U DM =?=取250V 。 即选用2200F μ、250V 电容器。 3) IGBT 的选择

V 502U U d

0==

,取3倍裕量,选耐压为150以上的IGBT 。由于IGBT

是以最大值标注,且稳定电流与峰值电流间大致为4倍关系,故应选用大于4倍额定负载电流的IGBT 为宜。为此选用1MBH50-090型IGBT 。其续流二极管选择与之配套的快速恢复二极管EDR60-100。Cl 、C2为3300uF 电解电容

2.3.3 整流电路保护元件的选用 1)变压器二次侧熔断器选择

由于变压器最大二次电流A 6I 2=,故选用10A 熔芯即可满足要求。应选用15A 、250V 熔断器。

2) IGBT 保护电路的选择

1电容s C 的选择 一般按布线电感磁场能量全部转化为电场能能量估算。即

2211()22

b o s cep o L I C U U =- 得22

()

b o s cep o L I C U U ≥- 这里取o I 为电路电压o I =3A ;为电感值b L =L =14.7mH; cep U 为保证保护可靠, 可取稍低于IGBT 耐压值为宜,这里取200V 进行计算;取V 50U 0=;

则2

2

()b o s cep o L I C U U ≥-=0.0588uF 取uF 06.0C s =,耐压300V 。

○2缓冲电阻s

R 的计算

要求IGBT 关断信号到来之前,将缓冲电容器所积蓄的电荷放完,以关

断信号之前放电90%为条件,其计算公式如下;

1

6s s

R fC ≤

,有Ω=k 5R s 。 ○

3缓冲电路二极管s VD 因为s VD 用于高频电路中,故应选用快速恢复二极管,以保证IGBT 导

通时很快关断。

s VD 电流额定可按IGBT 通过电流的0.1试选,然后调试决定。

图2.2 IGBT 保护电路

2.2 驱动电路设计方案

2.2.1 IGBT 驱动器的基本驱动性能

l 动态驱动能力强,能为IGBT 栅极提供具有陡峭前后沿的驱动脉冲。当IGBT 在硬开关方式下工作时,会在开通及关断过程中产生较人的损耗。这个过程越长,开关损耗越大。器件工作频率较高时,开关损耗会大大超过IGBT 通态损耗,造成管芯温升较高。这种情况会大大限制IGBT 的开关频率和输出能力,同时对IGBT 的安全工作构成很大威胁。IGBT 的开关速度与其栅极控制信号的变化速度密切相关。IGBT 的栅源特性显非线性电容性质,因此驱动器须具有足够的瞬时电流吞吐能力,才能使IGBT 栅源电压建立或消失得足够快,从而使开关损耗降至较低的水平。另一方面,驱动器内阻也小能过小,以免驱动回路的杂散电感与栅极电容形成欠阻尼振荡。同时,过短的开关时间也会造成回路过高的电流尖峰,这既对主回路安全不利,也容易在控制电路中造成干扰。

○2能向IGBT提供适当的正向栅乐。IGBT导通肝的管压降与所加栅源电压

有关,在集射电流一定的情况下,Vge越高,Vce越低,器件的导通损耗就越小,这有利于充分发挥管子的工作能力。但是,Vge井非越高越好,Vge过大,负载短路时Ic增大,IL.BT能承受短路电流的时间减少,对安全不利,一但发生过流或短路,栅压越高,则电流幅值越高,IGBT损坏的可能性就越大。因此,在有短路程的设备中Vge应选小些,一般选12~15V。

○3在关断过程中,为尽快抽取PNP管中的存储电荷,能向IGBT提供足够的反向栅压。考虑到在IGBT关断期间,由于电路中其他部分的工作,会在栅极电路中产生一些高频振荡信号,这些信号轻则会使本该截止的IGBT处于微通状态,增加管了的功耗,重则将使裂变电路处于短路直通状态,因此,最好给应处于截止状态的IGBT加一反向栅压(5~15V),使IGBT在栅极出现开关噪声时仍能可靠截止。

○4有足够的输入输出电隔离能力。在许多设备中,IGBT与工频电网有直接电联系,而控制电路一般不希望如此。另外,许多电路中的IGBT的工作电位差别很大,也不允许控制电路与其直接藕合。因此驱动器具有电隔离能力可以保证设备的正常工作,也有利于维修调试人员的人身安全。但这种电隔离不应影响驱动信譬的正常传输。

○5具有栅压限幅电路,保护栅极不被击穿。IGBT栅极极眼电压一般为±20V,驱动信号超出此范围就可能破坏栅极。

○6输入输出信号传输无延时。这小仪能够减少系统响应滞后,而且能提高保护的快速性。

○7人电感负载下,IGBT的开关时间不能过分短,以限制di/dt所形成的

尖峰电压,保证IGBT的安全。

2.2.2 驱动电路

IGBT的驱动电路如图4,此IGBT门极驱动电路采用了光耦合器使信号电

V IGBT导通。光电耦路与门极驱动电路相隔离。当光电耦合器导通时,V截止,

1

V导通,IGBT截止。

合器截止,V导通,

2

图2.3 IGBT驱动电路图

2.3触发电路设计方案

控制电路需要实现的功能是产生PWM信号,用于可控制电路中主功率器件的通断,通过对占空比α的调节,达到控制输出电压大小的目的。此外,控制电路还具有一定的保护功能。

被实验装置的控制电路采用控制芯片SG3525为核心组成。芯片的输入电压为8V到35V。它的振荡频率可在100HZ到500KHZ的范围内调节。在芯片的CT 端和放电端间串联一个电阻可以在较大范围内调节死区时间。此外此外,其软起动电路非常容易设计,只需外部接一个软起动电容即可。

图2.4 触发电路图

第三章MATLAB仿真

MATLAB软件语言系统是当今流行的第四代计算机语言,由于它在科学计算、数据分析、系统建模与仿真、图形图像处理等不同领域的广泛应用以及自身的独特优势,目前MATLAB受到个研究领域的推崇和关注。

本文也采用MATLAB软件对研究结果经行仿真,以验证结果是否正确。

3.1 建立仿真模型

建立仿真模型的步骤:

①建立主电路的仿真模型

②构造控制部分

③完成波形观测及分析部分

最终完成仿真模型如图7所示:

图3.1 单相半桥无源逆变电路仿真模型

3.2 仿真结果分析

将仿真时间设为0.00s,选择ode113的仿真算法,将绝对误差设为1e-5,运行后可得仿真结果。

如图8所示自上而下分别为逆变器输出的交流电压、电流和直流侧电流波形。交流电压为100V的方波电压,周期与驱动信号同为1kHz。由于负载为纯电阻负载,则直流电流无波动。

图3.2 单相半桥无源逆变电路仿真波形

小结

通过此次课程设计,使我更加扎实的掌握了有关电力电子方面的知识,在设计过程中虽然遇到了一些问题,但经过一次又一次的思考,一遍又一遍的检查终于找出了原因所在,也暴露出了前期我在这方面的知识欠缺和经验不足。实践出真知,通过亲自动手制作,使我们掌握的知识不再是纸上谈兵。

过而能改,善莫大焉。在课程设计过程中,我们不断发现错误,不断改正,不断领悟,不断获取。最终的检测调试环节,本身就是在践行“过而能改,善莫大焉”的知行观。这次课程设计终于顺利完成了,在设计中遇到了很多问题,最后在老师的指导下,终于游逆而解。在今后社会的发展和学习实践过程中,一定要不懈努力,不能遇到问题就想到要退缩,一定要不厌其烦的发现问题所在,然后一一进行解决,只有这样,才能成功的做成想做的事,才能在今后的道路上劈荆斩棘,而不是知难而退,那样永远不可能收获成功,收获喜悦,也永远不可能得到社会及他人对你的认可!

实验过程中,也对团队精神的进行了考察,让我们在合作起来更加默契,在成功后一起体会喜悦的心情。果然是团结就是力量,只有互相之间默契融洽的配合才能换来最终完美的结果。

此次设计也让我明白了思路即出路,有什么不懂不明白的地方要及时请教或上网查询,要认真钻研,动脑思考,动手实践,就没有弄不懂的知识,收获颇丰。

参考文献

[1]王兆安,刘进军,电力电子技术,机械工业出版社,2009.5

[2]王兴贵,陈伟,现代电力电子技术(M), 机械工业出版社2010

[3]电力电子技术计算机仿真实验(M),机械工业出版社2006

[4]李维波,MATLAB在电气工程中的应用,中国电力出版社,2007

[5]汤才刚,朱红涛,李莉,陈国桥,基于PWM的逆变电路分析,《现代电子技术》2008年第1期总第264期。

[6]王文郁.电力电子技术应用电路.北京:机械工业出版社,2001

[7]李宏.电力电子设备用器件与集成电路应用指南.北京:机械工业出版社,2001

[8]石玉、栗书贤、王文郁.电力电子技术题例与电路设计指导. 北京:机械工业出版社,1999

[9]赵同贺等.新型开关电源典型电路设计与应用.北京:机械工业出版社,2010

附录一:元器件清单

元器件明细表

序号元器件型号个数

1 IGBT 1MBH50-090 2

2 整流二极管ZP-15A 4

3 续流二极管EDR60-100 2

4 熔断器RLS-15A 1

5 滤波电容 1

C 2

6 缓冲电容

s

R 2 7 缓冲电阻

s

VD 2 8 缓冲二极管

s

大学毕设论文__单相正弦波逆变电源的设计

第1章概述 任何电子设备都离不开可靠的电源,它们对电源的要求也越来越高。电子设备的小型化和低成本化使电源以轻、薄、小和高效率为发展方向。传统的晶体管串联调整正弦波逆变电源是连续控制的线性正弦波逆变电源。这种传统正弦波逆变电源技术比较成熟,并且已有大量集成化的线性正弦波逆变电源模块,具有稳定性能好、输出纹波电压小、使用可靠等优点、但其通常都需要体积大且笨重的工频变压器与体积和重量都不得和很大的滤波器。由于调整管工作在线性放大状态,为了保证输出电压稳定,其集电极与发射极之间必须承受较大的电压差,导致调整管功耗较大,电源效率很低,一般只有45%左右。另外,由于调整管上消耗较大的功率,所以需要采用大功率调节器整管并装有体积很大的散热器,很难满足现代电子设备发展的要求。在近半个多世纪的发展过程中,正弦波逆变电源因具有体积小、重量轻、效率高、发热量低、性能稳定等优点而逐渐取代传统技术制造的连续工作电源,并广泛的应用,正弦波逆变电源技术进入快速发展期。 正弦波逆变电源采用功率半导体器件作为开关,通过控制开关的占空比调整输出电压。它的功耗小,效率高,正弦波逆变电源直接对电网电压进行整流、滤波、调整,然后由开关调整管进行稳压,不需要电源变压器,此外,开关工作频率为几十千赫,滤波电容器、电感器数值较小。因此正弦波逆变电源具有重量轻、体积小等优点。另外,于功耗小,机内温升低,提高了整机的稳定性和可靠性。而且其对电网的适应能力也有较大的提高,一般串联稳压电源允许电网波动范围为220V±10%,而正弦波逆变电源在电网电压在110~260V范围变化时,都可获得稳定的输出阻抗电压。正弦波逆变电源的高频化是电源技术发展的创新技术,高频化带来的效益是使正弦波逆变电源装置空前的小型化,并使正弦波逆变电源进入更广泛的领域,特别是在高新技术领域的应用,扒动了高新技术产品的小型化、轻便化。另外正弦波逆变电源的发展与应用在节约资源及保护环境方面都具

PWM 控制的单相逆变电路的设计及其研究

电力电子技术课程设计 班级 学号 姓名 电气工程及其自动化 二零一五年一月

目录 1 绪论 (2) 1.1 电力电子简介 (2) 1.2 课程设计的目的与要求 (2) 1.3 课程设计题目 (3) 1.4 仿真软件的使用 (3) 2 工作原理 (4) 2.1 逆变电路原理 (4) 2.1.1 电压型逆变电路 (4) 2.1.2 电流型逆变电路 (6) 2.2单相桥式PWM逆变电路的基本原理 (10) 2.2.1 单极调制法 (11) 2.2.2 双极调制法 (12) 3 电路的设计过程 (13) 3.1 逆变控制电路的设计 (13) 3.2 正弦波输出变压变频电源调制方式 (14) 3.2.1 正弦脉宽调制技术 (14) 3.2.2单极性调制方式 (15) 3.2.3 双极性调制方式 (15) 3.2.4 单极性倍频调制方式 (15) 3.3 3种调制方式下逆变器输出电压谐波分析 (16) 4 仿真实验与结果 (17) 4.1 单相桥式PWM逆变主电路原理图 (17) 4.2 仿真所得波形 (17) 5 仿真结果分析 (19) 6 心得体会 (20) 7 参考文献 (21)

1 绪论 1.1 电力电子简介 随着电力电子技术的飞速发展,正弦波输出变压变频电源已被广泛应用在各个领域中,与此同时对变压变频电源的输出电压波形质量也提出了越来越高的要求。对逆变器输出波形质量的要求主要包括两个方面:一是稳态精度高;二是动态性能好。因此,研究开发既简单又具有优良动、静态性能的逆变器控制策略,已成为电力电子领域的研究热点之一。电力电子器件的发展经历了晶闸管(SCR)、可关断晶闸管(GTO)、晶体管(BJT)、绝缘栅晶体管(IGBT)等阶段。目前正向着大容量、高频率、易驱动、低损耗、模块化、复合化方向发展,与其他电力电子器件相比,IGBT具有高可靠性、驱动简单、保护容易、不用缓冲电路和开关频率高等特点,为了达到这些高性能,采用了许多用于集成电路的工艺技术,如外延技术、离子注入、精细光刻等。IGBT最大的优点是无论在导通状态还是短路状态都可以承受电流冲击。它的并联不成问题,由于本身的关断延迟很短,其串联也容易。尽管IGBT模块在大功率应用中非常广泛,但其有限的负载循环次数使其可靠性成了问题,其主要失效机理是阴极引线焊点开路和焊点较低的疲劳强度,另外绝缘材料的缺陷也是一个问题。在现有的正弦波输出变压变频电源产品中,为了得到SPWM波,一般都采用双极性调制技术。该调制方法的最大缺点是它的4个功率管都工作在较高频率(载波频率),从而产生了较大的开关损耗,开关频率越高,损耗越大。本次课程设计研究单相桥式PWM逆变电路,通过该电路实现逆变电源变压、变频输出。 1.2 课程设计的目的与要求 1. 进一步熟悉和掌握电力电子原器件的特性; 2. 进一步熟悉和掌握电力电子电路的拓扑结构和工作原理; 3. 掌握电力电子电路设计的基本方法和技术,掌握有关电路参数的计算方 法;

单相正弦波变频电源自动化毕业设计(论文)

单相正弦波变频电源 摘要:本设计是通过模拟和数字的方法来产生SPWM信号。采用89C51单片机产生正弦波基波,采用NE555芯片产生高度线性等腰三角波载波。基波和载波通过高速电压比较器LM311比较产生与之对应的SPWM驱动信号。SPWM驱动信号经整形电路、死区电路、驱动功放隔离电路完成对全桥场效应管的开通和关断,从而完成将直流电压逆变成所需频率的正弦交流电。而调压电路采用前级DC-DC独立调压来实现,实现直流稳压。改变单片机正弦波输出频率来实现逆变输出SPWM 交流调频的功能。采用芯片AD637对输出电压、电流进行真有效值变换,经A/DTLC549变换后送单片机处理,实时对逆变输出进行监控,保证输出电压的稳定性。输出电压波形为正弦波,输出频率可变,能够测量和显示电源输出电压、电流、具有过流保护、过压保护电路、空载报警电路等。同时基于UC3845多路隔离反击式开关电源为系统供电。 在研究和设计的基础上制作了样机,完成了大部分的调试工作,达到了预期的目的。 关键词:升压;场效应管;检测电路;逆变

Abstract:The SPWM signal is produced by the way of analog and digita in the design.The fundamental wave is produced by 89C51 chip,and the sine t riangle carrier wave is produced by NE555 chip.SPWM drive signal is generated by the high-speed voltage comparator LM311. The turn-on and turn-off of mosfet are controlled by SPWM drive signal from the shaping circuit, the dead zone circuit, the power am plifier circuit to bring out the required frequency of the sinusoidal alternating current in DC/AC convertion.The voltage regulating circuit uses DC-DC independent voltage regulating to realize, Change the frequence of the sine wave that is the output of the MCU will realize the function of inverse output SPWM AC frequency modulation .Use AD637 to complete voltage and current true effective value transform and then send the result to A/DTLC549. Through AD exchange the output will be send to the MCU to be processed,according to the result to monitor the inverse output and to ensure the stability of the output voltage. The waveform of the output voltage is sine-wave,its frequence can be changed.The voltage and current of the Power source can be e over-current and over-voltage protection circuit, an o-load alarm circuit and smeasured and the result can be displayed on the LCD.The power source include tho on. At the same time use multi-channel isolate Counter type switch power as system power supply. On the basis of research and design,a prototype of principle is produced.the most of debugging of the whole system is completed. Keyword:boost;mosfet;detection circuit;inverter

单相逆变器的软件设计

单相逆变器的软件设计

摘要 随着电力电子技术的迅猛发展,逆变技术广泛应用于航空、航海等国防领域和电力系统,交通运输、邮电通信、工业控制等民用领域。特别是随着石油、煤和天然气等主要能源日益紧张,新能源的开发和利用越来越受到人们的重视。利用新能源的关键技术--逆变技术,能将蓄电池、太阳能电池和燃料电池等其他新能源转化的直流电能变换成交流电能与电网并网发电。因此,逆变技术在新能源的开发和利用领域有着至关重要的地位。理论联系实际,将书本上所学到的知识与实际设计结合起来,学习电力电子基本理论,掌握单相电压型逆变器的工作原理和SPWM原理,并进行详细的设计分析,掌握其控制方式及在电力系统中的重要作用。 关键词:逆变技术,单相电压型逆变器,SPWM原理

ABSTRACT With the rapid development of power electronics technology, the inverter technology is widely used in aviation, navigation and other fields of national defense and the electric power system, transportation, telecommunications, industrial control and other civilian areas. Especially with the oil, coal and natural gas and other major energy shortage, the development and utilization of new energy has been paid more and more attention. The key technology of new energy, inverter technology, the battery, DC can be converted into AC power grid connected power generation solar cell and fuel cell and other new energy conversion. Therefore, inverter technology plays a very important role in the field of new energy development and utilization. The theory with practice, apply on the books knowledge and practical design combine learning power electronics basic theory, master the working principle and the principle of SPWM single-phase voltage type inverter, and design a detailed analysis, palm Hold the control mode and the important role in the power system. Keywords: Inverter technology ,Single phase voltage source inverter ,SPWM principle

单相半桥无源逆变器设计

电气与电子信息工程学院计算机控制课程设计

单相半桥无源逆变电路设计设计题目:(专升本)班专业班级:电气工程及其自动化2010 学号: 2 勇姓名:朱 组人:严康孙希凯同黄松柏指导教师:南光群 2011/11/21 设计时间:2011/11/13~ 电力电子室设计地点:课程设计成绩评定表电力电子 学勇 2 姓名朱单相半桥无源逆变电路设计课程设计题 26 / 1

26 / 2 指导教师签字: 日20 12 月2011年 《电力电子课程设计》课程设计任务书 1学期2012 学年第~2011 2010电气工程及其自动化勇专业班级学生姓名:朱

专升本 工作部门:电气学院电气自动化教指导教师:南光群、黄松柏研室 一、课程设计题目: 单相桥式晶闸管整流电路设计1. 2. 三相半波晶闸管整流电路设计 3. 三相桥式晶闸管整流电路设计降压斩波电路设计 4. 升压斩波电路设计5. 单相半桥无源逆变电路设计6. 7. 单相桥式无源逆变电路设计单相交流调压电路设计8. 逆变器设计SPWM9. 三相桥式26 / 3 二、课程设计内容 1. 根据具体设计课题的技术指标和给定条件,能独立而正确地进行方案论证和电路设计,要求概念清楚、方案合理、方法正确、步骤完整; 2. 学会查阅有关参考资料和手册,并能正确选择有关元器件和参数; 3. 编写设计说明书,参考毕业设计论文格式撰写设计报告(5000字以上)。

注:详细要求和技术指标见附录。 三、进度安排 1.时间安排 .执行要求2电力电子课程设计共9个选题,每组不得超过6人,要求学生在教师的指导下,独力完成所设计的系统主电路、控制电路等详细的设计(包括计算和器件选型)。严禁抄袭,严禁两篇设计报告基本相同,甚至完全一样。 四、基本要求 (1)参考毕业设计论文要求的格式书写,所有的内容一律打印;

(完整版)单相光伏并网逆变器的研究40本科毕业设计41

单相光伏并网逆变器的研究

轮机工程学院

摘要 能源危机和环境问题的不断加剧,推动了清洁能源的发展进程。太阳能作为一种清洁无污染且可大规模开发利用的可再生能源,具有广阔应用前景。并且伴随“智能电网”理论的兴起,分布式电力系统正日益受到关注,光伏逆变系统作为分布式电力系统的一种重要形式,使得对该领域的研究具有重要的理论与现实意义。 论文在分析光伏逆变系统发展现状与研究热点的基础上,探讨了光伏逆变系统的主要关键技术,对直接影响光伏逆变系统的工作效率以及工作状态的最大功率点跟踪控制、光伏逆变器控制等技术进行了详细研究。 为研究光伏逆变系统,本文建立了一套完整的光伏逆变系统模型,主要包括光伏电池模块,前级DCDC变换器,后级DCAC逆变器,以及相应的控制模块。为了提高系统模型的准确性及稳定性,论文设计了一种输出电压随温度光照改变的光伏电池模型,提出了一种基于Boost 升压变换器的最大功率点跟踪(MPPT)控制策略,并且将正弦脉冲宽度调制技术(SPWM)应用于逆变器控制。最后在MatlabSimulink软件环境下搭建了光伏逆变系统的整体模型,完成系统性的实验验证。 经过仿真实验验证,所提出的光伏逆变系统设计方案正确可行,且输出达到了设计要求,为进一步实现并网功能提供了条件,具有较高的实用参考价值。 关键词:光伏电池;最大功率点跟踪;光伏逆变系统;正弦脉冲调制技术

ABSTRACT With intensify of the energy crisis and environmental problems, the development of clean energy . The solar energy because of its friendly-environmental advantage and renewable property. With the proposition of the Smart Grid, Distributed Power System . As an important form of Distributed Power System, photovoltaic inverter system is the key of the research in this field. This paper discusses the key techniques of photovoltaic inverter system on the basis of analysis of development and research techniques such as maximum power point tracking (MPPT) which work efficiency and work condition and technology of PV inverter. In order to research PV inverter system, this paper builds an integral model, including PV battery model and DCDC converter and DCAC single phase inverter as well as corresponding control models. In order to improve the validity and the stability of the system, the paper

电压型单相全桥逆变电路

1.引言 逆变电路所谓逆变,就是与整流相反,把直流电转换成某一固定频率或可变频率的交流电(DC/AC)的过程。 当把转换后的交流电直接回送电网,即交流侧接入交流电源时,称为有源逆变;而当把转换后的交流电直接供给负载时,则称为无源逆变。通常所讲的逆变电路,若不加说明,一般都是指无源逆变电路。 1. 电压型逆变器的原理图 当开关S1、S4闭合,S2、S3断开时,负载电压u o为正;当开关S1、S4断开,S2、S3闭合时,u o为负,如此交替进行下去,就在负载上得到了由直流电变换的交流电,u o的波形如图7.4(b)所示。输出交流电的频率与两组开关的切换频率成正比。这样就 t (b) (a) u o t3 t2 t1 i o u o Z u o i o U d _ + S3 S2S 4 S1

实现了直流电到交流电的逆变。 2. 电压型单相全桥逆变电路 它共有4个桥臂,可以看成由两个半桥电路组合而成。 两对桥臂交替导通180°。 输出电压和电流波形与半桥电路形状相同,幅值高出一倍。 改变输出交流电压的有效值只能通过改变直流电压U d来实现。 输出电压定量分析 u o成傅里叶级数 基波幅值 基波有效值 ? ? ? ? ? + + + = t t t U uω ω ω π 5 sin 5 1 3 sin 3 1 sin 4 d o d d o1m 27 .1 4 U U U= = π d d 1o 9.0 2 2 U U U= = π

当u o为正负各180°时,要改变输出电压有效值只能改变U d 来实现 可采用移相方式调节逆变电路的输出电压,称为移相调压。 各栅极信号为180o正偏,180o反偏,且T1和T2互补,T3和T4互补关系不变。T3的基极信号只比T1落后q ( 0

小功率单相逆变电源毕业设计

德州职业技术学院 毕业设计(论文) (2012届毕业生) 题目小功率单相逆变电源的设计制作 指导教师张洪宝 系部电子与新能源工程技术系 专业应用电子技术 班级09级应用电子技术 学号 200902050124 姓名张艳霞 2011年 9月 19 日至 2011年 11月 18日共 9 周

该设计主要应用电力电子电路技术和开关电源电路技术有关知识。涉及模拟集成电路、电源集成电路、直流稳压电路、开关稳压电路等原理,充分运用芯片KA7500B的固定频率脉冲宽度调制电路及场效应管(N沟道增强型MOSFET)的开关速度快、无二次击穿、热稳定性好的优点而组合设计的电路。该逆变电源的主要组成部分为:DC/DC电路、输入过压保护电路、输出过压保护电路、过热保护电路、DC/AC变换电路、振荡电路、全桥电路。 在工作时的持续输出功率为150W,具有工作正常指示灯、输出过压保护、输入过压保护以及过热保护等功能。该电源的制造成本较为低廉,实用性强,可作为多种便携式电器通用的电源。 关键词:过热保护;过压保护;集成电路;振荡频率;脉宽调制

The main application of power electronic circuit design technology and switching power supply circuit technology knowledge. Involves analog integrated circuits, power supply integrated circuits, DC circuit, the switching regulator circuit theory, make full use of the chip KA7500B fixed frequency pulse width modulation circuit and FET (N-channel enhancement mode MOSFET) switching speed, no second breakdown, thermal stability, good benefits and the modular design of the circuit. The inverter main components: DC / DC circuit, input over-voltageprotection circuit, output over-voltage protection circuit, overheat protection circuit, DC / AC conversion circuit, oscillation circuit, full-bridge circuit. In the work of continuous output power of 150W, with a normal light work, output overvoltage protection, input over-voltage protection and thermal overload protection. The power of the relatively low manufacturing cost, practical, and a variety of portable electronic devices can be used as a common power supply. Keywords: thermal protection; over-voltage protection; integrated circuits; oscillation frequency; pulse width modulation

单相全桥逆变器matlab仿真

用MATLAB 仿真一个单相全桥逆变器,采用单极性SPWM 调制、双极性SPWM 调制或者单极倍频SPWM 调制的任意一种即可,请注明仿真参数,并给出相应的调制波波形,载波波形,驱动信号波形、输出电压(滤波前)波形。 本文选用双极性SPWM 调制。 1双极性单相SPWM 原理 SPWM 采用的调制波的频率为s f 的正弦波t U U s sm S ωsin =,s s f πω2=;载波c u 是幅值为cm U ,频率为c f 的三角波。载波信号的频率与调制波信号的频率之比称为载波比,正弦调制信号与三角波调制信号的幅值之比称为深度m 。通常采用调制信号与载波信号相比较的方法生成SPWM 信号.当Us>Uc 时,输出电压Uo 等于Ud,当Us

单相全桥逆变电路毕业设计

2008级应用电子技术 毕业设计报告 设计题目单相电压型全桥逆变电路设计姓名及 学号 学院 专业应用电子技术 班级2008级3班 指导教师老师 2011年05月1日

题目:单相电压型全桥逆变电路设计

目录 第一章绪论 1.1整流技术的发展概况 (4) 第二章设计方案及其原理 2.1电压型逆变器的原理图 (5) 2.2电压型单相全桥逆变电路 (6) 第三章仿真概念及其原理简述 3.1 系统仿真概述 (6) 3.2 整流电路的概述 (8) 3.3 有源逆变的概述 (8) 3.4逆变失败原因及消除方法 (9) 第四章参数计算 4.1实验电路原理及结果图 (10) 第五章心得与总结 (14) 参考文献 (15)

第一章绪论 1.1整流技术的发展概况 正电路广泛应用于工业中。整流与逆变一直都是电力电子技术的热点之一。桥式整流是利用二极管的单向导通性进行整流的最常用的电路。常用来将交流电转化为直流电。从整流状态变到有源逆变状态,对于特定的实验电路需要恰到好处的时机和条件。基本原理和方法已成熟十几年了,随着我国交直流变换器市场迅猛发展,与之相应的核型技术应用于发展比较将成为业内企业关注的焦点。 目前,整流设备的发展具有下列特点:传统的相控整流设备已经被先进的高频开关整流设备所取代。系统的设计已经由固定式演化成模块化,以适应各种等级、各种模块通信设备的要求。加上阀控式密封铅酸蓄电池的广泛应用,为分散供电创造了条件。从而大大提高了通信网运行可靠和通信质量。高频开关整流器采用模块化设计、N1配置和热插拨技术,方便了系统的扩展,有利于设备的维护。由于整流设备和配电设备等配备了微机监控器,使系统设备具有了智能化管理功能和故障保护及自保护功能。新旗舰、新技术、新材料的应用,使高频开关整流器跃上了一个新台阶。

A单相逆变电源设计

题目:18KV A 单相逆变器设计与仿真 院系:电气与电子工程学院 专业年级:电气工程及其自动化2010级 姓名:郑海强 学号:1010200224 同组同学:钟祥锣王敢方骞 2013年11月20号

单相逆变器设计一.设计的内容及要求 0.8 1.0,滞后

方案简述 将直流电变成交流电的电路叫做逆变电路。根据交流侧接在电网和负载相接可分为有源逆变和无源逆变,所以本次设计的逆变器设计为无源逆变。换流是实现逆变的基础。通过控制开关器件的开通和关断,来控制电流通过的支路这是实现换流的方法。 直流侧是电压源的为电压型逆变器,直流侧是电流源的为电流型逆变器,综上本次设计为电压型无源逆变器。 三.主电路原理图及主要参数设计 3.1 主电路原理图如图1所示 图1 3.2输出电路和负载计算 3.2.1 负载侧参数设计计算 负载侧的电路结构图如图2所示,根据图2相关经计算结果如下:

图2 负载侧电路结构图 1. 负载电阻最小值: cos ?=1.0时,R=2o V /23 300/(1810)5o P =?W ; cos ?=0.8时,R=2 o V /(o P ?23cos )300/(18100.8) 6.25j =创=W 2. 负载电感最小值: 'L ='L Z /(2f π)=8.3/(2100p 创)=0.0132H μ 3. 滤波电容: 取滤波电容的容抗等于负载电感感抗的2倍,则: C =1/(2πf c Z )=1/(2?π′100′32)=95.92F μ 取电容为100F μ,将10个10F μ的AC 电容进行并联, c() Z 实= 1/(2πf C )=1/6(210010010)p -创创=15.9 W 4.滤波电抗L 的计算 选取主开关器件工作频率K f =N ?O f =32′100=3200Hz 由于移相原因,输出线电压的开关频率变为:2K f =6400HZ 取滤波电路固有谐振频率 'f =1/(2πK f /6=533.3Hz 则:L = 1/(42π2'f C )= 1/(4?2π?2533?100610-?)=880H μ 实选用 L=900uH 由此 特征阻抗 3.2.2 逆变电路输出电压 3 T Z =

单相全桥逆变电路原理

单相全桥型逆变电路原理 电压型全桥逆变电路可瞧成由两个半桥电路组合而成,共4个桥臂,桥臂1与4为一对,桥臂2与3为另一对,成对桥臂同时导通,两对交替各导通180° 电压型全桥逆变电路输出电压uo 的波形与半桥 电路的波形uo 形状相同,也就是矩型波,但幅值 高出一倍,Um=Ud 输出电流io 波形与半桥电路的io 形状相同,幅值增加一倍 VD1 、V1、VD2、V2相继导通的区间,分别对应VD1与VD4、V1与V4、VD2与VD3、V2与V3相继导通的区间 + - VD 3 VD 4

单相半桥电压型逆变电路工作波形 全桥逆变电路就是单相逆变电路中应用最多的, 对电压波形进行定量分析将幅值为Uo 的矩形波 uo 展开成傅里叶级数,得 其中基波幅值Uo1m 与基波有效值Uo1分别为 上述公式对半桥逆变电路也适用,将式中的ud 换成Ud /2 uo 为正负电压各为180°的脉冲时,要改变输出电压有效值只能通过改变输出直流电压Ud 来实现 d d o1m 27.14U U U == π d d 1o 9.022U U U == π O ON u o U - U m i o VD 1 VD 2 VD 1 VD 2 ?? ? ??+++= t t t U u ωωωπ5sin 513sin 31sin 4d o

t 1时刻前V 1与V 4导通,输出电压u o 为u d t 1时刻V 3与V 4栅极信号反向,V 4截止,因i o 不能突变,V 3不能立即导通,VD 3导通续流,因V 1与VD 3同时导通,所以输出电压为零 各 IGBT 栅极信号uG1~uG4及输出电压uo 、输出电流io 的波形 u u u u u i o o ? 各IGBT 栅极信号为180°正 偏,180°反偏,且V 1与V 2栅极信号互补,V 3与V 4栅极信号互补 ? V 3的基极信号不就是比V 1落后 180°,而就是只落后θ ( 0< θ <180°) ? V 3、V 4的栅极信号分别比V 2、V 1 采用移相方式调节逆变电路的输出电压

SG3525正弦波逆变电源设计要点

等级: 湖南工程学院 课程设计 课程名称电力电子技术 课题名称 SG3525正弦波逆变电源设计 专业 班级 学号 姓名 指导教师 2013年12 月16 日

湖南工程学院 课程设计任务书 课程名称单片机原理及应用 课题智能密码锁设计 专业班级 学生姓名 学号 指导老师 审批 任务书下达日期2013 年12 月16 日 设计完成日期2013 年12 月27 日

设计内容与设计要求 一.设计内容: 1.电路功能: 1)逆变就是将直流变为交流。由波形发生器产生50Hz、幅度可变的正弦波,与锯齿波比较后,再通过PWM电路,输出SPWM波,经 过驱动电路驱动逆变电路进行逆变,再经过高频变压器与滤波电 路输出-50Hz的正弦波。 2)电路由主电路与控制电路组成,主电路主要环节:高频逆变电路、滤波环节。控制电路主要环节:正弦信号发生电路、脉宽调制PWM、 电压电流检测单元、驱动电路。 3)功率变换电路中的高频开关器件采用IGBT或MOSFET。 4)系统具有完善的保护 2. 系统总体方案确定 3. 主电路设计与分析 1)确定主电路方案 2)主电路元器件的计算及选型 3)主电路保护环节设计 4. 控制电路设计与分析 1)检测电路设计 2)功能单元电路设计 3)触发电路设计 4)控制电路参数确定 二.设计要求: 1.要求输出正弦波的幅度可调。 2.用SG3525产生脉冲。 3.设计思路清晰,给出整体设计框图; 4.单元电路设计,给出具体设计思路和电路; 5.分析所有单元电路与总电路的工作原理,并给出必要的波形分析。 6.绘制总电路图 7.写出设计报告;

主要设计条件 1.设计依据主要参数 1)输入输出电压:输入(DC)+15V、10V(AC) 2)输出电流:1A 3)电压调整率:≤1% 4)负载调整率:≤1% 5)效率:≥0.8 2. 可提供实验与仿真条件 说明书格式 1.课程设计封面; 2.任务书; 3.说明书目录; 4.设计总体思路,基本原理和框图(总电路图); 5.单元电路设计(各单元电路图); 6.故障分析与电路改进、实验及仿真等。 7.总结与体会; 8.附录(完整的总电路图); 9.参考文献; 11、课程设计成绩评分表 进度安排 第一周星期一:课题内容介绍和查找资料; 星期二:总体电路方案确定 星期三:主电路设计 星期四:控制电路设计 星期五:控制电路设计; 第二周星期一: 控制电路设计 星期二:电路原理及波形分析、实验调试及仿真等 星期四~五:写设计报告,打印相关图纸; 星期五下午:答辩及资料整理

单相恒压恒频逆变器的设计

单相恒压恒频逆变器的设计 学生姓名: **** 学号: ********* 系别:电气工程系专业: 电气工程及其自动化 指导教师: ****** 评阅教师: 论文答辩日期 答辩委员会主席 摘要 随着现代科学技术的迅速发展,逆变电源的应用越来越广泛,各行各业对其性能的要求也越来越高。单相正弦逆变电源是将直流电逆变成单相交流电的装置,它可将蓄电池逆变成交流电,为用电器提供交流电,也可作为计算机的UPS电源等。 本文首先介绍了逆变电源技术的应用与发展,分类与性能,及其控制技术。并在此基础上进行了方案论证,选取了合理的方案,以实现将12V直流电源升压为320V/50kHz的高频交流电,再经过整流滤波将高频交流电整流为高压直流电,然后采用正弦波脉宽调制法,通过脉冲控制IGBT的导通时间及顺序生成PWM波形,最后经过LC工频滤波电路,输出稳定的220V/50Hz标准正弦波电压,以达到供负载使用的目的。 本文基于已选定方案为前提进行了各部分电路的设计与分析,完成了主电路及相应的输入输出保护电路的设计,并进行了参数计算,分别简要介绍了各部分的原理,阐述了产生SPWM波的实现办法,以及基于DSP的系统软件设计和实现方案。 同时利用MATLAB 建立了单相逆变器的仿真模型,对其进行了仿真和实验,从各种情况下的试验结果可以看出,通过该逆变电路而得到的单相正弦波稳定性高且失真度小,设计成功。 关键词:逆变电源,整流,滤波,正弦脉宽调制

I Abstract With the rapid development of modern science and technology, the application of inverter power supply is more and more extensive, and the requirement of all walks of life on it is higher and higher. Single-phase sine inverter power supply is the device which can reverse DC into single-phase AC power. It can reverse the battery into AC which can be used by appliances, and it can also be used as the computer UPS power supply etc. This paper first introduces the application and development of the inverter power supply technology, its classification and performance, and its control technology. On this basis, the demonstration program has been done. It selects the reasonable solution to achieve the 12V DC power supply boosting for 320V/50kHz high frequency alternating current, which the rectifier filter will rectify it for high voltage DC. Then use the SPWM method to control the conduction time and sequence of the IGBT by outputting PWM waves generated, finally, after LC industrial frequency filtering, the output of the stable 220V/50Hz quasi-sine wave of voltage will achieve the purpose of load use. Based on the selected program, this paper has done the design and analysis of each circuit and has completed the design of the main circuit and the corresponding input and output protection circuits and parameter calculation. The principle of each part has been briefly

1KVA单相逆变器设计

目录 1 概述及设计要求 (1) 1.1概述 (1) 1.2 设计要求 (1) 2 总体设计方案介绍及原理框图 (2) 2.1 方案概述 (2) 2.3 电压型逆变电路的特点及主要类型 (3) 3 各电路模块设计 (4) 3.1 逆变电路的主电路设计 (4) 3.2 驱动电路设计 (4) 3.2.1 CMOS管介绍 (4) 3.2.2 信号放大器介绍 (5) 3.4 过流保护设计 (7) 3.5 滤波设计 (7) 3.6设计系统总电路图 (8) 参考文献 (11)

1KVA单相逆变器设计 1 概述及设计要求 1.1概述 逆变器是把直流电能(电池、蓄电瓶)转变成交流电(一般为220v50HZ正弦或方波)。应急电源,一般是把直流电瓶逆变成220V交流的。通俗的讲,逆变器是一种将直流电(DC)转化为交流电(AC)的装置。它由逆变桥、触发电路和滤波电路组成。 日常用途:汽车上的逆变器所获得的220V电,是220V 50HZ,高档点的是正弦波的,便宜的一般是方波的。正弦波的那种和接插座上用的电,是一样的,而方波的其实也可以用,只不过如果用风扇等有电机的设备,会有一些噪音,之所以用方波,就是因为这种调制方式成本比较低。在电动车上,有一个叫DC-DC 的模块,他也叫直流转换器,这个模块输入48V,输出12V,那么你只要购买一个12V输入的车载逆变器就可以使用。当然若你能买到48V输入的逆变器更好,但估计很难买到而且,这个模块一般只能提供5A电流,最多不过10A,而且车灯什么的也要用,所以很容易过载,建议,如果可以,多买一个直流转换器,这个转换器专门给你那逆变器供电,然后如果直流转换器只能提供5A,那么逆变器输入就应当小于5A,否则可能会损坏那模块,当然有一些直流转换器电流是很大的,如果修车的地方没有,可以到一些电器店或叫他们修理的给你进一个大电流的,或者多个直流转换器并联也可以,总之,不要让他过载就可以。1.2 设计要求 要求设计一个输入为48V直流电压,输出容量为1KVA,输出电压为220V 单相交流电的逆变器。

A单相逆变电源设计

题目:18KVA 单相逆变器设计与仿真 院系:电气与电子工程学院 专业年级:电气工程及其自动化2010级 姓名:郑海强 学号: 24 同组同学:钟祥锣王敢方骞 2013年11月20号

单相逆变器设计一.设计的内容及要求 0.8 1.0,滞后

方案简述 将直流电变成交流电的电路叫做逆变电路。根据交流侧接在电网和负载相接可分为有源逆变和无源逆变,所以本次设计的逆变器设计为无源逆变。换流是实现逆变的基础。通过控制开关器件的开通和关断,来控制电流通过的支路这是实现换流的方法。 直流侧是电压源的为电压型逆变器,直流侧是电流源的为电流型逆变器,综上本次设计为电压型无源逆变器。 三.主电路原理图及主要参数设计 主电路原理图如图1所示 图 1 输出电路和负载计算 负载侧参数设计计算 负载侧的电路结构图如图2所示,根据图2相关经计算结果如下:

图2 负载侧电路结构图 1. 负载电阻最小值: cos ?=时,R=2 o V /23300/(1810)5o P ; cos ?=时,R=2o V /(o P ?23cos )300/(18100.8) 6.25 2. 负载电感最小值: 'L ='L Z /(2f π)=(2 100)=H μ 3. 滤波电容: 取滤波电容的容抗等于负载电感感抗的2倍,则: C =1/(2πf c Z )=1/(2?π 10032)=F μ 取电容为100F μ,将10个10F μ的AC 电容进行并联,c() Z 实= 1/(2πf C )=1/6(2 10010010)= 4.滤波电抗L 的计算 选取主开关器件工作频率K f =N ?O f =32100=3200Hz 由于移相原因,输出线电压的开关频率变为:2K f =6400HZ 取滤波电路固有谐振频率'f =1/(2π)=K f /6= 则:L = 1/(42π2'f C )= 1/(4?2π?2533?100610-?)=880H μ 实选用 L=900uH 由此 特征阻抗 逆变电路输出电压 900/1003 T Z L C

相关主题
文本预览
相关文档 最新文档