当前位置:文档之家› 电压调节器工作电路工作原理

电压调节器工作电路工作原理

电压调节器工作电路工作原理
电压调节器工作电路工作原理

一.发电机的功用

汽车使用的电源有蓄电池和发电机两种。采用交流发电机作为主要电源,蓄电池作为辅助电源。在汽车行驶过程中,由发电机向用电设备提供电源,并向蓄电池充电。蓄电池在汽车启动时提供启动电流,当大电机发出电量不足时,可以协同发电机供电。

二.发电机的分类

1.按磁场绕组搭铁形式分两类

a.外搭铁型(A线路)

磁场绕组的一端(负极)接入调节器,通过调节器后再搭铁。

b.内搭铁型(B线路)

磁场绕组的一段(负极)直接搭铁(和壳体相连)。如下图2-13所示:

2.按整流器结构分四类

a.六管交流发电机(例丰田系列)

b.八管交流发电机(例天津夏利轿车所用)

c.九管交流发电机(例三菱系列)

d.十一管交流发电机(例奥迪、大众汽车用)

三.交流发电机结构

交流发电机一般由转子、定子、整流器、调节器、端盖组成,JF132型交流发电机组件图见图

1.转子

转子的功用是产生旋转的磁场。它由爪极、磁轭、磁场绕组、集电环、转子轴组成,结构图见图

转子轴上压装着两块爪极,两块爪极各有六个鸟嘴形磁极,爪极空腔内装有磁场绕组(转子线圈)和磁轭。

集电环由两个彼此绝缘的铜环组成,集电环压装在转子轴上并与轴绝缘,两个集电环分别与磁场绕组的两端相连。2.定子

定子的功用是产生交流电。它由定子铁心和定子绕组组成。见图

定子铁心由内圈带槽的硅钢片叠成,定子绕组的导线就嵌放在铁心的槽中。定子绕组由三相,三相绕组采用星型接法或三角形(大功率)接法。三相绕组必须按一定要求绕制,才能使之获得频率相同、幅值相等、相位互差120°的三相电动势。

3.整流器、端盖

整流器的作用是将定子绕组的三相交流电变为直流电。

端盖一般用铝合金铸造,一是可有效的防止漏磁,二是铝合金散热性能好。

四.交流发电机的电压调节器

交流发电机的转子由发动机通过皮带驱动旋转的,且发动机和交流发电机的速比为~3左右,因此交流发电机转子的转速变化范围非常大,这样将引起发电机的输出电压发生较大变化,无法满足汽车用电设备的工作要求。

为了满足用电设备恒定电压的要求,交流发电机必须配用电压调节器,使其输出电压在发动机所有工况下几本保持恒定。

1.交流发电机电压调节器按工作原理可分为:

a.触点式电压调节器

b.晶体管调节器

c.集成电路调节器

d.电脑控制调节器

2.电压调节器按所匹配的交流发电机搭铁形式可分为:

a.内搭铁型调节器

b.外搭铁型调节器

五.电压调节器基本电路

电子电压调节器分为普通三端(9管、11管)的和多功能的(6管、8管)。

11管交流发电机就是具有十一个硅二极管的发电机,其中由八只硅二极管组成整流器,利用二极管的单向导电性将交流发电机产生的交流电压转变成直流电压;另外三个二极管提供通过发电机中的励磁绕阻的电流,称为励磁二极管。十一管交流发电机可以控制充电指示灯指示蓄电池的充电情况,指示充电系统是否发生故障。

其中11管的外搭铁型交流发电机最为典型,其基本电路如下图。

三端调节器,其脚位分别为D+、F、E。由信号监测电路、信号放大与控制电路、功率放大电路和保护电路四部分组成。

1.信号监测电路

信号监测电路由电阻R1、R2和稳压管VS构成。电阻R1、R2串联在交流发电机输出端子“B”和搭铁端子“E”之间,构成分压电路,直接监测发电机输出电压U的变化。当发电机电压U升高时,分压电阻R1上的分压值UR1升高,反之,当发电机电压U下降时,分压值UR1下降。

稳压管VS正极连接三极管VT1的基极,负极接在分压电阻R1、R2之间,稳压管VS与三极管VT1的发射极串联后再与分压电阻R1并联,从而监测发电机电压的变化,并控制三极管VT1的导通与截止。

2.信号放大与控制电路

由三极管VT1和电阻R3构成,其作用是将电压监测电路输入的信号进行放大处理后,控制功率三极管VT2导通与截止。电阻R3既是三极管VT1的负载电阻,又是功率三极管VT2的偏流电阻。三极管VT1为小功率三极管,接在大功率三极管VT2的前一级,也称为前级放大电路。

3.功率放大电路

由功率三极管VT2构成。VT2通常采用达林顿管,串联在励磁绕组与搭铁端之间,这是外搭铁型调节器的显著特点。励磁绕组的电阻是VT2的负载电阻。VT2导通时,励磁电路接通,有励磁电流;VT2截止时,励磁电流被切断。因此,通过控制三极管VT2的导通与截止,就可以改变励磁电流使发电机输出电压稳定。

4.保护电路

由续流二极管VD构成。当由功率管VT2导通转为截止的瞬间,励磁绕组产生的自感电动势经二极管VD构成放电回路,防止调节器因三极管VT2击穿而损坏。由于放电电流流经二极管VD, 所以VD称为续流二极管。

六.11管交流发电机工作原理

1.当开关SW闭合后,首先由蓄电池提供电流。电路为:

蓄电池正极→充电指示灯→L(D+)端→励磁绕阻→F端→功率管VT2→搭铁(E端)→蓄电池负极。

此时,充电指示灯由于有电流通过,所以L灯会点亮。

2.发动机起动后,发电机的D+端电压也不断升高。当发电机的输出电压(D+端)与蓄电池电压(B端)相等时,充电指示灯由于两端电位差为零而熄灭。指示发电机已经正常工作,励磁电流由发电机自己供给。发电机中三相绕阻所产生的三相交流电动势经八只二极管整流后,输出

直流电,向负载供电,并向蓄电池充电。

3.当发电机高速运转、充电系统发生故障而导致发电机不发电时,D+端无电压输出,所以充电指示灯由于两端电位差增大而发亮,警告驾驶员及时排除故障。

七.电压调节器工作原理

电压调节器利用三极管的开关特性,将大功率三极管VT2作为一只开关串联在发电机的励磁电路中,根据发电机输出电压的高低,控制VT2导通与截止来调节发电机的励磁电流,使发电机输出电压稳定在一定范围内。

发电机电子电压调节器工作过程如下:

1.接通点火开关SW ,发电机电压U低于蓄电池电压时,蓄电池电压经过点火开关SW加在分压电阻R1、R2两端。由于发电机电压低于调节电压上限值,稳压管VS处于截止状态,VT1基极无电流流过,也处于截止状态。此时,蓄电池经点火开关、电阻R3向三极管VT2提供基极电流,VT2导通并接通励磁电流。此过程由蓄电池供给电流,称为他励。其电路为:

蓄电池正极→点火开关SW→充电指示灯→L(D+)端→励磁绕阻→F端→功率管VT2→搭铁(E端)→蓄电池负极。

2.当发电机电压上升到高于蓄电池电压但还低于调节电压上限U2时,稳压管VS与三极管VT1仍截止,功率管VT2保持导通。此时励磁电流由发电机自己提供,发电机处于自励状态。其电路为:

定子绕组→正极管→B端→点火开关SW →充电指示灯→ L(D+)端→励磁绕阻→F端→功率管VT2→搭铁(E端)→负极管→定子绕组。

3.当发电机电压随转速升高到调节电压上限时U2,稳压管VS反向击穿,三极管VT1导通,它的发射极几乎被短路,流过电阻R3的电流经三极管VT1集电极和发射极构成回路,功率管VT2因无基极电流而截止,励磁电流切断,磁通迅速减小,发电机电压迅速下降。

4.当发电机电压降低到调节电压下限U1时,稳压管VS截止,三极管VT1因无基极电流而截止,然后VT1集电极电位升高,发电机又经电阻R3向功率管VT2提供基极电流,使VT2导通,励磁电流接通,发电机电压又重新升高。

5.当发电机电压再次升高到调节电压上限U2时,调节器重复(3),(4)工作过程,将发电机电压控制在某一平均值不变。

射频电路的设计原理及应用

射频电路的设计原理及应用 普通手机射频电路由接收通路、发射通路、本振电路三大电路组成。其主要负责接收信号解调;发射信息调制。早期手机通过超外差变频(手机有一级、二级混频和一 本、二本振电路),后才解调出接收基带信息;新型手机则直接解调出接收基带信息(零中频)。更有些手机则把频合、接收压控振荡器(RX—VCO)也都集成 在中频内部。 射频电路方框图 一、接收电路的结构和工作原理 接收时,天线把基站发送来电磁波转为微弱交流电流信号经滤波,高频放大后,送入中频内进行解调,得到接收基带信息(RXI-P、RXI-N、RXQ-P、RXQ-N);送到逻辑音频电路进一步处理。 1、该电路掌握重点 (1)、接收电路结构。 (2)、各元件的功能与作用。 (3)、接收信号流程。 2、电路分析 (1)、电路结构。 接收电路由天线、天线开关、滤波器、高放管(低噪声放大器)、中频集成块(接收解调器)等电路组成。早期手机有一级、二级混频电路,其目的把接收频率降低后再解调(如下图)。 接收电路方框图

(2)、各元件的功能与作用。 1)、手机天线: 结构:(如下图)由手机天线分外置和内置天线两种;由天线座、螺线管、塑料封套组成。 作用: a)、接收时把基站发送来电磁波转为微弱交流电流信号。 b)、发射时把功放放大后的交流电流转化为电磁波信号。 2)、天线开关: 结构:(如下图)手机天线开关(合路器、双工滤波器)由四个电子开关构成。 图一、图二 作用:其主要作用有两个: a)、完成接收和发射切换; b)、 完成900M/1800M信号接收切换。 逻辑电路根据手机工作状态分别送出控制信号(GSM-RX-EN;DCS- RX-EN;GSM-TX-EN;DCS- TX-EN),令各自通路导通,使接收和发射信号各走其道,互不干扰。 由于手机工作时接收和发射不能同时在一个时隙工作(即接收时不发射,发射时不接收)。因此后期新型手机把接收通路的两开关去掉,只留两个发射转换开关;接收切换任务交由高放管完成。 3)、滤波器: 结构:手机中有高频滤波器、中频滤波器。 作用:其主要作用:滤除其他无用信号,得到纯正接收信号。后期新型手机都为零中频手机;因此,手机中再没有中频滤波器。 4)、高放管(高频放大管、低噪声放大器): 结构:手机中高放管有两个:900M高放管、1800M高放管。都是三极管共发射极放大电路;后期新型手机把高放管集成在中频内部。

燃油泵以及压力调节器的原理

燃油压力调节器 喷油器的喷油量取决于喷孔截面,喷油时间和喷油压差。ECU通过控制喷油嘴开启时间来控制喷油量,因此,在喷孔面积一定时还要保持一定的压差。 喷油压差是指输油管内燃油压力和进气歧管内气体压力的差值,而进气歧管内气压随转速和负荷(节气门开度)变化,要保持恒定的喷油压力必须根据进气管压力变化来调节燃油压力。不知道你有没有这个东西的图,我这里上不了图,就大概的讲一下:压力调节器的上方一般会有个开口用橡胶软管跟进气管连接,在内部这个开口的下方是个弹簧,弹簧下面是个膜片,膜片下面是个柱塞状的东西,堵住一个孔,这个孔就是连接回油软管的,工作时,膜片上方的压力为弹簧压力和进气压力之和,膜片下方为燃油压力,膜片上下压力相等时就会处在平衡位置,当进气管压力下降时,膜片上移回油阀开度上升,会油量上升,这样油轨中的油压就下降到原来水平。反之,气压上升时,膜片下移,回油阀开度变小,回油量变小油压就会上升到原来水平,这样油压就会控制到制造时要求的大小,也就是膜片位于平衡位置的弹力 燃油压力调节器的功用是调节至喷油器的燃油压力,使油路中的燃油压力与进气管压力之差保持常数,这样从喷油器喷出的燃油量便唯一地取决于喷油器的开启时间,使电控单元能够通过控制电脉冲宽度来精确控制喷油量。 油压调节器的构造如图5.19 所示。膜片4 将油压调节器分隔成上下两个腔。上腔有进油口1 连接燃油分配管,回油口2 与汽油箱连通。下腔通过真空接管6 与节气门后的进气管相连。当燃油压力与进气管压力之差超过预调的压力值时,膜片上方的燃油就推动膜片向下压缩弹簧,打开回油阀,超压的燃油流回燃油箱,以保持一定的燃油压力。燃油供给系统的压力与进气管压力之差由油压调节器中的弹簧5 的弹力限定,调节弹簧预紧力即可改变两者的压力差,也就是改变喷油压力。燃油压力调节器装在燃油分配管的一端,可使燃油压力调节在正常范围内(图5.20)。

压力传感器的安装方法及使用要求

●检查安装孔的尺寸 如果安装孔的尺寸不合适,传感器在安装过程中,其螺纹部分就很容易受到磨损。这不仅会影响设备的密封性能,而且使压力传感器不能充分发挥作用,甚至还可能产生安全隐患。只有合适的安装孔才能够避免螺纹的磨损(螺纹工业标准1/2-20 UNF 2B),通常可以采用安装孔测量仪对安装孔进行检测,以做出适当的调整。 ●保持安装孔的清洁 保持安装孔的清洁并防止熔料堵塞对保证设备的正常运行来说十分重要。在挤出机被清洁之前,所有的压力传感器都应该从机筒上拆除以避免损坏。在拆除传感器时,熔料有可能流入到安装孔中并硬化,如果这些残余的熔料没有被去除,当再次安装传感器时就可能造成其顶部受损。清洁工具包能够将这些熔料残余物去除。然而,重复的清洁过程有可能加深安装孔对传感器造成的损坏。如果这种情况发生,就应当采取措施来升高传感器在安装孔中的位置。 ●选择恰当的位置 当压力传感器的安装位置太靠近生产线的上游时,未熔融的物料可能会磨损传感器的顶部;如果传感器被安装在太靠后的位置,在传感器和螺杆行程之间可能会产生熔融物料的停滞区,熔料在那里有可能产生降解,压力信号也可能传递失真;如果传感器过于深入机筒,螺杆有可能在旋转过程中触碰到传感器的顶部而造成其损坏。一般来说,传感器可以位于滤网前面的机筒上、熔体泵的前后或者模具中。 ●仔细清洁 在使用钢丝刷或者特殊化合物对挤出机机筒进行清洁前,应该将所有的传感器都拆卸下来。因为这两种清洁方式都可能会造成传感器的震动膜受损。当机筒被加热时,也应该将传感器拆卸下来并使用不会产生磨损的软布来擦拭其顶部,同时传感器的孔洞也需要用清洁的钻孔机和导套清理干净。 ●保持干燥 尽管传感器的电路设计能够经受苛刻的挤出加工环境,但是多数传感器也不能绝对防水,在潮湿的环境下也不利于正常运行。因此,需要保证挤出机机筒的水冷装置中的水不会渗漏,否则会对传感器造成不利影响。如果传感器不得不暴露在水中或潮湿的环境下,就要选择具有极强防水性的特殊传感器。

常用压力传感器原理分析

常用压力传感器原理分析 振膜式谐振压力传感器 振膜式压力传感器结构如图(a)所示。振膜为一个平膜片,且与环形壳体做成整体结构,它和基座构成密封的压力测量室,被测压力 p经过导压管进入压力测量室内。参考压力室可以通大气用于测量表压,也可以抽成真空测量绝压。装于基座顶部的电磁线圈作为激振源给膜片提供激振力,当激振 频率与膜片固有频率一致时,膜片产生谐振。没有压力时,膜片是平的,其谐振频率为 f0;当有压力作用时,膜片受力变形,其张紧力增加,则相应的谐振频率也随之增加,频率随压力变化且为单值函数关系。 在膜片上粘贴有应变片,它可以输出一个与谐振频率相同的信号。此信号经放大器放大后,再反馈给激振线圈以维持膜片的连续振动,构成一个闭环正反馈自激振荡系统。如图(b)所示 压电式压力传感器 某些电介质沿着某一个方向受力而发生机械变形(压缩或伸长)时,其内部将发生极化现象,而在其某些表面上会产生电荷。当外力去掉后,它又会重新回到不带电 的状态,此现象称为“压电效应”。常用的压电材料有天然的压电晶体(如石英晶体)和压电陶瓷(如钛酸钡)两大类,它们的压电机理并不相同,压电陶瓷是人造 多晶体,压电常数比石英晶体高,但机械性能和稳定性不如石英晶体好。它们都具有较好特性,均是较理想的压电材料。 压电式压力传感器是利用压电材料的压电效应将被测压力转换为电信号的。由压电材料制成的压电元件受到压力作用时产生的电荷量与作用力之间呈线性关系: Q=kSp 式中 Q为电荷量;k为压电常数;S为作用面积;p为压力。通过测量电荷量可知被测压力大小。 图1为一种压电式压力传感器的结构示意图。压电元件夹于两个弹性膜片之间,压电元件的一个侧面与膜片接触并接地,另一侧面通过引线将电荷量引出。被测压力 均匀作用在膜片上,使压电元件受力而产生电荷。电荷量一般用电荷放大器或电压放大器放大,转换为电压或电流输出,输出信号与被测压力值相对应。 除在校准用的标准压力传感器或高精度压力传感器中采用石英晶体做压电元件外,一般压电式压力传感器的压电元件材料多为压电陶瓷,也有用高分子材料(如聚偏二氟乙稀)或复合材料的合成膜的。

(完整版)四种压力传感器的基本工作原理及特点

(1) 1 dR d R dA A 四种压力传感器的基本工作原理及特点 一:电阻应变式传感器 1 1电阻应变式传感器定义 被测的动态压力作用在弹性敏感元件上, 使它产生变形,在其变形的部位粘 贴有电阻应变片,电阻应变片感受动态压力的变化,按这种原理设计的传感器称 为电阻应变式压力传感器。 1.2电阻应变式传感器的工作原理 电阻应变式传感器所粘贴的金属电阻应变片主要有丝式应变片与箔式应变片 箔式应变片是以厚度为0.002―― 0.008mm 的金属箔片作为敏感栅材料,,箔 栅宽度为0.003――0.008mm 。丝式应变片是由一根具有高电阻系数的电阻丝 (直 径0. 015--0. 05mm ),平行地排成栅形(一般2――40条),电阻值60――200 ?, 通常为 120 ?,牢贴在薄纸片上,电阻纸两端焊有引出线,表面覆一层薄纸,即 制成了纸基的电阻丝式应变片。测量时,用特制的胶水将金属电阻应变片粘贴于 待测的弹性敏感元件表面上,弹性敏感元件随着动态压力而产生变形时, 电阻片 也跟随变形。如下图所示。B 为栅宽,L 为基长。 I 绘式应吏片 b )笹式应变片 材料的电阻变化率由下式决定:

式中; R—材料电阻2

3 —材料电阻率 由材料力学知识得; K —金属电阻应变片的敏感度系数 式中K 对于确定购金属材料在一定的范围内为一常数,将微分 dR 、dL 改写成增 量出、/L,可得 由式(2)可知,当弹性敏感元件受到动态压力作用后随之产生相应的变形 而形应变值可由丝式应变片或箔式应变片测出,从而得到了 ZR 的变化,也就得 到了动态压力的变化,基于这种应变效应的原理实现了动态压力的测量。 1.3电阻应变式传感器的分类及特点 「测低压用的膜片式压力传感器 常用的电阻应变式压力传感器包括彳测中压用的膜片一一应变筒式压力传感器 -测高压用 的应变筒式压力传感器 1.3.1膜片一一应变筒式压力传感器的特点 该传感器的特点是具有 较高的强度和抗冲击稳定性,具有优良的静态特性、 动态特性和较高的自震频率,可达30khz 以上,测量的上限压力可达到9.6mp a 。 适于测量高频脉动压力,又加上强制水冷却。也适于高温下的动态压力测量,如 火箭发动机的压力测量,内燃机、压气机等的压力测量。 1.3.2膜片式应变压力传咸器的特点 A 这种膜片式应变压力传感器不宜测量较大的压力,当变形大时,非线性 较大。但小压力测量中由于变形很小,非线性误差可小于 0.5%,同时又有较高 的灵敏度,因此在冲击波的测量中,国内外都用过这种膜片式压力传感器。 B 这种传感器与膜片一应变筒式压力传感器相比, 自振频率较低,因此在低dR "R [(1 2 ) C(1 2 )]

减压阀的工作原理

减压阀是气动调节阀的一个必备配件,主要作用是将气源的压力减压并稳定到一个定值,以便于调节阀能够获得稳定的气源动力用于调节控制。 1.调节手柄; 2.调压弹簧; 3.溢流阀; 4.膜片; 5.阀杆; 6.反馈导管; 7.进气阀门; 8.复位弹簧 上图所示为一种常用的直动式减压阀结构。 压力为P1的压缩空气,由左端输入经进气阀门节流后,压力降为P2输出。P2的大小可由调压弹簧2进行调节。若顺时针旋转调节手柄,调压弹簧被压缩,推动膜片和阀杆下移,进气阀门打开,在输出口有气压输出。同时,输出气压经反馈导管作用在膜片上产生向上的推力。该推力与调压弹簧作用力相平衡时,阀便有稳定的压力输出。 若输出压力超过调定值,则膜片离开平衡位置而向上变形,使得溢流阀打开,多余的空气经溢流口排入大气。当输出压力降至调定值时,溢流阀关闭,膜片上的受力保持平衡状态。若逆时针放置手柄,调压弹簧放松,作用在膜片上的气压力大于弹簧力,溢流阀打开,输出压力降低直到为零。台湾DPC气动提醒您,反馈导管的作用是提高减压阀的稳压精度。另外,能改善减压阀的动

态性能,当负载突然改变或变化不定时,反馈导管起着阻尼作用,避免振荡现象发生。 若输入压力瞬时升高,输出将随之升高,使膜片气室内压力升高,在膜片上产生的推力相应增大,此推力破坏了原来力的平衡,使膜片向上移动,有少部分气流经溢流孔、排气孔排出。在膜片上移的同时,因复位弹簧的作用,使阀芯也向上移动,关小进气阀口,节流作用加大,使输出压力下降,直至达到新的平衡为止,输出压力基本又回到原来值。 若输入压力瞬时下降,输出压力也下降、膜片下移,阀芯随之下移,进气阀口开大,节流作用减小,使输出压力也基本回到原来值。逆时针旋转旋钮。使调节弹簧放松,气体作用在膜片上的推力大于调压弹簧的作用力,膜片向上曲,靠复位弹簧的作用关闭进气阀口。再旋转旋钮,进气阀芯的顶端与溢流阀座将脱开,膜片气室中的压缩空气便经溢流孔、排气孔排出,使阀处于无输出状态。 二、减压阀的基本性能 (1)?调压范围:它是指减压阀输出压力P2的可调范围,在此范围内要求达到规定的精度。调压范围主要与调压弹簧的刚度有关。 (2)?压力特性:它是指流量g为定值时,因输入压力波动而引起输出压力波动的特性。输出压力波动越小,减压阀的特性越好。

手机供电电路与工作原理

手机供电电路结构和工作原理 一、电池脚的结构和功能。 目前手机电池脚有四脚和三脚两种:(如下图) 正温类负正温负 极度型极极度极 脚脚脚 (图一)(图二) 1、电池正极(VBATT)负责供电。 2、TEMP:电池温度检测该脚检测电池温度;有些机还参与开机,当用电池能开机,夹正负极不能开机时,应把该脚与负极相接。 3、电池类型检测脚(BSI)该脚检测电池是氢电或锂电,有些手机只 认一种电池就是因为该电路,但目前手机电池多为锂电,因此,该脚省去便为三脚。 4、电池负极(GND)即手机公共地。 二、开关机键: 开机触发电压约为2.8-3V(如下图)。 内圆接电池正极外圆接地;电压为0V。 电压为2.8-3V。 触发方式 ①高电平触发:开机键一端接VBAT,另一端接电源触发 脚。 (常用于:展讯、英飞凌、科胜讯芯片平台) ①低电平触发:开机键一端接地,另一端接电源触发脚。 (除以上三种芯片平台以外,基本上都采用低电平触发。如:MTK、AD、TI、飞利浦、杰尔等。) 三星、诺基亚、moto、索爱等都采用低电平触发。

三、手机由电池直接供电的电路。 电池电压一般直接供到电源集成块、充电集成块、功放、背光灯、振铃、振动等电路。在电池线上会并接有滤波电容、电感等元件。该电路常引起发射关机和漏电故障。 四、手机电源供电结构和工作原理。 目前市场上手机电源供电电路结构模式有三种; 1、 使用电源集成块(电源管理器)供电;(目前大部分手机都使用该电路供电) 2、 使用电源集成块(电源管理器)供电电路结构和工作原理:(如下图) 电池电压 逻辑电压(VDD) 复位信号(RST) 射频电压(VREF) VTCXO 26M 13M ON/OFF AFC 开机维持 关机检测 (电源管理器供电开机方框图) 1)该电路特点: 低电平触发电源集成块工作; 把若干个稳压器集为一个整体,使电路更加简单; 把音频集成块和电源集成块为一体。 2)该电路掌握重点: 电 源 管 理 器 CPU 26M 中频 分频 字库 暂存

压力传感器原理及应用-称重技术

压力传感器是压力检测系统中的重要组成部分,由各种压力敏感元件将被测压力信号转换成容易测量的电 信号作输出,给显示仪表显示压力值,或供控制和报警使用。 压力传感器的种类繁多,如压阻式压力传感器、应变式压力传感器、压电式压力传感器、电容式压力传感 器、压磁式压力传感器、谐振式压力传感器及差动变压器式压力传感器,光纤压力传感器等。 一、压阻式压力传感器 固体受力后电阻率发生变化的现象称为压阻效应。压阻式压力传感器是基于半导体材料(单晶硅)的压阻效应原理制成的传感器,就是利用集成电路工艺直接在硅平膜片上按一定晶向制成扩散压敏电阻,当硅膜片 受压时,膜片的变形将使扩散电阻的阻值发生变化。 压阻式具有极低的价格和较高的精度以及较好的线性特性。 1、压阻式压力传感器基本介绍 压阻式传感器有两种类型:一种是利用半导体材料的体电阻做成粘贴式应变片,称为半导体应变片,因此 应变片制成的传感器称为半导体应变式传感器,另一种是在半导体材料的基片上用集成电路工艺制成的扩 散电阻,以此扩散电阻的传感器称为扩散型压阻传感器。 半导体应变式传感器半导体应变式传感器的结构形式基本上与电阻应变片传感器相同,也是由弹性敏感元件等三部分组成,所不同的是应变片的敏感栅是用半导体材料制成。半导体应变片与金属应变片相比,最 突出的优点是它的体积小而灵敏高。它的灵敏系数比后者要大几十倍甚至上百倍,输出信号有时不必放大 即可直接进行测量记录。此外,半导体应变片横向效应非常小,蠕变和滞后也小,频率响应范围亦很宽, 从静态应变至高频动态应变都能测量。由于半导体集成化制造工艺的发展,用此技术与半导体应变片相结 合,可以直接制成各种小型和超小型半导体应变式传感器,使测量系统大为简化。但是半导体应变片也存 在着很大的缺点,它的电阻温度系统要比金属电阻变化大一个数量级,灵敏系数随温度变化较大它的应变 —电阻特性曲线性较大,它的电阻值和灵敏系数分散性较大,不利于选配组合电桥等等。 扩散型压阻式传感器扩散型压阻传感器的基片是半导体单晶硅。单晶硅是各向异性材料,取向不同时特性不一样。因此必须根据传感器受力变形情况来加工制作扩散硅敏感电阻膜片。 利用半导体压阻效应,可设计成多种类型传感器,其中压力传感器和加速度传感器为压阻式传感器的基本 型式。 硅压阻式压力传感器由外壳、硅膜片(硅杯)和引线等组成。硅膜片是核心部分,其外形状象杯故名硅杯,在硅膜上,用半导体工艺中的扩散掺杂法做成四个相等的电阻,经蒸镀金属电极及连线,接成惠斯登电桥 再用压焊法与外引线相连。膜片的一侧是和被测系数相连接的高压腔,另一侧是低压腔,通常和大气相连,也有做成真空的。当膜片两边存在压力差时,膜片发生变形,产生应力应变,从而使扩散电阻的电阻值发 生变化,电桥失去平衡,输出相对应的电压,其大小就反映了膜片所受压力差值。

基带电路原理图

FLASH电路 FLASH信号作用描述 数据总线:ED0-ED15,共16根数据线,用于传输数据。 地址总线:EA00-EA23,共24根地址线,用于存储单元寻址。控制总线: ERD:写控制信号; EWR:读控制信号; /WATCHODG:复位信号,用于FLASH的软件复位; /CE_F1、/CE_F2:FLASH存储区域选择信号; /ECS1_PSRAM:PSRAM片选信号; /ELB、/EUB:PSRAM存取区域选择信号; 电源供电信号:VMEM。

照相电路

主屏LCD显示电路 SIM卡电路

马达电路 PWM2_VIB_EN经过PMIC转换后变成马达的驱动信号VIB_DRV,R409为限流电阻,马达可以和键盘灯通过调整限流电阻R或者调整

占空比调整背光亮度一样调整马达的震感。马达电路上的二极管 D403是由于马达为线圈,运作时会产生反向电动势,若无二极管反 向电动势无法消耗,会影响马达的寿命,二极管可以在马达停震后 把反向电动势消耗掉而保护线圈。 MIC电路 MICBIASP和MICBIASN为MIC电路的正负两路偏置电压,一般为2.4V-2.7V左右的电压。C204,C205主要为滤除射 频信号的干扰。如果有GSM900MHZ的干扰则使用33PF的 电容,如果有DCS1800MHZ的干扰可以使用12PF的电容,如果有WIFI 2.4GHZ的干扰则使用8.2PF的电容。C206主 要是抑制共模信号。C201,C202为100NF电容,主要作用 为隔直通交,防止直流电使PA饱和,产生信号偏移,主要 滤除100HZ一下的电流。B201,B202为磁珠,主要滤除 高频部分的干扰。MIC偏置电流流向为从MICBIASP----

手机电路原理,通俗易懂

第二部分原理篇 第一章手机的功能电路 ETACS、GSM蜂窝手机是一个工作在双工状态下的收发信机。一部移动电话包括无线接收机(Receiver)、发射机(Transmitter)、控制模块(Controller)及人机界面部分(Interface)和电源(Power Supply)。 数字手机从电路可分为,射频与逻辑音频电路两大部分。其中射频电路包含从天线到接收机的解调输出,与发射的I/Q调制到功率放大器输出的电路;逻辑音频包含从接收解调到,接收音频输出、发射话音拾取(送话器电路)到发射I/Q调制器及逻辑电路部分的中央处理单元、数字语音处理及各种存储器电路等。见图1-1所示 从印刷电路板的结构一般分为:逻辑系统、射频系统、电源系统,3个部分。在手机中,这3个部分相互配合,在逻辑控制系统统一指挥下,完成手机的各项功能。 图1-1手机的结构框图 注:双频手机的电路通常是增加一些DCS1800的电路,但其中相当一部分电路是DCS 与GSM通道公用的。 第二章射频系统 射频系统由射频接收和射频发射两部分组成。射频接收电路完成接收信号的滤波、信号放大、解调等功能;射频发射电路主要完成语音基带信号的调制、变频、功率放大等功能。手机要得到GSM系统的服务,首先必须有信号强度指示,能够进入GSM网络。手机电路中不管是射频接收系统还是射频发射系统出现故障,都能导致手机不能进入GSM网络。 对于目前市场上爱立信、三星系列的手机,当射频接收系统没有故障但射频发射系统有故障时,手机有信号强度值指示但不能入网;对于摩托罗拉、诺基亚等其他系列的手机,不管哪一部分有故障均不能入网,也没有信号强度值指示。当用手动搜索网络的方式搜索网络时,如能搜索到网络,说明射频接收部分是正常的;如果不能搜索到网络,首先可以确定射频接收部分有故障。 而射频电路则包含接收机射频处理、发射机射频处理和频率合成单元。 第一节接收机的电路结构 移动通信设备常采用超外差变频接收机,这是因为天线感应接收到的信号十分微弱,而鉴频器要求的输人信号电平较高,且需稳定。放大器的总增益一般需在120dB以上,这么大的放大量,要用多级调谐放大器且要稳定,实际上是很难办得到的,另外高频选频放大器的通带宽度太宽,当频率改变时,多级放大器的所有调谐回路必须跟着改变,而且要做到统一调谐,

GF型风流压力传感器说明书

ISO9001:2000认证企业 产品使用说明书 GF型风流压力传感器 感谢您选购本产品!为了保证安全并获得最佳效能,安装、使用产品前, 请详细阅读本使用说明书并妥善保管,以备今后参考。 1

前言 本说明书详细地介绍了GF型风流压力传感器的使用方法及使用注意事项,使用者在使用前请务必仔细阅读。GF型风流压力传感器在生产过程中执行的是煤炭科学研究院重庆分院的企业标准Q/MKC 56-2005。 I

目次 前言…………………………………………………………………………………………I 1 概述 (1) 2 工作原理与结构 (2) 3 技术特性 (3) 4 尺寸、重量 (4) 5 使用、调校 (4) 6 典型故障处理 (5) 7 维护、保养 (6) 8 运输、贮存 (6) 9 开箱及检查 (6) 10 其它 (7) II

GF型风流压力传感器 1 概述 GF型风流压力传感器,是一种专门用于监测煤矿井下巷道及瓦斯抽放管道负压的模拟量传感器,对于监测井下风压变化,确保矿井正常通风、配风及瓦斯抽放管路安全等方面有着重要作用,用于老塘漏风,隔墙密闭质量的连续监测的重要传感器,能就地数字显示风压或管道压力变化。 1.1 产品特点 1.1.1 GF型风流压力传感器在设计中采用了新型单片微机和高集成数字化电路,简化了电路结构,提高了整机性能的可靠性,便于维护与调试。 1.1.2 本传感器在整机的零点、灵敏度调校上实现了红外遥控调校功能,方便了仪器的调校工作。 1.1.3 本传感器在电源设计上采用新型开关电源,大大降低了整机功耗,增加了传感器的传输距离。 1.1.4 本传感器增设了故障自检功能,方便了使用与维护。 1.1.5本传感器的外壳采用了高强度结构,使整机具有很强的抗冲击能力。 1.2 主要用途和适用范围 1.2.1 主要用途 GF型风流压力传感器主要用于老塘漏风,隔墙密闭质量的连续监测。 1.2.2 适用范围 井下煤尘巷道、回风巷的通风配风、瓦斯抽放管道的负压监测。 1.3 型号的组成及其代表意义 G F □□ (A) 设计序列号 F代表负压传感器,Z代表正压传感器 测量范围 风流压力 传感器 1.4 环境条件 1.4.1 工作条件 a) 工作温度: 0 ℃~40 ℃; b) 相对湿度: ≤95 %; c) 大气压力: 80 kPa~106 kPa; 1

压力传感器工作原理

压力传感器 压力传感器是工业实践、仪器仪表控制中最为常用的一种传感器,并广泛应用于各种工业自控环境,涉及水利水电、铁路交通、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业。 力学传感器的种类繁多,如电阻应变片压力传感器、半导体应变片压力传感器、压阻式压力传感器、电感式压力传感器、电容式压力传感器、谐振式压力传感器及电容式加速度传感器等。但应用最为广泛的是压阻式压力传感器,它具有极低的价格和较高的精度以及较好的线性特性。下面我们主要介绍这类传感器。 1、压阻式压力传感器原理与应用: 压阻式压力传感器是利用单晶硅材料的压阻效应和集成电路技术制成的传感器。压阻式传感器常用于压力、拉力、压力差和可以转变为力的变化的其他物理量(如液位、加速度、重量、应变、流量、真空度)的测量和控制。 压阻效应 当力作用于硅晶体时,晶体的晶格产生变形,使载流子从一个能谷向另一个能谷散射,引起载流子的迁移率发生变化,扰动了载流子纵向和横向的平均量,从而使硅的电阻率发生变化。这种变化随晶体的取向不同而异,因此硅的压阻效应与晶体的取向有关。硅的压阻效应不同于金属应变计,前者电阻随压力的变化主要取决于电阻率的变化,后者电阻的变化则主要取决于几何尺寸的变化(应变),而且前者的灵敏度比后者大50~100倍。 压阻式压力传感器结构 压阻式压力传感器采用集成工艺将电阻条集成在单晶硅膜片上,制成硅压阻芯片,并将此芯片的周边固定封装于外壳之内,引出电极引线。压阻式压力传感器又称为固态压力传感器,它不同于粘贴式应变计需通过弹性敏感元件间接感受外力,而是直接通过硅膜片感受被测压力的。硅膜片的一面是与被测压力连通的高压腔,另一面是与大气连通的低压腔。硅膜片一般设计成周边固支的圆形,直径与厚度比约为20~60。在圆形硅膜片(N型)定域扩散4条P杂质电阻条,并接成全桥,其中两条位于压应力区,另两条处于拉应力区,相对于膜片中心对称。硅柱形敏感元件也是在硅柱面某一晶面的一定方向上扩散制作电阻条,两条受拉应力的电阻条与另两条受压应力的电阻条构成全桥。

压力变送器的工作原理

压力变送器的工作原理 压力变送器的工作原理 压力变送器主要由测压元件传感器(也称作压力传感器)、放大电路和支持结构件三类组成。它能将测压元件传感器测量到的气体、液体等物理压力参数变化转换成电信号(如4~20mA等),以提供指示报警仪、记载仪、调理器等二次仪表进行显示、指示和调整。 压力变送器用于测量液体、气体或蒸汽的液位、密度和压力,然后转换为成4~20mA 信号输出。 压差变送器也称差压变送器,主要由测压元件传感器、模块电路、显示表头、表壳和过程连接件等组成。它能将接收的气体、液体等压力差信号转变成标准的电流电压信号,以供给指示报警仪、记录仪、调节器等二次仪表进行测量、指示和过程调节。 差压变送器根据测压范围可分成一般压力变送器(0.001MPa~20MPA)和微差压变送器(0~30kPa)两种。 差压变送器的测量原理是:流程压力和参考压力分别作用于集成硅压力敏感元件的两端,其差压使硅片变形(位移很小,仅μm级),以使硅片上用半导体技术制成的全动态惠斯登电桥在外部电流源驱动下输出正比于压力的mV级电压信号。由于硅材料的强性极佳,所以输出信号的线性度及变差指标均很高。工作时,压力变送器将被测物理量转换成mV级的 电压信号,并送往放大倍数很高而又可以互相抵消温度漂移的差动式放大器。放大后的信号经电压电流转换变换成相应的电流信号,再经过非线性校正,最后产生与输入压力成线性对应关系的标准电流电压信号。 压力传感器工作原理 压力传感器是工业实践中最为常用的一种传感器,其广泛应用于各种工业自控环境,涉及水利水电、铁路交通、智能建筑、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业,下面就简单介绍一些常用传感器原理及其应用 1 、应变片压力传感器原理与应用 力学传感器的种类繁多,如电阻应变片压力传感器、半导体应变片压力传感器、压阻式

冷凝压力调节阀的工作原理

冷凝压力调节阀的工作原理 冷凝压力调节阀用于调理介质的流量、压力和液位。依据调理部位旌旗灯号,主动节制阀门的开度,然后到达介质流量、压力和液位的调理。冷凝压力调节阀分电动冷凝压力调节阀、气动冷凝压力调节阀和液动冷凝压力调节阀等。 冷凝压力调节阀由电动执行机构或气动执行机构和冷凝压力调 节阀两局部构成。冷凝压力调节阀凡间分为纵贯单座式冷凝压力调节阀和纵贯双座式冷凝压力调节阀两种,后者具有流畅才能大、不服衡办小和操作不变的特点,所以凡间特殊合用于大流量、高压降和走漏少的场所。 流畅才能Cv是选择冷凝压力调节阀的首要参数之一,冷凝压力调节阀的流畅才能的界说为:当冷凝压力调节阀全开时,阀两头压差为0.1MPa,流体密度为1g/cm3时,每小时流径冷凝压力调节阀的流量数,称为流畅才能,也称流量系数,以Cv透露表现,单元为t/h,液体的Cv值按下式核算。 依据流畅才能Cv值巨细查表,就可以确定冷凝压力调节阀的公

称通径DN。 冷凝压力调节阀的流量特征,是在阀两头压差坚持恒定的前提下,介质流经冷凝压力调节阀的相对流量与它的开度之间关系。冷凝压力调节阀的流量特征有线性特征,等百分比特征及抛物线特征三种。三种注量特征的意义如下: (1)等百分比特征(对数)等百分比特征的相对行程和相对流量不成直线关系,在行程的每一点上单元行程转变所惹起的流量的转变与此点的流量成正比,流质变化的百分比是相等的。所以它的长处是流量小时,流质变化小,流量大时,则流质变化大,也就是在分歧开度上,具有一样的调理精度。 (2)线性特征(线性)线性特征的相对行程和相对流量成直线关系。单元行程的转变所惹起的流质变化是不变的。流量大时,流量相对值转变小,流量小时,则流量相对值转变大。 (3)抛物线特征流量按行程的二方成比例转变,大体具有线性和等百分比特征的中心特征。 从上述三种特征的剖析可以看出,就其调理功能上讲,以等百分比特征为最优,其调理不变,调理功能好。而抛物线特征又比线性特征的调理功能好,可依据运用场所的要求分歧,遴选个中任何一种流

压力传感器工作原理

压力传感器是工业实践、仪器仪表控制中最为常用的一种传感器,并广泛应用于各种工业自控环境,涉及水利水电、铁路交通、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业,下面就简单介绍一些常用传感器原理及其应用。 力学传感器的种类繁多,如电阻应变片压力传感器、半导体应变片压力传感器、压阻式压力传感器、电感式压力传感器、电容式压力传感器、谐振式压力传感器及电容式加速度传感器等。但应用最为广泛的是压阻式压力传感器,它具有极低的价格和较高的精度以及较好的线性特性。下面我们主要介绍这类传感器。 1、应变片压力传感器原理与应用: 在了解压阻式力传感器时,我们首先认识一下电阻应变片这种元件。电阻应变片是一种将被测件上的应变变化转换成为一种电信号的敏感器件。它是压阻式应变传感器的主要组成部分之一。电阻应变片应用最多的是金属电阻应变片和半导体应变片两种。金属电阻应变片又有丝状应变片和金属箔状应变片两种。通常是将应变片通过特殊的粘和剂紧密的粘合在产生力学应变基体上,当基体受力发生应力变化时,电阻应变片也一起产生形变,使应变片的阻值发生改变,从而使加在电阻上的电压发生变化。这种应变片在受力时产生的阻值变化通常较小,一般这种应变片都组成应变电桥,并通过后续的仪表放大器进行放大,再传输给处理电路(通常是A/D转换和CPU)显示或执行机构。 1.1、金属电阻应变片的内部结构:它由基体材料、金属应变丝或应变箔、绝缘保护片和引出线等部分组成。根据不同的用途,电阻应变片的阻值可以由设计者设计,但电阻的取值范围应注意:阻值太小,所需的驱动电流太大,同时应变片的发热致使本身的温度过高,不同的环境中使用,使应变片的阻值变化太大,输出零点漂移明显,调零电路过于复杂。而电阻太大,阻抗太高,抗外界的电磁干扰能力较差。一般均为几十欧至几十千欧左右。 1.2、电阻应变片的工作原理:金属电阻应变片的工作原理是吸附在基体材料上应变电阻随机械形变而产生阻值变化的现象,俗称为电阻应变效应。金属导体的电阻值可用下式表示: 式中:ρ——金属导体的电阻率(Ω·cm2/m) S——导体的截面积(cm2) L——导体的长度(m)

压力传感器工作原理

电阻应变式压力传感器工作原理细解 2011-10-14 15:37元器件交易网 字号: 中心议题: 电阻应变式压力传感器工作原理 微压力传感器接口电路设计 微压力传感器接口系统的软件设计 微压力传感器接口电路测试与结果分析 解决方案: 电桥放大电路设计 AD7715接口电路设计 单片机接口电路设计 本文采用惠斯通电桥滤出微压力传感器输出的模拟变量,然后用INA118放大器将此信号放大,用7715A/D 进行模数转换,将转换完成的数字量经单片机处理,最后由LCD 将其显示,采用LM334 做的精密5 V 恒流源为电桥电路供电,完成了微压力传感器接口电路设计,既能保证检测的实时性,也能提高测量精度。 微压力传感器信号是控制器的前端,它在测试或控制系统中处于首位,对微压力传感器获取的信号能否进行准确地提取、处理是衡量一个系统可靠性的关键因素。后续接口电路主要指信号调节和转换电路,即能把传感元件输出的电信号转换为便于显示、记录、处理和控制的有用电信号的电路。由于用集成电路工艺制造出的压力传感器往往存在:零点输出和零点温漂,灵敏度温漂,输出信号非线性,输出信号幅值低或不标准化等问题。本文的研究工作,主要集中在以下几个方面:

(1)介绍微压力传感器接口电路总体方案设计、系统的组成和工作原理。 (2)系统的硬件设计,介绍主要硬件的选型及接口电路,包括A/D 转换电路、单片机接口电路、1602显示电路。 (3)对系统采用的软件设计进行研究,并简要阐述主要流程图,包括主程序、A/D 转换程序、1602显示程序。 1 电阻应变式压力传感器工作原理 电阻应变式压力传感器是由电阻应变片组成的测量电路和弹性敏感元件组合起来的传感器。当弹性敏感元件受到压力作用时,将产生应变,粘贴在表面的电阻应变片也会产生应变,表现为电阻值的变化。这样弹性体的变形转化为电阻应变片阻值的变化。把4 个电阻应变片按照桥路方式连接,两输入端施加一定的电压值,两输出端输出的共模电压随着桥路上电阻阻值的变化增加或者减小。一般这种变化的对应关系具有近似线性的关系。找到压力变化和输出共模电压变化的对应关系,就可以通过测量共模电压得到压力值。 当有压力时各桥臂的电阻状态都将改变,电桥的电压输出会有变化。 式中:Uo 为输出电压,Ui 为输入电压。 当输入电压一定且ΔRi <

手机各电路原理_射频电路_内容详细,不看后悔

本次培训内容:
手机各级电路原理及故障检修
1,基带电路
发话电路、受话电路、蜂鸣电路、耳机电路、 背光电路、马达电路、按键电路、充电电路、开 关机电路、摄像电路、蓝牙电路、FM电路、显示 电路、SIM卡电路、TF卡电路
2,射频电路
接收电路、发射电路

一、手机通用的接收与发射流程
天线:ANT 声表面滤波器:SAWfilter 低噪声放大器:LNA 功放:PA

手机通用的接收与发射流程
1、信号接收流程: 天线接收——天线匹配电路——双工器——滤波(声 表面滤波器SAWfilter)——放大(低噪声放大器 LNA)——RX_VCO混频(混频器Mixer)——放大 (可编程增益放大器PGA)——滤波——IQ解调(IQ 调制器)——(进入基带部分)GMSK解调——信道均 衡——解密——去交织——语音解码——滤波—— DAC——放大——话音输出。

手机通用的接收与发射流程
2、信号发射流程: 话音采集——放大——ADC——滤波——语音编
码——交织——加密——信道均衡——GMSK调制—— (进入射频部分)IQ调制(IQ调制器)——滤波—— 鉴相鉴频(鉴相鉴频器)——滤波——TX_VCO混频 (混频器Mixer)——功率放大(PA)——双工器—— 天线匹配电路——天线发射。

手机通用的接收与发射流程
3、射频电路原理框图:

二、射频电路的主要元件及工作原理
天线:ANT 声表面滤波器:SAWfilter 低噪声放大器:LNA 功放:PA

自立式调节阀工作原理

工作原理 1、自力式压力调节阀工作原理(阀后压力控制)(如图1) 工作介质的阀前压力P1经过阀芯、阀座后的节流后,变为阀后压力P2。P2经过控制管线输入到执行器的下膜室内作用在顶盘上,产生的作用力与弹簧的反作用力相平衡,决定了阀芯、阀座的相对位置,控制阀后压力。当阀后压力P2增加时,P2作用在顶盘上的作用力也随之增加。此时,顶盘的作用力大于弹簧的反作用力,使阀芯关向阀座的位置,直到顶盘的作用力与弹簧的反作用力相平衡为止。这时,阀芯与阀座的流通面积减少,流阻变大,从而使P2降为设定值。同理,当阀后压力P2降低时,作用方向与上述相反,这就是自力式(阀后)压力调节阀的工作原理。 2、自力式压力调节阀工作原理(阀前压力控制)(如图2) 工作介质的阀前压力P1经过阀芯、阀座后的节流后,变为阀后压力P2。同时P1经过控制管线输入到执行器的上膜室内作用在顶盘上,产生的作用力与弹簧的反作用力相平衡,决定了阀芯、阀座的相对位置,控制阀前压力。当阀后压力P1增加时,P1作用在顶盘上的作用力也随之增加。此时,顶盘的作用力大于弹簧的反作用力,使阀芯向离开阀座的方向移动,直到顶盘的作用力与弹簧的反作用力相平衡为止。这时,阀芯与阀座的流通面积减大,流阻变小,从而使P1降为设定值。同理,当阀后压力P1降低时,作用方向与上述相反,这就是自力式(阀前)压力调节阀的工作原理。

3、自力式温度调节阀工作原理(加热型)(如图3) 温度调节阀是根据液体的不可压缩和热胀冷缩原理进行工作的。 加热用自力式温度调节阀,当被控对象温度低于设定温度时,温包内液体收缩,作用在执行器推杆上的力减小,阀芯部件在弹簧力的作用下使阀门打开,增加蒸汽和热油等加热介质的流量,使被控对象温度上升,直到被控对象温度到了设定值时,阀关闭,阀关闭后,被控对象温度下降,阀又打开,加热介质又进入热交换器,又使温度上升,这样使被控对象温度为恒定值。阀开度大小与被控对象实际温度和设定温度的差值有关。 4、自力式温度调节阀工作原理(冷却型)(如图4) 冷却用自力式温度调节阀工作原理可参照加热用自力式温度调节阀,只是当阀芯部件在执行器与弹簧力作用下打开和关闭与温关阀相反,阀体内通过冷介质,主要应用于冷却装置中的温度控制。

PTP503压力传感器使用说明书

油压传感器,油压压力变送器,河南压力传感器 正负压压力变送器,恒压供水压力传感器,投入式液位变送器,防雷击液位变送器,锅炉压力传感器,微差压变送器,超高温压力传感器,超高压压力传感器,平膜压力传感器,防腐蚀压力变送器,通风管道压力变送器,高温微压变送器,空压机压力变送器,空调风压变送器,PY500智能数字压力控制仪表,动静态汽车称重设备,称重测力传感器 PTP503压力传感器/变送器采用全不锈钢封焊结构,具有良好的防潮能力及优异的介质兼容性。广泛用于工业设备、水利、化工、医疗、电力、空调、金刚石压机、冶金、车辆制动、楼宇供水等压力测量与控制。 量程:0~1~150(MPa) 综合精度:0.2%FS、0.5%FS、1.0%FS 输出信号:4~20mA(二线制)、0~5V、1~5V、0~10V(三线制) 供电电压:24DCV(9~36DCV) 介质温度:-20~85~150℃ 环境温度:常温(-20~85℃) 负载电阻:电流输出型:最大800Ω;电压输出型:大于50KΩ 绝缘电阻:大于2000MΩ(100VDC 密封等级:IP65 长期稳定性能:0.1%FS/年 振动影响:在机械振动频率20Hz~1000Hz内,输出变化小于0.1%FS 电气接口(信号接口):四芯屏蔽线、四芯航空接插件、紧线螺母 机械连接(螺纹接口):1/2-20UNF、M14×1.5、M20×1.5、M22×1.5等,其它螺纹可依据客户要求设计

产品名称:PY602压力温度仪表 规格: 产品备注:数显压力温度控制仪表|智能压力温度表|佛山市博润测控仪表有限公司 产品说明 PY602数显压力-温度控制仪表 产品特点及结构: 具有整机体积小、重量轻、耗电省、功能齐全、工作可靠、使用方便灵活,配用我公司PT100-系列高温熔体压力传感器或常温压力传感器,作为高精度压力测量与控制,可广泛地使用于液压、石油、塑料、橡胶、印染、纺织等行业的压力显示和自动化控制场合,还可与其他厂家的电阻应变式压力传感器配套使用;可以设定上下限值报警,具有发光管报警指示、继电器触点输出控制外部执行机构;具有高精度的电压输出模块、电流输出模块、继电器输出控制模块以及通讯模块供用户选择 主要技术参数: 显示器:双层四位高亮度绿色和红色发光数码管 显示分辨率:0001 显示数值范围:-001~-999~0001~9999Mpa(小数点可变),温度:000.1-400.0 仪表精度:0.25%FS±1位 压力输入信号:2mV/V、3.3mV/V、4-20mA、0-5VDC、0-10DC(定货时说明) 温度输入信号:J、K、E型热电偶 采样速度:20次/秒 输出控制:与满量程信号成线性的电压或电流输出;RS232;RS485 报警范围:-001~-999~0001~9999Mpa(小数点可变) 效准指示:显示传感器满量程80%值(传感器应空载),效准指示(CAE)亮 使用温度及湿度:0-55℃,≤80%RH 电源要求:85-265VAC50Hz-60Hz 外型尺寸:96×96×100mm 开孔尺寸:92×92mm

压电式压力传感器原理

压电式压力传感器原理、特点及应用 压电式压力传感器的原理 压电式压力传感器的原理主要是压电效应,它是利用电气元件和其他机械把待测的压力转换成为电量,再进行相关测量工作的测量精密仪器,比如很多压力变送器和压力传感器。压电传感器不可以应用在静态的测量当中,原因是受到外力作用后的电荷,当回路有无限大 的输入抗阻的时候,才可以得以保存下来。但是实际上并不是这样的。因此压电传感器只可以应用在动态的测量当中。它主要的压电材料是:磷酸二氢胺、酒石酸钾钠和石英。而石英呢,其实是一种天然的晶体,而压电效应就是在此晶体的基础上发现的。在规定的范围里, 压电性质是不会消失,而是一直存在的。但是如果温度在这个规定的范围之外,压电性质就会彻底地消失不见。当应力发生变化的时候,电场的变化很小很小,其他的一些压电晶体就会替代石英。酒石酸钾钠,它是具有很大的压电系数和压电灵敏度的,但是,它只可以使用在室内的湿度 和温度都比较低的地方。磷酸二氢胺是一种人造晶体,它可以在很高的湿度和很高的温度的环境中使用,所以,它的应用是非常广泛的。随着技术的发展,压电效应也已经在多晶体上得到应用了。例如:压电陶瓷,铌镁酸压电陶瓷、铌酸盐系压电陶瓷和钛酸钡压电陶瓷等等都包括在内。

压电式压力传感器的特点 以压电效应为工作原理的传感器,是机电转换式和自发电式传感器。它的敏感元件是压电的材料制作而成的,而当压电材料受到外力作用的时候,它的表面会形成电荷,电荷会通过电荷放大器、测量电路的放大以及变换阻抗以后,就会被转换成为与所受到的外力成正比关系的电量输出。 它是用来测量力以及可以转换成为力的非电物理量,例如:加速度和压力。它有很多优点:重量较轻、工作可靠、结构很简单、信噪比很高、灵敏度很高以及信频宽等等。但是它也存在着某些缺点:有部分电压材料忌潮湿,因此需要采取一系列的防潮措施,而输出电流的响应又比较差, 那就要使用电荷放大器或者高输入阻抗电路来弥补这个缺点,让仪器更好地工作。 压电式压力传感器的应用 压电式压力传感器的应用领域很广泛:电声学、生物医学和工程力学等等。它能够测量发动机里面的燃烧压力,也能够应用在军事方面。它可以测量在膛中的枪炮子弹在击发的那一刻,膛压的改变量以及炮口所受到的冲击波压力。它能够测量很小的压力,也能够测量大 的压力。由于它的使用寿命很长、重量较轻、体积较小、结构较简单,因此它所涉及的领域远远不止这些。在对建筑物、桥、汽车和飞机等的冲击和震动的测量,也是非常广泛的。特别是在宇航和航空的领域

相关主题
文本预览
相关文档 最新文档