当前位置:文档之家› 低功耗单键触控IC,内置LDO稳压器TH233 -C(D)_SPEC_Ver1.3

低功耗单键触控IC,内置LDO稳压器TH233 -C(D)_SPEC_Ver1.3

低功耗单键触控IC,内置LDO稳压器TH233 -C(D)_SPEC_Ver1.3
低功耗单键触控IC,内置LDO稳压器TH233 -C(D)_SPEC_Ver1.3

-C(D)_SPEC

单通道触摸感应开关

-C(D)

规格书

Revision 1.3 2012-12-16

TH233TH233深圳市华升微电子有限公司

-C(D)_SPEC

TH233

目录

1. 简介 (3)

2. 特点 (3)

3. 引脚示意图 (3)

4. 功能描述 (4)

4.1输出有效电平配置(AHLB) (4)

4.2快速/低功耗模式(LPMB) (4)

4.3保持/同步模式(TOG) (4)

4.4最大开启时间与延时模式 (4)

5. 电气参数 (5)

5.1最大绝对额定值 (5)

5.2DC电气参数 (5)

6. 应用电路图 (6)

7. 封装信息(SOT23-6L) (7)

-C(D)_SPEC 1.简介

是一款内置稳压模块的单通道电容式触

摸感应控制开关IC,可以替代传统的机械式开关。

可通过外部引脚配置成多种工作模式,可广泛应用于灯光控制、电子玩具、消费电子、家用电器等产品中。

2.特点

?工作电压:2.3V~5.5V

?最高功耗工作电流5.0uA,低功耗模式工作电流2.5uA(均指VDD=3.0V且无负载)

?内置高精度稳压模块?上电0.5s快速初始化

?环境自适应功能,可快速应对触摸上电等类似应用场景

?可靠的上电复位(POR)及低压复位(LVR)性能?芯片内置去抖动电路,有效防止由外部噪声干扰导致的误动作

?通过外部引脚配置快速/低功耗模式、正常/延时模式、同步/保持模式

?可通过外部引脚设置高/低电平有效输出、最大开启时间、延时时间

?封装:SOT23-6L

3.引脚示意图

图1引脚示意图

I-P L/ I-P H:带内部下拉/上拉电阻的CMOS输入OD:CMOS开漏输出,无保护二极管O:推挽型CMOS输出

I/O:CMOS输入/输出P:电源/地

TH233

TH233 TH233

TH2334.功能描述

可通过外部引脚配置为多种模式(表2)。外部配置引脚悬空时,配置位自动设置为默认状态。

注:1指配置为电源电压;0指配置为0V 电压

4.1 输出有效电平配置(AHLB)

AHLB=0(默认),触摸有效时OC 引脚输出高电平; AHLB=1,触摸有效时OC 引脚输出低电平。 注意:此配置位对OD 输出配置无效,触摸有效时OD 输出低电平,触摸无效时输出高阻态。

4.2 快速/低功耗模式(LPMB)

LPMB=1(默认),使能快速模式,最大触摸响应时间约80ms ;

LPMB=0,使能低功耗模式,最大触摸响应时间约180ms 。

4.3 保持/同步模式(TOG)

TOG=0(默认)且DLYB=1,设置为同步模式,此时OC/OD 引脚的输出状态与触摸响应同步:只有触摸有效时输出响应,当触摸无效时,OC/OD 引脚的输出恢复为初始状态。

TOG=1且DLYB=1,设置为保持模式,此时OC/OD 引脚的输出状态在触摸有效时后保持:当触摸无效时后仍保持为响应状态,再次触摸并响应后恢复为初始状态。

4.4 最大开启时间与延时模式

最大开启时间:如果持续检测到触摸有效并达到设定时间,则自动复位并校准,并重置OC/OD 引脚

的状态(表3)。

延时模式:输出有效保持至设定的延时时间(表3、表4)。

延时模式1:从触摸有效时刻开始计时,输出有效保持至设定时间。如延时时间之内再次触摸则不响应,只有延时时间之后再次触摸才响应(图2)。 延时模式2:从触摸释放时刻开始计时,输出有效

保持至设定时间。如延时时间之内再次发生触摸,则延时时间从最后释放时刻开始重新计时(图2)。

图 2 延时模式5.电气参数

5.1最大绝对额定值

5.2DC电气参数

6.应用电路图

图 3 应用电路图

说明:

1. Cj指调节灵敏度的电容,电容值范围0pF~50pF (电容值的增大将导致灵敏度降低)。

2. Rs指在触摸电极和触摸输入脚之间串联的电阻,用于提高触摸的抗干扰能力。

3. 外部是否增加LDO视具体应用情况而定。如电源纹波超过了IC的抗纹波范围,则需另加外部LDO。

如突然加载大电流负载、锂电池和外置充电器交叉使用、高频次的开启/关闭LED显示时都需注意电源的稳定性

4. 应该在触摸电极上铺好覆盖介质后再上电,如在芯片已经初始化后再放上覆盖介质,会引起系统误

判认为触摸一直有效。

7.封装信息(SOT23-6L)

图 4 SOP23-6L封装图

注意:

规格如有更新﹐恕不另行通知。请在使用该IC前更新规格书至最新版本。

交流稳压电源电路工作原理

电路工作原理:该稳压电源由主回路、采样控制电路、驱动伺服系统、过电压检测及保护电路等组成。带有滑动臂的自耦变压器(又称调压器)的T1作为主回路,其输人端固定,输出端由伺服电动机M自动调节,以使输出电压保持稳定。此外,T1还给伺服电动机M、电源变压器T2、指示灯、采样控制、驱动电路提供工作电压。 电源变压器T2的一次与T1的输出端并联。当输出电压发生变化时,T2的二次电压也随之变化。这一变化的电压经二极管VD1~VD4桥式整流、电容C4滤波后变为直流加到由R4~R6、RP2组成的采样电路。采样电路的输出与R7、VZ2组成的基准电路的基准电压共同加至电压比较器A1、A2进行比较。比较结果会有以下三种情况。 (1)当T1输出电压为22V时,A1的第7脚与A2的第1脚均输出低电平,晶体管V2、V3截止,继电器K2、K3不动作,触点K2-1与K3-1不吸合,伺服电动机M不运转,使输出电压仍保持在220V的稳定值。 (2)当T1输出电压小于22V时,其采样电压值也随之降低,经过与基准电压相比较后,在A1的第7脚输出高电平,A2的第1脚输出低电平,导致晶体管V2导通,V3截止,故继电器K2吸合,K3释放,触点K2-1吸合,K3-1断开,使伺服电动机M向左转,带动T1的滑动臂向上转动,使输出电压升高。 (3)当T1输出电压大于22V时,采样电路输出的电压值也随之升高,经与基准电压相比较,在A1第7脚输出低电平,A2的第1脚输出高电平,晶体管V2截止,V3导通,K2不动作,K3吸合,触点K2-1断开,K3-1吸合,导致伺服电动机向右转,带动T1的滑动臂向下转动,使输出电压降低。 若电网电压过高,超出了本调压器的调节范围时,检测电路R2、R3与RP1输出的电压值使稳压二极管VZ1击穿,晶体管V1导通,继电器Kl吸合,其触点K1-1吸合,使交流接触器KM通电,其触点KM-1与KM-2均断开,切断输出电压进人采样控制电路,使伺服电动机M停止工作,有效地保护了负载和伺服电动机M。当电网电压恢复正常后,输出自动接通。 电路中,C1、C2为消火花电容器,VD5~VD7为保护二极管,HL为工作指示灯,RP1为过压调节电位器,RP2为稳压调节电位器。 元器件选择:A1、A2选用双运算放大器LM358。晶体管VI~V3选用3DG130B,β在60~85之间。电阻R1选用5W功率的,其余电阻选用1/6W金属膜电阻。继电器K1~K3选用JRX-13F-300Ω(DC12V)。交流电压表选用63T1-V-0~250V。交流电流表选用63T1-A-0~20A。其余元件按图所示选用即可。

低压差线性稳压器(LDO)的压差和功耗

低压差线性稳压器(LDO)的压差和功耗 中心议题:线性稳压器(LDO)的输入、输出压差设计线性稳压器(LDO)的功耗设计 便携产品电源设计需要系统级思维,在开发由电池供电的设备时,诸如手机、MP3、PDA、PMP、DSC等低功耗产品,如果电源系统设计不合理,则会影响到整个系统的架构、产品的特性组合、元件的选择、软件的设计和功率分配架构等。同样,在系统设计中,也要从节省电池能量的角度出发多加考虑。例如现在便携产品的处理器,一般都设有几个不同的工作状态,通过一系列不同的节能模式(空闲、睡眠、深度睡眠等)可减少对电池容量的消耗。即当用户的系统不需要最大处理能力时,处理器就会进入电源消耗较少的低功耗模式。带有使能控制的低压差线性稳压器(LDO)是不错的选择。低压差线性稳压器(LDO)的结构主要包括启动电路、恒流源偏置单元、使能电路、调整元件、基准源、误差放大器、反馈电阻网络,保护电路等,基本工作原理是这样的:系统加电,如果使能脚处于高电平时,电路开始启动,恒流源电路给整个电路提供偏置,基准源电压快速建立,输出随着输入不断上升,当输出即将达到规定值时,由反馈网络得到的输出反馈电压也接近于基准电压值,此时误差放大器将输出反馈电压和基准电压之间的误差小信号进行放大,再经调整管放大到输出,从而形成负反馈,保证了输出电压稳定在规定值上;同理如果输入电压变化或输出电流变化,这个闭环回路将使输出电压保持不变,即:VOUT=(R1+R2)/R2*Vref 产生压差的主要原因是,在调整元件中有一个P沟道的MOS管。当LDO工作时MOS管道通等效为一个电阻,RDS(ON), VDROPOUT=VIN-VOUT=RDS(ON)xIOUTR. 由此得出低压差线性稳压器(LDO)的一个重要特性,在输入电压大于最小工作电压和输出电压其标称值范围内,负载电流为零时,输出电压随输入电压的变化而变化,这就是LDO的跟随特性,待输出电压达到其标称值后不随输入而变化,从而达到稳压的目的,这就是LDO的稳压特性。如图为圣邦微电子的SGM2007输入电压和输出电压的曲线。在测试压差(Dropout)时不同的厂家有不同的标准。德州仪器(TI)电压差定义为输出电压较其标称值跌落2%时的输入、输出电压的差值.其它的如,美信(Maxim),圣邦微电子(SGMC)电压差定义为输出电压较其标称值小于100mV时的输入、输出电压的差值.如图为圣邦微电子的SGM2007负载为300mA时输入电压和输出电压的曲线。如图在箭头范围内,输入和输出和箭头组成的图形在一定范围内近试为平行四边形,在平行四边的边上任取一点,做与另一边平行的线段,由平行四边形的定义可知和另一边相等。所以这两种测试方法只是取值点不同而已,对同一芯片而言,两种方法测得值几乎相同。在TMT生产测试中,也有两种测试方法,一种是循环法,输入在某一个确定值时,以步长为1mV下降,至道输出电压较其标称值跌落2%,或输出电压较其标称值小于100mV时停止,这种方法循环的步长越多,测试的时间就越长,对芯片的成本就越高,令一种方法是,输入固定电压法,输入和输出和箭头组成的图形近试平行四边形,只要我的取值点在平行四边形内,测得的值就是相同的,所以通常是根据具体的LDO的Dropout的大小,输入加上某一个值,使输出电压约等于较其标称值跌落2%或较其标称值小于100mV。例如Dropout在150mA时为100mV,那么输入可以等于输出,这样测的输出比标称值小于100mV,等于这样测一次就可以了,节约了大量的时间,降低生产成本。单体锂离子电池充足电时的电压为4.2V,放完电后的电压为2.3V,而有些标定电压为3.3V工作的微处理器DSP的最低工作电压可以达到2.9V。这样LDO输出值在小于标称值的一定范围内还是可以工作的。由上图可见,LDO的压差越小,输入和输出和箭头组成的图形近试平行四边形越长,LDO的工作时间就越长效率就越高,电池的待机时间也就会越长。低压差线性稳压器由于存在压差,它最大的缺点是在热量管理方面,因为其转换效率近似等于输出电压除以输入电压的值。例如,如果一个驱动图像处理器的LDO 输入电源是从单节锂电池标称的3.6V,在电流为200mA时输出1.8V电压,那么转换效率仅为50%,因此在手机中产生了一些发热点,并缩短了电池工作时间。虽然就较大的输入与输

稳压器的工作原理及作用(图文 民熔

稳压器 民熔稳压器是使输出电压稳定的设备。稳压器由调压电路、控制电路、及伺服电机等组成。当输入电压或负载变化时,控制电路进行取样、比较、放大,然后驱动伺服电机转动,使调压器碳刷的位置改变,通过自动调整线圈匝数比,从而保持输出电压的稳定。 民熔稳压器广泛用于工矿企业、纺织机械、印刷包装、石油化工、学校、商场、电梯、邮电通信、医疗机械等所有需要正常电压保证的场合。 民熔稳压器拥有优质核心配件,稳压范围大,正常输出范围220V士4%。铝线圈补偿,三线包补偿调压,比单双包调压更安全,减少碳刷磨损。民熔稳压器拥有五大保护功能:过载保护、欠压保护、过压保护、过温保护、延时保护。双LED液晶显示,输入输出电压可视,数据准确,灵敏度高,经久耐用。 本文将会介绍关于民熔稳压器的工作原理及使用方法,感觉这篇文章对你有帮助的话,可以关注下小编 民熔稳压器工作原理 根据调压方式的不同,民用熔体调压器可分为三类:电子感应式油式调压器,干式接触式调压器(直流调压器和补偿调压器)和干式无触点调压器(一般有补偿)。 有些稳压器结构简单,价格低廉,但可靠性差。因为它依靠碳刷的运动(滑动或滚动)来稳定压力。根据输出电压的设定值来控制输出电压。这种电路的缺点是可靠性低、动态响应慢、无干扰隔离。

民熔稳压器的功能 据电力专家测试,电网中经常出现的对计算机和精密仪器造成干扰或损坏的问题有: 1浪涌是指输出电压的均方根值高于额定值的110%,并持续一个或多个周期。浪涌主要是由于电网连接的大型电气设备停运,电网因高压突然卸载而引起。 2高压尖脉冲是指峰值为6000V,持续时间为千分之一秒至半周期(10ms)的电压。这主要是由雷击、电弧放电、静电放电或大型电气设备的开关操作引起的。 电压不稳定会造成致命伤害或设备误操作,影响生产,造成交货延误,质量不稳定等损失。同时,加速设备老化,影响使用寿命,甚至烧毁配件,使业主面临维修麻烦或需要短时间更新设备,浪费资源;严重时甚至发生安全事故,造成 不可估量的损失。 民熔稳压器对于用电设备特别是对电压要求严格的高新科技和精密设备来 说是必不可少的,这也促使我们要求我们开发高新技术和更先进的稳压器去满足各种仪器设备的需求了。因此,我们应该要知道如何使用稳压器,而且还要清楚稳压器的作用。

LDO稳压器工作原理

LDO稳压器工作原理 随着便携式设备(电池供电)在过去十年间的快速增长,像原来的业界标准 LM340 和 LM317 这样的稳压器件已经无法满足新的需要。这些稳压器使用NPN 达林顿管,在本文中称其为NPN 稳压器(NPN regulators)。预期更高性能的稳压器件已经由新型的低压差(Low-dropout)稳压器(LDO)和准LDO稳压器(quasi-LDO)实现了。 (原文:Linear Regulators: Theory of Operation and Compensation ) NPN 稳压器(NPN regulators) 在NPN稳压器(图1:NPN稳压器内部结构框图)的内部使用一个 PNP管来驱动 NPN 达林顿管(NPN Darlington pass transistor),输入输出之间存在至少1.5V~2.5V的压差(dropout voltage)。这个压差为: Vdrop = 2Vbe +Vsat(NPN 稳压器) (1) LDO 稳压器(LDO regulators) 在LDO(Low Dropout)稳压器(图2:LDO稳压器内部结构框图)中,导通管是一个PNP 管。LDO的最大优势就是PNP管只会带来很小的导通压降,满载(Full-load)的跌落电压的典型值小于500mV,轻载(Light loads)时的压降仅有10~20mV。LDO的压差为: Vdrop = Vsat (LDO 稳压器) (2) 准LDO 稳压器(Quasi-LDO regulators) 准LDO(Quasi-LDO)稳压器(图3:准 LDO 稳压器内部结构框图)已经广泛应用于某些场合,例如:5V到3.3V 转换器。准LDO介于NPN 稳压器和LDO 稳压器之间而得名, 导通管是由单个PNP 管来驱动单个NPN 管。 因此,它的跌落压降介于NPN稳压器和LDO之间:

低压差线性稳压器(LDO)简介

低压差线性稳压器(LDO)的基本原理和主要参数 摘要:本文论述了低压差线性稳压器(LDO)的基本原理和主要参数,并介绍LDO 的典型应用和国内发展概况。 引言 便携电子设备不管是由交流市电经过整流(或交流适配器)后供电,还是由蓄电池组供电,工作过程中,电源电压都将在很大范围内变化。比如单体锂离子电池充足电时的电压为4.2V ,放完电后的电压为2.3V ,变化范围很大。各种整流器的输出电压不仅受市电电压变化的影响,还受负载变化的影响。为了保证供电电压稳定不变,几乎所有的电子设备都采用稳压器供电。小型精密电子设备还要求电源非常干净(无纹波、无噪声),以免影响电子设备正常工作。为了满足精密电子设备的要求,应在电源的输入端加入线性稳压器,以保证电源电压恒定和实现有源噪声滤波[1]。 一.LDO 的基本原理 低压差线性稳压器(LDO)的基本电路如图1-1所示,该电路由串联调整管VT 、取样电阻R1和R2、比较放大器A 组成。 取样电压加在比较器A 的同相输入端,与加在反相输入 端的基准电压Uref 相比较,两者的差值经放大器A 放大 后,控制串联调整管的压降,从而稳定输出电压。当 输出电压Uout 降低时,基准电压与取样电压的差值增 加,比较放大器输出的驱动电流增加,串联调整管压 降减小,从而使输出电压升高。相反,若输出电压Uout 超过所需要的设定值,比较放大器输出的前驱动电流减小,从而使输出电压降低。供电过程中,输出电压 校正连续进行,调整时间只受比较放大器和输出晶体管回路反应速度的限制。 图1-1 低压差线性稳压器基本电路应当说明,实际的线性稳压器还应当具有许多其它的功能,比如负载短路保护、过压关断、过热关断、反接保护等,而且串联调整管也可以采用MOSFET 。 二.低压差线性稳压器的主要参数 1.输出电压(Output Voltage) 输出电压是低压差线性稳压器最重要的参数,也是电子设备设计者选用稳压器时首先应考虑的参数。低压差线性稳压器有固定输出电压和可调输出电压两种类型。 固定输出电压稳压器使用比较方便,而且由于输出电压是经过厂家精密调整的,所以稳压器精度很高。但是其设定的输出电压数值均为常用电压值,不可能满足所有的应用要求,但是外接元件数值的变化将影响稳定精度。 2.最大输出电流(Maximum Output Current) 用电设备的功率不同,要求稳压器输出的最大电流也不相同。通常,输出电流越大的稳压器成本越高。为了降低成本,在多只稳压器组成的供电系统中,应根据各部分所需的电流值选择适当的稳压器。 3.输入输出电压差(Dropout Voltage)

三端稳压器工作原理(精华)

LM317工作原理 三端稳压集成电路LM317是三端稳压集成电路,它具有输出电压可变、内藏保护功能、体积小、性价比高、工作稳定可靠等特点。采用的电路模式如图所示,调节可变电阻R2的阻值,便可从LM317的输出端获得可变的输出电压0U 。 从图中的电路中可以看出,LM317的输出电压(也就是稳压电源的输出电压)0U 为两个电压之和。即A 、B 两点之间的电压也就是加在R2上的电压 222R R U I R =?,而2R I 实际上是两路电流之和,一路是经R1流向R2的电流1R I ,其大小为1/1R U R 。因1R U 为恒定电压1.25V ,Rl 是一个固定电阻,所以1R I 是一个恒定的电流。另一路是LM317调整端流出的电流D I ,由于型号不同(例如LM317T 、LM317HVH 、LM317LD 等),生产厂家不同,其D I 的值各不相同。即使同一厂家,同一批次的LM317,其调整端流出的电流D I 也各不相同。尽管这祥.但总的来说D I 的电流但是有一定规律的,即D I 的平均值是50A μ左右,最大值一般不超过100A μ。而且在LM317稳定工作时,D I 的值基本上是一个恒定的值。当由于某种原因引起D I 变化相对较大时,LM317就不能稳定地工作。总而言之,2R I 是1R I 、D I 两路恒定电流之和.2R U 是由两路恒定电流1R I 、D I 流经R2产生的,调节R2的阻值即可调节LM317的输出电压0U (0U 是恒定电压1R U 与2R U 之和)。既然D I 和IR1对调节输出电压0U 都起到了一定的作用,并且1R I 是

由R1提供的, I的大小也没有任何限制.是否可以使R1的阻值趋于无穷大, R 1 使 I的电流值趋向于无穷小?如果可以这样做的话,就可以去掉R1,只用可变R 1 电阻R2就可以调节LM317的输出电压。 LM317作为输出电压可变的集成三端稳压块,是一种使用方便、应用广泛的集成稳压块。稳压电源的输出电压可用下式计算, V=1.25(1+R2/R1)。仅 仅从公式本身看,R1、R2的电阻值可以随意设定。然而作为稳压电源的输出电压计算公式,R1和R2的阻值是不能随意设定的。首先LM317稳压块的输出电压变化范围是 V=1.25——37V(高输出电压的LM317稳压块如LM317HV A、 LM317HVK等,其输出电压变化范围是V o=1.25——45V),所以R2/R1的比值范围只能是0——28.6V。其次是LM317稳压块都有一个最小稳定工作电流,有的资料称为最小输出电流,也有的资料称为最小泄放电流。最小稳定工作电流的值一般为1.5mA。由于LM317稳压块的生产厂家不同、型号不同,其最小稳定工作电流也不相同,但一般不大于5mA。当LM317稳压块的输出电流小于其最小稳定工作电流时,LM317稳压块就不能正常工作。当LM317稳压块的输出电流大于其最小稳定工作电流时,LM317稳压块就可以输出稳定的直流电压。 要解决LM317稳压块最小稳定工作电流的问题,可以通过设定R1和R2阻值的大小,而使LM317稳压块空载时输出的电流大于或等于其最小稳定工作电流,从而保证LM317稳压块在空载时能够稳定地工作。此时,只要保证 V/(R1 +R2)≥1.5mA,就可以保证LM317稳压块在空载时能够稳定地工作。上式中的1.5mA为LM317稳压块的最小稳定工作电流。当然,只要能保证LM317稳 V/(R1+R2)的值也可以设定为大于1.5mA 压块在空载时能够稳定地工作, 的任意值。

电刷式交流稳压器工作原理

电刷式交流稳压器工作原理 一.稳压器的分类 按调压方式不同分类可分为三类 电子感应式油式稳压器 干式接触式调压稳压器(直接调压稳压器和补偿式调压稳压器) 干式无触点调压式稳压器(一般是带补偿的稳压器) 二.稳压器的分类: 按电源使用环境不同分类可分为两类 单相交流稳压器 三相交流稳压器 三.以干式接触式调压稳压器为例分析稳压器工作原理: 单相交流稳压器原理分析 1.单相SVC直接调压稳压器原理分析 图二

A点为单相稳压器输入侧,B点为单相稳压器的输出侧. 其实这一类用调压器直接调压式的稳压器就是利用自耦变压器的原理做成的.图中AN 侧就是自耦变压器的输入侧,BN侧就是自耦变压器的输出侧,如果输入电压高于输出设置点220V时,这个自耦变压器就工作在降压状态,如果输入电压低于220V时,这个自耦变压器就工作在升压状态.(图中所示就是处在降压状态) 这种稳压器不同于自耦变压器的主要是输入点A是可以由0V到250V之间任意滑动.这样就可以随时调整输入电压的输入点来满足输出电压的恒定.一般我们把输入侧A点叫做滑臂,它由电机通过减速装置来驱动,电机的转向由稳压控制电路来控制完成. 稳压器的取样电路时刻监视稳压器的输出两点间电压,输出电压升高时,控制电机朝自耦变压器降压的方向移动,(如图二)当输出电压达到所要的电压时,停止控制电机运动.反之控制电路则控制电机朝自耦变压器升压的方向转动.(图三)达到所要的电压时停止.

图二 图三 此类稳压器的容量大小全部由这个输出电压可以变压器的自耦变压器来承担,但由于它制造工艺的影响,它不能做得很大,只能适应小功率的场合.要相把稳压器的功率做得更大,就要加入补偿变压器来实现稳压器的功率扩大 2.单相补偿式稳压器原理分析(图四)

LD27L2-超低功耗运算放大器

LD27L2 双通道精密运算放大电路 1、概述 LD27L2是一款有极低失调电压、高输入阻抗、轨对轨的运算放大器电路。主要应用于各种需要使用精密运算放大器的领域,其特点如下: z极低的输入失调电压,典型条件下小于1mV; z超低功耗,静态工作电流小于3uA z宽电压工作范围,1.8V~6.0V z高输入阻抗,典型为1013Ω; z超低的失调点偏移 z单位增益带宽14KHz z封装形式:SOP8 2、功能框图与引脚说明 2. 1、功能框图

2. 2、引脚排列图 2. 3、引脚说明与结构原理图 序号管脚名功能描述 1 OUT1 运放1的输出端 2 IN1‐ 运放1的反向输入端 3 IN1+ 运放1的正向输入端 4 GND 电源地 5 IN2+ 运放2的正向输入端 6 IN2‐ 运放2的反向输入端 7 OUT2 运放2的输出端 8 VDD 电源输入端

3、电特性 3. 1、极限参数 参 数 名 称 符 号 额 定 值 单 位 最大电源电压 IVsmax 6 V 输入电压范围 V I GND-0.3~VDD V 差分输入电压 VDD-GND V 工作环境温度 T amb -40~+85 ℃ 贮存温度 T stg -55~+125 ℃ 3. 2、电特性(VDD=2.2~5V ,T A =25℃) 参 数 名 称 符 号 测 试 条 件规 范 值 单 位最小 典型最大 工作电压 V DD 1.8 - 6.0 V 静态工作电流 I DD - 0.8 3 uA 输入失调电压 V OS - 1 2 mV 输入失调温度系数 -40℃~+85℃ - 1.3 - uV/℃电源抑制 V PSRR - 85 90 dB 输入偏置电流 I B - 1 - pA 输入失调电流 I OS - 1 - pA 共模输入阻抗 Z CM - 1013- Ω 差模输入阻抗 Z DIFF - 1013- Ω 共模输入电压 V CMR GND-0.3- VDD+0.3 V 共模抑制比 CMRR VDD=5V 60 90 - dB 单位增益带宽 B I VI=10mV 14 KHz 输出短路电流 I SC VDD=2.2V - 3 - mA VDD=5V - 20 - mA

LDO线性稳压器

线性稳压器(LDO) 一、应用场景 图1所示电路是一种最常见的AC/DC电源,交流电源电压经变压器后,变换成所需要的电压,该电压经整流后变为直流电压。在该电路中,低压差线性稳压器的作用是:在交流电源电压或负载变化时稳定输出电压,抑制纹波电压,消除电源产生的交流噪声。 图 1 LDO在AC-DC电路中的应用 各种蓄电池的工作电压都在一定范围内变化。为了保证蓄电池组输出恒定电压,通常都应当在电池组输出端接入低压差线性稳压器,如图 2所示。低压差线性稳压器的功率较低,因此可以延长蓄电池的使用寿命。同时,由于低压差线性稳压器的输出电压与输入电压接近,因此在蓄电池接近放电完毕时,仍可保证输出电压稳定。 图 2 LDO在电池供电电路中的应用 众所周知,开关性稳压电源的效率很高,但输出纹波电压较高,噪声较大,电压调整率等性能也较差,特别是对模拟电路供电时,将产生较大的影响。在开关性稳压器输出端接入低压差线性稳压器,如图 3所示,就可以实现有源滤波,而且也可大大提高输出电压的稳压精度,同时电源系统的效率也不会明显降低。 图 3 DC-DC电路中LDO的应用

在某些应用中,比如无线电通信设备通常只有一足电池供电,但各部分电路常常采用互相隔离的不同电压,因此必须由多只稳压器供电。为了节省共电池的电量,通常设备不工作时,都希望低压差线性稳压器工作于睡眠状态。为此,要求线性稳压器具有使能控制端。有单组蓄电池供电的多路输出且具有通断控制功能的供电系统如图 4所示。 图 4 多路LDO供电中的应用 二、原理 1)定义 LDO 是一种线性稳压器。线性稳压器使用在其线性区域内运行的晶体管或FET,从应用的输入电压中减去超额的电压,产生经过调节的输 出电压,即输出电压是输入电压与晶体管或FET产生的管压降的差值。 图 5 基本原理框图 所谓压降电压,是指稳压器将输出电压维持在其额定值上下100mV 之内所需的输入电压与输出电压差额的最小值。 2)工作原理

电压调节器工作电路工作原理

一.发电机的功用 汽车使用的电源有蓄电池和发电机两种。采用交流发电机作为主要电源,蓄电池作为辅助电源。在汽车行驶过程中,由发电机向用电设备提供电源,并向蓄电池充电。蓄电池在汽车启动时提供启动电流,当大电机发出电量不足时,可以协同发电机供电。 二.发电机的分类 1.按磁场绕组搭铁形式分两类 a.外搭铁型(A线路) 磁场绕组的一端(负极)接入调节器,通过调节器后再搭铁。 b.内搭铁型(B线路) 磁场绕组的一段(负极)直接搭铁(和壳体相连)。如下图2-13所示: 2.按整流器结构分四类 a.六管交流发电机(例丰田系列) b.八管交流发电机(例天津夏利轿车所用) c.九管交流发电机(例三菱系列) d.十一管交流发电机(例奥迪、大众汽车用) 三.交流发电机结构 交流发电机一般由转子、定子、整流器、调节器、端盖组成,JF132型交流发电机组件图见图 1.转子 转子的功用是产生旋转的磁场。它由爪极、磁轭、磁场绕组、集电环、转子轴组成,结构图见图

转子轴上压装着两块爪极,两块爪极各有六个鸟嘴形磁极,爪极空腔内装有磁场绕组(转子线圈)和磁轭。 集电环由两个彼此绝缘的铜环组成,集电环压装在转子轴上并与轴绝缘,两个集电环分别与磁场绕组的两端相连。2.定子 定子的功用是产生交流电。它由定子铁心和定子绕组组成。见图 定子铁心由内圈带槽的硅钢片叠成,定子绕组的导线就嵌放在铁心的槽中。定子绕组由三相,三相绕组采用星型接法或三角形(大功率)接法。三相绕组必须按一定要求绕制,才能使之获得频率相同、幅值相等、相位互差120°的三相电动势。 3.整流器、端盖 整流器的作用是将定子绕组的三相交流电变为直流电。 端盖一般用铝合金铸造,一是可有效的防止漏磁,二是铝合金散热性能好。 四.交流发电机的电压调节器 交流发电机的转子由发动机通过皮带驱动旋转的,且发动机和交流发电机的速比为~3左右,因此交流发电机转子的转速变化范围非常大,这样将引起发电机的输出电压发生较大变化,无法满足汽车用电设备的工作要求。 为了满足用电设备恒定电压的要求,交流发电机必须配用电压调节器,使其输出电压在发动机所有工况下几本保持恒定。 1.交流发电机电压调节器按工作原理可分为: a.触点式电压调节器 b.晶体管调节器 c.集成电路调节器

GS6001 6002 6004 聚洵低功耗运算放大器

GS6001.6002.6004描述 GS6001系列的增益带宽乘积为1MHz,转换速率为0.8V /μs,在5V时的静态电流为75μA/放大器。GS6001系列旨在在低压和低噪声系统中提供最佳性能。它们可将轨到轨的输出摆幅转换成重负载。输入共模电压范围包括地,对于GS6001系列,最大输入失调电压为3.5mV。它们的额定温度范围为扩展的工业温度范围(-40℃至+ 125℃)。工作范围为1.8V至6V。 GS6001单个采用绿色SC70-5和SOT23-5封装。 GS6002 Dual采用绿色SOP-8和MSOP-8封装。 GS6004 Quad具有绿色SOP-14和TSSOP-14封装。 应用: ASIC输入或输出放大器 ?传感器接口 ?医学交流 ? 烟雾探测器 ? 音频输出 ?压电换能器 ?医疗仪器 ?便携式系统 特征: ?+ 1.8V?+ 6V单电源供电 ?轨到轨输入/输出 ?增益带宽乘积:1MHz(典型值) ?低输入偏置电流:1pA(典型值) ?低失调电压:3.5mV(最大值) ?静态电流:每个放大器75μA(典型值) ?嵌入式射频抗电磁干扰滤波器 ?工作温度:-40°C?+ 125°C ?包装: GS6001提供SOT23-5和SC70-5封装 GS6002提供SOP-8和MSOP-8封装 GS6004提供SOP-14和TSSOP-14封装

Features ?Single-Supply Operation from +1.8V ~ +6V ?Operating Temperature: -40°C ~ +125°C ?Rail-to-Rail Input / Output ?Small Package: ?Gain-Bandwidth Product: 1MHz (Typ.) GS6001 Available in SOT23-5 and SC70-5 Packages ?Low Input Bias Current: 1pA (Typ.) GS6002 Available in SOP-8 and MSOP-8 Packages ?Low Offset Voltage: 3.5mV (Max.) GS6004 Available in SOP-14 and TSSOP-14 Packages ?Quiescent Current: 75μA per Amplifier (Typ.) ?Embedded RF Anti-EMI Filter General Description The GS6001 family have a high gain-bandwidth product of 1MHz, a slew rate of 0.8V/ s, and a quiescent current of 75 A/amplifier at 5V. The GS6001 family is designed to provide optimal performance in low voltage and low noise systems. They provide rail-to-rail output swing into heavy loads. The input common mode voltage range includes ground, and the maximum input offset voltage is 3.5mV for GS6001 family. They are specified over the extended industrial temperature range (-40 to +125 ). The operating range is from 1.8V to 6V. The GS6001 single is available in Green SC70-5 and SOT23-5 packages. The GS6002 dual is available in Green SOP-8 and MSOP-8 packages. The GS6004 Quad is available in Green SOP-14 and TSSOP-14 packages. Applications ?ASIC Input or Output Amplifier ?Audio Output ?Sensor Interface ?Piezoelectric Transducer Amplifier ?Medical Communication ?Medical Instrumentation ?Smoke Detectors ?Portable Systems Pin Configuration Figure 1. Pin Assignment Diagram

串联稳压电路工作原理

知识原理要点 直流稳压电源原理框图如图4-1 所示。 四、实验原理 图为串联型直流稳压电源。它除了变压、整流、滤波外,稳压器部分一般有四个环节:调整环节、基准电压、比较放大器和取样电路。当电网电压或负载变动引起输出电压Vo变化时,取样电路将输出电压Vo的一部分馈送回比较放大器与基准电压进行比较,产生的误差电压经放大后去控制调整管的基极电流,自动地改变调整管的集一射极间电压,补偿Vo 的变化,从而维持输出电压基本不变。 当输入电压(VI)改变时,能自动调节(VCE)电压的大小,使输出电压(Vo)保持恒定。例如:VI↑→Vo↑→经取样和放大电路后→IB↓→VCE↑→Vo↓ VI是整流滤波后的电压,T为调整管,A为比较放大电路,VREF为基准电压,它由稳压管Dz与限流电阻R构成。R1与R2组成反馈网络,是用来反映输出电压变化的取样环节。

工作原理图及功能方框图 假设由于某种原因(如电网电压波动或者负载电阻变化等)使输出电压上升,取样电路将这一变化趋势送到比较放大管的基极,与发射极基准电压进行比较,并且将二者的差值进行放大,比较放大管的基电极电位(即调整管的基极电位)降低。由于调整管采用射极输出形式,所以输出电压必然降低,从而保证Uo基本稳定。 稳压电路由于直接用输出电压的微小变化量去控制调整管。其控制作用较小,所以,稳压效果不好。如果在电路中增加一级直流放大电路,把输出电压的微小变化加以放大,再去控制调整管,其稳压性能便可大大提高,这就是带放大环节的串联型稳压电路。 当输入电压Ui增大(或减小)时,串联型稳压电路的稳压原理可用电路来说明。图中可变电阻R与负载RL相串联。若RL不变。增大(或减小)R值使输入电压Ui变化全部降落在电阻R

LDO原理介绍

什么是LDO ? 什么是 LDO? LDO 是一种线性稳压器。线性稳压器使用在其线性区域内运行的晶体管或 FET ,从应用的输入电压中减去超额的电压,产生经过调节的输出电压。所谓压降电压,是指稳压器将输出电压维持在其额定值上下 100mV 之内所需的输入电压与输出电压差额的最小值。正输出电压的 LDO (低压降)稳压器通常使用功率晶体管(也称为传递设备)作为 PNP 。这种晶体管允许饱和,所以稳压器可以有一个非常低的压降电压,通常为 200mV 左右;与之相比,使用 NPN 复合电源晶体管的传统线性稳压器的压降为 2V 左右。负输出 LDO 使用 NPN 作为它的传递设备,其运行模式与正输出 LDO 的 PNP 设备类似。 摘要:本文论述了低压差线性稳压器(LDO)的基本原理和主要参数,并介绍LDO 的典型应用和国内发展概况。 引言 便携电子设备不管是由交流市电经过整流(或交流适配器)后供电,还是由蓄电池组供电,工作过程中,电源电压都将在很大范围内变化。比如单体锂离子电池充足电时的电压为4.2V ,放完电后的电压为2.3V ,变化范围很大。各种整流器的输出电压不仅受市电电压变化的影响,还受负载变化的影响。为了保证供电电压稳定不变,几乎所有的电子设备都采用稳压器供电。小型精密电子设备还要求电源非常干净(无纹波、无噪声),以免影响电子设备正常工作。为了满足精密电子设备的要求,应在电源的输入端加入线性稳压器,以保证电源电压恒定和实现有源噪声滤波[1]。 一.LDO 的基本原理 低压差线性稳压器(LDO)的基本电路如图1-1所示,该电路由串联调整管VT 、取样电阻R1和R2、比较放大器A 组成。 取样电压加在比较器A 的同相输入端, 与加在反相输入端的基准电压Uref 相 比较,两者的差值经放大器A 放大后, 控制串联调整管的压降,从而稳定输出 电压。当输出电压Uout 降低时,基准电 压与取样电压的差值增加,比较放大器 输出的驱动电流增加,串联调整管压降 减小,从而使输出电压升高。相反,若 输出电压Uout 超过所需要的设定值,比 较放大器输出的前驱动电流减小,从而 使输出电压降低。供电过程中,输出电 压校正连续进行,调整时间只受比较放大器和输出晶体管回路反应速度的限制。 应当说明,实际的线性稳压器还应当具有许多其它的功能,比如负载短路保护、过压关断、过热关断、反接保护等,而且串联调整管也可以采用MOSFET 。 二.低压差线性稳压器的主要参数 1.输出电压(Output Voltage) 图1-1 低压差线性稳压器基本电路

三端集成稳压器的工作原理

三端集成稳压器的工作原理

————————————————————————————————作者:————————————————————————————————日期:

三端集成稳压器的工作原理 现以具有正电压输出的78L××系列为例介绍它的工作原理。 电路如图1所示,三端式稳压器由启动电路、基准电压电路、取样比较放大电路、调整电路和保护电路等部分组成。下面对各部分电路作简单介绍。

(1)启动电路 在集成稳压器中,常常采用许多恒流源,当输入电压VI接通后,这些恒流源难以自行导通,以致输出电压较难建立。因此,必须用启动电路给恒流源的BJT T4、T5提供基极电流。启动电路由T1、T2、DZ1组成。当输入电压VI高于稳压管DZ1的稳定电压时,有电流通过T1、T2,使T3基极电位上升而导通,同时恒流源T4、T5也工作。T4的集电极电流通过DZ2以建立起正常工作电压,当DZ2达到和DZ1相等的稳压值,整个电路进入正常工作状态,电路启动完毕。与此同时,T2因发射结电压为零而截止,切断了启动电路与放大电路的联系,

从而保证T2左边出现的纹波与噪声不致影响基准电压源。 (2)基准电压电路 基准电压电路由T4、DZ2、T3、R1、R3及D1、D2组成,电路中的基准电压为 式中VZ2为DZ2的稳定电压,VBE为T3、D1、D2发射结(D1、D2为由发射结构成的二极管)的正向电压值。在电路设计和工艺上使具有正温度系数的R1、R2、DZ2与具有负温度系数的T3、D1、D2发射结互相补偿,可使基准电压VREF基本上不随温度变化。同时,对稳压管DZ2采用恒流源供电,从而保证基准电压不受输入电压波动的影响。 (3)取样比较放大电路和调整电路 这部分电路由T4~T11组成,其中T10、T11组成复合调整管;R12、R13组成取样电路;T7、T8和T6组成带恒流源的差分式放大电路;T4、T5组成的电流源作为它的有源负载。

聚洵低功耗运算放大器GS8591 8592 8594

GS8591/GS8592/GS8594放大器是单/双/四电源,微功耗,零漂移CMOS运算放大器,这些放大器提供4.5MHz的带宽,轨至轨输入和输出以及1.8V至5.5V的单电源供电。 GS859X使用斩波稳定技术来提供非常低的失调电压(最大值小于50μV),并且在整个温度范围内漂移接近零。每个放大器550μA的低静态电源电流和20pA的极低输入偏置电流使这些器件成为低失调,低功耗和高阻抗应用的理想选择。 GS859X提供了出色的CMRR,而没有与传统的互补输入级相关的分频器。这种设计在驱动模数转换器(ADC)方面具有卓越的性能,而不会降低差分线性度。 GS8591提供SOT23-5和SOP-8封装。 GS8592提供MSOP-8和SOP-8封装。GS8594 Quad具有绿色SOP-14和TSSOP-14封装。在所有电源电压下,-45oC 至+ 125oC的扩展温度范围提供了额外的设计灵活性。 特性: + 1.8V?+ 5.5V单电源供电?嵌入式RF抗EMI滤波器 ?轨到轨输入/输出?小型封装: ?增益带宽乘积:4.5MHz(典型@ 25°C)GS8591采用SOT23-5和SOP-8封装?低输入偏置电流:20pA(典型值@ 25°C)GS8592采用MSOP-8和SOP-8封装 ?低失调电压:30μV(最大@ 25°C)GS8594采用SOP-14和TSSOP-14封装?静态电流:每个放大器550μA(典型值) ?工作温度:-45°C?+ 125°C ?零漂移:0.03μV / oC(典型值)

Features ?Single-Supply Operation from +1.8V ~ +5.5V ?Embedded RF Anti-EMI Filter ?Rail-to-Rail Input / Output ?Small Package: ?Gain-Bandwidth Product: 4.5MHz (Typ. @25°C) GS8591 Available in SOT23-5 and SOP-8 Packages ?Low Input Bias Current: 20pA (Typ. @25°C) GS8592 Available in MSOP-8 and SOP-8 Packages ?Low Offset Voltage: 30μV (Max. @25°C) GS8594 Available in SOP-14 and TSSOP-14 Packages ?Quiescent Current: 550μA per Amplifier (Typ.) ?Operating Temperature: -45°C ~ +125°C ?Zero Drift: 0.03μV/o C (Typ.) General Description The GS859X amplifier is single/dual/quad supply, micro-power, zero-drift CMOS operational amplifiers, the amplifiers offer bandwidth of 4.5MHz, rail-to-rail inputs and outputs, and single-supply operation from 1.8V to 5.5V. GS859X uses chopper stabilized technique to provide very low offset voltage (less than 50μV maximum) and near zero drift over temperature. Low quiescent supply current of 550μA per amplifier and very low input bias current of 20pA make the devices an ideal choice for low offset, low power consumption and high impedance applications. The GS859X offers excellent CMRR without the crossover associated with traditional complementary input stages. This design results in superior performance for driving analog-to-digital converters (ADCs) without degradation of differential linearity. The GS8591 is available in SOT23-5 and SOP-8 packages. And the GS8592 is available in MSOP-8 and SOP-8 packages. The GS8594 Quad is available in Green SOP-14 and TSSOP-14 packages. The extended temperature range of -45o C to +125o C over all supply voltages offers additional design flexibility. Applications ?Transducer Application ?Handheld Test Equipment ?Temperature Measurements ?Battery-Powered Instrumentation ?Electronics Scales Pin Configuration Figure 1. Pin Assignment Diagram

交流净化稳压电源电路

交流净化稳压电源原理及维修技术 1.概述 目前我国的供电电压仍然存在较大的波动。在用电高峰期电压不足180V,负荷最小时电压高达240V以上,波动范围一般在-20%~+10%之间,而一些城镇农村的小电网电压波动范围更大,为140~250V(-40%~+15%)。对于拥有大批进口、精密贵重仪器设备的单位来说,电压波动将造成很大的危害。某校实验室在一次实验中,电压突然异常升高,几乎所有开启的设备包括一台美国进口的液相色谱仪,都受到不同程度的损坏。仅色谱仪的维修就花费3600美元(合人民币3万余元),而且实验教学、科研项目研究长时间中断,后果极为严重。配有交流稳压电源的另一实验室当电压异常时,除交流稳压电源报警外,无任何设备损坏。可见,交流稳压电源除稳压外,对负载也起了一定的保护作用。因此,交流稳压电源越来越受到人们的重视,并成为各单位的必配设备。 交流稳压电源有多种,但有的因性能指标等各方面原因已基本淘汰。取而代之的是近几年发展迅速的交流净化稳压电源,该电源的基本原理与可控硅移相调压式比较相似。下面以江苏淮阴仪器仪表厂生产的亚光牌JJW2系列交流净化稳压电源为例介绍,该电源采用先进的正弦能量分配技术、功率滤波器技术综合设计,集稳压与抗干扰功能为一体。具有可靠性、精度、效率高,稳压范围宽、抗干扰能力强等优点。曾多次获奖,市场份额较大,具有一定的代表性。 2.工作原理 交流净化稳压电源由调整电路、零脉冲产生电路、同步锯齿波发生电路、脉宽调制驱动放大电路、误差取样放大电路、直流稳压电源、过压保护电路等部分组成,见图1。

图1 交流净化稳压电源工作框图 交流净化稳压电源原理图如图2。自耦变压器T1、双向可控硅SCR、电感L1、三次谐波和五次谐波滤波器等构成调整电路。L1与SCR相串联组成一个随SCR导通角(0°~180°)改变的可变电感,且与L3、C1的串联电路并联构成一个可变电抗器。自耦变压器T1的初级与可变电抗器串联接入市电,输出交流电压为市电电压与T1次级电压的矢量和。R1、R2、D1~4、光电耦合器IC1(4N25)构成零脉冲发生电路。D1~4是一个桥式整流电路,它将L1与SCR串联电路两端的50Hz交流电压整流成100Hz的单向脉动电压,输入IC1的1、2脚,于是在IC1的5脚输出正向零脉冲电压到IC2的2、6脚。IC2(NE555)、R3~4、Q1、D5、D6、C10构成锯齿波发生电路。当IC2的2、6脚输入过零脉冲前,IC2-7脚呈高阻态,C10由Q1、D5、D6、R3、R4构成的恒流源电路充电,C10上的电压线性上升;当IC2的2、6脚输入过零脉冲时IC2-7脚呈低阻态,C10放电,零脉冲过后IC2-7脚又呈高阻态,C10充电。这样,IC2-7脚输出与零脉冲同步的锯齿波至IC3(LM324)-10脚,变压器B2、桥式整流D13~16、W2、R13~14、C7~8构成取样电路。它输出一个与交流输出电压成正比的误差信号电压至运算放大器IC3-12脚同相端进行放大。脉宽调制驱动放大电路由运算放大器IC3的8、9、10脚,Q3等组成;同样端10脚输入来自IC2-7脚的同步锯齿波电压;反相端9脚输入误差取样放大的直流信号;IC3-8脚输出宽度受控的脉冲电压经Q3放大后触发双向可控硅。变压器B2,桥式整流D9~12,滤波电容C5~6,三端稳压IC4(7812)构成直流稳压电源,给有关电路提供12V电源。 图2 JJW系列精密交流净化稳压电源原理图 交流净化电源的稳压过程:当输出电压升高时,桥式整流D13~16输出的误差取样电压升高,运算放大器IC3同相端12脚电压升高,IC3-14脚输出到脉宽调制器IC3的反相端9脚的电压升高,IC3同相端10脚输入的同步锯齿波电压幅度不变,

相关主题
文本预览
相关文档 最新文档