当前位置:文档之家› 新编基础物理学(王少杰、顾牡)版本)上册

新编基础物理学(王少杰、顾牡)版本)上册

新编基础物理学(王少杰、顾牡)版本)上册
新编基础物理学(王少杰、顾牡)版本)上册

1、质点作曲线运动[ D ](3)

v dt ds

=;

(D )只有(3)是对的。 2、质点沿半径为R [ B ](B) 0,t

R

π2

3、一运动质点在[ D ](D)

2

2

)

(

)(

dt

dy dt

dx +

4、一小球沿斜面[ B](B )t=2s ;

5、一质点在平面(B )变速直线运动; 6.质量为m 的小球在向心力作用下j mv B 2)

(-

7.一质点作匀速率圆周运动(C)它的动量不断改变,对圆心的角动量不变; 8、质点在外力作用下运动时(B )外力的冲量为零,外力的功一定为零; 9.选择正确答案(A)物体的动量不变,则动能也不变; 10.人造卫星绕地球作圆运动(D)角动量守恒,动能不守恒; 11.质点系内力可以改变 (C )系统的总动能;

12.一力学系统由两个质点组成(C 动量守恒、但机械能和角动量守恒与否不能断定; 13.对功的概念说法正确的是(C) 质点沿闭合路径运动,保守力对质点做的功等于零; 14.用绳子系着一物体;(D )重力、张力都没对物体做功; 15.狭义相对论中的相对性原理;(C) (3),(4); 16.狭义相对论中的光速不变原理;(C) (3),(4);

17.边长为a 的正方形薄板静止于惯性系S ;(B)0.62

a ; 18.有一直尺固定在错误!未找到引用源。系中;

45)(等于C ;

19.

电场强度q

F E =;(D )任何电场。; 20.下面列出的真空中静电场的场强公式[ D ] 半径为R ..r r

R E 3

02εσ=; 21.一个带负电荷的质点

22.如图所示,闭合面

S 内有一点电荷q

(B) S 面的电通量不变, P 点场强改变

23.若匀强电场的电场强度为E ;(B )E a 2

2

;

24.下列说法正确的是(C)通过闭合曲面S 的总电通量,仅仅由S 面内所包围的电荷提供; 24.静电场的环路定理?=?0l d E

说明静电场的性质是;(D )静电场是保守场. 25.下列叙述中正确的是(D) 场强方向总是从电势高处,指向电势低处。 26.关于电场强度与电势之间(C)在电势不变的空间,电场强度处处为零; 27.若将负电荷q 从电场中的a 点移到b 点;(A)电场力做负功;

28.边长为a 的正方体中心处放置一电量为Q 的点电荷;(B)02Q a

πε;

29.两个半径不同带电量相同的导体球;(B) 半径大的球带电量多; 30.静电平衡时(A)导体所带电荷及感生电荷都分布在导体的表面上; 31.一球形导体带电量q ;(C) 减小;

32.将一带正电荷的导体A;(B)导体B 的电势不变,且带负电荷;

33.关于静电场中的电位移线;(C)起自正自由电荷..的空间不相交; 34.一空气平行板电容器;(C )3C/2;

35.关于电位移矢量D 的高斯定理;(C) 高斯面的D

通量仅与面内自由电荷有关; 36.一平行板电容器充电后;(C) 高斯面的D

通量仅与面内自由电荷有关;

37.空气平行板电容器;(B )C 增大,Q 增大,E 不变,W 增加;

38.一平行板电容器充电后仍与电源连接;(B )Q 减小,E 减少,e W 减少;

39.磁场的高斯定理0=??S

s d B

;(A)(1)磁场是无源场;(3)磁力线是闭合曲线

40.安培环路定理∑?=?I dl B l

0μ;(C)②磁场力是非保守力;④磁场是无势场;

41.在均匀磁场中放置三个面积相等;(D)三个线圈受到的最大磁力矩相等; 42.如图,流出纸面的电流为I 2;(B )I l d B L ?

=?2

;

43.一无限长载流直导线中间弯成右图(11-12)形状;(D)R

I 40μ;

44.沿y 轴放置一长为l 的载流导线;(A)z x F IlB =-;

45.下列说法正确的是;(B)若闭合曲线上各点的H 为零; 46.如图,一长方形线圈以均匀速度v 通过均匀磁场;(C) 47.尺寸相同的铁环和铜环;(D)感应电动势相同,感应电流不同; 48.两个环形导体b a ,同心且相互垂直地放置; (A)只产生自感电流,不产生互感电流 49.如图,长为l 的直导线ab;(D) 0.

《新编基础物理学》第7章习题解答和分析

第7章 气体动理论 7-1 氧气瓶的容积为32L ,瓶内充满氧气时的压强为130atm 。若每小时需用1atm 氧气体积为400L 。设使用过程中保持温度不变,问当瓶内压强降到10atm 时,使用了几个小时? 分析 氧气的使用过程中,氧气瓶的容积不变,压强减小。因此可由气体状态方程得到使用前后的氧气质量。进而将总的消耗量和每小时的消耗量比较求解。 解 已知123130atm,10atm,1atm;p p p === 1232L,V V V ===3400L V =。 质量分别为1m ,2m ,3m ,由题意可得: 1 1 m pV RT M = 22m p V RT M = 233m p V RT M = 所以一瓶氧气能用小时数为: ()121233313010329.6(1.0400 m m p V p V n m p V -?--= ===?h) 7-2 一氦氖气体激光管,工作时管内温度是 27C ?。压强是2.4mmHg ,氦气与氖气的压强比是7:1.求管内氦气和氖气的分子数密度. 分析 先求得氦气和氖气各自得压强,再根据公式p nkT =求解氦气和氖气的分子数密度。 解:依题意, n n n =+氦氖, 52.4 1.01310Pa 760 p p p =+= ??氦氖;:7:1p p =氦氖 所以 552.1 0.3 1.01310Pa, 1.01310Pa 760 760 p p = ??= ??氦氖, 根据 p nkT =,得 ()5223 232.1760 1.01310 6.7610(m )1.3810300 p n kT --??===???氦氦 2139.6610(m )P n kT -= =?氖氖 7-3 氢分子的质量为24 3.310 -?g 。如果每秒有23 10个氢分子沿着与墙面的法线成?45角的方 向以5 1 10cm s -?的速率撞击在面积为2 2.0cm 的墙面上,如果撞击是完全弹性的,试求这些氢分子作用在墙面上的压强.

《新编基础物理学》第一章习题解答和分析

新编基础物理学王少杰顾牡主编上册 第一章课后习题答案 QQ:970629600 习题一 1-1.质点运动学方程为:cos()sin(),r a t i a t j btk ωω=++ 其中a ,b ,ω均为正常数,求质 点速度和加速度与时间的关系式。 分析:由速度、加速度的定义,将运动方程()r t 对时间t 求一阶导数和二阶导数,可得到速度和加速度的表达式。 解:/sin()cos()==-++ v dr dt a t i a t j bk ωωωω 2 /cos()sin()a dv dt a t i t j ωωω??==-+?? 1-2. 一艘正在沿直线行驶的电艇,在发动机关闭后,其加速度方向与速度方向相反,大小与速度平方成正比,即2/d d v v K t -=, 式中K 为常量.试证明电艇在关闭发动机后又行驶x 距离 时的速度为 0K x v v e -= 。 其中0v 是发动机关闭时的速度。 分析:要求()v v x =可通过积分变量替换dx dv v dt dv a ==,积分即可求得。 证: 2 d d d d d d d d v x v v t x x v t v K -==? = d K dx v =-v ?? -=x x K 0d d 10 v v v v , Kx -=0 ln v v 0K x v v e -= 1-3.一质点在xOy 平面内运动,运动函数为2 2,48x t y t ==-。(1)求质点的轨道方程并画出轨道曲线;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。 分析:将运动方程x 和y 的两个分量式消去参数t ,便可得到质点的轨道方程。写出质点的运 动学方程)(t r 表达式。对运动学方程求一阶导、二阶导得()v t 和()a t ,把时间代入可得某时刻 质点的位置、速度、加速度。 解:(1)由2,x t =得:,2 x t =代入2 48y t =- 可得:2 8y x =-,即轨道曲线。 画图略 (2)质点的位置可表示为:2 2(48)r ti t j =+- 由/v dr dt = 则速度:28v i tj =+ 由/a dv dt = 则加速度:8a j = 则:当t=1s 时,有24,28,8r i j v i j a j =-=+= 当t=2s 时,有48,216,8r i j v i j a j =+=+= 1-4.一质点的运动学方程为2 2 (1)x t y t ==-,,x 和y 均以m 为单位,t 以s 为单位。(1)求

新编基础物理学课后答案

习题一 1-1.质点运动学方程为:cos()sin(),r a t i a t j btk ωω=++其中a ,b ,ω均为正常数,求质点速度和加速度与时间的关系式。 分析:由速度、加速度的定义,将运动方程()r t 对时间t 求一阶导数和二阶导数,可得到速度和加速度的表达式。 解:/sin()cos()==-++v dr dt a t i a t j bk ωωωω 2/cos()sin()a dv dt a t i t j ωωω??==-+?? 1-2. 一艘正在沿直线行驶的电艇,在发动机关闭后,其加速度方向与速度方向相反,大小与速度平方成正比,即2/d d v v K t -=, 式中K 为常量.试证明电艇在关闭发动机后又行驶x 距离时的速度为 0Kx v v e -= 。 其中0v 是发动机关闭时的速度。 分析:要求()v v x =可通过积分变量替换dx dv v dt dv a ==,积分即可求得。 证: 2d d d d d d d d v x v v t x x v t v K -==?= d Kdx v =-v ??-=x x K 0 d d 10v v v v , Kx -=0 ln v v 0Kx v v e -= 1-3.一质点在xOy 平面内运动,运动函数为2 2,48x t y t ==-。(1)求质点的轨道方程并画出轨道曲线;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。 分析:将运动方程x 和y 的两个分量式消去参数t ,便可得到质点的轨道方程。写出质点的运动学方程)(t r 表达式。对运动学方程求一阶导、二阶导得()v t 和()a t ,把时间代入可得某时刻质点的位置、速度、加速度。 解:(1)由2,x t =得:,2 x t =代入248y t =- 可得:2 8y x =-,即轨道曲线。 画图略 (2)质点的位置可表示为:2 2(48)r ti t j =+- 由/v dr dt =则速度:28v i tj =+ 由/a dv dt =则加速度:8a j = 则:当t=1s 时,有24,28,8r i j v i j a j =-=+= 当t=2s 时,有48,216,8r i j v i j a j =+=+= 1-4.一质点的运动学方程为2 2 (1)x t y t ==-,,x 和y 均以m 为单位,t 以s 为单位。(1)求质点的轨迹方程;(2)在2t s =时质点的速度和加速度。 分析同1-3. 解:(1)由题意可知:x ≥0,y ≥0,由2 x t =,,可得t x = ,代入2(1)y t =- 整理得: 1y x =-,即轨迹方程 (2)质点的运动方程可表示为:22 (1)r t i t j =+-

《新编基础物理学答案》_第11章

第11章 恒定电流与真空中的恒定磁场 11-1 电源中的非静电力与静电力有什么不同? 答:在电路中,电源中非静电力的作用是,迫使正电荷经过电源内部由低电位的电源负极移动到高电位的电源正极,使两极间维持一定的电位差。而静电场的作用是在外电路中把正电荷由高电位的地方移动到低电位的地方,起到推动电流的作用;在电源内部正好相反,静电场起的是抵制电流的作用。 电源中存在的电场有两种:1、非静电起源的场;2、稳恒场。把这两种电场与静电场比较,静电场由静止电荷所激发,它不随时间的变化而变化。非静电场不由静止电荷产生,它的大小 决定于单位正电荷所受的非静电力,k F E q = 。当然电源种类不同,k F 的起因也不同。 11-2静电场与恒定电场有什么相同处和不同处?为什么恒定电场中仍可应用电势概念? 答:稳恒电场与静电场有相同之处,即是它们都不随时间的变化而变化,基本规律相同,并且都是位场。但稳恒电场由分布不随时间变化的电荷产生,电荷本身却在移动。 正因为建立稳恒电场的电荷分布不随时间变化,因此静电场的两条基本定理,即高斯定理和环路定理仍然适用,所以仍可引入电势的概念。 11-3一根铜导线表面涂以银层,当两端加上电压后,在铜线和银层中,电场强度是否相同?电流密度是否相同?电流强度是否相同?为什么? 答:此题涉及知识点:电流强度d s I =?? j s ,电流密度概念,电场强度概念,欧姆定律的微 分形式j E σ= 。设铜线材料横截面均匀,银层的材料和厚度也均匀。由于加在两者上的电压相同,两者的长度又相等,故铜线和银层的场强E 相同。由于铜线和银层的电导率σ不同, 根据j E σ= 知,它们中的电流密度j 不相同。电流强度d s I =?? j s ,铜线和银层的j 不同但 相差不太大,而它们的横截面积一般相差较大,所以通过两者的电流强度,一般说来是不相同的。 11-4一束质子发生侧向偏转,造成这个偏转的原因可否是: (1)电场? (2)磁场? (3)若是电场或者是磁场在起作用,如何判断是哪一种场? 答:造成这个偏转的原因可以是电场或磁场。可以改变质子的运动方向,通过质子观察运动轨迹来判断是电场还是磁场在起作用。

新编基础物理学(王少杰、顾牡)版本)上册期末考试题库

填空,选择 第一章 质点运动学 一、选择题 1、质点作曲线运动,→ r 表示位置矢量,s 表示路程,t a 表示切向加速度,下列表达式中 [ D ] (1) a dt dv =; (2)v dt dr =; (3)v dt ds =; (4)t a dt dv =。 (A )只有(1),(4)是对的; (B )只有(2),(4)是对的; (C )只有(2)是对的; (D )只有(3)是对的。 2、质点沿半径为R 的圆周作匀速率运动,每t 秒转一圈,在2t 时间间隔中,其平均速度大小与平均速率大小分别为 [ B ] (A) t R π2, t R π2 ; (B) 0, t R π2; (C) 0,0; (D) t R π2,0. 3、一运动质点在某瞬时位于矢径),(y x r 的端点处,其速度大小为 [ D ] (A) dt dr (B) dt r d (C) dt r d (D) 22 )()(dt dy dt dx + 4、一小球沿斜面向上运动,其运动方程为2 45t t s -+=,则小球运动到最高点的时刻是 [ B ] (A )t=4s ; (B )t=2s ; (C )t=8s ; (D) t=5s 5、一质点在平面上运动,已知质点位置矢量的表示式为2 2 r a t i b tj =+ (其中a,b 为常数),则质点作[ B ] (A )匀速直线运动; (B )变速直线运动; (C )抛物线运动; (D )一般曲线运动。 二、填空题 1.已知质点的运动方程为:j t t i t t r )3 14()2125(3 2++-+=. 当 t =2 s 时,a = 4i j -+ 。 2、说明质点做何种运动时,将出现下述各种情况(0v ≠): (1)0,0n a a τ≠≠,变速率曲线运动; (2)0,0n a a τ≠=,变速率直线运动。 3、一质点运动方程为2 6 x t t =-,则在由0至4s 的时间间隔内,质点的位移大小为_______8m_____,在由0到4s 的时间间隔内质点走过的路程为____10m__________。

新编基础物理学上册答案

新编基础物理学上册答案 【篇一:新编基础物理学上册1-2单元课后答案】class=txt>王少杰,顾牡主编 第一章 ???? 1-1.质点运动学方程为:r?acos(?t)i?asin(?t)j?btk,其中a,b,? 均为正常数,求质点速度和加速度与时间的关系式。 ? 分析:由速度、加速度的定义,将运动方程r(t)对时间t求一阶导数 和二阶导数,可得到速度和加速度的表达式。 ????? 解:v?dr/dt??a?sin(?t)i?a?cos(?t)j?bk ????2 a?dv/dt??a???cos(?t)i?sin(?t)j?? 1-2. 一艘正在沿直线行驶的电艇,在发动机关闭后,其加速度方向 与速度方向相反,大小与速度平方成正比,即dv/dt??kv2,式中k 为常量.试证明电艇在关闭发动机后又行驶x距离时的速度为 v?v0e?kx 。其中v0是发动机关闭时的速度。 dvdv 分析:要求v?v(x)可通过积分变量替换a?,积分即可求得。 ?v dtdx dvdvdxdv ???v??kv2dtdxdtdxdv ??kdx vv1xvv???v0v?0kdx ,lnv0??kx 证: v?v0e?kx 1-3.一质点在xoy平面内运动,运动函数为x?2t,y?4t2?8。(1)求质点的轨道方程并画出轨道曲线;(2)求t=1 s和t=2 s 时质点 的位置、速度和加速度。 分析:将运动方程x和y的两个分量式消去参数t,便可得到质点的轨道方程。写出质点的 ??? 运动学方程r(t)表达式。对运动学方程求一阶导、二阶导得v(t)和 a(t),把时间代入可得某时刻质点的位置、速度、加速度。

新编基础物理学(王少杰、顾牡)版本)上册

1、质点作曲线运动[ D ](3) v dt ds =; (D )只有(3)是对的。 2、质点沿半径为R [ B ](B) 0,t R π2 3、一运动质点在[ D ](D) 2 2 ) ( )( dt dy dt dx + 4、一小球沿斜面[ B](B )t=2s ; 5、一质点在平面(B )变速直线运动; 6.质量为m 的小球在向心力作用下j mv B 2) (- 7.一质点作匀速率圆周运动(C)它的动量不断改变,对圆心的角动量不变; 8、质点在外力作用下运动时(B )外力的冲量为零,外力的功一定为零; 9.选择正确答案(A)物体的动量不变,则动能也不变; 10.人造卫星绕地球作圆运动(D)角动量守恒,动能不守恒; 11.质点系内力可以改变 (C )系统的总动能; 12.一力学系统由两个质点组成(C 动量守恒、但机械能和角动量守恒与否不能断定; 13.对功的概念说法正确的是(C) 质点沿闭合路径运动,保守力对质点做的功等于零; 14.用绳子系着一物体;(D )重力、张力都没对物体做功; 15.狭义相对论中的相对性原理;(C) (3),(4); 16.狭义相对论中的光速不变原理;(C) (3),(4); 17.边长为a 的正方形薄板静止于惯性系S ;(B)0.62 a ; 18.有一直尺固定在错误!未找到引用源。系中; 45)(等于C ; 19. 电场强度q F E =;(D )任何电场。; 20.下面列出的真空中静电场的场强公式[ D ] 半径为R ..r r R E 3 02εσ=; 21.一个带负电荷的质点 22.如图所示,闭合面 S 内有一点电荷q (B) S 面的电通量不变, P 点场强改变 23.若匀强电场的电场强度为E ;(B )E a 2 2 1π ;

新编基础物理学王少杰第二版第八章习题解答

新编基础物理学王少杰第二版第八章习题解答 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

习题八 8-1 位于委内瑞拉的安赫尔瀑布是世界上落差最大的瀑布,它高979m.如果在水下落的过程中,重力对它所做的功中有50%转换为热量使水温升高,求水由瀑布顶部落到底部而产生的温差.( 水的比热容c 为3114.1810J kg K --???) 解 由上述分析得 0.5mc T mgh ?= 水下落后升高的温度 0.5 1.15K gh T c ?= = 8-2 在等压过程中,0.28kg 氮气从温度为293K 膨胀到373K ,问对外做功和吸热 多少内能改变多少 解:等压过程气体对外做功为 2121()()m W p V V R T T M =-=-()3280 8.31373293 6.6510(J)28 =??-=? 气体吸收的热量 ()()42128078.31373293 2.3310(J)282 p m Q C T T M =-=???-=? 内能的增量为 ()()42128058.31373293 1.6610(J)282 V m E C T T M ?=-=???-=? 8-3 一摩尔的单原子理想气体,温度从300K 加热到350K 。其过程分别为体积保持不变和压强保持不变。在这两种过程中: (1) 气体各吸取了多少热量 (2) 气体内能增加了多少 (3) 气体对外界做了多少功 解: 已知气体为1 摩尔单原子理想气体

31,2 V m C R M == (1) 体积不变时,气体吸收的热量 ()()213 8.31350300623.25(J)2 V V m Q C T T M = -=??-= 压强保持不变时,气体吸收的热量 215 ()8.31(350300)1038.75(J)2 p p m Q C T T M = -=??-= (2) 由于温度的改变量一样,气体内能增量是相同的 ()()213 8.31350300623.25(J)2 V m E C T T M ?= -=??-= (3) 体积不变时,气体对外界做功 0=W 压强保持不变时,根据热力学第一定律,气体对外界做功为 1038.75623.25415.5(J)p W Q E J J =-?=-= 8-4 一气体系统如题图8-4所示,由状态A 沿ACB 过程到达B 状态,有336J 热量传入系统,而系统做功126J,试问: (1) 若系统经由ADB 过程到B 做功42J,则有多少热量传入系统 (2) 若已知168J D A E E -=,则过程AD 及DB 中,系统各吸收多少热量 (3)若系统由B 状态经曲线BEA 过程返回状态A ,外界对系统做功84J,则系统与外界交换多少热量是吸热还是放热 解:已知ACB 过程中系统吸热336J Q =,系统对外做功126J W =,根据热力学第一定律求出B 态和A 态的内能增量 210J E Q W ?=-= 题图8-4

《新编基础物理学答案》_第9章

电荷与真空中的静电场 9-1两个小球都带正电,总共带有电荷5.0 105C,如果当两小球相距2.0m时, 任一球受另一球的斥力为1.0N.试求:总电荷在两球上是如何分配的。 分析:运用库仑定律求解。 解:如解图9-1所示,设两小球分别带电q1,q2则有 q1+q2 5. C 1 10 5 ①解图9-1 由库仑定律得 F qq?厂29 109盹1② 4 n °r4 由①②联立解得 9-2两根6.0 10 2m长的丝线由一点挂下,每根丝线的下端都系着一个质量为 0.5 10 3kg的小球.当这两个小球都带有等量的正电荷时,每根丝线都平衡在与 沿垂线成60°角的位置上。求每一个小球的电量。 分析:对小球进行受力分析,运用库仑定律及小球平衡时所受力的相互关系求解。解:设两小球带电q,小球受力如解图9-2所示 2 F T cos30 ① 4n 0R 解图9-2 mg T sin30 ② 联立①②得 叫E tan30。③ q 其中 代入③式,得 r 9-3在电场中某一点的场强定义为E —, q。 若该点没有试验电荷,那么该点是否存在电场?为什么? 答:若该点没有试验电荷,该点的场强不变.因为场强是描述电场性质的物理量,仅与场源电荷的分布及空间位置有关,与试验电荷无关,从库仑定律知道,试验 r r — 电荷q°所受力F与q0成正比,故E 一是与q°无关的。

q。

9-4直角三角形ABC 如题图9-4所示,AB 为斜边,A 点上 J 有一点荷q i 1.8 10 9C ,B 点上有一点电荷q 2 4.8 10 9C , 已知BC 0.04m , AC 0.03m ,求C 点电场强度E 的大小和; 超 方向(cos37 0.8,sin37 0.6). 分析:运用点电荷场强公式及场强叠加原理求解。 解:如解图9-4所示C 点的电场强度为E E r 1 E 2 C 点电场强度E 的大小 方向为 C 即方向与BC 边成33.7 ° 9-5两个点电荷q 1 4 10 6C, q 2 8 10 6C 的间距为 0.1m ,求距离它们都是0.1m 处的电场强度E 。 分析:运用点电荷场强 公式及场强叠加原理求解。 解:如解图9-5所示 E 1,E 2沿x 、y 轴分解 电场强度为 9-6有一边长为a 的如题图9-6所示的正六角形,四个顶点 都放有电荷q ,两个顶点放有电荷一q 。试计算图中在六角 形中心O 点处的场强。 分析:运用点电荷场强公式及场强叠加原理求解。 解:如解图 9-6 所示.设 q 1 q 2 q 3 q 6=q , q 4 q 5 = 分析:将带电直线无限分割,取一段电荷元,运用点电荷场强公式表示电荷元的 场强,再积分求解。注意:先将电荷元产生的场强按坐标轴分解然后积分,并利 用场强对称性。 解:如解图9-7建立坐标,带电直线上任一电荷元在 P 点产生的场强大小为 题图9-4 解图9-4 解图9-5 点电荷在o 点产生的电场强度大小均为 E E 1 E 2 E 3 L E 6 q 2 4 n Q 3 各电场强度方向如解图9-6所示, E 3与E 6抵消. 根据矢量合成,按余弦定理有 解得 方向垂直向下. 9-7电荷以线密度 均匀地分布在长为I 的直线上, 电直线的中垂线上与带电直线相距为 R 的点的场强。 求带 ——H y v \ A 题图9-6 解图9-6

新编基础物理学14单元课后答案

新编基础物理学14单 元课后答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第十四章 14-1.如题图14-1所示,一束平行光线以入射角θ射入折射率为n ,置于空气中的透明圆柱棒的端面.试求光线在圆柱棒内发生全反射时,折射率n 应满足的条件. 分析:一次折射,一次反射;利用端面折射角与内侧面入 射角互余及全反射条件即可求解。 解:设光线在圆柱棒端面的折射角为γ,在内侧面的入射角为'θ,根据折射定律,有' sin 'cos sin sin 222θθγθn n n n -=== 光线在界面上发生全反射的条件为1 'sin ≥θn ∴发生全反射时,n 必须满足θ2 sin 1+≥n 14-2.远处有一物点发出的平行光束,投射到一个空气中的实心玻璃球上.设玻璃的折射率为50.1=n ,球的半径为cm r 4=.求像的位置. 分析:利用逐步成像法,对玻璃球的前后两个球面逐一成像,即可求得最后像的位置.用高斯成像公式时,应注意两个球面的顶点位置是不同的.cm r r cm r r 4,421-=-===. 解: cm cm r n n f 12)415.15.1(1'11=?-=-= cm cm f n f 8)5.112('111-=-=-= cm f p p p f p f 12'',,1''1111 111==∞==+ 或用 -∞====-=-1111 1 11111,1,5.1','''p n n n r n n p n p n cm p p 12',4 15.11'5.111=-=∞-- 对玻璃球前表面所成的像,对后表面而言是物,所以 cm cm r p p 4)812(2'212=-=+= 题图14-1

《新编基础物理学》第1章习题解答和分析

第1章 质点运动学 1-1. 一质点沿x 轴运动,坐标与时间的变化关系为x =8t 3-6t (m ),试计算质点 (1) 在最初2s 内的平均速度,2s 末的瞬时速度; (2) 在1s 末到3s 末的平均加速度,3s 末的瞬时加速度. 分析:平均速度和瞬时速度的物理含义不同,分别用x t ?=?v 和d d x t =v 求得;平均加速度和瞬时加速度的物理含义也不同,分别用a t ?= ?v 和d d a t =v 求得. 解:(1) 在最初2s 内的平均速度为 31(2)(0)(8262)0 26(m s )2 x x x t t -?-?-?-====???v 2s 末质点的瞬时速度为 212d 24690(m s )d x t t -= =-=?v (2) 1s 末到3s 末的平均加速度为 22(3)(1)(2436)(246)96(m s )2 a t t -?-?---====???v v v 3s 末的瞬时加速度 23d 48144(m s )d a t t -= ==?v 1-2.一质点在xOy 平面内运动,运动方程为2 2(m),48(m)x t y t ==-. (1)求质点的轨道方程并画出轨道曲线; (2)求=1 s =2 s t t 和时质点的位置、速度和加速度. 分析:将运动方程x 和y 的两个分量式消去参数t ,便可得到质点的轨道方程.写出质点的运动学方程)(t r 表达式.对运动学方程求一阶导、二阶导得()t v 和()a t ,把时间代入可得某时刻质点的位置、速度、加速度. 解:(1) 由2,x t = 得:,2 x t = 代入248y t =- 可得:2 8y x =-,即轨道方程. 画图略 (2)质点的位置矢量可表示为 22(48)r ti t j =+- 则速度 d 28d r i t j t = =+v 加速度 d 8d a j t = =v 当t =1s 时,有 1224(m),28(m s ),8m s r i j i j a j --=-=+?=?v

新编基础物理学王少杰第二版第八章习题解答

习题八 8-1 位于委内瑞拉的安赫尔瀑布是世界上落差最大的瀑布,它高979m.如果在水下落的过程中,重力对它所做的功中有50%转换为热量使水温升高,求水由瀑布顶部落到底部而产生的温差.(水的比热容c 为3114.1810J kg K --???) 解 由上述分析得 水下落后升高的温度 8-2在等压过程中,0.28kg 氮气从温度为293K 膨胀到373K ,问对外做功和吸热多少?内能改变多少? 解:等压过程气体对外做功为 气体吸收的热量 内能的增量为 8-3一摩尔的单原子理想气体,温度从300K 加热到350K 。其过程分别为体积保持不变和压强保持不变。在这两种过程中: (1)气体各吸取了多少热量? (2)气体内能增加了多少? (3)气体对外界做了多少功? 解:已知气体为1摩尔单原子理想气体 (1) 体积不变时,气体吸收的热量 压强保持不变时,气体吸收的热量 (2) 由于温度的改变量一样,气体内能增量是相同的 (3) 体积不变时,气体对外界做功 压强保持不变时,根据热力学第一定律,气体对外界做功为

8-4一气体系统如题图8-4所示,由状态A 沿ACB 过程到达B 状态,有336J 热量传入系统,而系统做功126J,试问: (1)若系统经由ADB 过程到B 做功42J,则有多少热量传入系 统? 收多 (2)若已知168J D A E E -=,则过程AD 及DB 中,系统各吸少热量? (3)若系统由B 状态经曲线BEA 过程返回状态A ,外界对系统做功84J,则系统与外界交换多少热量?是吸热还是放热? 解:已知ACB 过程中系统吸热336J Q =,系统对外做功126J W =,根据热力学第一定律求出B 态和A 态的内能增量 (1)ADB 过程,42J W =,故 (2)经AD 过程,系统做功与ADB 过程做功相同,即42J W =,故 经DB 过程,系统不做功,吸收的热量即内能的增量 所以,吸收的热量为 (3)因为是外界对系统做功,所以 BEA 过程 210J BEA E E ?=-?=-, 故 系统放热. 8-5如题图8-5所示,压强随体积按线性变化,若已知某种 单原子理想气体在A,B 两状态的压强和体积,问: (1)从状态A 到状态B 的过程中,气体做功多少? 题图8-4 题图8-5

新编基础物理学上册7-8单元课后答案

第七章 7-1 氧气瓶的容积为32,L 瓶内充满氧气时的压强为130atm 。若每小时用的氧气在1atm 下体积为400L 。设使用过程温度保持不变,当瓶内压强降到10atm 时,使用了几个小时? 分析 氧气的使用过程中,氧气瓶的容积不变,压强减小。因此可由气体状态方程得到使用前后的氧气质量。进而将总的消耗量和每小时的消耗量比较求解。 解 已知123130,10,1;P atm P atm P atm === ,3221L V V V ===L V 4003=。 质量分别为1m ,2m ,3m ,由题意可得: 1 1 m PV RT M = ○ 1 22 m PV RT M = ○2 2 33 m PV RT M = ○3 所以一瓶氧气能用小时数为: ()1212 333 13010329.61.0400m m PV PV n m PV -?--= ===?小时 7-2 一氦氖气体激光管,工作时管内温度为 27C ?。压强为2.4mmHg ,氦气与氖气得压强比是7:1.求管内氦气和氖气的分数密度. 分析 先求得氦气和氖气各自得压强,再根据公式P nkT =求解氦气和氖气的分数密度。 解:依题意, n n n =+氦氖, 52.4 1.01310760P P P Pa =+=??氦氖;:7:1P P =氦氖 所以 55 2.1 0.31.01310, 1.01310760 760 P Pa P Pa = ??=??氦氖, 根据 P nkT = 所以 ()522323 2.1760 1.01310 6.76101.3810300P n m kT --??===???氦 氦 2139.6610P n m kT -=?氖氖 7-3 氢分子的质量为243.310-?克。如果每秒有2310个氢分子沿着与墙面的法线成?45角的方向以510厘米/秒的速率撞击在面积为22.0cm 的墙面上,如果撞击是完全弹性的,求这些氢分子作用在墙面上的压强. 分析 压强即作用在单位面积上的平均作用力,而平均作用力由动量定理求得。 解:单位时间内作用在墙面上的平均作用力为: 2cos 45F mv N =? 2752234 2 3.3101010102cos 4522330210F mv N p Pa S S ---?????= ===? 7-4 一个能量为1210ev 的宇宙射线粒子,射入一氖气管中,氖管中含有氦气0.10mol,如果宇

最新新编基础物理学上册5-6单元课后答案

第五章 5-1 有一弹簧振子,振幅m A 2100.2-?=,周期s T 0.1=,初相.4/3π?=试写出它的振动位移、速度和加速度方程。 分析 根据振动的标准形式得出振动方程,通过求导即可求解速度和加速度方程。 解:振动方程为:]2cos[]cos[?π ?ω+=+=t T A t A x 代入有关数据得:30.02cos[2]()4 x t SI π π=+ 振子的速度和加速度分别是: 3/0.04sin[2]()4v dx dt t SI π ππ==-+ 2223/0.08cos[2]()4a d x dt t SI π ππ==-+ 5-2若简谐振动方程为m t x ]4/20cos[1.0ππ+=,求: (1)振幅、频率、角频率、周期和初相; (2)t=2s 时的位移、速度和加速度. 分析 通过与简谐振动标准方程对比,得出特征参量。 解:(1)可用比较法求解.根据]4/20cos[1.0]cos[ππ?ω+=+=t t A x 得:振幅0.1A m =,角频率20/rad s ωπ=,频率1/210s νωπ-==, 周期1/0.1T s ν==,/4rad ?π= (2)2t s =时,振动相位为:20/4(40/4)t rad ?ππππ=+=+ 由cos x A ?=,sin A νω?=-,22cos a A x ω?ω=-=-得 20.0707, 4.44/,279/x m m s a m s ν==-=- 5-3质量为kg 2的质点,按方程))](6/(5sin[2.0SI t x π-=沿着x 轴振动.求: (1)t=0时,作用于质点的力的大小; (2)作用于质点的力的最大值和此时质点的位置. 分析 根据振动的动力学特征和已知的简谐振动方程求解,位移最大时受力最大。 解:(1)跟据x m ma f 2ω-==,)]6/(5sin[2.0π-=t x 将0=t 代入上式中,得: 5.0f N = (2)由x m f 2ω-=可知,当0.2x A m =-=-时,质点受力最大,为10.0f N = 5-4为了测得一物体的质量m ,将其挂到一弹簧上并让其自由振动,测得振动频率 Hz 0.11=ν;而当将另一已知质量为'm 的物体单独挂到该弹簧上时,测得频率为Hz 0.22=ν. 设振动均在弹簧的弹性限度内进行,求被测物体的质量. 分析 根据简谐振动频率公式比较即可。

新编基础物理学(上册)1-2单元课后答案

新编物理基础学(上、下册)课后习题详细答案 王少杰,顾牡主编 第一章 1-1.质点运动学方程为:cos()sin(),r a t i a t j btk ωω=++其中a ,b ,ω均为正常数,求质点速度和加速度与时间的关系式。 分析:由速度、加速度的定义,将运动方程()r t 对时间t 求一阶导数和二阶导数,可得到速度和加速度的表达式。 解:/sin()cos()==-++v dr dt a t i a t j bk ωωωω 2/cos()sin()a dv dt a t i t j ωωω??==-+?? 1-2. 一艘正在沿直线行驶的电艇,在发动机关闭后,其加速度方向与速度方向相反,大小与速度平方成正比,即2/d d v v K t -=, 式中K 为常量.试证明电艇在关闭发动机后又行驶x 距离时的速度为 0Kx v v e -= 。 其中0v 是发动机关闭时的速度。 分析:要求()v v x =可通过积分变量替换dx dv v dt dv a ==,积分即可求得。 证: 2d d d d d d d d v x v v t x x v t v K -==?= d Kdx v =-v ??-=x x K 0d d 10v v v v , Kx -=0ln v v 0Kx v v e -= 1-3.一质点在xOy 平面运动,运动函数为22,48x t y t ==-。(1)求质点的轨道方程并画出轨道曲线;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。 分析:将运动方程x 和y 的两个分量式消去参数t ,便可得到质点的轨道方程。写出质点的 运动学方程)(t r 表达式。对运动学方程求一阶导、二阶导得()v t 和()a t ,把时间代入可得某 时刻质点的位置、速度、加速度。 解:(1)由2,x t =得:,2 x t =代入248y t =- 可得:28y x =-,即轨道曲线。 画图略 (2)质点的位置可表示为:22(48)r ti t j =+- 由/v dr dt =则速度:28v i tj =+ 由/a dv dt =则加速度:8a j = 则:当t=1s 时,有24,28,8r i j v i j a j =-=+= 当t=2s 时,有48,216,8r i j v i j a j =+=+= 1-4.一质点的运动学方程为22(1)x t y t ==-,,x 和y 均以m 为单位,t 以s 为单位。(1)求质点的轨迹方程;(2)在2t s =时质点的速度和加速度。 分析同1-3. 解:(1)由题意可知:x ≥0,y ≥0,由2x t =,,可得t = ,代入2(1)y t =- 1=-,即轨迹方程

新编基础物理学上册9单元课后答案

题9-2解图 第九章 9-1 两个小球都带正电,总共带有电荷55.010C -?,如果当两小球相距2.0m 时,任一球受另一球的斥力为1.0N.试求总电荷在两球上是如何分配的? 分析:运用库仑定律求解。 解:如图所示,设两小球分别带电q 1,q 2则有 q 1+q 2=5.0310-5C ① 由题意,由库仑定律得: 91212 2 091014π4 q q q q F r ε???=== ② 由①②联立得:5 15 2 1.210C 3.810C q q --?=???=??? 9-2 两根6.0310-2m 长的丝线由一点挂下,每根丝线的下端都系着一个质量为0.5310-3kg 的小球.当这两个小球都带有等量的正电荷时,每根丝线都平衡在与沿垂线成60°角的位置上。求每一个小球的电量。 分析:对小球进行受力分析,运用库仑定律及小球平衡时所受力的相互关系求解。 解:设两小球带电q 1=q 2=q ,小球受力如图所示 2 2 0cos304πq F T R ε==? ① sin 30mg T =? ② 联立①②得: 2o 02 4tan30mg R q πε= ③ 其中22sin 6061010(m)r l --=?= ?= 2R r = 代入③式,即: q =1.01310-7C 9-3 电场中某一点的场强定义为0 F E q = ,若该点没有试验电荷,那么该点是否存在场强? 为什么? 答:若该点没有试验电荷,该点的场强不变.因为场强是描述电场性质的物理量,仅与场源 电荷的分布及空间位置有关,与试验电荷无关,从库仑定律知道,试验电荷q 0所受力F 与 q 0成正比,故0 F E q = 是与q 0无关的。 9-4 直角三角形ABC 如题图9-4所示,AB 为斜边,A 点上有一点荷91 1.810C q -=?,B 点上有一点电荷92 4.810C q -=-?,已知BC =0.04m ,AC =0.03m ,求C 点电场强度E 的大小和方向(cos37°≈0.8, sin37°≈0.6). 分析:运用点电荷场强公式及场强叠加原理求解。 题9-1解图

新编基础物理学第二版第五章习题解答

习题五 5-1 有一弹簧振子,振幅2 2.010m A -=?,周期 1.0s T =,初相34 π ?= .试写出它的振动位移、速度和加速度方程。 解:振动方程为 2cos()cos( )x A t A t T π ω??=+=+ 代入有关数据得 30.02cos(2)(m)4 x t π π=+ 振子的速度和加速度分别是 1d 30.04sin(2)(m s )d 4 x t t πππ-= =-+?v 2222d 30.08cos(2)(m s )d 4 x a t t π ππ-==-+? 5-2一弹簧振子的质量为0.500kg ,当以35.0cm 的振幅振动时,振子每0.500s 重复一次运动.求振子的振动周期T 、频率ν、角频率ω、弹簧的倔强系数k 、物体运动的最大速率max v 、和弹簧给物体的最大作用力max F . 解:由题意可知 0.500s T =; 所以频率 1/ 2.00H z v T ==; 角频率 12=4=12.6(rad s )v ωππ-=?; 倔强系数 2210.50012.679.4(N m )k m ω-==?=?; 最大速率 1 0.3512.6 4.41(m s )max A ω-==?=?v 最大作用力 2 2 0.5000.3512.627.8(N)max max F ma mA ω===??= 5-3质量为2kg 的质点,按方程0.2cos(5)(m)6 x t π =-沿着x 轴振动.求: (1)0t =时,作用于质点的力的大小; (2)作用于质点的力的最大值和此时质点的位置.

解:(1)跟据牛顿第二定律 222d d x f m m x t ω==-,0.2cos(5)(m)6x t π=- 将0=t 代入上式中,得: 5.0N f = (2)由x m f 2ω-=可知,当0.2m x A =-=-时,质点受力最大,为10.0N f = 5-4在某港口海潮引起海洋的水平面以涨落高度d (从最高水平到最低水平)做简谐运动, 周期为12.5h.求水从最高处下降了d /4高度需要多少时间? 解:从最高水平到最低水平为2倍的振幅,由题可得旋转矢量图,从解图5-4中可见 /4arc cos( )/23 d d π θ== /3 12.5 2.08(h)2/2t T θθπωππ = === 5-5一放置在水平桌面上的弹簧振子,其振幅2 2.010m A -=?,周期0.5s T =,当0t =时, 则: (1)物体在正方向端点; (2)物体在平衡位置,向负方向运动; (3)物体在2 1.010m x -=?处,向负方向运动; (4)物体在21.010m x -=-?处,向负方向运动. 求以上各种情况的振动方程。 解:设所求振动方程为 2cos( )0.02cos(4)x A t t T π ?π?=+=+ 由旋转矢量图解图5-5可求出初相位 3/2,3/,2/,04321π?π?π??==== (1)0.02cos 4(m)x t π= (2)0.02cos(4)(m)2 x t π π=+ (3)0.02cos(4)(m)3 x t π π=+ 解图 5-5 解图5-4

新编基础物理学上册1-2单元课后答案

王少杰,顾牡主编 第一章 1-1.质点运动学方程为:其中a,b,均为正常数,求质点速度和加速度与时间的关系式。分析:由速度、加速度的定义,将运动方程对时间t求一阶导数和二阶导数,可得到速度和加速度的表达式。 解: 1-2. 一艘正在沿直线行驶的电艇,在发动机关闭后,其加速度方向与速度方向相反,大小与速度平方成正比,即,式中K为常量.试证明电艇在关闭发动机后又行驶x距离时的速度为。其中是发动机关闭时的速度。 分析:要求可通过积分变量替换,积分即可求得。 证: , 1-3.一质点在xOy平面内运动,运动函数为。(1)求质点的轨道方程并画出轨道曲线;(2)求时质点的位置、速度和加速度。 分析:将运动方程x和y的两个分量式消去参数t,便可得到质点的轨道方程。写出质点的运动学方程表达式。对运动学方程求一阶导、二阶导得和,把时间代入可得某时刻质点的位置、速度、加速度。 解:(1)由得:代入 可得:,即轨道曲线。 画图略 (2)质点的位置可表示为: 由则速度: 由则加速度: 则:当t=1s时,有 当t=2s时,有 1-4.一质点的运动学方程为,x和y均以m为单位,t以s为单位。(1)求质点的轨迹方程;(2)在时质点的速度和加速度。 分析同1-3.

解:(1)由题意可知:x≥0,y≥0,由,可得,代入 整理得:,即轨迹方程 (2)质点的运动方程可表示为: 则: 因此, 当时,有 1-5.一质点沿半径为R的圆周运动,运动学方程为,其中v0,b都是常量。(1)求t时刻质点的加速度大小及方向;(2)在何时加速度大小等于b;(3)到加速度大小等于b时质点沿圆周运行的圈数。 分析:由质点在自然坐标系下的运动学方程,求导可求出质点的运动速率,因而,,,,,当时,可求出t,代入运动学方程,可求得时质点运动的路程,即为质点运动的圈数。 解:(1)速率:,且 加速度: 则大小:……………………① 方向: (2)当a=b时,由①可得: (3)当a=b时,,代入可得: 则运行的圈数 1-6.一枚从地面发射的火箭以的加速度竖直上升后,燃料用完,于是像一个自由质点一样运动,略去空气阻力,试求(1)火箭达到的最大高度;(2)它从离开地面到再回到地面所经过的总时间。 分析:分段求解:时,,求出、;t>30s时,。求出、。当时,求出、,根据题意取舍。再根据,求出总时间。 解:(1)以地面为坐标原点,竖直向上为x轴正方向建立一维坐标系,且在坐标原点时,t=0s,且=30s 则:当0≤t≤30s,由, 得, 时, 由,得,则: 当火箭未落地, 且t>30s,又有:, 则: 且:,则:…①

相关主题
文本预览
相关文档 最新文档