当前位置:文档之家› 第1章 疏水层析

第1章 疏水层析

生物大分子的分离与表征
第1章、疏水层析 第2章、反相层析 第3章、色谱聚焦层析 第3章 色谱聚焦层析 第4章、高效液相色谱 第5章 重组蛋白的分离与分析 第5章、重组蛋白的分离与分析 第6章、抗体纯化技术

A)

疏水层析(HIC)亦称为疏水作用层析 ,是利用固定相载体上偶联的疏水性配基 与流动相中的一些疏水分子发生可逆性结 与流动相中的 些疏水分子发生可逆性结 合而进行分离的层析技术。 合而进行分离的层析技术 从作用机制来看,它属于吸附层析。

非极性化合物例如苯、环己烷在水中的溶解度非常 小,与水混合时会形成互不相溶的两相,即非极性分子 有离开水相进入非极性相的趋势,即所谓的疏水性 (Hydrophobicity)。 (H d h bi it ) 非极性溶质与水溶剂的相互作用则称为疏水效应 (Hydrophobic effect) 。

疏水作用(hydrophobic interaction): 非极性分子进入水中,有 聚集在一起形成最小疏水 聚集在 起形成最小疏水 面积的趋势,保持这些非 极性分子聚集在一起的作 用则称为疏水作用。

对于可溶蛋白,溶剂是水,疏水侧链因此被包 埋在蛋白质内部。最终的结构是最适合周围溶液的 热动力学折衷的结果。 热动力学折衷的结果

就球形蛋白质的结构而言, 其分子中的疏水性残基数是从 外向内逐步增加的。 虽然疏水氨基酸大多被包 埋在球形蛋白内部,有些则暴 露在外,在蛋白质表面形成疏 露在外 在蛋白质表面形成疏 水区域,这部分暴露在外疏水 性基团称为疏水补丁。
疏水和亲水部件表面的溶菌 酶。 最疏水部分是深红色,浅红色 的更少的疏水性。最亲水部 分显示在深蓝色的,更少的亲 分 在 蓝色的 少的亲 水部分是浅蓝色。

1.2、疏水层析原理
A) ) B) )
高度规则的水壳层包围在配基和蛋白的疏水表面周围。 疏水物质被迫融合以减少这种壳的总面积(熵最大)。 在纯水中,任何疏水效应都太弱而不能导致配基和蛋白 之间或蛋白自身的相互作用。盐能够增强疏水作用。

?
亲水性强的蛋白质与疏水性固定相结合作用原理
? 靠蛋白质表面的一些疏水补丁(hydrophobic 靠蛋白质表面的 些疏水补丁(hydrophobic patch); ? 令蛋白质发生局部变性(可逆变性较理想),暴露 出掩藏于分子内的疏水性残基; ? 高盐作用 疏水层析的特性所致 即在高盐浓度 高盐作用。疏水层析的特性所致,即在高盐浓度 下 暴露于分子表面的疏水性残基才能与疏水性 下,暴露于分子表面的疏水性残基才能与疏水性 固定相作用。

一般在lmol/L (NH4)2SO4 或 2mol/L NaCl 高浓度盐溶液中,亲水性较强的组分物质 ,会发生局部可逆性变性,并能被迫与疏水的固 定相结合在一起。 然后通过降低流动相的离子强度,即可将结 合于固定相的物质,按其结合能力大小,依次进 行解吸附。

?
也就是:疏水作用弱(即亲水性强)的物质,用 高浓度盐溶液洗脱时,会先被洗下来。当盐溶液浓 高浓度盐溶液洗脱时 会先被洗下来。当盐溶液浓 度降低时,疏水作用强的物质才会随后被洗下来。 (相同盐浓度下,疏水作用弱的物质先被洗下来, (相同盐浓度下 疏水作用弱的物质先被洗下来 疏水作用强的物质随后被洗下来)
?
对于疏水性很强的物质,则需要在流动相添加适量 有机溶剂降低极性才能达到解吸附的目的。 有机溶剂降低极性才能达到解吸附的目的

1.3、疏水层析介质
疏水层析介质由基质和配体(疏水性基团)两 部分构成。 基质主要有多糖类如琼脂糖、纤维素和人工 合成聚合物类如聚苯乙烯、聚丙烯酸甲酯类。其 合成聚合物类如聚苯乙烯 聚丙烯酸甲酯类 其 中,琼脂糖类凝胶仍是应用最广泛的疏水介质。

HIC介质的疏水配基主要为烷基和芳香 基,其烷基通常在C8以下,芳香基多为苯 基。
R代表疏水配基,M代表基质。调节两种 R代表疏水配基 M代表基质 调节两种 反应物的比例可控制介质的配基密度

偶联至基质的常见配基类型
(A)丁基 (B)辛基 (C)苯基 ( )新戊基 (D)新戊基

对某些蛋白而言,上述有些配基与其结合力 太强,洗脱有时需用有机溶剂,有变性风险;具 中等疏水的高分子配基(如聚乙二醇和聚丙三醇等) 不仅可提供足够的结合力,且避免了上述缺点。

1. Butyl Sepharose 4 Fast Flow 工作pH范围为3-13,清洗pH范围为2-14, 工作的最大速度是600cm/h,配基结合量为每ml 50μmol 正丁烷基,疏水性最弱,适合含脂族配 体的生物分子。 2. Octyl Sepharose 4 Fast Flow y p 工作pH范围为3-13,清洗pH范围为2-14,工作 的最大速度是600cm/h,配基结合量为每ml50μmol 正辛烷基,疏水性中等,适合各种蛋白的分离和 纯化。

⒊ Phenyl Sepharose 6 Fast Flow 工作pH范围为3-13,清洗pH范围为2-14, 工作的最大速度是600cm/h配基结合量为每ml 40 μmol苯基Phenyl,疏水性最强,载量高, 适合含芳香族配体的生物分子的预处理,

1.4、疏水层析实验技术 1 4 疏水层析实验技术
一、层析柱的制备
1、层析介质选择 配基的性质与密度对决定疏水相互作用 层析介质最终的选择性、结合能力起到重要的作 用。


配基的种类和目的蛋白 的性质在确定疏水相互作用 层析的选择性方面是高度显 著的参数。最合适的配基必 著的参数 最合适的配基必 须通过用目的蛋白进行筛选 试验来确定。 图21 在使用一种苯基配基、同样的运行条件下三种单克隆抗 体相互作用不同。

蛋白纯化离子交换层析

蛋白纯化离子交换层析 离子交换层析技术是以离子交换剂为固定相,常见的离子交换剂是由一类不溶于水的惰性高分子聚合物基质,通过共价键结合某种电荷基团,形成带电基质,带异性电荷的平衡离子能够通过静电力作用结合在电荷基质上,而平衡离子能够与样品流动相中的离子基团发生可逆交换而吸附在交换剂上,不同带电荷蛋白间结合吸附固定相的能力不同。离子交换技术就是根据蛋白质样品间带电性质的差别而进行分离的一种层析方法。 常见的离子交换剂有离子交换纤维素、离子交换树脂和离子交换葡聚糖凝胶。根据与高分子聚合物基质共价结合的电荷基团的性质不同,可以将离子交换剂分为阳离子交换剂和阴离子交换剂,在阳离子交换剂中,带正电荷的平衡离子能够和流动相中带正电荷的离子基团进行交换。例如DEAE纤维素阳离子交换剂,当纤维素交换剂分子上结合阳离子基团二乙氨乙基(DEAE)时,形成阳离子纤维素—O—C6 H14N+H,可与带负电荷的蛋白质进行结合,交换阴离子。 根据与高分子聚合物基质共价结合的电荷基团的解离度不同,又可以分为强酸型、中等酸型、弱酸型三类阳离子交换剂,强酸型离子交换剂在较大的pH范围内电荷基团完全解离,而弱酸型只能在较小的pH范围内完全解离,如结合羧甲基的离子交换剂在pH小于6时就失去了交换能力。 强酸型阳离子交换剂一般结合的基团有:磺酸甲基、磺酸乙基;中等酸型阳离子交换剂有:磷酸基团和亚磷酸基团;弱酸型离子交换剂有:酚羟基和羧基类; 在阴离子交换剂中,带负电荷的平衡离子能与流动相中带负电的离子基团进行交换,例如阴离子交换剂CM纤维素,当纤维素交换剂分子上结合羧甲基(CM)时,形成带有负电荷的阴离子(纤维素-O-CH2-COO一),可与带正电荷蛋白质结合,交换阳离子。 根据与高分子聚合物基质共价结合的电荷基团的解离度不同,可分为强碱型、中等碱型、弱碱型阴离子交换剂。一般结合季胺基团基质的交换剂为强碱型离子交换剂,结合叔胺、仲胺、伯胺等为中等或者弱碱型离子交换剂。 蛋白质是两性电解质,当溶液的pH值与蛋白质等电点相同时,蛋白质的静电荷为0,当溶液pH值大于蛋白质等电点时,羧基电离,蛋白质带负电荷,蛋白质能够被阴离子交换剂所吸附,相反,当溶液的pH值小于蛋白质等电点时,则氨基电离,蛋白质带正电荷,被阳离子交换剂所吸附,溶液的pH值距蛋白质等电点越远,蛋白质带电荷越多,与交换剂的结合程度也越强,反之则越弱。 当溶液的pH值发生改变时,蛋白质与交换剂的吸附作用也发生变化,因此可以通过改变洗脱液的pH值来改变蛋白对交换剂的吸附能力,从而把不同的蛋白质逐个分离,当pH值增高时,抑制蛋白质阳离子化,随之对阳离子交换剂的吸附力减弱,当pH值降低时,抑制蛋白质阴离子化,随之降低蛋白质对阴离子交换剂的吸附。 另外,无机盐离子(如NaCl)对交换剂也具有交换吸附的能力,当洗脱液中的离子强度增加时,无机盐离子和蛋白质竞争吸附交换剂。当Cl-的浓度大时,蛋白质不容易被吸附,吸附后也易于被洗脱,当Cl-浓度小时,蛋白质易被吸附,吸附后也不容易被洗脱。 因此,洗脱阴离子交换剂结合的蛋白时,则降低pH值,增加盐离子浓度;洗脱阳离子交换剂结合蛋白时,则升高溶液pH值,增加盐离子浓度,能够洗脱交换剂上的结合蛋白。

疏水层析经验 感谢原创者

疏水层析经验 1、疏水层析是根据不同蛋白质的疏水力强弱不同来分离的。在高盐离子强度的情况下,蛋白质的疏水基团充分暴露与填料的疏水介质相互作用,从而结合在柱子上。不同蛋白质的疏水性强弱不同从而导致其与柱子填料的结合力也不同。随后,逐渐降低洗脱缓冲液的盐离子强度就可以将不同的蛋白分布洗脱下来,形成一个个的蛋白质洗脱峰。 2、柱子的装填:如果是预装柱,就不存在装柱的问题了。不是,则从头开始:首先,把柱子洗干净,一定要洗干净,不然会出现气泡。填料预先融涨(注意,进口一般已经是融涨好的,不必再做这一步),取一定的填料(例如:想装5.0ml的柱子,一般将瓶子里的填料(沉淀的填料:上清=1:1的话)取10.0ml出来)先脱一下气(请人帮忙,不然控制不好会暴沸出来!),然后缓缓装入柱子(柱子上下口一定不要搞错!!!),打开下口让水流出,最好一次性装完,等待其自然沉降,柱子就装好了。(实际上,因为疏水层析的原理与分子筛不同,所以其装柱远远没有分子筛的柱子那么严格,很容易的!放心好了!看着顺眼就应该差不多吧) 3、注意:柱子装好之后,任何时间都不能让缓冲液流到柱面以下而干柱,切记! 4、缓冲液的选择:a、pH值:要在蛋白质的pI值附近,因为这时蛋白质的疏水力会最强,但是也不要把缓冲液的pH正好调到pI,因为蛋白那时会发生等电点沉淀!(大家都知道,呵呵…)。所以,如果你的蛋白等电点是8.5的话,配一个8.0或9.0的缓冲液应该都可以!b、缓冲介质:常用的是PBS或者Tris-HCl缓冲液,都可以,看个人习惯了,或者,你以后的实验要用Tris-HCl,那么这里也用Tris-HCl就是了。蛋白质技术手册上用的是PBS,自己选择吧。c、缓冲液的浓度:依照蛋白质技术手册上的浓度即可:20mM。 5、样品的处理:疏水层析是在高盐离子强度的情况下上样的。而且,样品在上样之前一定要注意没有沉淀,有的话应该离心除去。样品的盐离子强度的调整:可以直接将固体的磨的很细的盐颗粒加在样品里,使之达到预定的浓度(是硫酸铵的话,就查手册后面的表格,计算应该加多少盐),或者将样品与100%的硫酸铵等体积混合,不就变成50%的了(这样的好处是缓冲液的浓度不会因为加入硫酸铵体积变大而降低,从而影响了样品的pH值)?还有更加重要的是:请仔细选择上样的离子强度,要知道,蛋白质在高盐的情况下是要发生沉淀的(硫酸铵沉淀纯化蛋白的原理)!如果你的蛋白的硫酸铵沉淀范围是50-80%,那么你大可放心地用50%硫酸铵来上样!如果你的蛋白的硫酸铵沉淀范围是30-50%,那么你就只能用30%来上样了,千万记住!!!还有就是,调整盐离子强度的时候要在低温下操作,如果有沉淀产生,轻轻地混匀一会儿,该溶解的就会溶解,离一下心,就可以上样了。 6、不知道你的蛋白的稳定性如何?必要的时候,请加入蛋白酶抑制剂。 7、柱子的预平衡:10倍床体积的层析缓冲液洗柱(20mM PBS, 50%硫酸铵(这个浓度要你选择,50%还是30%?)),使其平衡。 8、上样:当平衡层析缓冲液流至恰好与床面相切时,关闭出液口(有泵的话,把它一关就OK!),然后上样。注意:尽量小心,保持床面的平整性!打开出口,让样品缓缓进入柱床,再次相切时,加入少量(很少就可以,稍稍盖过床面就行!)层析缓冲液(20mM PBS, 50%硫酸铵)洗一下。 9、洗柱:注意,这一步不是洗脱,而是把一些吸附不在柱子上的杂蛋白尽量洗下来!步骤:3倍床体积的层析缓冲液洗柱(20mM PBS, 50%硫酸铵)洗柱或者观察检测仪的信号回到基线,那就证明吸不住的杂蛋白完全洗下来了。 10、目的蛋白的洗脱:有梯度混合仪的话,可以梯度洗脱(比如50%-0%洗脱),没有的话,就像手册上那样,配置一系列浓度的洗脱缓冲液,各两倍体积来洗。控制好流速,0.5ml/min左右吧,再问问人家一般用多大的流速?两种洗脱方式各有利弊,梯度洗脱分辨率高一些,操作较简单,不用频繁更换缓冲液,但是不太适合批量蛋白的过柱。分布洗脱比较烦,要不停更换缓冲液(换液之前,别忘了关泵,否则柱子要被吸干!!!),但是批量操作性好,重复性好,样品可以不

蛋白纯化层析柱

蛋白纯化层析 从个人学术性实验室到大型的医药制造企业,小型或者大规模的蛋白纯化通常都需要几种类型的液相色谱仪。这些相关的大部分技术已应用了多年,但是新型柱料的发展为这些利用蛋白物理和化学特性进行分离的,经过时间考验的方法注入了新的力量。其中最值得提到的就是凝胶过滤层析技术(gel filtration,GF),离子交换层析技术(ion exchange,IEX),羟基磷灰石层析(hydroxyapatite,HAP)和疏水作用层析(hydrophobic interaction,HI),以及亲和层析和高效液相色谱方法(high-performance liquid chromatography,HPLC)。 对于一个初接触蛋白纯化的新手而言,从哪儿下手也许是令人头疼的一件事,但是幸运的是目前这些流程都已经逐步系统化了。GE Healthcare(原Amersham Biosciences)的技术顾问Andrew Mitchell 解释道,通常利用液相色谱技术进行蛋白纯化有三步: 捕获——从细胞其它成份,比如DNA和RNA中分离需要的蛋白; 区分——从与目的蛋白具有相近的大小,或者相似的物理/化学特征的污染物中分离蛋白; 修饰——使分离得到的样品处于可使用状态。 这每一个纯化的步骤都有特定的色谱层析技术和最佳的beads大小。第一步捕获步骤,也就是从细胞裂解物粗成份中分离蛋白,这需要一个具有高容量和高流量(flow rate)的填料。bead大小比较大,范围比较宽(比较于bead大小平均值)的“fast flow”填料比较理想,

这种填料也有利于防止目标蛋白被水解——因为速度比较快。 第二步则对分辨率要求更高,需要更好的从混合物中分离需要的成份。通常bead的大小与分辨率成反比,因此在这一部中比较小的bead 比较合适。吸附性的技术,比如离子交换IEX和疏水作用HI通常被用在纯化的这前两个步骤,而凝胶过滤则会留到了最后的修饰那一步,用于小体积,高浓度的样品。另外要注意,进行凝胶过滤层析时,样品的体积应该保持在柱床体积的1%到4%。 选择柱料的时候有两个因素要考虑到,针对目的蛋白的选择性和有效性——这些可以由洗脱峰的宽度来说明。其中选择性主要是指填料与目的蛋白相互作用以及结合的能力,IEX和HI层析方法就是指目标分子与筛分介质之间的相互作用,而GF的选择性依赖于填料的分馏范围(fractionation range)。 柱料的有效性则是指层析介质洗脱样品得到显著层析峰的能力,Mitchell表示,“如果你的峰值不集中,比较宽,那么即使是选择性很好,分辨率仍然会被消弱”。bead越大,洗脱峰就越不集中,柱子的有效性就越低。纯化洗脱相近的蛋白需要高效性,高选择性和高效性的结合就会得到高分辨率。 凝胶过滤层析(gel filtration chromatography) 凝胶过滤法(gel filtration)也称为排阻层析(exclusion chromatography)、凝胶层析(gel chromatography)或分子筛层析(molecular sieve chromatofraphy),它是在1960年后发展出来的技术。

A蛋白亲和层析法纯化单克隆抗体

摘要:世界首个单克隆抗体(monoclonal antibody,简称单抗)于1986 年,获得美国食品与药品监督管理局的上市批准,拉开了单抗药物发展的序幕,成为生物医药领域中最耀眼的明珠。单克隆抗体纯化过程中a蛋白(protein a)层析介质的选择尤为重要,可以影响抗体的纯度。本文主要阐述单抗纯化过程中a蛋白亲和层析的相关内容。 关键词:a蛋白;耐碱性;动态载量 全球医药行业走向趋势是精准医疗时代,单抗是其中较为成熟的领域,引领了生物制药产业发展最为重要的驱动力。单抗药物主要是由中国仓鼠卵巢细胞(chinese hamster ovary cell,简称 cho 细胞)表达产生,由 cho 细胞分泌的外源蛋白分子,通过纯化过程实现由细胞培养液中回收。随着单抗生产上游改造、培养参数的优化,其产量已达5-10g/l,同时也增加了下游蛋白回收中去除各种宿主杂质的负担。宿主蛋白残留的组成随着培养条件的改变显现出显著的变化,单抗药物杂质主要包括与产品相关的污染物和工艺相关的污染物。 根据终产品纯度、杂质含量的严格要求,单抗目前采用三步纯化策略:粗纯(样品捕获)、中度纯化和精细纯化,该策略工艺复杂、对操作要求严格,导致纯化成本一般占总生产成本的 50%-80%。用a蛋白亲和层析凝胶捕获抗体是大规模单抗纯化的首要步骤,一步纯化可使蛋白纯度达 95%以上。但a蛋白树脂价格昂贵,在大规模生产中,a蛋白纯化步骤的成本占整个抗体纯化成本的 35%以上。因此,蛋白 a 纯化效率的提高是进一步提高产品质量、降低生产成本的关键[1]。 1 a蛋白的性质金黄色葡萄球菌 a蛋白(staphylococal protein a,spa)是一种从金黄色葡萄球菌细胞壁分离的蛋白质。能特异性地与人或哺乳动物抗体(主要是igg)的fc区域结合。天然的a蛋白是十种氨基酸组成。由于不含有胱氨酸及半胱氨酸,所以无二硫键。紫外光谱和吸收系数为 a275nm %=1.65,等电点为ph5.1。spa十分稳定,用4mol/l尿素、硫氰盐酸、6mol/l的盐酸胍和ph2.5的酸性条件,以及加热煮沸均不影响其活性。分子量:全长的spa 54kd,去掉与细胞壁结合部分的spa 42kd。spa与igg结合的亚类主要是igg1、igg2和igg4。近几年来基因工程的spa出现,解决了天然a蛋白的耐碱性问题,mabselect sure是基因工程的spa,去掉了天然spa的dace 区域,对于b区域进行了修饰,将不耐受naoh的氨基酸去掉。使修饰后的spa可以耐受0.1-0.5m的naoh;这就很好的解决了层析介质cip的问题,同时修饰后的spa也耐受蛋白酶。减少在纯化过程中蛋白酶对spa的作用,使洗脱收集液中spa的脱落更低。 2 结合单抗的a蛋白层析介质的选择 在a蛋白捕获步骤中主要去除的杂质大部分是hcp和基因组dna;由于a蛋白层析介质对聚体没有去除作用,所以在此捕获步骤中应采取尽量减少聚体的形成策略,例如:提高洗脱ph,加入添加剂等;在此捕获步骤中会有a蛋白(配基)的脱落。在a蛋白捕获过程中,培养上清中的蛋白酶会降解层析介质的配基a蛋白,以及a蛋白与介质骨架的偶联方式,这些都是protein a的脱落原因,所以选择a蛋白脱落较低的层析介质是非常必要的[2]。 2.1 a蛋白层析介质相关指标 耐碱性:药物gmp生产最基本的要求是无菌、无热源。naoh 是最好的除菌、出热源的试剂。同时naoh也是公认的cip试剂,使用naoh 可以很好的除去残留在层析介质上的杂质,以确保工艺的稳定性以及层析介质的寿命;?郧?naoh的成本低。naoh是公认的cip试剂,实验表明,naoh的清洗效果高于其他试剂,适合琼脂糖基架的填料。而对照的可控玻璃基架(cpg)填料的清洗结果表明,盐酸胍比磷酸更为有效。cpg填料在高ph下不稳定,不适合用naoh 清洗。传统的a蛋白的清洗试剂,如:尿素,盐酸胍等的清洗试剂效果不理想,?郧以谂渲檬

Protocol蛋白质纯化步骤

Protocol 蛋白质纯化方法(镍柱) 柱前操作 1.IPTG诱导后,收菌,8000rpm/min(r/m)离心10min; 2.用Binding Buffer(BB)溶解(每100ml原菌液加BB 20ml),超声裂解30min(工作:5s,停止:5s),1500r/m离心10min,去除杂质; 3.取上清,12000r/m离心20min, 得包涵体; 4.用含2M尿素的BB洗包涵体,12000r/m离心20min,(上清做电泳);??? 5.用含6M尿素的BB溶解包涵体,12000r/m离心20min,(上清做电泳); 6.对照电泳结果,将上清或包涵体溶解液上柱; 平衡柱子(柱体积:V) 7. 3V(3倍柱体积)ddH2O(洗乙醇); 8. 5V Charge Buffer(CB); ??? 9. 3V BB; 柱层析 10.上样; 11. 10V Washing Buffer(WB); 12. 6V Elute Buffer(EB); 13.分管收集,每管1~2ml. 各种缓冲液配方 1. 8×BB: 4M NaCl, 160mM Tris-HCl, 40mM imidazole(咪唑),pH=7.9 1000ml NaCl: 58.44×4=233.76g Tris-HCl: 121.14×160×10-3=19.3824g Imidazole: 68.08×40×10-3=2.7232g 2. 8×CB: 400mM NiSO4 1000ml NiSO4: 262.8×400×10-3=105.12g 3. 8×WB: 4M NaCl, 160mM Tris-HCl, 480mM imidazole, pH=7.9 1000ml NaCl: 233.76g, Tris-HCl:19.3824g, Imidazole: 32.6784g 4. 4×EB: 2M NaCl, 80mM Tris-HCl, 4M imidazole, pH=7.9 1000ml NaCl: 118.688g, Tris-HCl:9.6912g, Imidazole: 272.32g 5. 6M 尿素 1000ml 尿素:60.06×6=360.36g

蛋白质纯化的一般原则及方法选择

随着分子生物学的发展,越来越多的科研人员熟练掌握了分子生物学的各种试验技术,并研制成套试剂盒,使基因克隆表达变得越来越容易lIl。但分子生物学的上游工作往往并非是最终目的,分子克隆与表达的关键是要拿到纯的表达产物,以研究其生物学作用,或者大量生产出可用于疾病治疗的生物制品。相对与上游工作来说,分子克隆的下游工作显得更难,蛋白纯化工作非常复杂,除了要保证纯度外,蛋白产品还必须保持其生物学活性。纯化工艺必须能够每次都能产生相同数量和质量的蛋白,重复性良好。这就要求应用适应性非常强的方法而不是用能得到纯蛋白的最好方法去纯化蛋白。在实验室条件下的好方法却可能在大规模生产应用中失败,因为后者要求规模化,且在每日的应用中要有很好的重复性。本文综述了蛋白质纯化的基本原则和各种蛋白纯化技术的原理、优点及局限性,以期对蛋白纯化的方法选择及整体方案的制定提供一定的指导。 1 蛋白纯化的一般原则 蛋白纯化要利用不同蛋白间内在的相似性与差异,利用各种蛋白间的相似性来除去非蛋白物质的污染,而利用各蛋白质的差异将目的蛋白从其他蛋白中纯化出来。每种蛋白间的大小、形状、电荷、疏水性、溶解度和生物学活性都会有差异,利用这些差异可将蛋白从混合物如大肠杆菌裂解物中提取出来得到重组蛋白。蛋白的纯化大致分为粗分离阶段和精细纯化阶段二个阶段。粗分离阶段主要将目的蛋白和其他细胞成分如DNA、RNA等分开,由于此时样本体积大、成分杂,要求所用的树脂高容量、高流速,颗粒大、粒径分布宽.并可以迅速将蛋白与污染物分开,防止目的蛋白被降解。精细纯化阶段则需要更高的分辨率,此阶段是要把目的蛋白与那些大小及理化性质接近的蛋白区分开来,要用更小的树脂颗粒以提高分辨常用的离子交换柱和疏水柱,应用时要综合考虑树脂的选择性和柱效两个因素。选择性指树脂与目的蛋白结合的特异性,柱效则是指蛋白的各成分逐个从树脂上集中洗脱的能力,洗脱峰越窄,柱效越好。仅有好的选择性,洗脱峰太宽,蛋白照样不能有效分离。 2.各种蛋白纯化方法及优缺点 2.1蛋白沉淀蛋白能溶于水是因为其表面有亲水性氨基酸。在蛋白质的等电点处若溶液的离子强度特别高或特别低,蛋白则倾向于从溶液中析出。硫酸铵是沉淀蛋白质最常用的盐,因为它在冷的缓冲液中溶解性好,冷的缓冲液有利于保护蛋白的活性。硫酸

AKTA蛋白纯化系统操作

AKTA蛋白纯化系统操作 AKTA蛋白纯化系统是当前蛋白纯化工作经常用到的一组设备,自动化程度很高。AKTA系统依据不同的配置,可以分为AKTA EXPLORER、AKTA PILOT、AKTA PURIFIER等多种型号的设备。以下以AKTA EXPLORER为例简单介绍AKTA蛋白纯化系统的一般操作。 1、认识AKTA。 AKTA explorer 是为方法开拓及研究应用而设计的全自动液相色谱系统。该色谱系统的分离装置有三个主要组件,在底部平台的左侧整齐堆起(Fig 1)。它们是: FIG 1、AKTA EXPLORER主机 ? Pump-900 为双通道高效梯度泵系列。在AKTAexplorer 100,流速范围0.01-100 ml/min,压力高达10 Mpa(泵名为P-901)。在AKTA explore10,流速范围0.001-10 ml/min,压力高达25 Mpa(泵名为P-903)。 ? Monitor UV-900,同时监控190-700 nm 范围内高达3 个波长的多波长紫外-可见(UV-Vis)监测器。(针对部分AKTA PURIFIER机型,尚有UPC-900监测器可供选择,光源为汞灯光源,一次可以监控一个波长,安装滤光片后,可以在选择的波长范围内进行切换。)? Monitor pH/C-900,在线电导和pH 监测的组合监测器。 Fig 2、AKTA EXPLORER硬件模式图

AKTA EXPLORER系统的主要组成部件可以用模式图表示(Fig 2)。组成部件,如混合器、柱及不同的阀安装在右边部分。打开装阀的门可全部看到。柱被挂在装阀的门的外侧。 分离装置由UNICORN 软件控制。软件安装于一独立的电脑主机之中,在电脑与色谱系统之间的通信由数据采集装置CU950进行控制。 2、一般操作 2.1 开机 按位于底部平台前左侧的ON/OFF 按钮,打开色谱系统,然后打开电脑电源。待仪器自检完毕(CU950上面的3个指示灯完全点亮并不闪烁)。双击桌面上UNICORN图标,进入操作界面。UNICORN的操作界面分为四个窗口(Fig 3) Fig 3、Unicorn的操作界面 2.2准备工作溶液和样品 所有的工作溶液和样品必须经过0.45μm的滤膜过滤,样品也可高速离心后取上清备用。当缓冲液中含有有机溶剂(如乙腈、甲醇),需在使用前用低频超声脱气10min。 2.3清洗及管道准备 首先将A泵的进液管道(A1)放入缓冲液或平衡液中,将B泵的进液管道(B1)放入高盐溶液中,在system control窗口点击工具栏内的manual,选择pump→pump wash explorer,选中A1,B1管道为ON,execute。泵清洗将自动结束。(Fig 4) Fig 4、AKTA Explorer的泵清洗操作 2.4安装层析柱

疏水层析填料

2008-6 Volume 8 疏水层析填料 疏水层析,是根据不同的蛋白与疏水表面产生的相互作用的差异,进行蛋白分离的一种方法。一般而言,离子强度(盐浓度)越高,物质所形成的疏水键越强。影响疏水作用的因素包括:盐浓度,温度,pH,表面活化剂和有机溶剂。疏水层析的应用与离子交换层析的应用刚好互补,因此,可以用于分离离子交换层析很难或不能分离的物质。 Chisso公司生产的疏水层析填料,有三种类型:Cellfine TM Butyl, Phenyl 和Octyl,分别为在多孔的交联纤维素颗粒上通过一个短接头,共价键和丁基,苯基或者辛基的层析填料。结构见下图:填料的疏水性按丁基、苯基、辛基,疏水性程度依次增大。通常,Cellfine TM Octyl对疏水性蛋白的吸附性会强于Cellfine TM Butyl对疏水性蛋白的吸附。然而,蛋白被吸附的越厉害,也就越难洗脱。Cellfine TM Phenyl,具芳香族物质的特性,因此,在某些情况下,可以更好地吸附丁基和辛基等脂肪族所不能吸附的物质。在使用疏水层析分离物质时,没有通法,只能根据待分离物质的特性,筛选合适的填料,摸索优化其分离纯化的条件。 三种疏水层析填料的疏水性差异(左图) 色谱柱:8.2 x 150 mm 柱体积:8 ml 流动相:2.0 – 0.0M Ammonium Sulfate in 0.01M phosphate, pH 7.0 流速:1.32 ml/min 样品:5 mg/3 ml– 100 μl 2008-6 Volume 8 Asahipak NH2P 色谱柱(氨基柱) Asahipak NH2P色谱柱是Shodex公司生产的用于分析糖类物质的正相柱。Asahipak NH2P色谱柱,是以聚合物为基材的氨基柱,化学稳定性良好,在pH2-13的条件下均可使用。与硅胶基材的氨基柱相比,聚合物基材的氨基柱Asahipak NH2P,可以很好地实现硅胶基材氨基柱的各种应用;对流动相的耐受性更好,使用寿命更长久;另外,Asahipak NH2P可用于定量分析;还可以用碱性溶剂冲洗。 聚合物基材氨基柱与硅胶基材氨 基柱的柱寿命比较 左图为Asahipak NH2P色谱 柱与硅胶基材氨基柱的寿命对 比试验。结果显示:随着使用时 间的延长,硅胶基材氨基柱对单 糖、二糖的保留快速下降,其原 因应是硅胶基材氨基柱的氨基 降解所致。 色谱柱:Asahipak NH2P-50 4E,

蛋白纯化层析柱

蛋白纯化层析柱 2011-06-15 15:19:14 易生物仪器浏览次数:1164 网友评论 0 条 从个人学术性实验室到大型的医药制造企业,小型或者大规模的蛋白纯化通常都需要几种类型的液相色谱仪。这些相关的大部分技术已应用了多年,但是新型柱料的发展为这些利用蛋白物理和化学特性进行分离的,经过时间考验的方法注入了新的力量。其中最值得提到的就是... 关键词:蛋白离子交换分离分子物质树脂从个人学术性实验室到大型的医药制造企业,小型或者大规模的蛋白纯化通常都需要几种类型的液相色谱仪。这些相关的大部分技术已应用了多年,但是新型柱料的发展为这些利用蛋白物理和化学特性进行分离的,经过时间考验的方法注入了新的力量。其中最值得提到的就是凝胶过滤层析技术(gel filtration,GF),离子交换层析技术(ion exchange,IEX),羟基磷灰石层析(hydroxyapatite,HAP)和疏水作用层析(hydrophobic interaction,HI),以及亲和层析和高效液相色谱方法(high-performance liquid chromatography,HPLC)。 对于一个初接触蛋白纯化的新手而言,从哪儿下手也许是令人头疼的一件事,但是幸运的是目前这些流程都已经逐步系统化了。GE Healthcare(原Amersham Biosciences)的技术顾问Andrew Mitchell解释道,通常利用液相色谱技术进行蛋白纯化有三步: 捕获——从细胞其它成份,比如DNA和RNA中分离需要的蛋白; 区分——从与目的蛋白具有相近的大小,或者相似的物理/化学特征的污染物中分离蛋白; 修饰——使分离得到的样品处于可使用状态。 这每一个纯化的步骤都有特定的色谱层析技术和最佳的beads大小。

蛋白质纯化的方法选择

蛋白质纯化的方法选择 随着分子生物学的发展,越来越多的科研人员熟练掌握了分子生物学的各种试验技术,并研制成套试剂盒,使基因克隆表达变得越来越容易。但分子生物学的上游工作往往并非是最终目的,分子克隆与表达的关键是要拿到纯的表达产物,以研究其生物学作用,或者大量生产出可用于疾病治疗的生物制品。相对与上游工作来说,分子克隆的下游工作显得更难,蛋白纯化工作非常复杂,除了要保证纯度外,蛋白产品还必须保持其生物学活性。纯化工艺必须能够每次都能产生相同数量和质量的蛋白,重复性良好。这就要求应用适应性非常强的方法而不是用能得到纯蛋白的最好方法去纯化蛋白。在实验室条件下的好方法却可能在大规模生产应用中失败,因为后者要求规模化,且在每日的应用中要有很好的重复性。本文综述了蛋白质纯化的基本原则和各种蛋白纯化技术的原理、优点及局限性,以期对蛋白纯化的方法选择及整体方案的制定提供一定的指导。 1、蛋白纯化的一般原则 蛋白纯化要利用不同蛋白间内在的相似性与差异,利用各种蛋白间的相似性来除去非蛋白物质的污染,而利用各蛋白质的差异将目的蛋白从其他蛋白中纯化出来。每种蛋白间的大小、形状、电荷、疏水性、溶解度和生物学活性都会有差异,利用这些差异可将蛋白从混合物如大肠杆菌裂解物中提取出来得到重组蛋白。蛋白的纯化大致分为粗分离阶段和精细纯化阶段二个阶段。粗分离阶段主要将目的蛋白和其他细胞成分如DNA、RNA等分开,由于此时样本体积大、成分杂,要求所用的树脂高容量、高流速,颗粒大、粒径分布宽.并可以迅速将蛋白与污染物分开,防止目的蛋白被降解。精细纯化阶段则需要更高的分辨率,此阶段是要把目的蛋白与那些大小及理化性质接近的蛋白区分开来,要用更小的树脂颗粒以提高分辨率,常用离子交换柱和疏水柱,应用时要综合考虑树脂的选择性和柱效两个因素。选择性树脂与目的蛋白结合的特异性,柱效则是指各蛋白成分逐个从树脂上集中洗脱的能力,洗脱峰越窄,柱效越好。仅有好的选择性,洗脱峰太宽,蛋白照样不能有效分离。 2、各种蛋白纯化方法及其优、缺点 2.1 蛋白沉淀蛋白能溶于水是因为其表面有亲水性氨基酸,在蛋白质的等电点处若溶液的离子强度特别高或者特别低,蛋白则倾向于从溶液中析出。硫酸铵是沉淀蛋白最常用的盐,因为它在冷的缓冲液中溶解性好,冷的缓冲液有利于保持目的蛋白的活性。硫酸铵分馏常用作试验室蛋白纯化的第一步,它可以初步粗提蛋白质,去除非蛋白成分。蛋白质在硫酸铵沉淀中较稳定,可以短期在这种状态下保存中间产物,当前蛋白质纯化多采用这种办法进行粗分离翻。在规模化生产上硫酸铵沉淀方法仍存在一些问题,硫酸铵对不锈钢器具的腐蚀性很强。其他的盐如硫酸钠不存在这种问题,但其纯化效果不如硫酸铵。除了盐析外蛋白还可以用多聚物如PEG和防冻剂沉淀出来,PEG是一种惰性物质,同硫酸铵一样对蛋白有稳定效果,在缓慢搅拌下逐渐提高冷的蛋白溶液中的PEG浓度,蛋白沉淀可通过离心或过滤获得,蛋白可在这种状态下长期保存而不损坏。蛋白沉淀对蛋白纯化来说并不是多么好的方法,因为它只能达到几倍的纯化效果,而我们在达到目的前需要上千倍的纯化。其好处是可以把蛋白从混杂有蛋白酶和其他有害杂质的培养基及细胞裂解物中解脱出来。 2.2 缓冲液的更换虽然更换缓冲液不能提高蛋白纯度,但它却在蛋白纯化方案中起着极其重要的作用。不同的蛋白纯化方法需要不同pH及不同离子强度的缓冲液。假如你用硫酸铵将蛋白沉淀出来,毫无疑问蛋白是处在高盐环境中,需要想办法脱盐,可用的方法有利用半透膜透析,通过勤换透析液体去除盐分,此法尚可,但需几个小时,通常要过夜,也难以用于大规模纯化中。新型的设备将透析膜夹在两个板中间,板的一侧加缓冲液,另一侧加需脱盐的蛋白溶液,并在蛋白溶液一侧通过泵加压,可以使两侧溶液在数小时内达到平衡,若增加对蛋白溶液的压力,还可迫使水分和盐更多通过透析膜进入透析液达到对蛋白浓缩的目的。也有出售的脱盐柱,柱内的填料是小孔径的颗粒,蛋白分子不能进入孔内,先于高浓度盐离子从柱中流出,从而使二者分离。蛋白纯化的每一步都会造成目的蛋白的丢失,缓冲液平衡的步骤尤甚。蛋白会结合在任何它能接触的表面上,剪切力、起泡沫和离子强度的快速变化很容易让蛋白失活。 2.3 离子交换色谱这是在所有的蛋白纯化与浓缩方法中最有效方法。基于蛋白与离子交换树脂间的相互电荷作用,通过选择不同的缓冲液,同一种蛋白既可以和阴离子交换树脂(能结合带负电荷的分子)结合,也可以和阳离子交换树脂结合。树脂所用的带电基团有四种:二乙基氨基乙基用于弱的阴离子交换树脂;羧甲基用于弱的阳离子交换树脂;季铵用于强阴离子交换树脂;甲基磺酸酯用于强阳离子交换树脂。蛋白质由氨基酸组成,氨基酸在不同的pH环境中所带总电荷不同。大多数蛋白在生理pH(pH6~8)下带负电荷,需用阴离子交换柱纯化,极端的pH下蛋白会变性失活.应尽量避免。由于在某个特定的pH下不同的蛋白所带电荷数不同,与树脂的结合力也不同,随着缓冲液中盐浓度的增加或pH的变化,蛋白按结合力的强弱被依次洗脱。在工业化生产中更多地是改变盐浓度而不是去改变pH值,因为前者更容易控制。在实验室中几乎总是用盐浓度梯度去洗脱离子交换柱,利用泵的辅助可以使流入柱的缓冲液中盐浓度平稳地上升,当离子强度能够中和蛋白的电荷时,蛋白就被从柱上洗脱下来。但在工业生产中盐浓度很难精确控制,所以常用分步洗脱而不足连续升高的盐梯度。与排阻层析相比,离子交换特异性更好,有更多的参数可以调整以获得最优的纯化效果,树脂也比较便宜。值得一提的是,即便是用最精确控制的条件,仅用离子交换单一的方法也得不到纯的蛋白,还需要其他的纯化步骤。

蛋白纯化离子交换层析法

蛋白纯化离子交换层析 研究生的生活,单调的科研,重复的脚印,匆匆的轨迹,踩着早上的时光一如往常的走进实验室,摊开实验记录本,写上日期,就像每天写日记一样开始计划今天的实验日记,用笔似乎要绘制一副有关实验的画面。 如果你处在这样的科研氛围里,慢慢的就会体味到科学本身就像窗外的大自然一样的美,绿色撩人,诗意陶醉…… 今天,我们写下的实验日记——蛋白纯化离子交换层析法,文章详细的总结了离子交换层析的定义、离子交换层析的原理、离子交换剂的种类,似乎要提醒一下脑子要保持清醒了,不然,看完之后,你能分清楚阴阳离子交换剂的概念,熟知它们的区别么? ————你会创造规律科研生活的美 我,生在春天里,刚发芽的地方是实验室 知了也睡了,而我刷夜实验室 因为我在等待秋天收获的季节 虽然有可能错过成功的喜悦,却收获心灵上的成长

离子交换层析技术是以离子交换剂为固定相,常见的离子交换剂是由一类不溶于水的惰性高分子聚合物基质,通过共价键结合某种电荷基团,形成带电基质,带异性电荷的平衡离子能够通过静电力作用结合在电荷基质上,而平衡离子能够与样品流动相中的离子基团发生可逆交换而吸附在交换剂上,不同带电荷蛋白间结合吸附固定相的能力不同。离子交换技术就是根据蛋白质样品间带电性质的差别而进行分离的一种层析方法。 常见的离子交换剂有离子交换纤维素、离子交换树脂和离子交换葡聚糖凝胶。根据与高分子聚合物基质共价结合的电荷基团的性质不同,可以将离子交换剂分为阳离子交换剂和阴离子交换剂,在阳离子交换剂中,带正电荷的平衡离子能够和流动相中带正电荷的离子基团进行交换。例如DEAE纤维素阳离子交换剂,当纤维素交换剂分子上结合阳离子基团二乙氨乙基(DEAE)时,形成阳离子纤维素—O—C6 H14N+H,可与带负电荷的蛋白质进行结合,交换阴离子。 根据与高分子聚合物基质共价结合的电荷基团的解离度不同,又可以分为强酸型、中等酸型、弱酸型三类阳离子交换剂,强酸型离子交换剂在较大的pH范围内电荷基团完全解离,而弱酸型只能在较小的pH范围内完全解离,如结合羧甲基的离子交换剂在pH小于6时就失去了交换能力。 强酸型阳离子交换剂一般结合的基团有:磺酸甲基、磺酸乙基;中等酸型阳离子交换剂有:磷酸基团和亚磷酸基团;弱酸型离子交换剂有:酚羟基和羧基类; 在阴离子交换剂中,带负电荷的平衡离子能与流动相中带负电的离子基团进行交换,例如阴离子交换剂CM纤维素,当纤维素交换剂分子上结合羧甲基(CM)时,形成带有负电荷的阴离子(纤维素-O-CH2-COO一),可与带正电荷蛋白质结合,交换阳离子。 根据与高分子聚合物基质共价结合的电荷基团的解离度不同,可分为强碱型、中等碱型、弱碱型阴离子交换剂。一般结合季胺基团基质的交换剂为强碱型离子交换剂,结合叔胺、仲胺、伯胺等为中等或者弱碱型离子交换剂。 蛋白质是两性电解质,当溶液的pH值与蛋白质等电点相同时,蛋白质的静

层析柱的一些总结

多数微生物碱性蛋白酶不耐热,碱土金属,特别是钙对碱性蛋白酶有明显的热稳定作用 碱性蛋白酶是加酶洗涤剂的主要添加剂之一,在丝绸、制革工业中也有广泛用途 热稳定性将酶液分别置于不同的温度条件下(30℃,40℃,50℃,60℃,70℃)保温10min 后,立即在0℃冰浴中冷却,然后在40℃下测碱性蛋白酶活力,以剩余的酶活性作为评价酶的热稳定性的指标。测量三个重复求平均值,将最高的酶活力定义为100%,分别计算不同温度条件下蛋白酶的剩余酶活性与最高酶活性的比值。 以ph7的缓冲液为例,如果你的目标蛋白等电点小于7,呢就带负电荷,用阴离子交换的柱子,如果是大于7,那选择阳离子交换的柱子,如果等电点是7,那上样的缓冲液pH大于它的等电点用阴离子,小于7的用阳离子,如此类推就可以 缓冲液的PH=pI值+1,上阴离子柱,=pI值-1,上阳离子柱,一般缓冲液ph范围在6.5~8.5之间,与PI值相差1个PH是比较理想的。 如果不清楚PI值,可以将蛋白溶到PH梯度的缓冲液里,然后分别试阳离子和阴离子填料(50ul左右得体积就够了),看那个PH下挂得好。 强离子交换剂: 在宽pH范围内载量稳定,所以他的优点是不同pH下载量恒定,可控性好,平衡过程快速、简单。 弱离子交换介质的缺点:适用的pH范围比较小,随着pH不同载量发生变化。但是大部分蛋白等电点在5.5 ~ 7.5 。因此强/弱离子交换介质都可以使用 弱离子交换介质(DEAE、ANX、CM)优点在于:和强离子交换介质的选择性不同,因此我们一般先使用强离子交换,如果优化条件还是达不到理想的分离效果,可以尝试弱离子交换,用选择性不同的介质尝试一下。 因此弱离子交换与强离子交换由于选择性不同,可以说是对不同蛋白的结合力有差异。S 技术规格 离子交换剂类型 Q Sepharose FF 季氨基,强阴离子 DEAE Sepharose FF 二乙基氨基乙基,弱阴离子 ANX Sepharose 4FF 二乙基氨基丙基,弱阴离子 SP Sepharose FF 磺丙基,强阳离子 CM Sepharose FF 羟甲基,弱阳离子 离子容量 Q Sepharose FF 0.18-0.25mmol(Cl-)/ml DEAE Sepharose FF 0.11-0.16mmol(Cl-)/ml ANX Sepharose 4 FF 0.13-0.18mmol(Cl-)/ml SP Sepharose FF 0.18-0.25mmol(H+)/ml CM Sepharose FF 0.09-0.13mmol(H+)/ml 动态载量 Q Sepharose FF 120mg HSA/ml 填料 DEAE Sepharose FF 110mg HSA/ml 填料 ANX Sepharose 4 FF 5mg 甲状腺球蛋白/ml 填料 SP Sepharose FF 70mg RNAase/ml 填料 CM Sepharose FF 50mg RNAase/ml 填料

蛋白纯化系统Biologic-LP使用说明

蛋白纯化系统Biologic-LP使用说明 Biologic-LP是蛋白质层析纯化系统, 其原理是利用不同蛋白分子所具有的特性(如等电点、分子量及亲水或疏水性)与层析柱中的介质产生的吸附作用后,再用相应的洗脱液来对吸附在层析柱上的蛋白进行洗脱。根据目标蛋白及不同层析柱介质的特性,设计相应的洗脱程序可以使目标蛋白与其他杂蛋白先后从层析柱上洗脱下来。通过观察紫外光的吸收峰,可分别收集不同时段洗脱下来的蛋白液。蛋白混合物通过这样的程序可被分离至单个蛋白。通常分布在混合物中的目标蛋白需要通过组合而不是单一的层析路线来进行分离操作。常规的分离路线如通过疏水层析—离子交换—疏水层析的技术路线来有效分离目标蛋白。 本层析系统使用主要分为三个部分。首先在使用前确认分离的技术路线和使用的层析柱。其次根据层析柱使用的要求配制相关试剂和确定层析过程的参数。最后通过层析操作分离纯化目标蛋白,并清洗层析柱和管道以确保仪器能长期有效使用。 一设计蛋白的纯化路线及选择不同的层析柱及层析方法根据目标蛋白的特性及来源,设计纯化的路线并确定每一步操作所需要的层析柱及层析方法。根据不同层析方法的要求,准备蛋白样品及洗脱液及洗脱方式(如线形洗脱或梯度洗脱)。而后确认层析操作中的主要参数。

二层析系统的操作 以下是对所有层析操作中共同的步骤进行的描述。特别注意的是不同的分离方式如离子交换和疏水层析它们的原理和参数设置完全不同。这里仅就相同的操作进行描述,具体的参数设置见使用说明书并咨询负责本仪器的老师,切不可擅自操作,以免破坏仪器。 1、确定目标蛋白层析柱的选择,不同的分离方式选择不同的层析柱。 2、样品制备。根据层析柱介质对蛋白样品的要求,制备样品和洗脱 液。所有用于层析的溶液及样品均要通过0.45μm膜过滤,以免堵塞层析柱。 3、打开层析仪电源,按照显示屏的提示,分别设置好A液、B液、 流速、时间等相关参数,并将接样管插入接样仪。 4、打开电脑及Biologic-LP Data View软件,观察层析过程是否正常 或是否需要调整,做好接样前的准备。 三、层析系统的维护 操作结束后,按仪器使用说明,清洗层析柱及管道,将层析柱保存好,备用。特别注意不同的层析柱要求的清洗方式不同,对管道的清洗也不同,层析柱的保存方式也不同。清洗和保存时一定要按照使用说明书的要求进行操作,不能出现错误以免对层析系统造成破坏。

分离纯化蛋白质的方法及原理

(二)利用溶解度差别 影响蛋白质溶解度的外部因素有:1、溶液的pH;2、离子强度;3、介电常数;4、温度。但在同一的特定外部条件下,不同蛋白质具有不同的溶解度。 1、等电点沉淀:原理:蛋白质处于等电点时,其净电荷为零,由于相邻蛋白质分子之间没有静电斥力而趋于聚集沉淀。因此在其他条件相同时,他的溶解度达到最低点。在等电点之上或者之下时,蛋白质分子携带同种符号的净电荷而互相排斥,阻止了单个分子聚集成沉淀,因此溶解度较大。不同蛋白质具有不同的等电点,利用蛋白质在等电点时的溶解度最低的原理,可以把蛋白质混合物分开。当pH被调到蛋白质混合物中其中一种蛋白质的等电点时,这种蛋白质大部分和全部被沉淀下来,那些等电点高于或低于该pH的蛋白质则仍留在溶液中。这样沉淀出来的蛋白质保持着天然的构象,能重新溶解于适当的pH和一定浓度的盐溶液中。 5、盐析与盐溶:原理:低浓度时,中性盐可以增加蛋白质溶解度这种现象称为盐溶.盐溶作用主要是由于蛋白质分子吸附某种盐类离子后,带电层使蛋白质分子彼此排斥,而蛋白质与水分子之间的相互作用却加强,因而溶解度增高。球蛋白溶液在透析过程中往往沉淀析出,这就是因为透析除去了盐类离子,使蛋白质分子之间的相互吸引增加,引起蛋白质分子的凝集并沉淀。当溶液的离子强度增加到一定程度时,蛋白质溶解程度开始下降。当离子强度增加到足够高时,例如饱和或半饱和程度,很多蛋白质可以从水中沉淀出来,这种现象称为盐析。盐析作用主要是由于大量中性盐的加入使水的活度降低,原来溶液中的大部分甚至全部的自由水转变为盐离子的水化水。此时那些被迫与蛋白质表面的疏水集团接触并掩盖他们的水分子成为下一步最自由的可利用的水分子,因此被移去以溶剂化盐离子,留下暴露出来的疏水基团。蛋白质疏水表面进一步暴露,由于疏水作用蛋白质聚集而沉淀。 盐析沉淀的蛋白质保持着他的天然构象,能再溶解。盐析的中性盐以硫酸铵为最佳,在水中的溶解度很高,而溶解度的温度系数较低。 3、有机溶剂分级分离法:与水互溶的有机溶剂(甲醇、乙醇和丙酮等)能使蛋白质在水中的溶解度显著降低。在室温下有机溶剂会引起蛋白质变性,如果预先将有机溶剂冷却到-40°C以下,然后在不断搅拌下逐滴加入有机溶剂,以防局部浓度过高,那么变性可以得到很大程度缓解。蛋白质在有机溶剂中的溶解度也随温度、pH和离子强度而变化。在一定温度、pH和离子强度条件下,引起蛋白质沉淀的有机溶剂的浓度不同,因此控制有机溶剂浓度也可以分

蛋白纯化AKTA操作说明#(优选.)

AKTA pure操作说明 分子筛层析操作步骤: 1. 开机: 打开AKTA pure开关,看指示灯,泵同步(泵内有注入液体的声音)。 2. 打开系统: 打开电脑:双击Unicorn 7.0打开系统,进入log on 界面,用户名默认为Default,输入密码:default,点ok键,出现提示对话框,继续点确定,进入系统。 注意:进入系统时会弹出三个界面:System Control界面,Evaluation界面和Administration界面。其中system Control界面为主操作窗口,所有的设置选项都是在该界面下完成:Manual---Execute Manual instructions---......;Evaluation界面为结果数据查看及处理窗口;Administration界面为Unicorn 7.0系统设置界面。 3. 洗泵: 把A1泵头从20%乙醇中取出,用去离子水冲洗,放入分子筛缓冲液中,在System Control界面下,点击manual---Execute Manual instructions---Pumps---Pump A wash---点开inlet,选择A1---Excuse。 4. 设置系统参数: 设柱压:Alams---alam systerm pressure---high alam---设置柱压---Execute; 设流速:Pumps---System flow ---设置system flow(1mL/min)---Execute。 注意:流速和柱压设置参照“GE蛋白纯化柱表”,不要超出最高限制。 5. 装柱子(先上后下): 接柱子的上面:拧下连接进样阀和检测器之间的线,等进样阀出口有液体流出时,拧开柱上面线头的螺帽,将它连到进样阀出口; 接柱子的下面:去掉柱下端连接的注射器,连上接头,连上一段线,待液体滴出滴出液体滴到检测器上的连接口的洞里,滴满,将接头连到检测器的连接口里。 6.平衡柱子: 分子筛buffer平衡柱子,一般要两个小时左右,盐离子浓度达到5.5%左右。 7.设置系统及收集参数: 命名:先end---Manual instructions,点击browse,弹出select result name&location 界面,点开文件夹“defaultHome”,找到文件夹“labdata”,点开,选择自己名字 首字母缩写文件夹(已创建),在界面下方“name”指令框进行命名。 注意:命名时要标明日期,柱子型号,样品名称。 设流速:Pumps---System flow---设流速(1 mL/min)---Execute; 设柱压:Alams--- alam systerm pressure---high alam---设置柱压---点击Execute; 洗A泵:Pumps---Pump A wash---点开inlet,选择A1---Excuse; 紫外调零:Monitors---Auto zero UV---Execute;

相关主题
文本预览
相关文档 最新文档