当前位置:文档之家› 有限元分析中的一些问题

有限元分析中的一些问题

有限元分析中的一些问题
有限元分析中的一些问题

有限元分析的一些基本考虑-—-—-单元形状对于计算精度的影响

笔者发现,在分析复杂问题时,我们所可能出现的错误,竟然是一些很根本的错误,这些根本错误是由于对有限元的基本理论理解不清晰而造成的。

鉴于这个原因,笔者决定对一些基本问题(例如单元形状问题,单元大小问题,应力集中问题等)展开调查,从而形成了一系列文章,本篇文章是这些系列文章中的第一篇.

本篇文章先考虑有限元分析中的第一个基本问题:单元形状问题。

我们知道,单元形状对于有限元分析的结果精度有着重要影响,而对单元形状的衡量又有着诸多指标,为便于探讨,这里首先只讨论第一个最基本的指标:长宽比(四边形单元的最长尺度与最短尺度之比),而且仅考虑平面单元的长宽比对于计算精度的影响。

为此,我们给出一个成熟的算例。该算例是一根悬臂梁,在其端面施加竖直向下的抛物线分布载荷,我们现在考察用不同尺度的单元划分该梁时,对于A点位移的影响。

这五种不同的划分方式,都使用矩形单元,只不过各单元的长宽比不同。

例如第一种(1)AR=1.1,就是长宽比接近1;

第二种(2)AR=1.5,就是长宽比是1。5.其它类推。

第五种(5)AR=24,此时单元的长度是宽度的24倍。

现在我们看看按照这五种单元划分方式对于A点位移的影响,顺便我们也算出了B点的位移,结果见下表.

我们现在仔细查看一下上表,并分析其含义。

我们先考虑第一行,它是第一种单元划分情况,此时每个单元的长宽比是1。1,由此我们计算出A点,B点的垂直位移,可以看到,A点的竖直位移是—1.093英寸,而B点的竖直位移是-0。346英寸。而这两点我们都是可以用弹性力学的方式得到精确解的,其精确解分别是-1。152以及—0。360。这样,我们可以得到此时A点位移误差的百分比是[(—1.093)—(-1。152)]/1。152 =5。2%.

对于其它情况,也采用类似的方式得到A点位移误差的百分比。

从上表可以看出来,随着长宽比的增加,位移误差越来越大,竟然大到56%.因此,如果我们是用长宽比为24的单元进行划分的话,那么我们的结果可以说是完全错误的.

下面按照上表绘制出一张图,该图从形象的角度表达了上表的含义.

由此可见,长宽比越接近于1,那么结算结果越精确,越远离1,则误差越大.

因此我们在进行有限元分析时,应该尽量保证划分的单元长宽比接近1,这意味着,如果我们使用了四边形单元,则最好是正方形单元;如果使用了三角形单元,则最好是等边三角形.

当然,对于一个复杂的零件而言,我们很难保证每个单元都满足这些要求,但是,我们一定要确保,在我们所关注的地方,例如应力最大的地方,单元形状要接近这一点,否则,我们得到的解就是不可相信的.

但是上述结果也告诉我们,即便是最好形状的单元(情况1,长宽比为1。1),结果的计算精度也不容乐观,其误差达到5。2%,那么,我们可以得到更高精度的解答吗?

可以。这需要单元的细分,下一篇博文中将会详细说明这一点。

有限元分析的一些基本考虑—--单元大小对于计算精度的影响

有限元分析一定可以得到问题的精确解吗?

理论上可以证明,如果插值函数使用了“协调和完整的位移函数”,则当网格尺寸逐渐减小而单元数量增加时,解就会单调收敛。

而且,当单元数目增加时,得到的刚度会降低,并收敛于真实刚度;这就意味着,当单元增加时,得到的位移增加,而收敛于精确位移解.其图形如下:

这里所说的“协调和完整位移函数”,是指:

1.近似函数式一般是多项式。

2。近似函数在单元内要保持连续。

3.近似函数应提供单元间的连续性,包括离散单元每一个节点所有自由度都应该是连续的,二维单元和三维单元沿着公共边界线和公共面必须是连续的。

既能够保证单元内的连续,又能够保证单元间的连续的形函数称为协调函数。

4.近似函数应考虑刚体位移和单元内的常应变状态。即有常数项保证刚体运动(无应变的运动),而有一次项保证有常应变状态发生。这是形函数的完整性问题。

例如,对于一维单元而言,若取形函数

则同时满足上面四个条件,称为协调且完整的位移函数。

基于MARC的含圆孔正方形薄板四周受力性能的有限元分析报告

基于MARC的含圆孔正方形薄板四周受

标题:针对含圆孔的正方形板四周受力性能的有限元分析 摘要:采用通用的有限元程序MARC研究含圆孔的正方形板四周受力问题。在工件工作时,小孔的边缘会产生应力集中的现象,极端情况下甚至会 发生破坏,导致失效。通过对该模型的分析,计算出其最大应力、最 大位移及所发生的位置,得出其承载能力和变形特征,使该力学模型 更好服务于建造等工程方面。 关键词:圆孔、正方形板、受均布力、最大应力、最大位移、位置、四分之一 Title: hole for a square plate with four weeks of the force Finite Element Analysis Abstract: In view of daily life, building structure, mechanical steel structure of the existence of multi-shaped plate with a circular hole is the mechanical model, its bearing capacity and design studies and calculations of concern. In this paper, general finite element program MARC square hole of the plate four weeks with the force the issue. Through analysis of the model to calculate the maximum stress, maximum displacement and the location of occurrence, reached its carrying capacity and deformation characteristics. So that the mechanical model to better serve the construction and other projects. Keywords: round hole, square plate, force, maximum stress, maximum displacement, position, deformation characteristics,horizontal direction, vertical direction, a quarter 正文 1.引言: 鉴于日常生活中建筑结构,机械钢架等结构中多存在含圆孔的正形板的力学模型,其承载性能和设计方法的研究和计算值得关注。有限元分析在模具行业应用广泛,初步学习弹性力学及有限元的知识,分析平面应力应变问题,以解决平面薄板在受均不力时的有限元分析。从而解决了,在薄板上中心椭圆孔,在均布力的作用下产生的应力、位移的问题。 2.理论分析: 如图所示,在厚度为t=1cm的正方形板中有一只r=0.5cm的圆孔,正方形板四周受分布力p的作用。已知:E=210GPa,u=0.3,l=10cm,p=1KN/cm。计算最

有限元分析 均布荷载作用下深梁的变形和应力

有 限 元 分 析 上 级 报 告 学院: 专业: 姓名: 班级: 学号:

均布荷载作用下深梁的变形和应力 两端简支,长度l=5m,高度h=1m的深梁,在均布荷载q =5000N/m作用下发生平面弯曲(如图4.1所示)。已知弹性模量为30Gpa,泊松比为0.3,试利用平面应力单元PLANE82,确定跨中的最大挠度,和上下边缘的最大拉压应力。 4.1 均布荷载作用下深梁计算模型 1.理论解 具有两个简支支座支承的简支梁,它的变形和应力分布在理论上是没有解析表达式。 在一般的弹性力学教科书中,只有将两边支座简化为等效力的条件,即在两个支座的侧表面上作用有均匀分布的剪力情况,才可以得到理论解答。 (1) 设定应力函数。 获得这种情况下的解答的主要思路是:按照应力解法,考虑到应力分量关于该梁中心 位置(x=2.5,y=0.5)有对称和反对称关系。可以首先假定一个应力函数为: Φ = A(y - 0.5)5+ B(x - 2.5)2 (y -0.5)3 +C(y -0.5)3+ D(x- 2.5)2+ E(x -2.5)2 (y - 0.5) (4.1) 依据这个应力函数,可以获得各个应力分量,按照上表面受均布压力作用简支梁的上 下表面和左右侧表面的应力边界条件,确定出应力函数(4.1)中的各个待定系数A,B,C,D和E。 按照应力求解平面应力问题方法,应力函数应该满足双调和函数: ?2?2Φ = 0 (4.2) 将(4.1)应力函数代入上式后,得到: 24 B( y - 0.5) +120A(y - 0.5) = 0 (4.3) 即: B = -5A (4.4) (2)确定应力分量。 应力函数与应力分量之间的关系为: (3) 利用梁的上下表面边界条件确定积分常数。 上表面受均布压力作用简支梁的上表面(y=h=1m)的应力边界条件:

薄板有限元分析

板中圆孔的应力集中 问题:如图所示为一个承受单向拉伸的无限大板,在其中心位置有一个小圆孔。材料属性为弹性模量E=Pa,泊松比为0.3,拉伸载荷q=1000Pa,平板厚度t=0.1. 1、定义工作名和工作标题 (1)定义工作文件名:在弹出的Change Jobname对话框中输入Plate。选择New log and error files复选框,单击OK按钮。 (2)定义工作标题:在弹出的的Change Title对话框中输入The analysis of plate stress with small circle,单击OK按钮。 (3)重新显示:执行replot命令。 2、定义单元类型和材料属性 (1)选择单元类型:在弹出的Element Type中,单击Add按钮,弹出所示

对话框,选择Structural Solid和Quad 8node 82选项,单击OK,然后 单击close。 (2)设置材料属性:在弹出的define material models behavior窗口中,双击structural/linear/elastic/isotropic选项,弹出linear isotropic material properties for material number 1对话框,EX和PRXY分别输入2e11和 0.3,单击OK,执行exit命令。 (3)保存数据:单击SAVE_DB按钮。 3、创建几何模型 (1)生成一个矩形面:执行相应操作弹出create rectangle by dimensions对话

框,输入数据,单击OK,显示一个矩形。 (2)生成一个小圆孔:执行创建圆的操作弹出对话框,输入数据,单击OK,生成一个圆。 (3)执行面相减操作:执行Booleans/Subtract/Areas命令,生成结果如图示。 (4)保存几何模型:单击SAVE_DB按钮。 4、生成有限元网格(自由网格划分) (1)设置网格的尺寸大小:执行size cntrlsl-global-size命令,弹出对话框,在element edge lenge文本框中输入0.5,单击OK. (2)采用自由网格划分:执行mesh/areas/free命令,生成网格模型如图示。 (3)保存结果:单击SAVE_DB按钮。 5、施加载荷并求解

Abaqus中应力应变的理解

在ABAQUS 中对应力的部分理解 1、三维空间中任一点应力有6个分量yz xz xy z y ,,,σσσσσσ,,x ,在ABAQUS 中分别对应S11,S22,S33,S12,S13,S23。 2、一般情况下,通过该点的任意截面上有正应力及其剪应力作用。但有一些特殊截面,在这些截面上仅有正应力作用,而无剪应力作用。称这些无剪应力作用的面为主截面,其上的正应力为主应力,主截面的法线叫主轴,主截面为互相正交。主应力分别以321,,σσσ表示,按代数值排列(有正负号)为321σσσ≥≥。其中321,,σσσ在ABAQUS 中分别对应Max. Principal 、Mid. Principal 、Min. Principal ,这三个量在任何坐标系统下都是不变量。 可利用最大主应力判断一些情况:比如混凝土的开裂,若最大主应力(拉应力)大于混凝土的抗拉强度,则认为混凝土开裂,同时通过显示最大主应力的法线方向,可以大致表示出裂缝的开裂方向等。 利用最小主应力,可以查看实体中残余压应力的大小等。 3、弹塑性材料的屈服准则 3.1、Mises 屈服准则 22 13232 2 212)()()(S σ σσσσ σσ=-+-+- 其中s σ为材料的初始屈服应力。 在三维空间中屈服面为椭圆柱面;在二维空间中屈服面为椭圆。 Mises 等效应力的定义为:(牵扯到张量知识) 其中 S 为偏应力张量,其表达式为 其中为应力, I 为单位矩阵,p 为等效压应力(定义如下): , 也就是我们常见的 )(31z y x p σσ σ ++= 。 还可以具体表达为: 其中 , , 为偏应力张量(反应塑 性变形形状的变化)。 q 在ABAQUS 中对应 Mises ,它有6个分量(随坐标定义的不同而变化)S11,S22,S33,S12,S13,S23 3.2、Trasca 屈服准则 主应力间的最大差值=2k

有限宽中心圆孔板应力集中系数数值实验

有限宽中心圆孔板应力集中系数数值实验 冯美生,张红珠 辽宁工程技术大学力学与工程科学系,辽宁阜新 (123000) 摘 要:在anays 平台上,采用有限元方法对拉伸有限宽中心圆孔板应力集中问题进行了数值实验,定义了应力集中的特征参数,定量分析特征尺度的变化规律,研究应力集中系数与孔径尺度的关系见图3,并与解析解比较,给出了解析解的适用范围。 关键词: 应力集中,应力集中系数,圆孔,特征尺度,数值实验 1 引言 受力的弹性平面板具有小孔,则孔边的应力将远大于无孔时的应力,也远大于距孔稍远处的应力,这种现象称为孔边应力集中。应力集中现象是局部现象。在几倍于孔径以外,应力几乎不受孔的影响,应力的分布情况以及数值都与无孔时相同。一般来说,集中的程度越高,集中的现象越是局部性的,就是说应力随着与孔的距离增大而越快的趋进于无孔时的应力。应力集中的程度,首先与孔的形状有关,一般来说,圆孔孔边的集中程度最低。另外集中系数还与相对孔径尺度有关。基于ansys 平台,通过数值试验的方法,研究不同板宽,不同孔径时的孔边应力集中问题,并与弹性力学的解析解进行比较,研究应力集中系数与孔径尺度的关系。 2 实例分析 2.1力学模型及假设 如图1所示,平面带孔平板,孔位于板正中,假设板为各向同性完全弹性,板左端固定,右端受均布荷载q 0=10N/mm 作用,长为200mm ,厚为10mm ,泊松比为0.3,E=2.1×1011Pa,板宽和孔径变化,数值实验其应力集中时的特征参数。定义一个描述板宽与孔径的相对尺度的特征参数,0 B R ε=,定义应力集中系数max 0k q σ=,其中B 为板宽,R 0为孔半径,max σ为孔边最大应力,q 0为均布荷载。 2.2数值实验 在ansys 平台上变化各种ε值,计算相应的k 值,进行相应的数值研究。整个过程采用

有限元分析中的一些问题

有限元分析的一些基本考虑-—-—-单元形状对于计算精度的影响 笔者发现,在分析复杂问题时,我们所可能出现的错误,竟然是一些很根本的错误,这些根本错误是由于对有限元的基本理论理解不清晰而造成的。 鉴于这个原因,笔者决定对一些基本问题(例如单元形状问题,单元大小问题,应力集中问题等)展开调查,从而形成了一系列文章,本篇文章是这些系列文章中的第一篇. 本篇文章先考虑有限元分析中的第一个基本问题:单元形状问题。 我们知道,单元形状对于有限元分析的结果精度有着重要影响,而对单元形状的衡量又有着诸多指标,为便于探讨,这里首先只讨论第一个最基本的指标:长宽比(四边形单元的最长尺度与最短尺度之比),而且仅考虑平面单元的长宽比对于计算精度的影响。 为此,我们给出一个成熟的算例。该算例是一根悬臂梁,在其端面施加竖直向下的抛物线分布载荷,我们现在考察用不同尺度的单元划分该梁时,对于A点位移的影响。 这五种不同的划分方式,都使用矩形单元,只不过各单元的长宽比不同。 例如第一种(1)AR=1.1,就是长宽比接近1; 第二种(2)AR=1.5,就是长宽比是1。5.其它类推。 第五种(5)AR=24,此时单元的长度是宽度的24倍。 现在我们看看按照这五种单元划分方式对于A点位移的影响,顺便我们也算出了B点的位移,结果见下表.

我们现在仔细查看一下上表,并分析其含义。 我们先考虑第一行,它是第一种单元划分情况,此时每个单元的长宽比是1。1,由此我们计算出A点,B点的垂直位移,可以看到,A点的竖直位移是—1.093英寸,而B点的竖直位移是-0。346英寸。而这两点我们都是可以用弹性力学的方式得到精确解的,其精确解分别是-1。152以及—0。360。这样,我们可以得到此时A点位移误差的百分比是[(—1.093)—(-1。152)]/1。152 =5。2%. 对于其它情况,也采用类似的方式得到A点位移误差的百分比。 从上表可以看出来,随着长宽比的增加,位移误差越来越大,竟然大到56%.因此,如果我们是用长宽比为24的单元进行划分的话,那么我们的结果可以说是完全错误的. 下面按照上表绘制出一张图,该图从形象的角度表达了上表的含义.

ABAQUS定义真实应力和真实应变

ABAQUS 中定义真实应力和真实应变 在ABAQUS 中必须用真实应力和真实应变定义塑性.ABAQUS 需要这些值并对应地在输入文件中解释这些数据。 然而,大多数实验数据常常是用名义应力和名义应变值给出的。这时,必须应用公式将塑性材料的名义应力(变)转为真实应力(变)。 考虑塑性变形的不可压缩性,真实应力与名义应力间的关系为: 00l A lA =, 当前面积与原始面积的关系为: 00l A A l = 将A 的定义代入到真实应力的定义式中,得到: 00 ()nom F F l l A A l l σσ=== 其中0 l l 也可以写为1nom ε+。 这样就给出了真实应力和名义应力、名义应变之间的关系: (1)nom nom σσε=+ 真实应变和名义应变间的关系很少用到,名义应变推导如下: 0001nom l l l l l ε-= =- 上式各加1,然后求自然对数,就得到了二者的关系: ln(1)nom εε=+ ABAQUS 中的*PLASTIC 选项定义了大部分金属的后屈服特性。ABAQUS 用连接给定数据点的一系列直线来逼近材料光滑的应力-应变曲线。可以用任意多的数据点来逼近实际的材料性质;所以,有可能非常逼真地模拟材料的真实性质。在*PLASTIC 选项中的数据将材料的真实屈服应力定义为真实塑性应变的函数。选项的第一个数据定义材料的初始屈服应力,因此,塑性应变值应该为零。 在用来定义塑性性能的材料实验数据中,提供的应变不仅包含材料的塑性应变,而是包括材料的总体应变。所以必须将总体应变分解为弹性和塑性应变分量。弹性应变等于真实应力与杨氏模量的比值,从总体应变中减去弹性应变,就得到了塑性应变,其关系为: /pl t el t E ε εεεσ=-=- 其中pl ε是真实塑性应变,t ε是总体真实应变,el ε是真实弹性应变。

板中孔应力集合ANSYS有限元分析

一、自选题目 如图所示为承受双向拉伸的板件,其中心位置有一个小圆孔,其尺寸 (mm )如图所示。其中(弹性模量 E=2Gpa, 泊松比v=0.3, 右端拉伸载荷q=20N/mm, 平板的厚度t=20mm ) 。 图1-1 平面应力支架简化模型 二、题目分析 此题为平面应力问题,板件中间圆孔应力集中较大,为了保证求解精度,划分网格时,应该采用8节点四边形单元;使用ansys 分析问题时,输入的 实常数单位要进行统一,此题统一单位为毫米单位,E=200000N/mm 2。 三、操作步骤 3.1 定义工作文件和工作标题3.1.1 定义工作文件名 执行Utility Menu-File→Change Jobname→20128195,单击OK 按钮。 3.1.2 定义工作标题 执行Utility Menu-File→Change Tile→hebingbing20128195,单击OK 按钮。 3.1.3 更改当前工作目录 执行Utility Menu-File→Change the working directory→E/STUDY/ANSYS/dazuoye 。

3.2 定义单元类型、实常数和材料属性 3.2.1 设置计算类型 执行Main Menu→Preferences→select Structural→OK。 3.2.2 选择单元类型 执行Main Menu →Preprocessor→Element Type→Add/Edit/Delete →Add →select Solid→Quad 8node 82→OK 。 Options→select K3→Plane strs w/thk→OK→Close ,如图3-1 所示。 图3-1 3.2.3 定义实常数 执行Main Menu→Preprocessor→Real Constants →Add/Edit/Delete→ Add→OK→输入板厚20→OK→Close。 3.2.4 设置材料属性执行Main Menu→Preprocessor→Material Props→Material Models→Structural→Linear→Elastic→Isotropic→输入实常数(在EX 框中输入200000,在PRXY 框中输入0.3)→OK,如图3-2 所示。 图3-2

点支承中空玻璃板孔边应力的有限元分析

点支承中空玻璃板孔边应力的有限元分析 1 前言 点支承玻璃幕墙是用金属连接件和紧固件将玻璃与支承结构连接成整体的建筑结构形式,玻璃板往往需要点支承处开孔以安装连接件。中空玻璃是在两层钢化玻璃之间的封闭空间内充入惰性气体[1][2],在国家大剧院等项目中得到了广泛使用。国内外试验资料表明,开孔玻璃面板的最大应力往往在钻孔处。同时孔边缘在切割过程中形成的大量微裂纹,使该处强度有所降低。故开孔周边是点支式玻璃幕墙的薄弱处[3,4,5]。现行规范、规程尚未对玻璃孔边应力的计算做出严格、定量的规定,国内外对于点支承单层玻璃板孔边应力的研究较多,而关于中空玻璃孔边应力的研究还不多见[5,6]。本文使用有限元方法,对四点支承中空玻璃的孔边应力进行计算,分析了孔心边距、玻璃板、中空层厚度等因素对于孔边最大应力的影响,提出了必要的设计建议。 2 孔边应力的有限元分析方法 2.1 点支承中空玻璃基本承载特点 流体静止时,起作用的只是垂直于各接触面的力,中空玻璃板中空层中的气体不具有抗弯刚度,也不能阻止内、外片在面内的相对滑移。设中空玻璃承受的总荷载集度为ps;外、内片分别承担荷载为p0和pi。中空层中气体的作用,即为在垂直于玻璃板的方向上,将pi从中空层的上表面传递至内片的上表面,同时中空层内压产生增量:pg=pi。故考虑中空玻璃受弯承载性能,只需考虑中空层在垂直于玻璃板方向上的作用[2,7]。 2.2 点支承中空玻璃有限元计算方法 本文使用综合有限元程序ANSYS建立模型。为了能够模拟点支承中空玻璃支承孔边缘的构造,外、内片玻璃采用Solid单元建模,并在板面大范围内通过Sweep方式生成规则分布的单元(图1)。 使用ANSYS提供的Combin单元模拟气体层行为。Combin(弹簧-阻尼组合单元)具备二个节点,可以计算轴向的压缩及阻尼行为。本文根据清华大学及同济大学完成的点支承中空玻璃试验建立模型[2,8],几何参数如表1。根据对称性建立1/4模型,使用Solid单元模拟玻璃板,在外、内板之间除点支承外,均匀的设置n个Combi 单元模拟气体层的压缩性能(图1)。Combin单元的弹性模量由式(1)计算:

基于ANSYS的有限元分析

有限元大作业 基于ansys的有限元分析 班级: 学号: 姓名: 指导老师: 完成日期:

ANSYS软件是美国ANSYS公司研制的大型通用有限元分析(FEA)软件,是世界范围内增长最快的计算机辅助工程(CAE)软件,能与多数计算机辅助设计(CAD,computer Aided design)软件接口,实现数据的共享和交换,如Creo,NASTRAN, Alogor, I-DEAS, AutoCAD 等。是融结构、流体、电场、磁场、声场分析于一体的大型通用有限元分析软件。在核工业、铁道、石油化工、航空航天、机械制造、能源、汽车交通、国防军工、电子、土木工程、造船、生物医学、轻工、地矿、水利、日用家电等领域有着广泛的应用。ANSYS功能强大,操作简单方便,现在已成为国际最流行的有限元分析软件,在历年的FEA评比中都名列第一。目前,中国100多所理工院校采用ANSYS软件进行有限元分析或者作为标准教学软件。 2D Bracket 问题描述: We will model the bracket as a solid 8 node plane stress element. 1.Geometry: The thickness of the bracket is 3.125 mm 2.Material: steel with modulus of elasticity E=200 GPa. 3.Boundary conditions: The bracket is fixed at its left edge. 4.Loading: The bracket is loaded uniformly along its top surface. The load is 2625 N/m. 5.Objective: a.Plot deformed shape b.Determine the principal stress and the von Mises stress. (Use the stress plots to determine these) c.Remodel the bracket without the fillet at the corner or change the fillet radius to 0.012 and 0.006m, and see how d.principal stress and von Mises stress chang e.

带孔平板的应力集中分析

有限元方法 Finite Element Method ——基于ANSYS的有限元建模与分析 姓名吴威 学号20100142 班级10级土木茅以升班2班 西南交通大学 2014年4月

综合练习——带孔平板的应力分布及应力集中系数的计算一、问题重述 计算带孔平板的应力分布及应力集中系数。 二、模型的建立与计算 在ANSYS中建立模型,材料的设置属性如下 分析类型为结构(structural),材料为线弹性(Linear Elastic),各向同性(Isotropic)。弹性模量、泊松比的设定均按照题目要求设定,以N、cm为标准单位,实常数设置中设板厚为1。

采用solid 4 node 42板单元,Element Behavior设置为Plane strs w/thk。 建立模型时先建立完整模型,分别用单元尺度为5cm左右的粗网格和单元尺度为2cm左右的细网格计算。 然后取四分之一模型计算比较精度,为了使粗细网格单元数与完整模型接近,四分之一模型分别用单元尺度为2.5cm左右的粗网格和单元尺度为1cm左右的细网格计算。 (1) 完整模型的计算 ①粗网格

单元网格的划分及约束荷载的施加如图(单元尺度为5cm) 约束施加时在模型左侧边界所有节点上只施加x方向的约束,即令U X=0,在左下角节点上施加x、y两个方向的约束,即U X=0、U Y=0。荷载施加在右侧边界上,大小为100。 对模型进行分析求解得到: 节点应力云图(最大值222.112)

单元应力云图(最大值256.408) 可看出在孔周围有应力集中现象,其余地方应力分布较为均匀,孔上部出现最大应力。 ②细网格 单元网格的划分及约束荷载的施加如图(单元尺度为2cm)

有限元分析中的一些问题

有限元分析的一些基本考虑-----单元形状对于计算精度的影响 笔者发现,在分析复杂问题时,我们所可能出现的错误,竟然是一些很根本的错误,这些根本错误是由于对有限元的基本理论理解不清晰而造成的。 鉴于这个原因,笔者决定对一些基本问题(例如单元形状问题,单元大小问题,应力集中问题等)展开调查,从而形成了一系列文章,本篇文章是这些系列文章中的第一篇。 本篇文章先考虑有限元分析中的第一个基本问题:单元形状问题。 我们知道,单元形状对于有限元分析的结果精度有着重要影响,而对单元形状的衡量又有着诸多指标,为便于探讨,这里首先只讨论第一个最基本的指标:长宽比(四边形单元的最长尺度与最短尺度之比),而且仅考虑平面单元的长宽比对于计算精度的影响。 为此,我们给出一个成熟的算例。该算例是一根悬臂梁,在其端面施加竖直向下的抛物线分布载荷,我们现在考察用不同尺度的单元划分该梁时,对于A点位移的影响。 这五种不同的划分方式,都使用矩形单元,只不过各单元的长宽比不同。 例如第一种(1)AR=1.1,就是长宽比接近1; 第二种(2)AR=1.5,就是长宽比是1.5.其它类推。 第五种(5)AR=24,此时单元的长度是宽度的24倍。 现在我们看看按照这五种单元划分方式对于A点位移的影响,顺便我们也算出了B点的位移,结果见下表。

我们现在仔细查看一下上表,并分析其含义。 我们先考虑第一行,它是第一种单元划分情况,此时每个单元的长宽比是1.1,由此我们计算出A点,B点的垂直位移,可以看到,A点的竖直位移是-1.093英寸,而B点的竖直位移是-0.346英寸。而这两点我们都是可以用弹性力学的方式得到精确解的,其精确解分别是-1.152以及-0.360.这样,我们可以得到此时A点位移误差的百分比是 [(-1.093)-(-1.152)]/1.152 = 5.2%. 对于其它情况,也采用类似的方式得到A点位移误差的百分比。 从上表可以看出来,随着长宽比的增加,位移误差越来越大,竟然大到56%。因此,如果我们是用长宽比为24的单元进行划分的话,那么我们的结果可以说是完全错误的。 下面按照上表绘制出一张图,该图从形象的角度表达了上表的含义。 由此可见,长宽比越接近于1,那么结算结果越精确,越远离1,则误差越大。

圆孔应力有限元分析

圆孔应力有限元分析 陈春山 (安徽工业大学工商学院机械工程系) 摘要:ANSYS软件的应用领域非常广泛,可应用在以下领域:建筑、勘查、地质、水利、交通、电力、测绘、国土、环境、林业、冶金等方面,应用ANSYS软件,对平板中心圆孔的应力集中进行了有限元分析,对圆孔平板在单向和双向应力条件下的应力状况进行了计算和分析,并将有限元结果与解析解进行了比较。 关键词: 平板开小圆孔; 应力集中; 有限元分析 Round hole stress finite element analysis CHEN Chunshan (Industrial & commercial college , anhui university of technology department of mechanical engineering) Abst ract : ANSYS soft ware has a very wide range of applicat ions, can be used in t he following areas: construct ion, exp lorat ion, geology, survey ing an d mapp ing, land, wat er conservancy, t ransport at ion, elect ric p ower, environment, forestry, met allurgy, et c., t he app licat ion of ANSYS software, t he flat round hole at t he centre of the finit e element analysis of st ress concent rat ion of circle hole p lat e under t he condit ion of unidirect ional and bidirect ional st ress calculat ion and analysis, t he stress condit ion and t he finit e element result s are comp ared wit h those of t he analyt ical solut ion Key words: flat open small round hole; Stress concentration; The f inite element analysis l 前言

最新Abaqus中应力应变的理解

在ABAQUS 中对应力的部分理解 1、三维空间中任一点应力有6个分量y z xz xy z y ,,,σσσσσσ,,x ,在ABAQUS 中分别对应S11,S22,S33,S12,S13,S23。 2、一般情况下,通过该点的任意截面上有正应力及其剪应力作用。但有一些特殊截面,在这些截面上仅有正应力作用,而无剪应力作用。称这些无剪应力作用的面为主截面,其上的正应力为主应力,主截面的法线叫主轴,主截面为互相正交。主应力分别以321,,σσσ表示,按代数值排列(有正负号)为321σσσ≥≥。其中321,,σσσ在ABAQUS 中分别对应Max. Principal 、Mid. Principal 、Min. Principal ,这三个量在任何坐标系统下都是不变量。 可利用最大主应力判断一些情况:比如混凝土的开裂,若最大主应力(拉应力)大于混凝土的抗拉强度,则认为混凝土开裂,同时通过显示最大主应力的法线方向,可以大致表示出裂缝的开裂方向等。 利用最小主应力,可以查看实体中残余压应力的大小等。 3、弹塑性材料的屈服准则 3.1、Mises 屈服准则 22132322212)()()(S σσσσσσσ=-+-+- 其中s σ为材料的初始屈服应力。 在三维空间中屈服面为椭圆柱面;在二维空间中屈服面为椭圆。 Mises 等效应力的定义为:(牵扯到张量知识) 其中 S 为偏应力张量,其表达式为 其中为应力, I 为单位矩阵,p 为等效压应力(定义如下): , 也就是我们常见的)(3 1z y x p σσσ++=。 还可以具体表达为: 其中 , , 为偏应力张量(反应塑性 变形形状的变化)。 q 在ABAQUS 中对应 Mises ,它有6个分量(随坐标定义的不同而变化)S11,S22,S33,S12,S13,S23 3.2、Trasca 屈服准则 主应力间的最大差值=2k

含圆孔和裂纹板应力强度因子分析

《断裂力学》 大作业 题目:含圆孔和裂纹板应力强度因子分析. 姓名: 学号: 专业: 授课教师: ^

一、问题描述 含多裂纹矩形板受垂直方向拉伸载荷作用,如图 1 所示,计算中心裂纹尖端的应力强度因子KⅠ和KⅡ,并讨论其随即和参数L、h、a、D、 等的变化规律,写一篇分析报告。 图1. 含三条裂纹矩形板受垂直拉伸载荷作用 要求 (1)报告中计算所用到的分析方法和模型应阐述清楚,并写出必要的计算公式。 (2)绘制应力强度因子随几何参数的变化曲线。 (3)列出必要的参考文献 二、理论分析

— 在线弹性断裂力学中,I型裂纹尖端的应力场为: (1sin sin) 222 (1sin sin) 222 cos cos 222 3 3 3 x y xy σ σ τ θθθ θθθ θθθ ? =- ? ? ? =+ ? ? ? = ? ? I型裂纹尖端的位移场为: 1)cos(1cos) 22 1)sin sin 22 3 3 u v κ κ θθ θθ ? =-- ? ? ? ?=+ ?? 其中: 34 3 1 ν κν ν - ? ? =?- ?+ ? 平面应变 平面应力 同理,对II型裂纹尖端的应力场: (2cos cos) 222 cos sin cos 222 (1sin sin) 222 3 3 3 x y xy σ σ τ θθθ θθθ θθθ ? =+ ? ? ? = ? ? ? =- ? ? 显然,位移场和应力场均可以表示成应力强度因子的形式。通过对裂纹尖端的应力应变场分析来求解对应的应力强度因子,便是传统有限元求解应力强度因子的原理。而对于I、II复合型裂纹尖端的应力强度因子,可通过它们的叠加获得。 确定应力强度因子的方法有3大类:解析法、数值解法和实验方法。解析法只能计算简单问题,大多数问题需要采用数值解法,当前工程中广泛采用的数值解法是有限单元法。随着有限元法的发展,有限元

带中心圆孔矩形薄板有限元ANSYS报告

有限元计算报告 题目:带中心圆孔的矩形薄板。 共(10)页 班级:*** 姓名:*** 学号:*** 南京航空航天大学 2013年5月12日

目录 摘要 1 、计算题目及要求 (3) 2 、计算方法及解题思路 (4) 3 、原始数据 (5) 4 、计算结果及分析 (6) 5 、结论 (11) 附录 (11) 摘要: 有限元法是一门技术基础课,是力学与现代计算技术相结合的

产物,在现代结构设计方法中具有重要的意义。本文应用Ansys软件对矩形平面梁进行计算分析,利用不同尺寸的网格计算指定点的位移和应力,并选出最优网格求出指定面或线的应力、挠度分布。通过本次作业,加深对有限元法基本理论的理解,熟悉Ansys程序求解工程问题的一般步骤和方法。 1、计算题目及要求 一矩形薄板,中心处有一圆孔,尺寸如图所示,厚度 t= 1.0 cm 。在板的两端作用有均布拉力q= 128 kg / cm。已知材料的弹性模量E,μ= 0.28,γ=7.8g/ cm 2。求: (1)试用3种疏密不同的网格进行计算,比较 A, B, C 三点处的应力,从而说明有限元法的收敛性。 (2)按最佳结果给出沿 Ox 轴、Oy 轴的应力分布。 (3)若在板的上、下表面也作用有均布拉力 q,两端同时作用有均布拉力q 时,以最佳网格分别计算沿 Ox 轴、Oy 轴的应力分布。说明:(a)小孔的直径Φ取12 cm 。 (b)第(1)、(2)需与弹性理论解进行比较。 (c)均不考虑自重。

2、计算方法及解题思路: 本结构是一个矩形薄板结构,由于长度和宽度远远大于其厚度,可将其视为平面应力问题,选取Plane82二维8节点实体单元。有限元Ansys程序大致操作过程为:建立几何模型、选择单元类型、输入材料特性、网格划分、施加约束和载荷;求解;后处理。本题求解指定点应力和沿特定路线应力分布。通过定义keypoint实现,这样就可以查找该点处的应力;查看指定线上的应力分布,可以通过定义代表该线的路径实现。 模型简化: 利用对称性原理,我们可以只对平板的四分之一进行研究。 如图所示,考虑第一象限中的平板:对于X轴上的分应力fxx 及fxy,由于对称性可知fxy=0,且X轴上的质点在Y方向应没有位移。同理对于Y轴上的分应力fyx及fyy,可由对称性推出 fyx=0,且Y轴上的质点在X方向应没有位移。因此可将该部分平板看做只有一边受外载荷q,且在X轴上受Y=0,Y轴上受X=0的边界约束。而由对称性可知,二、三、四象限中的平板受载荷及边界条件情况与第一象限完全一致。因此只研究1/4平板是合理的,与研究整体平板结

土体中的应力计算

第五章 土体中的应力计算 第一节 概述 大多数建筑物是造建在土层上的,我们把支承建筑物的这种土层称为地基。由天然土层直接支承建筑物的称天然地基,软弱土层经加固后支承建筑物的称人工地基,而与地基相接触的建筑物底部称为基础。 地基受荷以后将产生应力和变形,给建筑物带来两个工程问题,即土体稳定问题和变形问题。如果地基内部所产生的应力在土的强度所允许的范围内,那么土体是稳定的,反之,土体就要发生破坏,并能引起整个地基产生滑动而失去稳定,从而导致建筑物倾倒。地基中的应力,按照其因可以分为自重应力和附加应力两种: 自重应力:由土体本身有效重量产生的应力称为自重应力。一般而言,土体在自重作用下,在漫长的地质历史上已压缩稳定,不再引起土的变形(新沉积土或近期人工充填土除外)。 附加应力:由于外荷(静的或动的)在地基内部引起的应力称为附加应力,它是使地基失去稳定和产生变形的主要原因。 附加应力的大小,除了与计算点的位置有关外,还决定于基底压力的大小和分布状况。 一、应力~应变关系的假定 真实土的应力~应变关系是非常复杂的,目前在计算地基中的附加应力时,常把土当成线弹性体,即假定其应力与应变呈线性关系,服从广义虎克定律,从而可直接应用弹性理论得出应力的解析解。 1、关于连续介质问题 弹性理论要求:受力体是连续介质。而土是由三相物质组成的碎散颗粒集合体,不是连续介质。 为此假设土体是连续体,从平均应力的概念出发,用一般材料力学的方法来定义土中的应力。 2、关于线弹性体问题 理想弹性体的应力与应变成正比直线关系,且应力卸除后变形可以完全恢复。 土体则是弹塑性物质,它的应力应变关系是呈非线性的和弹塑性的,且应力卸除后,应变也不能完全恢复。为此进行假设土的应变关系为直线,以便直接用弹性理论求土中的应力分布,但对沉降有特殊要求的建筑物,这种假设误差过大。 3、关于均质、等向问题 理想弹性体应是均质的各向同性体。 而天然地基往往是由成层土组成,为非均质各向异性体。 为此进行假设,天然地基作为均质的各向同性体。 二、地基中的几种应力状态 计算地基应力时,一般将地基当作半无限空间弹性体来考虑;即把地基看作是一个具有水平界面、深度和广度都无限大的空间弹性体。(见教材P66图3-2) 常见的地基中的应力状态有如下三种: 1、三维应力状态 荷载作用下,地基中的应力状态均属三维应力状态。每一点的应力都是x 、y 、z 的函数,每一点的应力状态都有9个应力分量。zx xz zy yz yx xy zz yy xx ττττττσσσ,,,,,,,,,写成矩阵形

《土力学》教程 3 土应力分布及计算

土力学教程 (同济大学土木工程学院编制) 目录 土的应力分布及计算 学习指导 土的自重应力 基础底面压力 集中力作用下土中应力 计算 分布荷载作用时的土中 应力计算 本章小结 学习指导 学习目标 掌握土中自重应力计算、基底压力计算以及各种荷载条件下的土中附加应力计算方法。 学习基本要求 1.掌握土中自重应力计算 2.掌握基底压力和基底附加压力分布与计算 3.掌握圆形面积均布荷载、矩形面积均布荷载、矩形面积三角形分布荷载以及条形荷载等条件下的土中竖向附加应力计算方法 4.了解地基中其他应力分量的计算公式 主要基础知识 材料应力应变基本概念 参阅:孙训方等编著,《材料力学》,高等教育出版社,1987。 弹性力学基础知识 参阅:(1)徐芝伦著,《弹性力学》,高等教育出版社,1990。 (2)吴家龙编著,《弹性力学》,同济大学出版社,1993。

一、土的自重应力 由土体重力引起的应力称为自重应力。自重应力一般是自土体形成之日起就产生于土中。 1.均质地基土的自重应力 土体在自身重力作用下任一竖直切面均是对称面,切面上都不存在切应力。因此,在深度z处平面上,土体因自身重力产生的竖向应力σc z(称竖向自重应力)等于单位面积上土柱体的重力W,如图3-1所示。在深度z处土的自重应力为: (3-1) 式中γ 为土的重度,κN/μ3 ;F为土柱体的截面积,m2。 从公式(3-1)可知,自重应力随深度z线性增加,呈三角形分布图形。 图3-1 均质土的自重应力 2.成层地基土的自重应力 地基土通常为成层土。当地基为成层土体时,设各土层的厚度为h i,重度为γi,则在深度z处土的自重应力计算 公式为: (3-2) 式中n为从天然地面到深度z处的土层数。 有关土中自重应力计算及其分布图绘制的具体方法可参见 例题3-1某土层及其物理性质指标如图3-2所示,地下水位在地表下1.0 m,计算土中自重应力并绘出分布图。

有限元分析圆柱开孔应力集中

题目内容: 筒中开有半径为a 的小圆孔,该筒的两端承受有扭矩M z 求解: (1)问题描述及数学建模;的应力变大的现象,应力集中是结构疲劳强度的薄弱环节,任何结构或零件几乎都存在应力集中。 (2)有限元建模; 用有限元求解时,圆筒扭转的单元类型以及板的厚度对计算结果没有影响,因此在 求解时,单元类型为8节点固体单元SOLID45,圆筒外径R=0.5m ,壁厚δ=0.01m ,扭矩M z = 50N ·m ,开孔半径a=0.08m 。材料特性按超硬铝(LY12-CZ):弹性模量E=71GPa ,泊松比μ=0. 33。有限元3D 建模如下图1 所示。 图 1 有限元模型

(3)Ansys求解; (1)单元选取:8节点固体单元SOLID45,材料特性选取材料特性按超硬铝(LY12-CZ):弹性模量E=71GPa,泊松比μ=0. 33。 (2)模型创建:圆筒:创建Volume s → Cylinder →By Dimensions,输入外径R=0.5m,r= 0.4m。开孔:旋转坐标轴,Z轴旋转90°,创建Volume s → Cylinder →By Dimensions,输入外径R=0.08m,r=0m,用Booleans(布尔运算)得到圆孔,模型如图2所示: 图 2 创建的模型 (3)网格划分:选择Mesh Tool里面的Smart Size,数值选为8,划分网格,如图3所示: 图 3 圆柱体网格划分 (4)施加载荷:变换当前坐标为柱状坐标,选取面积为圆柱筒上、下表面,选取面上的所有节点,激活节点位置,选取所有节点,施加FY方向的扭矩M z= 50N·m。扭矩施加如图4所示:

abaqus后处理中各应力解释个人收集修订版

a b a q u s后处理中各应力 解释个人收集修订版 IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】

ABAQUS中的壳单元S33代表的是壳单元法线方向应力,S11 S22 代表壳单元面内的应力。因为壳单元的使用范围是“沿厚度方向应力为0”,也即沿着法相方向应力为0,且满足几何条件才能使用壳单元,所以所有壳单元的仿真结果应力查看到的S33应力均为0。 S11 S22 S33 实体单元是代表X Y Z三个方向应力,但壳单元不是,另外壳单元只有S12,没有S13,S23。 LE----真应变(或对数应变) LEij---真应变 ... 应变分量; PE---塑性应变分量; PEEQ---等效塑性应变 ABAQUS Field Output Stresses S stress components and invariants 应力分量和变量 SVAVG volume-averaged stress components and invariants (Eulerian only) MISESMAX 最大 Mises 应力 TSHR transverse shear stress(for thick shells)横向剪切应力 CTSHR transverse shear stress in stacked continuum shells 连续堆垛壳横向剪切应力 TRIAX stress triaxiality 应力三轴度 VS stress in the elastic-viscous network 弹粘性网格应力 PS stress in the plastic-viscous

相关主题
文本预览
相关文档 最新文档