当前位置:文档之家› 三相异步电动机的继电接触控制

三相异步电动机的继电接触控制

三相异步电动机的继电接触控制
三相异步电动机的继电接触控制

三相异步电动机的继电接触控制

1交流接触器有何用途,主要有哪几部分组成,各起什么作用?

答:交流接触器主要用来频繁地远距离接通和切断主电路或大容量控制电路的控制电器。它主要由触点、电磁操作机构和灭弧装置等三部分组成。触点用来接通、切断电路;电磁操作机构用于当线圈通电,动铁心被吸下,使触点改变状态;灭弧装置用于主触点断开或闭合瞬间切断其产生的电弧,防止灼伤触头。

2简述热继电器的主要结构和动作原理。

答:热继电器主要由发热元件,双金属片和脱扣装置及常闭触头组成。当主电路中电流超过容许值而使双金属片受热时,它便向上弯曲,因而脱扣,扣板在弹簧的拉力下将常闭触点断开。触点是接在电动机的控制电路中的,控制电路断开而使接触器的线圈断电,从而断开电动机的主电路

3自动空气开关有何用途?当电路出现短路或过载时,它是如何动作的?

答:自动空气开关是常用的一种低压保护电器,当电路发生短路、严重过载及电压过低等故障时能自动切断电路。开关的自由脱扣机构是一套连轩装置,有过流脱扣器和欠压脱扣器等,它们都是电磁铁。当主触点闭合后就被锁钩锁住。过流脱扣器在正常运行时其衔铁是释放着的,一旦发生严重过载或短路故障时,与主电路串联的线圈流过大电流而产生较强的电磁吸力把衔铁往下吸而顶开锁钩,使主触点断开,起到了过流保护作用。欠压脱扣器的工作恰恰相反,当电路电压正常时,并在电路上的励磁线圈产生足够强的电磁力将衔铁吸住,使料杆同脱扣机构脱离,主触点得以闭合。若失压(电压严重下降或断电),其吸力减小或完全消失,衔铁就被释放而使主触点断开。

4在电动机主电路中既然装有熔断器,为什么还要装热继电器?它们各起什么作用?

答:熔断器用以切断线路的过载和短路故障,当线路过载或短路时,由于大电流很快将熔断器熔断,起到保护电路上其他电器设备的作用。但因电动机主电路中选用的熔断器就不能起到过载保护作用,因电动机启动时启动电流较大,选用熔丝也大,当电动机过载时熔断器不会熔断,起不到过载保护作用。因此在电动机主电路中还要装热继电器。由于热惯性,热继电器又不能作短路保护。因为发生短路事故时,就要求电路立即断开,而热继电器是不能立即动作的。但是这个热惯性也是合乎要求的,在电动机启动或短时过载时,热继电器不会动作,这可避免电动机的不必要的停车。在电动机主电路中熔断器起短路保护用,而热继电器起过载保护作用。

5 如图1所示电路中,哪些能实现点动控制,哪些不能,为什么?

答:图(a )不能。因为KM 没有闭合,所以,按按钮后,KM 线圈不能得电。

图(b )能正常实现点动。

图(c )不能。因为在KM 的线圈中串联有自己的常闭触头,当线圈通电时,KM 的常闭触头就要断开,KM 线圈断电,如此反复,按触器产生振动。

图(d )不能。因为在启动按钮中并联有常开触头,当KM 线圈通电时就要产生自锁。

6 判断如图2所示的各控制电路是否正常工作?为什么?

答:图(a )不能正常工作。当KM 线圈得电后,无法进行停止操作。

图(b )能正常实现点动。不能连续运行,自锁触头没有并对地方。

图(c )不能。因为在KM 的线圈中串联有自己的常闭触头,只要一接通电源,线圈就会通电,而KM 的常闭触头就会断开,KM 线圈断电,如此反复,按触器产生振动。

图(d )能正常进行启动和停止。

7、 分析正反转控制原理及注意事项

图1 习题5图

图2 习题6的图 (a ) (b ) (c ) (d )

11.2.1试画出三相鼠笼式电动机既能连续工作、又能点动工作的继电接触器控制线路。

解电路如图解11.5所示。其中SB2为连续工作启动按钮。SB3是双联按钮,用于点动工作。当按下SB3时,接触器线圈有电,主触点闭合,电动机起动。串联在自锁触点支路的常闭按钮断开,使自锁失效。松开SB3时,接触器线圈立即断电,电动机停车。可见SB3只能使电动机点动工作。

11.2.3根据图11.2.2接线做实验时,将开关Q合上后按下起动按钮SB2,发现有下列现象,试分析和处理故障:(1)接触器KM不动作;(2)接触器KM动作,但电动机不转动;(3)电动机转动,但一松手电动机就不转;(4)接触器动作,但吸合不上;(5)接触器触点有明显颤动,噪音较大;(6)接触器线圈冒烟甚至烧坏;(7)电动机不转动或者转得极慢,并有“嗡嗡”声。

解重画图11.2.2如图解11.7所示。

(1)有3种可能的原因:(i)1,2两根线上的熔丝有一个或两个烧断,使控制电路无电源;(ii)热继电器常闭触点跳开后未复位;(iii)4,5两点有一点(或两点)未接好。

(2)可能有两个原因:(i)A相熔断器熔丝烧断,电动机单相供电,无起动转矩;(ii)电动机三相绕组上没接通电源:例如丫形接法只将U1,V1,W1接向电源,而U2,V2,W2未接在一起。Δ形接法时未形成封闭三角形等等。

(3)自锁触点未接通,电动机在点动控制状态。

(4)可能有3个原因:(i)电源电压不足,(ii)接触器线圈回路(即控制回路)接触电阻过大,(iii)接触器铁心和衔铁间有异物阻挡。

(5)接触器铁心柱上短路铜环失落。

(6)可能有3个原因;(i)接触器线圈额定电压与电源电压不符,(ii)接触器长时间吸合不上,电流过大而烧坏,(iii)接触器线圈绝缘损坏,有匝间短路。

(7)A相熔丝烧断,电动机单相运行。

11.2.4今要求三台鼠笼式电动机M1,M2,M3按照一定顺序起动,即M1起动后M2才可起动,M2起动后M3才可起动。试绘出控制线路。

11.2.6在图11.01中,有几处错误?请改正。

解图11.01所示电路图中有5处错误:(1)熔断器FU应接在组合开关Q下方,当丝烧断后,才能在Q断开情况下不带电安全地更换熔丝。而图中接在Q上方,无法更换。(2)联结点1应接到主触点KM上方,否则控制电路将无法获得电源。

(3)自锁触点KM应仅与起动按钮SB2并联,否则SB1失去控制作用,电动机无法停车。

(4)控制电路中缺少热继电器触点,不能实现过载保护。

(5) 控制电路中缺少熔断器,无法保护控制电路短路;

三相异步电动机及其控制电路

第5章三相异步电动机及其控制线路 5.1 三相异步电动机 实现电能与机械能相互转换的电工设备总称为电机。电机是利用电磁感应原理实现电能与机械能的相互转换。把机械能转换成电能的设备称为发电机,而把电能转换成机械能的设备叫做电动机。 在生产上主要用的是交流电动机,特别三相异步电动机,因为它具有结构简单、坚固耐用、运行可靠、价格低廉、维护方便等优点。它被广泛地用来驱动各种金属切削机床、起重机、锻压机、传送带、铸造机械、功率不大的通风机及水泵等。 对于各种电动机我们应该了解下列几个方面的问题:(1)基本构造;(2)工作原理;(3)表示转速与转矩之间关系的机械特性;(4)起动、调速及制动的基本原理和基本方法;(5)应用场合和如何正确使用。 5.1.1 三相异步电动机的结构与工作原理 1.三相异步电动机的构造 三相异步电动机的两个基本组成部分为定子(固定部分)和转子(旋转部分)。此外还有端盖、风扇等附属部分,如图5-1所示。 图5-1 三相电动机的结构示意图 1).定子 三相异步电动机的定子由三部分组成: 定子定子铁心由厚度为0.5mm的,相互绝缘的硅钢片叠成,硅钢片 内圆上有均匀分布的槽,其作用是嵌放定子三相绕组

AX、BY、CZ。 定子绕组三组用漆包线绕制好的,对称地嵌入定子铁心槽内的相同的线圈。这三相绕组可接成星形或三角形。 机座机座用铸铁或铸钢制成,其作用是固定铁心和绕组2).转子 三相异步电动机的转子由三部分组成: 转子转子铁心 由厚度为0.5mm的,相互绝缘的硅钢片叠成,硅钢片 外圆上有均匀分布的槽,其作用是嵌放转子三相绕组。 转子绕组 转子绕组有两种形式: 鼠笼式-- 鼠笼式异步电动机。 绕线式-- 绕线式异步电动机。 转轴转轴上加机械负载 鼠笼式电动机由于构造简单,价格低廉,工作可靠,使用方便,成为了生产上应用得最广泛的一种电动机。 为了保证转子能够自由旋转,在定子与转子之间必须留有一定的空气隙,中小型电动机的空气隙约在0.2~1.0mm之间。 2.三相异步电动机的转动原理 1).基本原理 为了说明三相异步电动机的工作原理,我们做如下演示实验,如图5-2所示。 图5-2 三相异步电动机工作原理

电动机基本控制线路的动作原理和特点

电动机基本控制线路的动作原理和特点 1. 电动机手动直接启动控制线路 利用刀开关直接启动电动机的控制线路 1.1 电动机手动直接启动线路的动作原理 闭合刀开关QS,电动机M启动旋转;断开刀开关QS,电动机M 断电减速直至停转。 1.2 电动机手动直接启动线路的特点 线路只用一个刀开关和一个熔断器,是最简单的电动机启、停控制线路,有以下几点不足: ①只适用于不需要频繁启、停的小容量电动机。 ②只能就地操作,不便于远距离控制。 ③无失压和欠压保护功能。

2. 电动机点动与长动控制线路 2.1 电动机点动控制线路 点动控制是指按下按钮电动机得电启动运转,松开按钮电动机失电直至停转。电动机点动控制线路如下图所示。 2.1.1 电动机点动控制线路的动作原理 合上刀开关QS。 启动:SB+ —KM+ —M+ (启动) 停止:SB——KM——M—(停止) 其中,SB+表示按钮SB按下,SB—表示按钮SB松开。

2.1.2 电动机点动控制线路的特点 该控制电路中,QS为刀开关,不能直接给电动机M供电,只起到电源引入的作用。主回路熔断器FU起短路保护作用。 2.2 电动机长动控制线路 长动控制是指按下按钮后,电动机通电启动运转,松开按钮后,电动机仍继续运行,只有按下停止按钮,电动机才失电直至停转。电动机长动控制线路如下图所。 2.2.1 电动机长动控制线路的动作原理 合上刀开关QS。 启动:SB2±—KM自+ —M+ (运转) 停止:SB1±—KM——M—(停车)

其中,SB±表示先按下,后松开;KM自表示“自锁”。 2.2.2 电动机点动控制线路的特点 电动机长动控制线路是在电动机点动控制线路的SB2两端并联一个接触器的辅助动合触点KM,再串联一个动断(停止)按钮SB1而实现的。电动机长动控制线路有“自锁”功能,带有“自锁”功能的控制线路具有失压(零压)和欠压保护作用,即一旦发生断电或电源电压下降到一定值(一般降低到额定值85%以下)时,自锁触点就会断开,接触器KM线圈就会断电,不重新按下启动按钮SB2,电动机将无法自动启动。 2.3 几种电动机点动和长动控制线路 2.3.1 利用开关控制电动机点动和长动的控制线路 利用开关控制电动机点动、长动的控制线路如下图所示。

三相异步电动机基本控制线路的安装与调试

三相异步电动机基本控制线路的安装与调试 任务1-1 三相异步电动机的单向运行控制 学习内容: 1、常用低压电器的基本结构、工作原理、图形符号和文字符号、主要技术参数及其应用; 2、三相异步电动机的启/停、点动/长动控制。 学习目标: 1、知道:常用低压电器的工作原理、图形符号和文字符号;常用低压电器的用途。 2、能根据控制要求正确选择低压电器。 3、了解:常用低压电器的基本结构;主要技术参数。 4、掌握三相异步电动机的启/停、点动/长动控制电路的原理。 学习重点:工作原理、图形符号、文字符号、选择使用。 学习难点:工作原理、选择使用 §1-1 机床电气控制中常用的低压电器 目标任务: 1、了解低压电器的基本知识,熟悉常用的低压电器种类; 2、熟悉常用的各种低压电器的结构及原理、符号、选用; 3、熟练掌握常用低压电器的使用。 相关知识: 1-1. 低压电器基本知识

凡是对电能的生产、输送、分配和应用能起到切换、控制、调节、检测以及保护等作用的电工器械,均称为电器。低压电器通常是指在交流1200V及以下、直流1500V及以下的电路中使用的电器。机床电气控制线路中使用的电器多数属于低压电器。 一、低压电器的分类 低压电器是指工作在交流电压1200V 、直流电压1500V 以下的各种电器。生产机械上大多用低压电器。低压电器种类繁多,按其结构、用途及所控制对象的不同,可以有不同的分类方式。 1 .按用途和控制对象不同,可将低压电器分为配电电器和控制电器。 用于电能的输送和分配的电器称为低压配电电器,这类电器包括刀开关、转换开关、空气断路器和熔断器等。用于各种控制电路和控制系统的电器称为控制电器,这类电器包括接触器、起动器和各种控制继电器等。 2 .按操作方式不同,可将低压电器分为自动电器和手动电器。 通过电器本身参数变化或外来信号(如电、磁、光、热等)自动完成接通、分断、起动、反向和停止等动作的电器称为自动电器。常用的自动电器有接触器、继电器等。 通过人力直接操作来完成接通、分断、起动、反向和停止等动作的电器称为手动电器。常用的手动电器有刀开关、转换开关和主令电器等。 3 .按工作原理可分为电磁式电器和非电量控制电器 电磁式电器是依据电磁感应原理来工作的电器,如接触器、各类电磁式继电器等。非电量控制电器的工作是靠外力或某种非电量的变化而动作的电器,如行程开关、速度继电器等。 二、低压电器的作用 控制作用、保护作用、测量作用、调节作用、指示作用、转换作用 三、低压电器的基本结构 电磁式低压电器大都有两个主要组成部分,即:感测部分──电磁机构和执行部分──触头系统。 1 .电磁机构 电磁机构的主要作用是将电磁能量转换成机械能量,带动触头动作,从而完成接通或分断电路的功能。 电磁机构由吸引线圈、铁心和衔铁 3 个基本部分组成。常用的电磁机构如图所示,可分为 3 种形式。 2. 直流电磁铁和交流电磁铁

继电接触控制实验指导

实验1 低压电器的认识 一、实验目的 1、了解常用低压元件的结构、原理、符号、作用,熟悉低压元件规格。 2、 通过对三相异步电动机点动控制和自锁控制线路的实际安装接线, 掌握由电气原理图变换成安装接线图的知识。能按照原理图实物,并能排除故障。 3、通过实验进一步加深理解点动控制和自锁控制的特点以及在机床控制中的应用。 二、实验设备 三相鼠笼异步电动机、接触器、时间继电器、热继电器、按钮、熔断器、断路器等。 三、实验方法 1、常用低压元件的识别。根据电器元件实物,了解常用低压元件的结构原理,正确写出电器元件的名称、型号、符号、作用,填写下表 2、按图8-1接线。接线时,先接主电路,它是从220V 三相交流电源的输出端U 、V 、W 开始,经三刀开关Q 1、熔断器FU 1、FU 2、FU 3、接触器KM 1主触点到电动机M 的三个线端A 、B 、C 的电路,用导线按顺序串联起来,有三路。主电路经检查无误后,再接控制电路,从熔断器FU 4插孔V 开始,经按钮SB 1常开、接触器KM 1线圈到插孔W 。线接好经指导老师检查无误后,按下列步骤进行实验: 图8-1 点动控制线路图 8-2 自锁控制线路 (1)按下控制屏上“开”按钮; (2)先合Q 1,接通三相交流220V 电源; K M Q 1L 2 L 3 220V 1 K Q 1 220V 1 K M 1

(3)按下启动按钮SB 1,对电动机M 进行点动操作,比较按下SB 1和松开SB 1时电动机M 的运转情况。 3、三相异步电动机自锁控制线路: 按下控制屏上的“关”按钮以切断三相交流电源。按图8-2接线。 检查无误后,启动电源进行实验: (1) 合上开关Q 1,接通三相交流220V 电源; (2) 按下起动按钮SB 2,松手后观察电动机M 运转情况; (3) 按下停止按钮SB 1,松手后观察电动机M 运转情况。 4、三相异步电动机既可点动又可自锁控制线路: 按下控制屏上“关”按钮切断三相交流电源后,按图8-3接线,检查无误后通电实验: (1) 合上Q 1接通三相交流220V 电源; (2) 按下起动按钮SB 2,松手后观察电机M 是否继续运转; (3) 运转半分钟后按下SB 3,然后松开,电机M 是否停转; 连续按下和松开SB 3,观察此时属于什么控制状态; (4) 按下停止按钮SB 1,松手后观察M 是否停转。 图8-3 既可点动又可自锁控制线路 四、讨论题 1、试分析什么叫点动,什么叫自锁,并比较图8-1和图8-2的结构和功能上有什么区别? 2、图中各个电器如Q 1、FU 1、FU 2、FU 3、FU 4、KM 1、FR 、SB 1、SB 2、SB 3各起什么作用?已经使用了熔断器为何还要使用热继电器?已经有了开关Q 1为何还要使用接触器KM 1? 3、图8-2电路能否对电动机实现过流、短路、欠压和失压保护? 4、画出图8-1、8-2、8-3的工作原理流程图。 K Q 220V 1 B 3

三相异步电动机的继电接触控制

三相异步电动机的继电接触控制 1交流接触器有何用途,主要有哪几部分组成,各起什么作用? 答:交流接触器主要用来频繁地远距离接通和切断主电路或大容量控制电路的控制电器。它主要由触点、电磁操作机构和灭弧装置等三部分组成。触点用来接通、切断电路;电磁操作机构用于当线圈通电,动铁心被吸下,使触点改变状态;灭弧装置用于主触点断开或闭合瞬间切断其产生的电弧,防止灼伤触头。 2简述热继电器的主要结构和动作原理。 答:热继电器主要由发热元件,双金属片和脱扣装置及常闭触头组成。当主电路中电流超过容许值而使双金属片受热时,它便向上弯曲,因而脱扣,扣板在弹簧的拉力下将常闭触点断开。触点是接在电动机的控制电路中的,控制电路断开而使接触器的线圈断电,从而断开电动机的主电路 3自动空气开关有何用途?当电路出现短路或过载时,它是如何动作的? 答:自动空气开关是常用的一种低压保护电器,当电路发生短路、严重过载及电压过低等故障时能自动切断电路。开关的自由脱扣机构是一套连轩装置,有过流脱扣器和欠压脱扣器等,它们都是电磁铁。当主触点闭合后就被锁钩锁住。过流脱扣器在正常运行时其衔铁是释放着的,一旦发生严重过载或短路故障时,与主电路串联的线圈流过大电流而产生较强的电磁吸力把衔铁往下吸而顶开锁钩,使主触点断开,起到了过流保护作用。欠压脱扣器的工作恰恰相反,当电路电压正常时,并在电路上的励磁线圈产生足够强的电磁力将衔铁吸住,使料杆同脱扣机构脱离,主触点得以闭合。若失压(电压严重下降或断电),其吸力减小或完全消失,衔铁就被释放而使主触点断开。 4在电动机主电路中既然装有熔断器,为什么还要装热继电器?它们各起什么作用? 答:熔断器用以切断线路的过载和短路故障,当线路过载或短路时,由于大电流很快将熔断器熔断,起到保护电路上其他电器设备的作用。但因电动机主电路中选用的熔断器就不能起到过载保护作用,因电动机启动时启动电流较大,选用熔丝也大,当电动机过载时熔断器不会熔断,起不到过载保护作用。因此在电动机主电路中还要装热继电器。由于热惯性,热继电器又不能作短路保护。因为发生短路事故时,就要求电路立即断开,而热继电器是不能立即动作的。但是这个热惯性也是合乎要求的,在电动机启动或短时过载时,热继电器不会动作,这可避免电动机的不必要的停车。在电动机主电路中熔断器起短路保护用,而热继电器起过载保护作用。

三相异步电动机的控制电路图

三相异步电动机的控制电路 一、复习思路及要求 1. 题型:选择题、技能题、简答题。 2. 必须熟练分析各种控制电路的工作原理,只有熟悉了工作原理才能正确绘制控制电路;补画控制电路;识别电路图中的错误;对故障进行正确分析处理;设计一些简单的控制电路;并且对PLC中简单的程序设计也有帮助。 3. 该部分容是非常重要的,要熟悉电路形式及控制形式:自锁、联锁的作用及连接方式;点动、连续运转;具有过载保护的连续运转控制电路是基础。 4. 需要掌握的控制电路有:⑴点动单向运转控制电路;⑵连续单向运转控制电路;⑶点动与连续混合控制电路;⑷接触器联锁双向运转控制电路;⑸按钮联锁双向运转控制电路;⑹接触器按钮双重联锁双向运转控制电路;(7)降压起动控制电路。 二、控制电路的分析 1.单向点动转控制电路 2.单向连续运转控制电路 3.连续与点动混合控制电路(一) 4.连续与点动混合控制电路(二) 5.连续与点动混合控制电路(三)

该电路中使用了中间继电器。其电器符号是KA。作用是:当其他继电器的触点数量不够时,可借助中间继电器来扩展触头数和触点容量,起到信号中继作用。 注:通过以上控制电路明确自锁的作用及其连接方式.......................。 6.多地控制电路 该控制电路能实现电动机的两地控制。起动按钮并联,停止按钮串联。(图中如果SB1、SB2控制A地,则SB3、SB4控制B地。) 7.接触器联锁双向控制电路 该电路采用了接触器联锁优点是工作安全可靠。但电动机由正转变为反转时,必须先按下停止按钮,才能按反转按钮,否则由于接触器联锁作用,不能实现反转。 8.按钮联锁双向控制电路该线路的优点是操作方便,由正转变为反转时不必按下停止按钮,但容易产生电源两相短路故障。 9.接触器按钮双重联锁双向控制电路 该线路工作安全可靠、操作方便。 注:通过以上三个线路要明确联锁的作用及连接方式.......................。 10.定子绕组串电阻降压起动控制线路(一)

典型电动机控制原理图及解说

1、定时自动循环控制电路 说明: 1、题图中的三相异步电动机容量为1.5KW,要求电路能定时自动循环正反转控制;正转维持时间为20秒钟,反转维持时间为40秒钟。 2、按原理图在配电板上配线,要求线路明快、工艺合理、接点牢靠。 3、简述电路工作原理。 注:时间继电器的延时时间不得小于15秒,时间调整应从长向短调。 定时自动循环控制电路电路工作原理:合上电源开关QF,按保持按钮SB2,中间继电器K A吸合,KA的自保触点与按钮SB2、KT1、KT2断电延时闭合的动断触点组成的串联电路并 联,接通了起动控制电路。按起动按钮SB3,时间继电器KT1得电,其断电延时断开的动合 触点KT1闭合,接触器KM1线圈得电,主触点闭合,电动机正转(正转维持时间为20秒计时 开始)。同时KM1动合触点接通了时间继电器KT2,其串联在接触器KM2线圈回路中的断电 延时断开的动合触点KT2闭合,由于KM1的互锁触点此时已断开,接触器KM2线圈不能通电 。当正转维持时间结束后,断电延时断开的动合触点KT1断开,KM1释放,电动机正转停止 。KM1的动断触点闭合,接触器KM2线圈得电,主触点闭合,电动机开始反转.同时KM1动 合触点断开了时间继电器KT2线圈回路(反转维持时间为40秒计时开始)。这时KM2动合触 点又接通了KT1线圈,断电延时断开的动合触点KT1闭合,为下次电动机正转作准备。因此

时串联在接触器KM1线圈回路中的KM2互锁触点断开,接触器KM1线圈暂时不得电。与按钮 SB2串联的KT1、KT2断电延时闭合的动断触点是保证在电动机自动循环结束后,才能再次 起动控制电路。热继电器FR常闭触点,是在电动机过负载或缺相过热时将控制电路自动断 开,保护了电动机。 2、顺序控制电路(范例) 顺序控制电路(范例)工作原理: 图A:KM2线圈电路由KM1线圈电路起动、停止控制环节之后接出。按下起动按钮SB2, KM1线圈得电吸合并自锁,此时才能控制KM2线圈电路。停止按钮SB3只能控制M2电动机 的停转,停止按钮SB1为全停按钮。本电路只有满足M1电动机先起动的条件,才能起动M2 电动机。 图B:控制电路由KM1线圈电路和KM2线圈电路单独构成。KM1的动合触点作为一控制条件 ,串接在KM2线圈电路中,只有KM1线圈得电吸合,其辅组助动合触点闭合,此时才能控制 KM2线圈电路。停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。本电路 只有满足M1电动机先起动的条件,才能起动M2电动机。 3、电动机顺序控制电路

三相异步电动机控制电路图

三相异步电动机的控制 1.直接启动控制电路 直接启动即启动时把电动机直接接入电网,加上额定电压,一般来说, 电动机的容量不大于直接供电变压器容量的20%~30%时,都可以直接启 动。 1).点动控制 合上开关QF ,三相电源被引入控 制电路,但电动机还不能起动。按下按钮SF ,接触器KM 线圈通电,衔铁吸合,常开主触点接通,电动机定子接入 三相电源起动运转。松开按钮SF , 图5-13 点动控制 接触器KM 线圈断电,衔铁松开,常开主触点断开,电动机因断电而停转。 2).直接起动控制 (1)起动过程。按下起动按钮SF ,接触器KM 线圈通电,与SF 并联的KM 的辅助常开触点闭合,以保 证松开按钮SF 后KM 线圈持续通电,串联在电动机回路中的KM 的主触点持续闭合,电动机连续运转,从而实现连续运转控制。 (2)停止过程。按下停止按钮SS ,接触器KM 线圈断电,与SF 并联的KM 的辅助常开触点断开,以保 证松开按钮SS 后KM 线圈持续失电,串联在电动机回路中的KM 的主触点持续断开,电动机停转。 与SF 并联的KM 的辅助常开触点的这种作用称为自锁。 图示控制电路还可实现短路保护、过载保护和零压 保护。 图5-14直接起动控制 ? 起短路保护的是串接在主电路中的熔断器FU 。一旦电路发生短路故障,熔体立即熔断,电动机立即停转。 ? 起过载保护的是热继电器KH 。当过载时,热继电器的发热元件发热,将其常闭触点断开,使接触器KM 线圈断电,串联在电动机回路中的KM 的主触点断开,电动机停转。同时KM 辅助触点也断开,解除自锁。故障排除后若要重新起动,需按下KH 的复位按钮,使KH 的常闭触点复位(闭合)即可。 ? 起零压(或欠压)保护的是接触器KM 本身。当电源暂时断电或电压严重下降时,接触器KM 线圈的电磁吸力不足,衔铁自行释放,使主、辅触点自行复位,切断电源,电动机停转,同时解除自锁。

继电接触控制线路在实际中的应用

继电接触控制线路在实际中的应用 广西大学化学化工学院张彤彤1404110420 摘要:继电接触控制电路是最常见的一种控制方式,具有价格低廉结构简单、实用、维修方便的特点。继电接触器被广泛应用于发电、输配电场所及电气传动自动控制设备中。它对电力的生产、输送、分配应用起着转换、控制、保护和调节作用。 关键词:继电接触控制电气控制系统 Abstract:Relay contact control circuit is one of the most common control method.It has a low price and is simple and practical structure.And it is convenient to maintian.Relay contactor is widely used in power generation,transmission and distribution place and electric drive automatic control equipment.It play an important part in electricity production,transmission,distribution, application. Keywords:relay contact control,electrical engineering,control system 1.继电接触控制系统简介 电气自动控制技术是自动控制技术的一个重要组成成分,它采用各种电气、电子等器件对各种控制对象按生产工艺和要求进行有效控制。 对电动机或其他设备的接通和断开,当前国内还较多的采用继电器、接触器及按钮等控制电器来实现自动控制。这种控制系统一般称为继电接触器控制系统。 在建筑、机械、化工等工农业,自动化生产过程中普遍利用电力拖动生产机械实现生产过程的自动控制。使用继电器、接触器、按钮、空气开关、行程开关等低压电器构成的控制电路称为继电接触控制电路。它是最常见的一种控制方式,具有价格低廉结构简单、实用、维修方便的特点。 交流接触器是继电─接触控制电路的主要电器,其主要构造为电磁系统(铁心、吸引线圈和短路环)、触头系统(主触头和辅助触头)以及灭弧罩。工作原理如下:线圈通电后,铁心中产生电磁吸力,使得衔铁吸合带动触点系统的机构动作——常闭触点打开,常开触点闭合。线圈失电或线圈两端电压显著降低时,电磁吸力减小,使得衔铁释放,触点机构复位。自锁控制与互锁控制自锁控制:在控制回路中用接触器自身的辅助动合触头与起动按钮相并联,这样接触器线圈得电动作后电机的状态就能自动保持。 继电接触器控制系统主要包括两部分,即手动控制及自动控制部分。手动控制部分主要包括各种的闸刀开关、按钮及组合按钮等。自动部分主要有各种不同用途的继电器、接触器、熔断器及组合开关等。 2.继电接触控制系统在三相异步电动机正反转中的应用 2.1电动机正、反转控制线路如图所示。

常用电动机控制电路原理图全解

三相异步电机启动常见方法 1、定时自动循环控制电路 说明:(技师一) 1、题图中的三相异步电动机容量为1.5KW,要求电路能定时自动循环正反转控 制;正转维持时间为20秒钟,反转维持时间为40秒钟。 2、按原理图在配电板上配线,要求线路明快、工艺合理、接点牢靠。 3、简述电路工作原理。 注:时间继电器的延时时间不得小于15秒,时间调整应从长向短调。 定时自动循环控制电路电路工作原理:合上电源开关QF,按保持按钮SB2,中间继电器KA吸合,KA的自保触点与按钮SB2、KT1、KT2断电延时闭合的动断触点组成的串联电路并联,接通了起动控制电路。按起动按钮SB3,时间继电器KT1得电,其断电延时断开的动合触点KT1闭合,接触器KM1线圈得电,主触点闭合,电动机正转(正转维持时间为20秒计时开始)。同时KM1动合触点接通了时间继电器KT2,其串联在接触器KM2线圈回路中的断电延时断开的动合触点KT2闭合,由于KM1的互锁触点此时已断开,接触器KM2线圈不能通电。当正转维持时间结束后,断电延时断开的动合触点KT1断开,KM1释放,电动机正转停止。KM1的动断触点闭合,接触器KM2线圈得电,主触点闭合,电动机开始反转.同时KM1动合触点断开了时间继电器KT2线圈回路(反转维持时间为40秒计时开始)。这时KM2动合触点又接通了KT1线圈,断电延时断开的动合触点KT1闭合,为下次电动机正转作准备。因此时串联在接触器KM1线圈回路中的KM2互锁触点断开,接触器KM1线圈暂时不得电。与按钮SB2

串联的KT1、KT2断电延时闭合的动断触点是保证在电动机自动循环结束后,才能再次起动控制电路。热继电器FR常闭触点,是在电动机过负载或缺相过热时将控制电路自动断开,保护了电动机。 2、顺序控制电路(范例) 顺序控制电路(范例)工作原理:图A:KM2线圈电路由KM1线圈电路起动、停止控制环节之后接出。按下起动按钮SB2,KM1线圈得电吸合并自锁,此时才能控制KM2线圈电路。停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。本电路只有满足M1电动机先起动的条件,才能起动M2电动机。 图B:控制电路由KM1线圈电路和KM2线圈电路单独构成。KM1的动合触点作为一控制条件,串接在KM2线圈电路中,只有KM1线圈得电吸合,其辅组助动合触点闭合,此时才能控制KM2线圈电路。停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。本电路只有满足M1电动机先起动的条件,才能起动M2电动机。

工厂电气控制技术第一章的习题参考答案

第一章继电接触逻辑控制基础习题参考答案 一、何谓电磁式电器的吸力特性与反力特性?为什么两者配合应尽量靠近? 解: 与气隙δ(衔铁与静铁心之间空气间吸力特性是指电磁机构在吸动过程中,电磁吸力F at 隙)的变化关系曲线。 反力特性是指电磁机构在吸动过程中,反作用力(包括弹簧力、衔铁自身重力、摩擦阻力)Fr与气隙δ的变化关系曲线。 为了使电磁机构能正常工作,其吸力特性与反力特性配合必须得当。在吸合过程中,其吸力特性位于反力特性上方,保证可靠吸合;若衔铁不能吸合,或衔铁频繁动作,除了设备无法正常工作外,交流电磁线圈很可能因电流过大而烧毁。在释放过程中,吸力特性位于反力特性下方。保证可靠释放。 二、单相交流电磁铁短路环断裂或脱落后,工作中会出现什么故障?为什么? 解: 电磁铁的吸引线圈通电时,会出现衔铁发出振动或较大的噪声。这时因为,当流过吸引线圈的单相交流电流减小时,会使吸力下降,当吸力小于反力时,衔铁与静铁心释放。当流过吸引线圈的单相交流电流增大时,会使吸力上升,当吸力大于反力时,衔铁与静铁心吸合。如此周而复始引起振动或较大的噪声。 三、触头设计成双断口桥式结构的原因是什么? 解: 触头设计成桥式双断口触点是为了提供灭弧能力。将电弧分成两段,以提高电弧的起弧电压;同时利用两段电弧的相互排斥的电磁力将电弧向外侧拉长,以增大电弧与冷空气的接触面,迅速散热而灭弧。见教材第7页的图1-6所示。 四、交流接触器在衔铁吸合前线圈中为什么会产生很大的电流? 解: 交流接触器的线圈是可等效为一个电感和电阻串联,铁心越大,电感量越大。则感抗越大。在吸合前,由于铁心与衔铁不吸合,磁阻很大,电感量就小,阻抗就小,所以电流大。当铁心和衔铁吸合后,磁阻小,电感量增大,感抗增大,所以电流小。 直流接触器通的是直流电流,电感在直流电流下近似于短路。线圈的直流电阻很大,电流变化不大。 五、从结构、性能及故障形式等方面说明交流接触器与直流接触器的主要区别是什么? 解: 结构方面:两者的组成部分一样。交流接触器的线圈一般做成粗而短的圆筒形,并绕在绝缘骨架上。直流接触器的线圈做成长而薄的圆筒形,且不设骨架。直流接触器线圈匝数多,但线圈导线线径较细。交流接触器的铁心是用硅钢片铆叠而成的,铁心和衔铁形状通常采用E型。直流接触器的铁心用整块铸钢或铸铁制成,衔铁采用拍合式。交流接触器的铁心装有短路环。直流接触器没有。交流接触器的灭弧装置常采用双断口电动力灭弧、纵缝灭弧和栅片灭弧。直流接触器常采用磁吹式灭弧。交流接触器的主触头是三对(对应三相交流电),直流接触器的主触头是二对(对应正负极)。交流接触器的线圈通交流电流,直流接触器的线圈通直流电流。

继电接触式控制系统设计

继电接触式控制系统设计 生产机械电气控制系统是生产机械不可缺少的组成部分,它对生产机械能否正确与可靠地工作起着决定性的作用。一般,电气控制系统应满足生产机械加工工艺的要求,线路安全可靠操作和维护方便,设备投资少等。为此,必须正确地设计控制电路,合理地选择电器元件。 对于比较简单的控制线路,往往直接采用交流380V~220v电压,不用控制电源变压器口采用这一方案。动力电源电路中的过电压将直接引进控制线路,这对元件的可靠工作不利。另外,由于控制线路电压较高,对维护与安全不利,因此必须引起注意。对干比较复杂的控制线路,当机床电气系统的电磁线圈超过5个小时,控制电路应采用控制电源变压器,将控制电压降到10v或24V。这种方案对维修与操作元件的作用可靠均有利。对于操作比较频繁的直流电力传动的控制线路,常用直流电源供电。若控制电压过高,在电器线圈断电的瞬间将产生很高的过电压(可达额定电压的十倍以上),这将对电器的作可靠性及使用寿命有影响。若控制电压过低时,电器触头不易可靠地接通,影响系统的正常工作。直流电磁铁及电磁离合器的控制线路,常用24V直流电源供电。 在保证控制线路工作的可靠性上,电器应可靠、牢固、稳定并符合使用环境条件,电器元件的工作时间要小(需延时的除外),如线圈的吸引和释放时间应不影响线路的工作。电器元件要正确联接电器的线圈,触头联接不正确,会使控制线路发生误动作,有时造成严重的事故。 线圈的连接两个交流接触器串联接干交流电路中,由于接触器线圈上的电压是依线圈阻抗大小正比分配的,即便是两个型号相同的交流接触器也不能按串联后接于其两倍额定电压的交流电源上,这是因为当其中一个接触器先工作后,这个接触器的阻抗要比没吸合的接勉器的阻抗大,这个接触器线圈电压达不到共额定电压而不吸合。同时线路电流将增加,有可能将线圈烧毁,所以,应将线圈并联后再缠到其额定电压值的交流电源上。触头的联接设计时应分布在不同位置。电器触头尽量按到同一组上,以免在电器触头上引起短路。交流接触器是两个行程控制线路,在电器控制线路中,应尽量将所有电器的联触头按在线圈的左端,线圈的右端直接按到电源。这样,可以减少在线路内产生虚假回路的可能性,还可以简化控制屏的出线和外部连接。 在设计控制线路,应考虑电器触头的接通和分断能力。如果容量不够,可在线路中加接中间继电器,增加线路中触头数目。增加接通能力用多触头并联,增加分断能力用多触头串联。控制线路的换接应当尽可能在电流较小的控制电路内进行,这样安全可靠。 减少被控制的负载或电器在接迈时所经过酶触头数、电器的触头发生故障电路,就不能正常工作,这可通过触头韵合理布置来达到,每二一继电器的接通就只需经过一对触头,工作较为可靠,尽量减少控制线路所用的控制电器数量和触头数量在满足动作要求的条件下,所用的电器越少、触头越少,控制线路的故障机会率就越低,工作的可靠性也就越高。经过合并后都可以减少而简化成线路,但是在合并触头时应当注意触头的额定电流是否允许利用转换触头。两对触头可以合并一对转换触头而成为右线路。这种方法只适用干有转换触头的中间继电器。利用半导体二极管的单向导电性可以有效地减少触头数。所示电路是等效的。由干b和d应用了半导体二极管,减少了触头数目。这种方法用于弱电电器控制线路中既经济又可靠。目前已在自动化磨床上应用。减少连接导线设计控制线路时,将各电器触头的位置合理安排,可以减少连接导线的数量。特别要注意,同一电器的不同触头在线路中应尽可能具有更多的公共连接线,这样可以简化接线上减少导线段数和缩短导线的长度。行程开关是装在机床上的多继电器与时间继电器,是装在控制盘上的要经过较长的距离。防止寄生电路控制电路在正常工作或事故情况下,发生意外接通的电路称为寄生电路。若控制电路中存在寄生电路将破坏电器和线路的工作顺序,造成误动作。具有指示灯和热保护的电动机正,

§10 继电接触控制系统

§10 继电接触控制系统 10.1 常用控制电器 一、刀闸开关(Q) 用于隔离电源。 二、组合开关(Q) 用于隔离电源。 三、熔断器(FU) 用于短路保护。

主要由熔丝和外壳组成。 有管式、插式、和螺旋式等几种结构。(见教材P272) 图形符号: 四、按钮(SB) 结构见教材P269。 五、交流接触器(KM) 用于接通或断开电动机或其他负载的电源。 1、工作原理 线圈不通电:在弹簧的作用下,主触头和辅助常开

触头断开,辅助常闭触头闭合。 线圈通电:在电磁吸力的作用下,主触头和辅助常开触头闭合,辅助常闭触头断开。 2、图形符号 六、热继电器(FR) 用于过载保护。 继电器:某种参数达到预定值而动作,以控制触头通断的电器。如:电流继电器、电压继电器、时间继电器、速度继电器、热继电器等。 热继电器主要由热元件和常闭触头组成。

由于热惯性,热继电器不能用于短路保护,只能用于过载保护。

10.2 笼型电动机直接起动控制线路 一、点动电路 1、各控制电器的作用 Q:隔离电源。 FU:短路保护。 KM:控制电动机起动和停止。 FR:过载保护。 SB:起动按钮,控制KM线圈通、断电。 2、工作原理 当Q合上时: 按下SB→KM线圈通电→KM常开触头闭合→电动机运转; 松开SB→KM线圈断电→KM常开触头断开→电

动机停转。 二、连续运转电路 1、各控制电器的作用 Q:隔离电源。 FU:短路保护。 KM:控制电动机起动和停止,并兼零压(欠压)保护。 FR:过载保护。 SB1:停止按钮;SB2:起动按钮。 KM辅助常开触头:用于“自锁”。 2、工作原理 起动:Q合上时,按下SB2→KM线圈通电→KM 主触头和辅助常开触头闭合→电动机起动;松开SB2,

继电接触器控制系统概念题(自学题)

继电器接触器控制电路概念题 1. 在电动机的继电器接触器控制电路中,零压保护的功能是( )。 (a) 防止电源电压降低烧坏电动机 (b)防止停电后再恢复供电时电动机自行起动 (c) 实现短路保护 2. 在电动机的继电器接触器控制电路中,热继电器的功能是实现( )。 (a)短路保护(b)零压保护(c)过载保护 3. 在三相异步电动机的正反转控制电路中,正转接触器与反转接触器间 的互锁环节功能是( )。 (a)防止电动机同时正转和反转(b)防止误操作时电源短路 (c)实现电动机过载保护 4. 在电动机的继电器接触器控制电路中,自锁环节的功能是( )。 (a) 具有零压保护(b)保证起动后持续运行(c)兼有点动功能 5. 为使某工作台在固定的区间作往复运动,并能防止其冲出滑道,应当采 用( )。 (a)时间控制(b)速度控制和终端保护(c) 行程控制和终端保护 6. 在电动机的继电器接触器控制电路中,热继电器的正确连接方法应 当是( )。 (a)热继电器的发热元件串接在主电路内,而把它的动合触点与接触器 的线圈串联接在控制电路内 (b) 热继电器的发热元件串联接在主电路内,而把它的动断触点与接触 器的线圈串联接在控制电路内 (c) 热继电器的发热元件并接在主电路内,而把它的动断触点与接触器 的线圈并联接在控制电路内 7. 在继电器接触器控制电路中,自锁环节触点的正确连接方法是( )。 (a) 接触器的动合辅助触点与起动按钮并联 (b) 接触器的动合辅助触点与起动按钮串联 (c) 接触器的动断辅助触点与起动按钮并联 [1.b 2. c 3 b 4. b 5.c 6. b 7. a ]

继电接触控制部分

目录 第一章概述 (1) 1.实验目的和基本要求 (1) 2.实验准备 (1) 3.实验实施 (2) 4.实验总结 (2) 第二章实验装置介绍 (4) 1.概述 (4) 2.实验装置介绍和使用说明 (5) 3.异步电动机 (7) 4.常用控制电器 (8) 第三章实验项目 1.三相鼠笼式异步电动机的点动和自锁控制线路 (10) 2.三相鼠笼式异步电动机可逆旋转控制线路 (13)

第三章 实验项目 实验一 三相鼠笼式异步电动机的点动和自锁控制线路、可 逆旋转控制线路 一.概述 三相笼式异步电机由于结构简单、性价比高、维修方便等优点获得了广泛的应用。在工农业生产中,经常采用继电接触控制系统对中小功率笼式异步机进行直接起动,其控制 线路大部由继电器、接触器、按 钮等有触头电器组成。 某些生产机械在安装或维修后常常需要所谓“点动”控制。 图3-1所示为点动控制原理图, 图中主回路可不接热继电器。当 按下起动按钮SB2时,电机转动;松开按扭后,由于按钮自动复位, 电机停转。点动起停的时间长短由操作者手动控制。 除点动外,电机更多地工作 于连续动转状态,由图示3-2(a)所示为单向连续旋转控制原理 图,此时主回路上应装设热继电器作长期过载保护。当按下起动按钮SB2时,电机转动,按下停止按钮SB1,电机停转。图3-2(b)所示控制原理图可实现点动和连续旋转两种工况,SB2为电机连续工作起动按钮,SB3为电机点动起动按钮,SB1为电机停止按钮。 二、实验目的 1.熟悉三相鼠笼式异步电机单方向起动停止和点动控制线路中各电器元件的使用方法及其在线路中所起的作用。 2.掌握三相鼠笼式异步电机单方向起动停止和点动控制线路的工作原理、接线方法、调试及故障排除技能。 3.掌握三相笼式异步机可逆旋转控制线路的工作原理、接线方式及操作方法。 图3-1 三相鼠笼式异步电机点动控制线路 U 3~ M ~V KM1FU1 Q ~U W ~V ~ ~KM1 SB2 FU2

三相异步电动机的继电接触控制

三相异步电动机的继电接触控制 1、 实验目的 (1) 通过实验进一步了解交流接触器、热继电器、按钮等低压电器的结构、工作原理及其作用。 (2) 学习继电接触控制电路的组成方法。 (3) 学习异步电动机的起动、停止控制电路的接线。 (4) 学习异步电动机的正反转控制电路的接线。 2、 实验预习要求 (1) 复习交流接触器、热继电器、按钮等低压电器的结构、工作原理及符号表示方法。 (2) 复习三相异步电动机起动、自锁、互锁、停止及正反转控制线路的工作原理。 3、 实验原理 电动机的控制 对拖动一般生产机械的电动机的控制,只需满足起动,自锁和停止等功能,其控制电路如图1所示。但也有不少机械,如吊车、刨床等都需要两个方向的运动,则拖动该生产机械的电动机也就必须有两个旋转方向。 由三相异步电动机的工作原理可知,改变电动机的旋转方向,只要改变接于电动机定子的三相电源的相序,也就是调换电源通向电动机定子绕组的三根相线中的任意两根即可。在图2所示的主电路中,当正转接触器主触点F KM 闭合时,定子绕组三个接线端子1U 、1V 和1W 分别接入电源的1L 、2L 和3L 三相,而当反转接触器的主触点R KM 闭合时,定子绕组三个接线端子1U 、1V 和1W 分别接入电源的3L 、2L 和1L 三相,可见接至定子绕组的电源相序变了,电动的旋转方向也就随之改变。而接触器F KM 和R KM 的动作,则是由按钮F SB 和R SB 和1SB 控制。 图1和图2所示控制电路中的辅助触点KM 、F KM 和1R KM 为自锁触点,它保证在电动机起动后,松开起动按钮电动机继续运转。而图2所示控制电路中的 2F KM 、2R KM 为互锁触点,它保证了电动机正转时断开反转控制电路以及反转时断开正转控制电路,以防止F KM 和R KM 同时吸合,使主电路发生严重短路故障。 控制电路还必须具有失压保护、短路保护和过载保护。所谓失压保护,即电动机运行时,因电源突然停电使接触器线圈失电,电动机停止运转,一旦电源恢复供电,不按启动按钮,电动机则不会自行起动,该功能被称为失压保护。它能避免因电动机自行启动而造成人身、设备事故。其功能由自锁触点实现。 所谓短路保护,即由熔断器FU 实现,当电路发生短路故障时,整个线路断开。过载保护,由热继电器FR 实现,当电动机发生过载并经一定量的延时后,FR 的动断触点动作,断开控制电路,待排除故障后,再按下热继电器FR 上的

三相异步电动机控制电路图

5.2.4.三相异步电动机的控制 1.直接启动控制电路 直接启动即启动时把电动机直接 接入电网,加上额定电压,一般来说,电动机的容量不大于直接供电变压器容量的20%~30%时,都可以直接启动。 1).点动控制 合上开关QF ,三相电源被引入控 制电路,但电动机还不能起动。按下按钮SF ,接触器KM 线圈通电,衔铁吸 合,常开主触点接通,电动机定子接入 三相电源起动运转。松开按钮SF , 图5-13 点动控制 接触器KM 线圈断电,衔铁松开,常开主触点断开,电动机因断电而停转。 2).直接起动控制 (1)起动过程。按下起动按钮SF ,接触器KM 线 圈通电,与SF 并联的KM 的辅助常开触点闭合,以保证松开按钮SF 后KM 线圈持续通电,串联在电动机回路中的KM 的主触点持续闭合,电动机连续运转,从而实现连续运转控制。 (2)停止过程。按下停止按钮SS ,接触器KM 线 圈断电,与SF 并联的KM 的辅助常开触点断开,以保证松开按钮SS 后KM 线圈持续失电,串联在电动机回路中的KM 的主触点持续断开,电动机停转。 与SF 并联的KM 的辅助常开触点的这种作用称为自锁。 图示控制电路还可实现短路保护、过载保护和零压 保护。 图5-14直接起动控制 起短路保护的是串接在主电路中的熔断器FU 。一旦电路发生短路故障,熔 体立即熔断,电动机立即停转。 起过载保护的是热继电器KH 。当过载时,热继电器的发热元件发热,将其 常闭触点断开,使接触器KM 线圈断电,串联在电动机回路中的KM 的主触点断开,电动机停转。同时KM 辅助触点也断开,解除自锁。故障排除后若要重新起动,需按下KH 的复位按钮,使KH 的常闭触点复位(闭合)即可。 起零压(或欠压)保护的是接触器KM 本身。当电源暂时断电或电压严重下降时,接触器KM 线圈的电磁吸力不足,衔铁自行释放,使主、辅触点自行复位,切断电源,电动机停转,同时解除自锁。

实验4、三相异步电动机的继电接触控制(new)

三相异步电动机的继电接触控制 1.实验目的 (1) 通过实验进一步了解交流接触器、热继电器、按钮等低压电器的结构、工作原理及其作用。 (2) 学习继电接触控制电路的组成方法。 (3) 学习异步电动机的起动、停止控制电路的接线。 (4) 学习异步电动机的正反转控制电路的接线。 2.实验预习要求 (1) 复习交流接触器、热继电器、按钮等低压电器的结构、工作原理及符号表示方法。 (2) 复习三相异步电动机起动、自锁、互锁、停止及正反转控制线路的工作原理。 3.实验原理 电动机的控制 对拖动一般生产机械的电动机的控制,只需满足起动,自锁和停止等功能,其控制电路如图1所示。但也有不少机械,如吊车、刨床等都需要两个方向的运动,则拖动该生产机械的电动机也就必须有两个旋转方向。 由三相异步电动机的工作原理可知,改变电动机的旋转方向,只要改变接于电动机定子的三相电源的相序,也就是调换电源通向电动机定子绕组的三根相线中的任意两根即可。在图2所示的主电路中,当正转接触器主触点F KM 闭合时,定子绕组三个接线端子1U 、1V 和 1W 分别接入电源的1L 、2L 和3L 三相,而当反转接触器的主触点R KM 闭合时,定子绕组三 个接线端子1U 、1V 和1W 分别接入电源的3L 、2L 和1L 三相,可见接至定子绕组的电源相序变了,电动的旋转方向也就随之改变。而接触器F KM 和R KM 的动作,则是由按钮F SB 和 R SB 和1SB 控制。 图1和图2所示控制电路中的辅助触点KM 、F KM 和1R KM 为自锁触点,它保证在电动机起动后,松开起动按钮电动机继续运转。而图2所示控制电路中的2F KM 、2R KM 为互锁触点,它保证了电动机正转时断开反转控制电路以及反转时断开正转控制电路,以防止 F KM 和R KM 同时吸合,使主电路发生严重短路故障。 控制电路还必须具有失压保护、短路保护和过载保护。所谓失压保护,即电动机运行时,因电源突然停电使接触器线圈失电,电动机停止运转,一旦电源恢复供电,不按启动按钮,

相关主题
文本预览
相关文档 最新文档