当前位置:文档之家› 高等数学下册(第10章)重积分及其应用教案

高等数学下册(第10章)重积分及其应用教案

高等数学下册(第10章)重积分及其应用教案
高等数学下册(第10章)重积分及其应用教案

高等数学教学教案第10章重积分及其应用授课序号01

授课序号02

授课序号03

授课序号04

授课序号05

高数重积分测试题

高数测试题七(重积分部分)答案 一、 选择题(每小题5分,共25分) 1、交换积分0 (,)(a y dy f x y dx a ? ?为常数)的次序后得( B ) A 00 (,)y a dx f x y dy ?? B 0 (,)a a x dx f x y dy ?? C (,)a x dx f x y dy ? ? C 0 (,)a y dx f x y dy ?? 2、设2222 222()()x y z t F t f x y z dv ++≤= ++??? ,其中 f 为连续函数,(0)f '存 在,而(0)0,(0)1f f '==,则5 0() lim t F t t →=( B ) A π B 45π C 35π D 2 5 π 3、球面2 2 2 2 4x y z a ++=与柱面2 2 2x y ax +=所围成立体体积(含在柱内部分)为( C ) A 2cos 2 04a d π θ θ? ? B 2cos 20 8a d π θ θ?? C 2cos 20 4 a d πθ θ? ? D 2cos 20 2 a d π θ πθ-?? 4、设D 是xy 平面上以点(1,1),(1,1),(1,1)---为顶点的三角形区域,1D 是D 在第一象限的部分,则(cos sin )D xy x y d σ+??=( A ) A 1 2 cos sin D x yd σ?? B 1 2D xyd σ?? C 1 (cos sin )D xy x y d σ+?? D 0 5、设22222222 22sin()1 arctan 0 (,)0 2 x y x y x y x y f x y x y π?++≠??++=? ?+=?? ,

【免费下载】高等数学课程教案

授课题目§9.1二重积分的概念与性质 课时安排2教学目的、要求:1.熟悉二重积分的概念,了解二重积分的性质;2.了解二重积分的几何意义。教学重点、难点:二重积分的几何意义教学内容 一、二重积分的概念1.引例与二重积分定义引例:(1).曲顶柱体的体积。(2)已知平面薄板质量(或电荷)面密度的分布时。求总质量(或电荷)。2.二重积分的几何意义 二、二重积分的性质性质1、 ,为非零常数;(,)(,)D D kf x y d k f x y d σσ=????k 性质2、;{(,)(,)}D f x y g x y d σ±??(,)(,)D D f x y d g x y d σσ=±????性质3、若,且(除边沿部分外),则12D D D =+12D D φ= 12(,)(,)(,)D D D f x y d f x y d f x y d σσσ=+?? ????性质4、若,,则:;(,)(,)f x y g x y ≥(,)x y D ∈(,)(,)D D f x y d g x y d σσ≥????性质5、估值定理性质6、(中值定理)设在上连续,则在上至少存在一点,使),(y x f D D ),(ηξA f d y x f D ?ηξ=σ??),(),(三、例题 例1 设是由与所围的区域,则D 24x y -=0=y =σ??D d π2例2 求在区域:上的平均值222),(y x R y x f --=D 222R y x ≤+讨论、思考题、作业:思考题:1.将二重积分定义与定积分定义进行比较,找出它们的相同之处与不同之处.2.估计积分的值,其中是圆形区域: .??++=D d y x I σ)94(22D 422≤+y x 习题9-1 P79 4(1),(3),5(1)(3)授课类型: 理论课教学方式:讲授教学资源:多媒体 填表说明:每项页面大小可自行调整。、管路敷设技术通过管线敷设技术,不仅可以解决吊顶层配置不规范问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标高等,要求技术交底。管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内,强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

高等数学二重积分总结

第九章二重积分 【本章逻辑框架】 【本章学习目标】 ⒈理解二重积分的概念与性质,了解二重积分的几何意义以及二重积分与定积分之间的联系,会用性质比较二重积分的大小,估计二重积分的取值范围。 ⒉领会将二重积分化为二次积分时如何确定积分次序和积分限,如何改换二次积分的积分次序,并且如何根据被积函数和积分区域的特征选择坐标系。熟练掌握直角坐标系和极坐标系下重积分的计算方法。 ⒊掌握曲顶柱体体积的求法,会求由曲面围成的空间区域的体积。 9.1 二重积分的概念与性质 【学习方法导引】 1.二重积分定义 为了更好地理解二重积分的定义,必须首先引入二重积分的两个“原型”,一个是几何的“原型”-曲顶柱体的体积如何计算,另一个是物理的“原型”—平面薄片的质量如何求。从这两个“原型”出发,对所抽象出来的二重积分的定义就易于理解了。

在二重积分的定义中,必须要特别注意其中的两个“任意”,一是将区域D 成n 个小区域12,,,n σσσ??? 的分法要任意,二是在每个小区域i σ?上的点(,)i i i ξησ∈?的取法也要任意。有了这两个“任意”,如果所对应的积分和当各小区域的直径中的最大值0λ→时总有同一个极限,才能称二元函数(,)f x y 在区域D 上的二重积分存在。 2.明确二重积分的几何意义。 (1) 若在D 上(,)f x y ≥0,则(,)d D f x y σ??表示以区域D 为底,以 (,)f x y 为曲顶的曲顶柱体的体积。特别地,当(,)f x y =1时,(,)d D f x y σ ??表示平面区域D 的面积。 (2) 若在D 上(,)f x y ≤0,则上述曲顶柱体在Oxy 面的下方,二重积分(,)d D f x y σ??的值是负的,其绝对值为该曲顶柱体的体积 (3)若(,)f x y 在D 的某些子区域上为正的,在D 的另一些子区域上为负的,则(,)d D f x y σ??表示在这些子区域上曲顶柱体体积的代数和 (即在Oxy 平面之上的曲顶柱体体积减去Oxy 平面之下的曲顶柱体的体积). 3.二重积分的性质,即线性、区域可加性、有序性、估值不等式、二重积分中值定理都与一元定积分类似。有序性常用于比较两个二重积分的大小,估值不等式常用于估计一个二重积分的取值范围,在用估值不等式对一个二重积分估值的时候,一般情形须按求函数 (,)f x y 在闭区域D 上的最大值、最小值的方法求出其最大值与最小 值,再应用估值不等式得到取值范围。

高数重积分测试题

重积分测试题 一、填空题 1. 222x y R σ+≤=?? ; 2. 1(1)x y x y d σ+≤++=?? ; 3. 将二重积分 (,)D f x y d σ??化为二次积分 (两种次序都写出来) ,其中D 为,0,y x y y ===在第一象限所围成的封闭区域; 4. 改变积分次序 2120(,)y y dy f x y dx -=?? ; 5. 将二重积分(,)D f x y d σ ??转化为极坐标系下的两次单积分 ,其中D 为0,y y == 6. 将三重积分(,,)f x y z d v Ω???化 为三次积分 ,其中Ω为22z x y =+, 1,0,0,0x y y x z +====所围成的封闭区域; 7. 将三重积分(,,)f x y z dv Ω???化为柱面坐标系下的三次积分 ,其中Ω为22z x y =+ , z =所围成的封闭区域. 二、计算题 1. 计算二重积分 D xydxdy ??,其中D 是由,1,3y x xy x ===所围成的区域; 2. 计算二重积分D x ydxdy -??,其中D :221,0,0x y x y +≤≥≥; 3. 计算二次积分 1 10x y dx dy ?; 4. 计算三重积分 3z dv Ω???,其中Ω :2221,x y z z ++≤≥ 5. 计算三重积分 Ω ???,其中Ω 是由柱面y =及平面0, (0),0z z a a y ==>=所围成的区域. 三、应用题 求旋转抛物面22z x y =+ 与上半球面z = 所围成的立体体积及表面积.

一、填空题 1.32 3R π; 2. 2 ; 3.1000(,)(,)x f x y dy f x y dy +? 及0(,)y f x y dx ; 4. 122001 0(,)(,)x dx f x y dy dx f x y dy -+???; 5. 2cos 200(cos ,sin )d f d πθ θρθρθρρ??; 6. 2211000(,,)x x y dx dy f x y z dz -+???; 7. 22100(cos ,sin ,)d d f z dz π ρθρρρθρθ?? 二、计算题 1. 110ln 32- ; 2. 21)3 ; 3. 12 ; 4. 116 π ; 5. 289a 三、应用题 V = ; 121)1)6A A A π=+=+

高数下册之重积分

第九章 重积分 以前我们学过一元函数的积分字,若f(x)在(a ,b)上可积,到积分? b a dx x f )(其中)(x f 为 被积函数,(a ,b )为积分区间。我们若把 )(x f 推广到多元函数。(a ,b)推广到区域。曲线, 曲面等危围上去,便得到重积分,曲线积分,曲面积分等,本章只讲二重积分。〖补充〗:这章的所有图形请老师自己为学生画出,并讲述画图的经过! 第一节 二重积分的概念和性质 一、二重积分的概念 先讲二个具体的问题:(1)、求曲顶柱体体积。(二)求平方薄片的质量。 (一) 求曲顶柱体体体积: 设z=f(x.,y)是定义在有界区域性D 上的非负连续函数。我们称曲面z=f(x ,y),xoy 平面上的区域D 和准线为D 的边界,母线平行于z 轴的柱体所围成的立体为曲顶柱体。现在的问题是求这个曲顶柱体的体积V 。 首先用一组曲线T 把区域D 划分为n 个小区域i σ?(i=1,2,…,n )这样就把原柱体分为n 个小曲顶柱体V i 。又记i σ?为T i 的面积,λi 为i σ?的直径,对于i σ?来说,由于f(x ,y)在i σ?连续。故当λi 很小时,f(x ,y)在i σ?上各点的函数值近似相等,从而可视i σ?上的曲顶柱体为平顶柱体,为此在i σ?中任放一点以 ),(i i f ηξ为高的小平顶柱体的体积为 i i i f σηξ?),(。并用它来代替这个小曲顶柱体的体积V i 把所有这些小平顶柱体的体积加起 来便得曲顶柱体的体积的近似值: ∑∑==??≈∨=N i N i i i i i f V 1 1 )(σηξ 最后,当分割T 的细度 O Max T i →=λ时有: ∑=→??N i i i i V f 1 )(σ ηξ

高等数学电子教案

第四章不定积分 教学目的: 1、理解原函数概念、不定积分的概念。 2、掌握不定积分的基本公式,掌握不定积分的性质,掌握换元积分法(第一,第二) 与分部积分法。 3、会求有理函数、三角函数有理式和简单无理函数的积分。 教学重点: 1、不定积分的概念; 2、不定积分的性质及基本公式; 3、换元积分法与分部积分法。 教学难点: 1、换元积分法; 2、分部积分法; 3、三角函数有理式的积分。

§4 1 不定积分的概念与性质 一、教学目的与要求: 1.理解原函数与不定积分的概念及性质。 2.掌握不定积分的基本公式。 二、重点、难点:原函数与不定积分的概念 三、主要外语词汇:At first function ,Be accumulate function , Indefinite integral ,Formulas integrals elementary forms. 四、辅助教学情况:多媒体课件第四版和第五版(修改) 五、参考教材(资料):同济大学《高等数学》第五版

一、原函数与不定积分的概念 定义1 如果在区间I 上, 可导函数F (x )的导函数为f (x ), 即对任一x ∈I , 都有 F '(x )=f (x )或dF (x )=f (x )dx , 那么函数F (x )就称为f (x )(或f (x )dx )在区间I 上的原函数. 例如 因为(sin x )'=cos x , 所以sin x 是cos x 的原函数. 又如当x ∈(1, +∞)时, 因为x x 21)(=', 所以x 是x 21的原函数. 提问: cos x 和x 21还有其它原函数吗? 原函数存在定理 如果函数f (x )在区间I 上连续, 那么在区间I 上存在可导函数F (x ), 使对任一x ∈I 都有 F '(x )=f (x ). 简单地说就是: 连续函数一定有原函数. 两点说明: 第一, 如果函数f (x )在区间I 上有原函数F (x ), 那么f (x )就有无限多个原函数, F (x )+C 都是f (x )的原函数, 其中C 是任意常数. 第二, f (x )的任意两个原函数之间只差一个常数, 即如果Φ(x )和F (x )都是f (x )的原函数, 则 Φ(x )-F (x )=C (C 为某个常数). 定义2 在区间I 上, 函数f (x )的带有任意常数项的原函数称为f (x )(或f (x )dx )在区间I 上的不定积分, 记作 ?dx x f )(. 其中记号?称为积分号, f (x )称为被积函数, f (x )dx 称为被积表达式, x 称为积分变量. 根据定义, 如果F (x )是f (x )在区间I 上的一个原函数, 那么F (x )+C 就是f (x )的不定积分, 即 ?+=C x F dx x f )()(. 因而不定积分dx x f )(?可以表示f (x )的任意一个原函数. 例1. 因为sin x 是cos x 的原函数, 所以 C x xdx +=?sin cos . 因为x 是x 21的原函数, 所以 C x dx x +=?21.

高数教案第十章重积分

高等数学教案

第十章重积分 §10-1 二重积分的概念与性质 一、二重积分的概念 (一)引例 1. 曲顶柱体的体积 设有一空间立体 ,它的底是xoy面上的有界区域D,它的侧面是以D的边界曲线为准

线,而母线平行于z轴的柱面,它的顶是曲面(.) z f x y =。 当(,) x y D ∈时,(,) f x y在D上连续且(,)0 f x y≥,以后称这种立体为曲顶柱体。 曲顶柱体的体积V可以这样来计算: (1) 用任意一组曲线网将区域D分成n个小区域1σ ?, 2 σ ?,, n σ ?,以这些小区域的边界曲线为准线,作母线平行于z轴的柱面,这些柱面将原来的曲顶柱体Ω分划成n个小曲 顶柱体 1 ?Ω, 2 ?Ω,, n ?Ω。 (假设 i σ ?所对应的小曲顶柱体为 i ?Ω,这里 i σ ?既代表第i个小区域,又表示它的面积值, i ?Ω既代表第i个小曲顶柱体,又代表它的体积值。) 图10-1-1 从而 1 n i i V = =?Ω ∑ (将Ω化整为零) (2) 由于(,) f x y连续,对于同一个小区域来说,函数值的变化不大。因此,可以将小曲顶柱体近似地看作小平顶柱体,于是 ?Ω?? i i i i i i i f ≈?∈ ()() () ξησξησ (以不变之高代替变高, 求 i ?Ω的近似值) (3) 整个曲顶柱体的体积近似值为 V f i i i i n ≈ = ∑() ξησ ? 1 (4) 为得到V的精确值,只需让这n个小区域越来越小,即让每个小区域向某点收缩。为此,我

们引入区域直径的概念: 一个闭区域的直径是指区域上任意两点距离的最大者。 所谓让区域向一点收缩性地变小,意指让区域的直径趋向于零。 设n个小区域直径中的最大者为λ, 则 V f n i i i i = →= ∑ lim() , λ ξησ 01 ? 2.平面薄片的质量 设有一平面薄片占有xoy面上的区域D, 它在() ,x y处的面密度为() ,x y ρ,这里(),0 x y ρ≥,而且(),x y ρ在D上连续,现计算该平面薄片的质量M。 图10-1-2 将D分成n个小区域1σ ?, 2 σ ?,, n σ ?,用 i λ记 i σ ?的直径, i σ ?既代表第i个小区域又代表它的面积。 当{} 1 max i i n λλ ≤≤ =很小时, 由于(),x y ρ连续, 每小片区域的质量可近似地看作是均匀的, 那么第i小块区域的近似质量可取为 ρξησξησ (,)(,) i i i i i i ?? ?∈ 于是∑ = ? ≈ n i i i i M 1 ) , (σ η ξ ρ M i i i i n = →= ∑ lim(,) λ ρξησ 01 ? 两种实际意义完全不同的问题, 最终都归结同一形式的极限问题。因此,有必要撇开这类极限问题的实际背景, 给出一个更广泛、更抽象的数学概念,即二重积分。 (二)二重积分的定义

高等数学 电子教案(下)

高等数学电子教案(下) 《高等数学》 2008 ,2009 学年第二学期 教师姓名: 李石涛 授课对象:1.化学工程与工艺0801,0803,应用化学0801,0802 2.高分子材料工程0801,0802;环境工程0801,0802 授课学时: 128/64 选用教材《高等数学》史俊贤主编 大连理工大学出版社 2006/2 基础部数学教研室 沈阳工业大学教案 第 1 周授课日期 09.2.18 授课章节:第六章 6.1 定积分元素法 教学目的: 1、理解定积分元素法的基本思想, 2、掌握用定积分表达和计算一些几何量,平面图形的面积、平面曲线 的弧长, 教学重点:平面图形的面积、平面曲线的弧长教学难点:平面图形的面积教学内容纲要: 一、定积分的元素法, 二、平面图形的面积、教 学三、平面曲线的弧长、 实采用的教学形式:讲授施 过教学方法:启发式教学

程教学步骤: 设 1、复习定积分的概念~引出定积分的元素法, 计 2、举例讲解平面图形的面积 3、举例讲解平面曲线的弧长 课后复习及作业或思考题: 1、复习定积分的元素法。 2、课后习题6-2 1、2、4、5。 教学后记: 时间: 沈阳工业大学教案 第 1 周授课日期 09.2.20 授课章节:6.2 定积分在几何学上的应用 教学目的: 1、理解定积分元素法的基本思想, 2、掌握用定积分表达和计算一些几何量,旋转体的体积及侧面积、平行截面面积为 已知的立体体积, 教学重点:旋转体的体积、平行截面面积为已知的立体体积教学难点:旋转体的体积、平行截面面积为已知的立体体积 教学内容纲要: 一、旋转体的体积、 二、平行截面面积为已知的立体体积, 教 学采用的教学形式:讲授 实教学方法:启发式教学施

高等数学电子教案(大专版)

《高等数学》教案 第一讲 函数与极限 1.函数的定义 设有两个变量x ,y 。对任意的x ∈D ,存在一定规律f ,使得y 有唯一确定的值与之对应,则y 叫x 的函数。记作y=f(x),x ∈D 。其中x 叫自变量,y 叫因变量。 函数两要素:对应法则、定义域,而函数的值域一般称为派生要素。 例1:设f(x+1)=2x 2+3x-1,求f(x). 解:设x+1=t 得x=t-1,则f(t)=2(t-1)2+3(t-1)-1=2t 2-t-2 ∴f(x)=2x 2 – x – 2 定义域:使函数有意义的自变量的集合。因此,求函数定义域需注意以下几点: ①分母不等于0 ②偶次根式被开方数大于或等于0 ③对数的真数大于0 例2 求函数y= 6—2x -x +arcsin 7 1 2x -的定义域. 解:要使函数有定义,即有: 1|7 12|062≤-≥--x x x ? 4323≤≤--≤≥x x x 或?4323≤≤-≤≤-x x 或 于是,所求函数的定义域是:[-3,-2] [3,4]. 例3 判断以下函数是否是同一函数,为什么? (1)y=lnx 2与y=2lnx (2)ω=u 与y=x 解 (1)中两函数的 定义域不同,因此不是相同的函数. (2)中两函数的 对应法则和定义域均相同,因此是同一函数. 2. 初等函数 (1)基本初等函数 常数函数:y=c(c 为常数) 幂函数: y=μ x (μ为常数) 指数函数:y=x a (a>0,a ≠1,a 为常数) 对数函数:y=x a log (a>0,a ≠1,a 为常数) 三角函数:y=sinx y=cosx y=tanx y=cotx y=secx y=cscx 反三角函数:y=arcsinx y=arccosx y=arctanx y=arccotx (2)复合函数 设),(u f y =其)(x u ?=中,且)(x ?的值全部或部分落在)(u f 的定义域内,则称)]([x f y ?=为x 的复合函数,而u 称为中间变量. 例4:若y=u ,u = sinx ,则其复合而成的函数为y=x sin ,要求u 必须≥0, ∴sinx ≥0,x ∈[2k π,π+2k π] 例5:分析下列复合函数的结构

高等数学重积分总结

高等数学重积分总结文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

第九章二重积分【本章逻辑框架】 【本章学习目标】 ⒈理解二重积分的概念与性质,了解二重积分的几何意义以及二重积分与定积分之间的联系,会用性质比较二重积分的大小,估计二重积分的取值范围。 ⒉领会将二重积分化为二次积分时如何确定积分次序和积分限,如何改换二次积分的积分次序,并且如何根据被积函数和积分区域的特征选择坐标系。熟练掌握直角坐标系和极坐标系下重积分的计算方法。 ⒊掌握曲顶柱体体积的求法,会求由曲面围成的空间区域的体积。 二重积分的概念与性质 【学习方法导引】 1.二重积分定义

为了更好地理解二重积分的定义,必须首先引入二重积分的两个“原型”,一个是几何的“原型”-曲顶柱体的体积如何计算,另一个是物理的“原型”—平面薄片的质量如何求。从这两个“原型”出发,对所抽象出来的二重积分的定义就易于理解了。 在二重积分的定义中,必须要特别注意其中的两个“任意”,一是将区域D 成n 个小区域12,,,n σσσ???的分法要任意,二是在每个小区域 i σ?上的点(,)i i i ξησ∈?的取法也要任意。有了这两个“任意”,如果所对 应的积分和当各小区域的直径中的最大值0λ→时总有同一个极限,才能称二元函数(,)f x y 在区域D 上的二重积分存在。 2.明确二重积分的几何意义。 (1) 若在D 上(,)f x y ≥0,则(,)d D f x y σ??表示以区域D 为底,以 (,)f x y 为曲顶的曲顶柱体的体积。特别地,当(,)f x y =1时,(,)d D f x y σ ??表示平面区域D 的面积。 (2) 若在D 上(,)f x y ≤0,则上述曲顶柱体在Oxy 面的下方,二重积分(,)d D f x y σ??的值是负的,其绝对值为该曲顶柱体的体积 (3)若(,)f x y 在D 的某些子区域上为正的,在D 的另一些子区域上为负的,则(,)d D f x y σ??表示在这些子区域上曲顶柱体体积的代数和(即在 Oxy 平面之上的曲顶柱体体积减去Oxy 平面之下的曲顶柱体的体积). 3.二重积分的性质,即线性、区域可加性、有序性、估值不等式、二重积分中值定理都与一元定积分类似。有序性常用于比较两个二重积分的大小,估值不等式常用于估计一个二重积分的取值范围,在用估值不等式对一个二重积分估值的时候,一般情形须按求函数(,)f x y 在闭区域

高数 重积分 (1)

高数资料 第十章重积分 重积分 积分类型计算方法典型例题 二重积分 ()σd , ??= D y x f I 平面薄片的质 量 质量=面密度 ?面积 (1)利用直角坐标系 X—型???? = D b a x x dy y x f dx dxdy y x f)( ) ( 2 1 ) , ( ) , (φ φ Y—型?? ??=d c y y D dx y x f dy dxdy y x f)( ) ( 2 1 ) , ( ) , (? ? P141—例1、例3 (2)利用极坐标系 使用原则 (1) 积分区域的边界曲线易于用极坐标方程表示( 含圆弧,直线段); (2) 被积函数用极坐标变量表示较简单( 含22 () x yα +, α为实数) 2 1 () () (cos,sin) (cos,sin) D f d d d f d β?θ α?θ ρθρθρρθ θρθρθρρ = ?? ?? 02 θπ ≤≤0θπ ≤≤2 πθπ ≤≤ P147—例5 (3)利用积分区域的对称性与被积函数的奇偶性 当D关于y轴对称时,(关于x轴对称时,有类似结论) P141—例2 应用该性质更方便

110(,)(,)(,)2(,)(,)(,)(,)D f x y x f x y f x y I f x y dxdy f x y x f x y f x y D D ???-=-?? =???-=??? ??对于是奇函数,即对于是偶函数,即是的右半部分 计算步骤及注意事项 1. 画出积分区域 2. 选择坐标系 标准:域边界应尽量多为坐标轴,被积函数 关于坐标变量易分离 3. 确定积分次序 原则:积分区域分块少,累次积分好算为妙 4. 确定积分限 方法:图示法 先积一条线,后扫积分域 5. 计算要简便 注意:充分利用对称性,奇偶性 三重积分 ???Ω = dv z y x f I ),,( 空间立体物的质量 (1) 利用直角坐标? ??截面法投影法 投影 ????? ?=Ω b a y x z y x z x y x y z z y x f y x V z y x f ) ,() ,()() (2121d ),,(d d d ),,( P159—例1 P160—例2 (2) 利用柱面坐标 cos sin x r y r z z θ θ=?? =??=? 相当于在投影法的基础上直角坐标转换成极坐标 适用范围: ○ 1积分区域表面用柱面坐标表示时方程简单;如 旋转体 ○ 2被积函数用柱面坐标表示时变量易分离.如2 2 2 2 ()()f x y f x z ++ 21() () (,,)d d d (cos ,sin ,)d b r a r f x y z V z f z β θα θθρθρθρρΩ =??? ??? P161—例3 (3)利用球面坐标 cos sin cos sin sin sin cos x r y r z r ρθ?θρθ?θ?==?? ==??=? dv r drd d =2sin ??θ 适用范围: ○ 1积分域表面用球面坐标表示时方程简单;如,球体,锥体. P165—10-(1)

(完整版)同济第六版《高等数学》教案WORD版-第09章重积分.doc

高等数学教案 §9 重积分 第九章 重积分 教学目的: 1. 理解二重积分、 三重积分的概念, 了解重积分的性质, 知道二重积分的中值定理。 2. 掌握二重积分的(直角坐标、极坐标)计算方法。 3. 掌握计算三重积分的(直角坐标、柱面坐标、球面坐标)计算方法。 8、会用重积分求一些几何量与物理量(平面图形的面积、体积、重心、转动惯量、引力等)。 教学重点: 1、 二重积分的计算(直角坐标、极坐标) ; 2、 三重积分的(直角坐标、柱面坐标、球面坐标)计算。 3、二、三重积分的几何应用及物理应用。 教学难点: 1、 利用极坐标计算二重积分; 2、 利用球坐标计算三重积分; 3、 物理应用中的引力问题。 §9 1 二重积分的概念与性质 一、二重积分的概念 1 曲顶柱体的体积 设有一立体 它的底是 xOy 面上的闭区域 D 它的侧面是以 D 的边界曲线为准线而母 线平行于 z 轴的柱面 它的顶是曲面 z f(x y) 这里 f(x y) 0 且在 D 上连续 这种立体叫做 曲顶柱体 现在我们来讨论如何计算曲顶柱体的体积 首先 用一组曲线网把 D 分成 n 个小区域 1 2 n 分别以这些小闭区域的边界曲线为准线 作母线平行于 z 轴的柱面 这些柱面把原来的曲 顶柱体分为 n 个细曲顶柱体 在每个 i 中任取一点 ( i i ) 以 f ( ii ) 为 高而底为 i 的平顶柱体的体积为 f ( i i ) i (i 1 2n ) 这个平顶柱体体积之和 n V f ( i , i ) i i 1

可以认为是整个曲顶柱体体积的近似值为求得曲顶柱体体积的精确值将分割加密只需取极限即 n V lim f ( i , i )i i 1 其中是个小区域的直径中的最大值 2平面薄片的质量 设有一平面薄片占有xOy面上的闭区域D它在点(x y)处的面密度为(x y)这里(x y) 0 且在 D 上连续现在要计算该薄片的质量M 用一组曲线网把 D 分成 n 个小区域 12n 把各小块的质量近似地看作均匀薄片的质量 (i i)i 各小块质量的和作为平面薄片的质量的近似值 n M( i , i )i i 1 将分割加细取极限得到平面薄片的质量 n M lim( i , i )i i 1 其中是个小区域的直径中的最大值 定义设f(x y)是有界闭区域 D 上的有界函数将闭区域 D 任意分成n 个小闭区域 12n 其中i 表示第i 个小区域也表示它的面积在每个i 上任取一点(i i )作和n f ( i , i )i i 1 如果当各小闭区域的直径中的最大值趋于零时这和的极限总存在则称此极限为函数 f(x y)在闭区域 D 上的二重积分记作 f (x, y)d即 D

高等数学典型例题与应用实例(重积分B部分)

例 利用二重积分的性质,估计积分 2222(2)d D x y x y σ+-?? 的值,其中D 为半圆形区域22 4,0x y y +≤≥. 解 我们先求函数2 2 2 2 (,)2f x y x y x y =+-在区域22{(,)4,0}D x y x y y =+≤≥上的最大值和最小值. 由22 220,420,x y f x xy f y x y '?=-=? ?'=-=??解得D 内驻点为(2,1)±,(2,1)2f ±=. 在边界1:0L y =(22)x -≤≤上,2 ()(,0)g x f x x ==在1L 上(,)f x y 的最大值为4,最小值为0. 在边界22 2:4L x y +=(0)y ≥上, 242()(,4)58(22)h x f x x x x x =-=-+-≤≤ 由3 ()4100h x x x '=-=得驻点123550,,22 x x x ==- =,(0)(0,2)8h f ==. 5537 ()(,)2224 h f ± =±=. 综上,(,)f x y 在D 上的最大值为8,最小值为0.又D 的面积为2π,所以由二重积分的估值性质知 222202(2)d 82D x y x y πσπ?≤+-≤???, 即 22220(2)d 16D x y x y σπ≤+-≤??. 例 设D 为xoy 平面上以(1,1),(1,1),(1,1)---为顶点的三角形区域,1D 为D 在第一象限的部分,则 (cos sin )( )D xy x y dxdy +=??. (A )1 2 cos sin D x y dxdy ?? (B )1 2D xy dxdy ?? (C )1 4 (cos sin )D xy x y dxdy +?? (D )0 解 区域D 如图所示,并记0D 为以(1,1),(1,1),(0,0)-为顶点的三角

高数(同济第六版)下册重积分习题精选

第十章 重积分一、计算二次积分dy xy dx x x 21 02∫∫解dx dx x x dy xy dx x x x x x )()(33 1063310210742?∫=?∫=∫∫40 1102415][85=?=x x 二、求由1=xy 及25=+y x 所围成区域的面积。解所求面积dy dx x x ∫∫?251212三、写出二重积分dxdy y x f D ),(∫∫的直角坐标计算公式,积分区域D 如下: 1.D 是以)0,0(O ,)1,2(A ,)1,2(?B 为顶点的三角形。解dy y x f dx dy y x f dx dxdy y x f x x D ),(),(),(1201022 121∫∫+∫∫=??∫∫dx y x f dy y y ),(2210∫∫=?2.D 是曲线2x y =,1=y 所包围的区域。 dx y x f dy dy y x f dx dxdy y x f y y x D ),(),(),(101112∫∫=∫∫=??∫∫3.其中D 是以)0,0(O ,)0,1(A ,)1,1(B 为顶点的三角形。解dx y x f dy dy y x f dx dxdy y x f y x D ),(),(),(110010∫∫=∫∫=∫∫四、写出二重积分dxdy y x f D ),(∫∫的极坐标计算公式,积分区域D 如下:1.{}222),(a y x y x ≤+)0(>a 解dxdy y x f D ),(∫∫=ρ ρθρθρθπd f d a )sin ,cos (020∫∫2.{} x y x y x 2),(22≤+解dxdy y x f D ),(∫∫=ρρθρθρθθπ πd f d )sin ,cos (cos 2022∫∫?3.{} 2222),(b y x a y x ≤+≤解dxdy y x f D ),(∫∫=ρ ρθρθρθπd f d b a )sin ,cos (20∫∫4.{} 10,10),(≤≤?≤≤x x y y x 解dxdy y x f D ),(∫∫=ρ ρθρθρθθθπd f d )sin ,cos (sin cos 1 200∫∫+0.00.20.40.60.8 1.0 0.00.5 1.0x y

高等数学电子教案7.

第七章微分方程 教学目的: 1.了解微分方程及其解、阶、通解,初始条件和特等概念。 2.熟练掌握变量可分离的微分方程及一阶线性微分方程的解法。 3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程。 4.会用降阶法解下列微分方程: ()() n y f x =,(,) y f x y ''' +和(,) y f y y ''' = 5.理解线性微分方程解的性质及解的结构定理。 6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程。 7.求自由项为多项式、指数函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程的特解和通解。 8.会解欧拉方程,会解包含两个未知函数的一阶常系数线性微分方程组。 9.会解微分方程组(或方程组)解决一些简单的应用问题。 教学重点: 1、可分离的微分方程及一阶线性微分方程的解法 2、可降阶的高阶微分方程 ()() n y f x =,(,) y f x y ''' +和(,) y f y y ''' = 3、二阶常系数齐次线性微分方程; 4、自由项为多项式、指数函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微 分方程; 教学难点: 1、齐次微分方程、伯努利方程和全微分方程; 2、线性微分方程解的性质及解的结构定理; 3、自由项为多项式、指数函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程的特解。 青岛科技大学数理学院高等数学课程建设组

青岛科技大学数理学院高等数学课程建设组 4、欧拉方程 §7. 1 微分方程的基本概念 函数是客观事物的内部联系在数量方面的反映, 利用函数关系又可以对客观事物的规律性进行研究. 因此如何寻找出所需要的函数关系, 在实践中具有重要意义. 在许多问题中, 往往不能直接找出所需要的函数关系, 但是根据问题所提供的情况, 有时可以列出含有要找的函数及其导数的关系式. 这样的关系就是所谓微分方程.含有未知函数的导数或微分的方程叫做微分方程。历史悠久(与微积分同时诞生),应用广泛。 微分方程建立以后, 对它进行研究, 找出未知函数来, 这就是解微分方程. 例1 一曲线通过点(1, 2), 且在该曲线上任一点M (x , y )处的切线的斜率为2x , 求这曲线的方程. 解 设所求曲线的方程为y =y (x ). 根据导数的几何意义, 可知未知函数y =y (x )应满足关系式(称为微分方程) x dx dy 2=. (1) 此外, 未知函数y =y (x )还应满足下列条件: x =1时, y =2, 简记为y |x =1=2. (2) 把(1)式两端积分, 得(称为微分方程的通解) ? =xdx y 2, 即y =x 2+C , (3) 其中C 是任意常数. 把条件“x =1时, y =2”代入(3)式, 得 2=12+C , 由此定出C =1. 把C =1代入(3)式, 得所求曲线方程(称为微分方程满足条件y |x =1=2的解): y =x 2+1. 例2 列车在平直线路上以20m/s(相当于72km/h)的速度行驶; 当制动时列车获得加速度-0.4m/s 2. 问开始制动后多少时间列车才能停住, 以及列车在这段时间里行驶了多少路程? 解 设列车在开始制动后t 秒时行驶了s 米. 根据题意, 反映制动阶段列车运动规律的函数s =s (t )应满足关系式 4.02 2-=dt s d . (4)

高等数学重积分总结

第九章 二重积分 【本章逻辑框架】 ⒈理解二重积分的概念与性质,了解二重积分的几何意义以及二重积分与定积分之间的联系,会用性质比较二重积分的大小,估计二重积分的取值范围。 ⒉领会将二重积分化为二次积分时如何确定积分次序和积分限,如何改换二次积分的积分次序,并且如何根据被积函数和积分区域的特征选择坐标系。熟练掌握直角坐标系和极坐标系下重积分的计算方法。 ⒊掌握曲顶柱体体积的求法,会求由曲面围成的空间区域的体积。 9.1 二重积分的概念与性质 【学习方法导引】 1.二重积分定义 为了更好地理解二重积分的定义,必须首先引入二重积分的两个“原型”,一个是几何的“原型”-曲顶柱体的体积如何计算,另一个是物理的“原型”—平面薄片的质量如何求。从这两个“原型”出发,对所抽象出来的二重积分的定义就易于理解了。 在二重积分的定义中,必须要特别注意其中的两个“任意”,一是将区域D 成n 个小区域12,,,n σσσ???的分法要任意,二是在每个小区域i σ?上的点 (,)i i i ξησ∈?的取法也要任意。有了这两个“任意”,如果所对应的积分和当各 小区域的直径中的最大值0λ→时总有同一个极限,才能称二元函数(,)f x y 在区域D 上的二重积分存在。 2.明确二重积分的几何意义。

(1) 若在D 上(,)f x y ≥0,则(,)d D f x y σ??表示以区域D 为底,以(,)f x y 为曲 顶的曲顶柱体的体积。特别地,当(,)f x y =1时,(,)d D f x y σ??表示平面区域D 的面积。 (2) 若在D 上(,)f x y ≤0,则上述曲顶柱体在Oxy 面的下方,二重积分 (,)d D f x y σ??的值是负的,其绝对值为该曲顶柱体的体积 (3)若(,)f x y 在D 的某些子区域上为正的,在D 的另一些子区域上为负的,则(,)d D f x y σ??表示在这些子区域上曲顶柱体体积的代数和(即在Oxy 平面之上 的曲顶柱体体积减去Oxy 平面之下的曲顶柱体的体积). 3.二重积分的性质,即线性、区域可加性、有序性、估值不等式、二重积分中值定理都与一元定积分类似。有序性常用于比较两个二重积分的大小,估值不等式常用于估计一个二重积分的取值范围,在用估值不等式对一个二重积分估值的时候,一般情形须按求函数(,)f x y 在闭区域D 上的最大值、最小值的方法求出其最大值与最小值,再应用估值不等式得到取值范围。 【主要概念梳理】 1.二重积分的定义 设二元函数f(x,y)在闭区域D 上有定义且有界. 分割 用任意两组曲线分割D 成n 个小区域12,,,n σσσ???,同时用i σ?表示它们的面积,1,2,,.i n =其中任意两小块i σ?和()j i j σ?≠除边界外无公共点。 i σ?既表示第i 小块,又表示第i 小块的面积. 近似、求和 对任意点(,)i i i ξησ∈? ,作和式1 (,).n i i i i f ξησ=?∑ 取极限 若i λ为i σ?的直径,记12max{,,,}n λλλλ=,若极限0 1 lim (,)n i i i i f λξησ→=?∑ 存在,且它不依赖于区域D 的分法,也不依赖于点(,)i i ξη的取法,称此极限为f (x,y )在D 上的二重积分. 记为

高等数学定积分应用习题答案

第六章 定积分的应用 习题 6-2 (A) 1. 求下列函数与 x 轴所围部分的面积: ] 3,0[,86)1(2+-=x x y ] 3,0[, 2)2(2x x y -= 2. 求下列各图中阴影部分的面积: 图 6-1 3.求由下列各曲线围成的图形的面积: ; 1,)1(===-x e y e y x x 与 ; )0(ln ,ln ,0ln )2(>>====a b b y a y x x y 与 ;0,2)3(2==-=y x y x x y 与 ; )1(,2)4(22--==x y x y ;0,2)1(4)5(2=-=-=y x y x y 与 ; 2,)6(2x y x y x y ===与 ; )0(2sin ,sin 2)7(π≤≤==x x y x y ; 8,2 )8(222 (两部分都要计算)=+=y x x y 4.的图形的面积。 所围成与直线求由曲线e x e x y x y ====-,,0ln 1 5.的面积。处的切线所围成的图形和及其在点求抛物线)0,3()3,0(342--+-=x x y 6.的面积。处的法线所围成的图形及其在点求抛物线),2 (22p p px y = 7.形的面积。与两坐标轴所围成的图求曲线a y x =+ 8.所围图形的面积。求椭圆 12 2 22 =+b y a x 9.。与横轴所围图形的面积(的一拱求由摆线)20)cos 1(),sin (π≤≤-=-=t t a y t t a x 10.轴之间的图形的面积。的切线的左方及下方与由该曲线过原点求位于曲线x e y x = 11.求由下列各方程表示的曲线围成的图形的面积: ;)0(sin 2)1(>=a a θρ ; )0()cos 2(2)2(>+=a a θρ ; 2cos 2)3(2(双纽线)θρ= 抛物体的体积。 轴旋转,计算所得旋转 所围成的图形绕及直线把抛物线x x x x ax y )0(4.12002>==

相关主题
文本预览
相关文档 最新文档