当前位置:文档之家› 市政污泥干化设计方案

市政污泥干化设计方案

市政污泥干化设计方案
市政污泥干化设计方案

2t/d市政生活污泥干化设计方案

第一绪论

1.1市政污泥处理工艺的发展和现状

早在20世纪40年代,日本和欧美等国家开始将干化技术用于对污泥的处理,经过几十年的发展,污泥干化技术的优点正逐渐显现出来。干化后的污泥显著减少容积;形成颗粒或粉状稳定产品,污泥性状大大改善;使干化后的污泥更易被后续处理;而其产品具有多种用途,如作肥料、土壤改良剂、替代能源等。所以无论填埋、焚烧、农业利用还是热能利用,污泥干化处理都是重要的一步。

污泥的干化分为全干化和半干化两种方式,其中全干化是将含水率大约80%脱水污泥干燥到含水率10%左右,而半干化是将含水率大约80%脱水污泥干燥到含水率40%左右。同全干化处理方式相比较,半干化方式投资和运行费用相对较低,系统运行安全可靠,干化过程中产品的含水率可以根据需要进行调整,干化后的产品用途较广。

根据调研资料,市政生活污泥含水率一般在75%~80%,污泥呈半固态,需干化脱水后再进行下一步处理。污泥干化常规方法主要有自然干化、热力干化、高干脱水等。第二章污泥干化工艺介绍及选择

2.1自然干化

自然干化是指将污泥摊铺晾晒于具有自然滤层或人工滤层的干化场中,借助自然力和介质(如太阳能、风能和空气),使得污泥中的水分因周边空气的蒸汽压的不同而形成从内向外的迁移(蒸发)。该方法适用于气候比较干燥、占地不紧张以及环境卫生条件允许的地区。由于气候条件(降雨量、蒸发量、相对密度、风速、年冰冻期)起着至关重要的作用,我国南方大多数具有多雨潮湿季节的地区难以适用。此外随着工业化、城市化的高速发展,很多北方的大中型发达城市也已难找到适当的土地。

自然干化的周期长(根据气候条件差异极大),可以采用频繁机械搅拌和翻到工艺的强化自然干化来缩短周期;但占地面积大,臭气污染严重等问题的存在,仍以处理小规模经过厌氧消化的脱水污泥为佳。

2.2热干化

污泥的大规模、工业化处理工艺中最常见的是热干化工艺。事实上,通常人们所讨论的“干化”多数是指热干化。热干化是指利用燃烧化石燃料所产生的热量或工业余热、废热,通过专门的工艺和设备,使污泥失去

部分或大部分水分的过程。这一过程具有处理时间短、占用场地小、处理能力大、减量率高、卫生化程度高、外部因素影响小(如气候、污泥性质等)、最终处臵适用性好和灵活性高等优点。

污泥热力干化工艺通常有半干化(含水率不高于40%)和全干化(含水率低于20%)两种,热干化工艺一般仅用脱水污泥,主要技术性能指标(以单机升水蒸发量计)为:热能消耗2940~4200KJ/kgH2O,电能消耗0.04~0.90KW kgH2O。污泥含水率55%~65%时,热值为4.8~6.5MJ/kg,可自持燃烧,这样不会受电厂热负荷的影响,真正达到无害化处理效果。

但热力干化的缺点在于初建投资大,具有一定的运行风险,采用化石燃料提供热能的成本因燃料价格而相对较高。因此,对于人口密集、土地资源紧张的大中型城市污水厂来说,热力干化成为一种首先的减量化工具。

2.3高干脱水

高干脱水一般是指采用化学和物理的综合方法对污泥颗粒进行表面化学改性,使其颗粒表面的水和毛细孔道中的束搏水使其成为自由水,然后通过高强度机械压滤析出达到高干的目的。一般污泥是通过加药改性和机械压滤方式把含水率从80%左右降低至50%以下,干化后的污泥或填埋或送至燃煤电厂或垃圾电厂与燃煤或生活垃圾混合焚烧发电。该技术是从机理、药剂、机械进行匹配。其中所加药剂不仅可以通过螯合作用除去水中的金属离子,还可以通过电中和作用、氢键作用和架桥作用将水中的微粒凝聚成较大的絮体而聚沉下来。因此,药剂中主要起吸附作用的改性固体无机药剂与主要起架桥作用的有机高分子药剂相互协同互补。药剂中的无机成分对污泥微粒进行吸附聚沉,其成分中存在着可交换的水合阳离子(如Ca2+、Na+、K+)和层间水等,这种结构特点就决定了它在垂直层面方向上有可膨胀性和较大的内、外表面积,使其具有较强的吸附性能和阳离子交换性能, 因而对水中微粒和金属阳离子均有一定的吸附性,而其纳米级的粒径使其外表面积变大、吸附性能得到很大提高,药剂中还加入微量交联剂后使其层间域进一步开放、撑大,使其吸附范围进一步扩大。

污泥加药后,泥中的胶体结构因加药发生化学反应,在胶核上形成结晶和长大,吸附水转化为结晶结构水,结晶结构形成后即实现了生活污水污泥的固态化。这种固态化的过程是不可逆的过程从而保证了改性后污泥不致二次污泥化并且污泥形成晶体结构后,其所含水分可被迅速分离蒸发。

改性后的污泥以0.6~1.0MPa的输送压力送入本污泥脱水机的多块滤板之间的空隙内,

在污泥输送至滤板之间的空隙内过程中,即有部分水分被滤出,输送结束后,关闭本污泥脱水机的进泥阀门,启动本污泥脱水机的高压油泵,由高压油泵提供25~30MPa的压力使滤板之间空隙内的污泥再次压滤,得到含水率为50%以下的半干泥饼。高压油泵提供的压力传递到滤板上,使滤板的压力从1.0~5.0MPa逐步升高,使滤板之间的污泥再次压滤脱水。

高干脱水技术从污泥含水分的赋存状态入手,根据物化性分段对应,按其物性,各得其所。具有学科交叉,技术嫁接的创新特点,但新增设备多、工艺复杂、工程投资大,且改性药剂会提高污泥重金属含量,虽然生活污水重金属含量比较低,但也会增加环境风险。

2.4工艺选择

2.41干化工艺选择

以下将从技术可靠性、工程投资、工程成本等方面对上述三种工艺进行比较。

(如表1)

(表1)

根据上述三种干化工艺比较,本项目污泥处理量有限(2t/d),采用自然干化工艺的话,虽然场地不需要太大,投资小但处理时间过长,容易对周边环境产生不利影响,可采用热力干化对污泥进行干燥处理,一次性投资较小,干化效果好,且成本较低,厂内封闭管理,不易对环境产生不利影响;而采用高干脱水,由于投加药剂处理污泥,有可能增加环境风险,同时成本较高,实施难度大。因此,本方案推荐热力干化工艺。

2.42 热干化工艺选择

热力干化常见的工艺主要包括:直接加热干化,间接加热干化,太阳能干化等工艺。(如表2)

(表2)

由于本项目处理量比较小,间接加热工艺运用比较广泛也适合本项目实际情况。间接加热工艺中应用的转盘式干燥机,热效率达到95%,保证了系统的热量平衡。 尾气处理设备相对节省,同时蒸汽和臭味封闭不外泄,环境影响小,辅助空气量少,还可避免粉尘爆炸。 因此本项目选择转盘式干化工

艺。

第三章 工艺流程及设备

3.1 工艺流程

污水处理厂的市政污泥进入污泥储仓,污泥的含水率在80%左右。通过输送机构送入污泥干燥机进行半干化处理,半干化后的污泥含水率在40%左右。由于高湿物料遇高温时,产生大量的废气;在系统中增加了废气处理工艺,将废气引入烟气净化设备,经旋风除尘、喷淋洗涤进行尾气处理后15m 高空达标排放。(如图1)

(图1)

3.1.1废料供应系统

经过初期脱水处理的污泥饼(含水80%)由污水处理厂的脱水车间运送至卸料坑,再通过传送带或螺旋输送机被输送到污泥贮存罐中。为了监测输送量,各输送线可根据具体情况设计安装皮带秤或计量螺旋。

污泥储存罐可以保证难流动的脱水污泥的储存方便卸出,防止污泥架桥现象的发生;能够精确的配量出料。料仓结构简单,能充分利用空间,同时密封性好。

卸料坑、贮存罐设有污泥排出装置,该装置与提升系统采用联合液压动力单元驱动,便于连锁控制。

3.1.2 污泥干化系统

污泥半干化通过转盘式干燥机完成,机械脱水污泥由干燥机一端进入,干燥机以蒸汽为热源通过卧式转盘间接加热,随着其中水分的蒸发,物料被转子上的斜插板推送至另一端并从干燥机底部出口阀排出。干燥机内保持适当的负压,防止臭气外溢。

转盘式干燥机主要是由定子(外壳),转子(转盘)和驱动装置组成。干燥机的转子采用中空轴,轴内部与每个转盘内腔连通蒸汽。通过轴承与定子端板相连。中空轴与蒸汽和冷凝水管道连接。

转盘式干燥机通过金属表面接触进行间接式热传递,干燥机与螺旋输送机外表面可采用保温隔热材料防烫保温,总热效率高达95%。采用低温热源(≤150℃)、低氧(≤0.4%O2)等有利参数选择,防止污泥在干燥过程中发生自燃、爆炸等情况。半干化热处理的污泥,在机内100℃以上温度逗留1小时,符合食品杀菌消毒标准。

干燥机的空气量由阀门来控制,利用这少量空气把从污泥蒸发出来的水份带走,防止蒸汽在干燥机内部冷凝液化,从而预防腐蚀干燥机。通过蒸汽压力的调节,可以改变蒸发能力,通过改变干燥机的填料状况,可以达到调节导热面积的目的,由进料螺旋输送量确定进料量,干燥机本身有过载保护。干燥机正常运行期间,仅需对设备进行微调,调节可通过中控室的PLC控制系统来完成。

污泥中的水份以蒸汽的形式被收集在干燥机蒸汽拱顶中,然后排出去。干燥机中的最低压5-10 mm 水柱,通过离心抽风机马达的频率调控来实现。冷凝液化器从上部喷下冷水(20℃),将蒸汽冷凝液化。液化水(40℃)从冷凝液化器的底部排出,送入污水厂处理。

3.1.3 废气处理系统

旋风分离器

转盘式干燥机废气出口设一套旋风分离器,分离废气带出的粉尘,除尘效率一般在90%,收集的粉尘直接与干化污泥进行混合作为处理后出泥。

主要参数说明:设备尺寸:Φ1200×3500 主体尺寸:Φ1200×1800 关风机:9L 1.5KW 除尘效率:≤5um 75%,>5um 90% 过滤风速:9-11m/s

喷淋洗涤塔

本设计喷淋洗涤塔采用直立逆流式洗涤吸塔,在洗涤塔的喷淋系统上层有一气液分离装臵,该分离装臵是将吸收液分离下来,阻塞进入风机系统。

洗涤吸收液循环装臵由循环泵、不堵塞喷嘴、喷管、循环水箱、固液分离器、压力表等组件组成。洗涤吸收液循环系统设计时考虑到了布水的均匀及水体污染颗粒的存在。管道上安装了固液分离器及采用不易堵塞、拆装方便的螺旋喷嘴。洗涤吸收液循环装臵由电控柜控制运行。合上循环泵运行安钮,循环泵运转。循环水箱的中和液通过循环泵、固液分离器、喷管、不堵塞喷嘴、再到循环水箱,实现了中和液和氧化液的不间断循环运行。

喷淋洗涤塔每级循环水箱装有补水电磁阀、自动液位浮球阀一个。补水电磁阀受自动液位仪控制,当液位处于低位时,自动液位仪给补水电磁阀信号,补水电磁阀打开,向循环水箱补水。当液位元处于高位时,自动液位仪给补水电磁阀信号,补水电磁阀关闭,停止补水。并有独立的废液排放系统。每个系统排污口、球阀。循环水箱的循环液循环一定时间后需要排放。喷淋洗涤塔主体组成如下:

处理风量:25000 Nm3/h 型式:直立逆流式洗涤塔数量:1套

材质:聚丙烯- PP,防腐厚度:12mm

主体部分:循环水槽、过滤装臵、填充层、除水层、检修窗口等PVC喷淋系统:循环水泵、洒水管道、螺旋防堵喷嘴、水位控制阀及开关配套设备:

引风机1台,型号FAN-SY-YS-030,材质FRP,功率18.5Kw静压:140MMAQ 1400PA。

填充材料:

①填充洗涤层:填充物系采用特拉瑞德(TELLERETTE PACKING No.2-K TYPE)。其材质为PP制,空隙率95%,对气流阻力小,表面积(94M2/M3),其内部压力损失为20mmAq,均有螺旋喷嘴型式非阻塞型,其材质为(PP)。

②除雾层:去除效率(10microns)达99%以上,采用特拉瑞德

(TELLERETTE PACKING No.1-R TYPE)其材质为PP。

③填充支撑栅板材质为PP。

喷淋洗涤塔主要技术指标

型式:逆流式

规格尺寸:Φ3000*5500mm dn=900mm

材质PP材质,壁厚12mm ,处理能力30000Nm3/h塔内汽流速度1-1.2m/s,烟囱流速10-12m/s

耗水量循环水(每小时补水0.05t)

最高操作溫度50℃

循环水泵N=4kW H=25m 2台1用1备循环水量35m3/h

烟囱

排放烟囱高度根据国家标准,确定排放烟囱的高度设定为15米,内部防腐。

第四章安全事项

由于污泥是一种超细的高有机质粉末,干燥蒸发使得颗粒表面留下大量空洞和孔隙,因而具有极高的比表面积。当污泥粉尘积聚到一定的浓度,在助燃空气和点燃能量等条件具备的条件下,发生强烈的氧化,氧化释放出热量,可能会导致粉尘爆炸,焖燃,燃烧,自燃等安全事故发生,导致设备或管线的变形、损坏乃至不可恢复的破坏。因此,项目运行需要极高的安全措施,来预防安全事故的发生。

理论上的预防性措施有以下几个:

(1)避免爆炸性气体进入;阻止污染物进入干燥器中,例如:甲烷、汽油和柴油液滴、化工污染源等。

(2)在经济允许的程度上,使用惰性气体系统,降低含氧量。有各种措施来确保惰性气体工况,如全氮气、全蒸汽干燥回路等。仅对有些工艺可行,但可能导致运行成本的增加。

(3)避免一切火源;去除诸如含铁物质、金属,石块等会产生火花的潜在火源,尽可能避免焖燃产生的火源。

(4)严密监测进料含固率,杜绝一切非正常混料的可能性;比如因紧急停车导致的各种不同半干产品单独管理,进场污泥的分别储存等。

参考文献

[1] 陈君宏.污泥干化基础知识与工艺选型原

则.https://www.doczj.com/doc/2c18834067.html,

[2] 丁敏.朱小玲.污泥干化焚烧系统安全性评价.能源技术与管理,2012年第1期

[4] 蒋建华.固体废弃物处置与资源化.化学工业出版社.北

京. 2007.12.

[5]余杰.田宁宁.王凯军.我国污泥处理.处置技术政策探讨[J]中国给排水.2005.8(21):84-87

[6]王雁河.张书廷.剩余污泥干化技术的研究进展与发展方向. [J]污染防治技术,2007,20(3):51-53

污泥干化焚烧处理技术.

污泥干化焚烧处理技术 公司简介: 华西能源工业股份有限公司(原东方锅炉工业集团有限公司)位于四川省自贡市,是我国大型电站锅炉、大型电站辅机、特种锅炉研发制造商和出口基地之一。华西能源一直专注于各类大中型电站锅炉以及世界先进动力技术的研发、设计和制造,开发了具有国内领先水平的以煤粉、煤矸石、水煤浆、油页岩、石油焦、油气、高炉煤气及工业废弃物与生活废弃物等为燃料的高新锅炉技术,并发展成为我国专业从事电站锅炉、碱回收锅炉、生物质燃料锅炉、垃圾焚烧锅炉、油泥砂锅炉、高炉煤气锅炉、工业锅炉以及其它各类特种锅炉研发、设计、制造的大型骨干企业。 污泥干化焚烧技术来源 华西能源和韩国HANSOL EME等国外知名公司合作,可以提供湿污泥直接焚烧系统、污泥干化焚烧系统、污泥全干化系统及污泥半干化系统的设计、供货、建设、运营、维护的全方位服务,也可提供技术咨询、工艺设计、核心及配套设备集成供货等多种形式服务。

污泥热处理的优势 焚烧 (最大程度的 细菌和微生

污泥处理技术 干化: 间接水平转碟式干化机 焚烧: 具有高效能量回收的流化床炉 污泥含水率和有机物含量对燃烧的影响 我国污水处理厂机械脱水污泥含水率多在80~83%(含固率在17~20%),有机物含量大多数在60%以下。从污泥的含固率和有机物含量对燃烧的影响曲线可以看到,污泥直接焚烧不能依靠自身的热量维持燃烧温度,要自持燃烧,污泥的含水率要小于70%。

污泥含固率和有机物含量对燃烧的影响曲线 “全干化”和“半干化”的选择 ?“全干化”指较高含固率的类型,如含固率85%以上;而半干化则主要指含固率在50-65%之间的类型。 ?将含固率20%的湿泥干化到90%或干化到60%,其减量比例分别为78%和67%,相差仅11个百分点。但全干化对干化系统的安全监测和措施要求更高,同样处理能力的干化机换热面积更大。这是因为污泥在不同的干燥条件下失去水分的速率是不一样的,当含湿量高时失水速率高,相反则降低。 ?含固率的选择要根据最终处置目的。对于干化焚烧,根据能量平衡和燃烧温度计算,一般采用半干化较为经济。 污泥干化焚烧 污泥干化焚烧系统组成

污泥干化详细方案

污泥干化方案 1.1 总体方案思路 本项目含铜污泥的处理处置流程为:污泥—收集运输—进场接收(称重计量)—鉴别—贮存—干化预处理—包装外售。 1.2 污泥干化工艺选择 根据调研资料,含铜污泥含水率一般在75%~80%,污泥呈半固态,需干化脱水后送至金属冶炼厂进一步提炼。污泥干化常规方法主要有自然干化、热力干化、高干脱水等。 1.2.1自然干化 自然干化是指将污泥摊铺晾晒于具有自然滤层或人工滤层的干化场中,借助自然力和介质(如太阳能、风能和空气),使得污泥中的水分因周边空气的蒸汽压的不同而形成从内向外的迁移(蒸发)。该方法适用于气候比较干燥、占地不紧张以及环境卫生条件允许的地区。由于气候条件(降雨量、蒸发量、相对密度、风速、年冰冻期)起着至关重要的作用,我国南方大多数具有多雨潮湿季节的地区难以适用。此外随着工业化、城市化的高速发展,很多北方的大中型发达城市也已难找到适当的土地。 自然干化的周期长(根据气候条件差异极大),可以采用频繁机械搅拌和翻到工艺的强化自然干化来缩短周期;但占地面积大,臭气污染严重等问题的存在,仍以处理小规模经过厌氧消化的脱水污泥为佳。1.2.2热力干化 污泥的大规模、工业化处理工艺中最常见的是热力干化。事实上,

通常人们所讨论的“干化”多数是指热力干化。热力干化是指利用燃烧化石燃料所产生的热量或工业余热、废热,通过专门的工艺和设备,使污泥失去部分或大部分水分的过程。这一过程具有处理时间短、占用场地小、处理能力大、减量率高、卫生化程度高、外部因素影响小(如气候、污泥性质等)、最终处置适用性好和灵活性高等优点。 污泥热力干化工艺通常有半干化(含水率不高于40%)和全干化(含水率低于20%)两种,热干化工艺一般仅用脱水污泥,主要技术性能指标(以单机升水蒸发量计)为:热能消耗2940~4200KJ/kgH2O,电能消耗0.04~0.90KW kgH2O。污泥含水率55%~65%时,热值为 4.8~6.5MJ/kg,可自持燃烧,这样不会受电厂热负荷的影响,真正达到无害化处理效果。 但热力干化的缺点在于初建投资大,具有一定的运行风险,采用化石燃料提供热能的成本因燃料价格而相对较高。因此,对于人口密集、土地资源紧张的大中型城市污水厂来说,热力干化成为一种首先的减量化工具。 1.2.3高干脱水 高干脱水一般是指采用化学和物理的综合方法对污泥颗粒进行表面化学改性,使其颗粒表面的水和毛细孔道中的束搏水使其成为自由水,然后通过高强度机械压滤析出达到高干的目的。一般污泥是通过加药改性和机械压滤方式把含水率从80%左右降低至50%以下,干化后的污泥或填埋或送至燃煤电厂或垃圾电厂与燃煤或生活垃圾混合焚烧发电。

市政污泥干化汇总

常见市政污泥处理手段及设备 概论: 市政污泥的处理一直是城市正常运转的保障之一,不论是城市工业运转还是家庭生活都会产生相当数量的污泥,最终进入城市下水系统。市政污泥中往往富集了各种有害物质,因而对其无害化处理往往是将其深埋之前必须做的一道工序。 本文通过阅读整理当前学术界的一些文献,分析了污泥的基本组成,展示了目前我国市政污泥的常见预处理手段,脱水手段以及干燥手段,对比了两种污泥处置手段,并讨论了其利弊。最后对比与国内外相关行业的差距提出了自己个人一点建议。 关键词:市政污泥无害化资源化微波预处理 一、引言 随着我国经济高速发展,城镇污水排放量急剧增长。为应对日益增长的污水排放量,势必要增加城镇污水处理企业以及改善城镇污水处理厂处理效率。截止“十一五”末期,全国城镇累计建成污水处理厂1993座,总处理能力已经超过 每日1亿立方米。随着我国对环境保护的日益重视,近年来污水处理技术的到了快速的发展。但是污泥产量也大幅度增加,我国经济在地域上的发展不平衡,也造成了各地城镇污泥产量的明显差异。就当前而言污泥的产量主要集中在我国东部地区。据统计,东部十一个省市的污泥产生量占全国污泥总量的63.87%,中 部八个省的污泥产量占到20.9%。但是随着中部崛起和西部大开发,中西部一些省市污泥产量不断增加,全国城市污泥年平均增长率为16.82%,而中西部平均 增长率分别高达23.29%和21.83%。相关资料表明,截止到2009年底,全国城镇污水处理量达到280亿立方米,湿污泥产量突破2000万吨。我国污水处理场所产生的80%勺污泥并没有得到妥善处理。 污泥是按废物相态特征分类的一类废弃物。污泥的相态特征首先是固液混合,即污泥是固体和液体的混合物,且所含的固体和液体依然保持各自的相态特征,这一点可以区别于含结晶水的无机盐和细胞组织含水的生物质(如新鲜的动、植物体等)。其次,污泥的固液组成比有一定的稳定性,在无外加作用力的条件下,其固液比例能保持相对的稳定,这构成了污泥应按其特殊的混合相态进行处理的依据。如果一种废弃物尽管产生时有固液相混合的特征,但排出后能自发地 进行较彻底的固液分离,如矿物浮选排出液,在重力作用下,可自发地分离成尾矿砂和选矿液,则两者可分别按固体废物或液体废物进行处理。最后,污泥中所含的液体通常是水,这既是由于地球上水是丰度最大的液体所导致的,也由于水 是人类生产与生活活动中应用最广泛的液体。 二、市政污泥概况 1. 污泥的基本特性 污泥(sludge)通常是指污水处理过程所产生的含水固体沉淀物质。其物质组成包括:(1)水分:含水量达95%左右或更高;(2)挥发性物质和灰分:前者是有机杂质,后者是无机杂质;(3)病原体:如细菌、病毒和寄生虫卵等,这些病原体大量

城市污泥不同处理处置方式的成本和效益分析

城市污泥不同处理处置方式的成本 和效益分析 城市污泥不同处理处置方式的成本和效益分析摘要:以北京市为例,估算不同电价及运输距离下填埋、焚烧及堆肥等方式的城市污泥处理处置成本,在此基础上讨论各种处理处置方案的前景,展望北京市污泥处理处置出路。污泥填埋在一定时期内还将是主要处理处置方式,但所占比例将逐渐下降;堆肥是经济上较为可行的处理处置方式,适合大力推广;随着经济实力与技术水平提高,焚烧法可以适用于个别特殊地点。同时,分析了政府补贴对污泥处理处置效益的影响。城市污泥是污水处理的副产物,以含水率97%计算,体积占处理污水的%~%[1],深度处理产泥量还将增加50%~100%。目前我国每年排放的干污泥大约×106 t,并以大约10%的速率在增加。北京

市全区域规划污水排放量为330×104 m3/d,其中2003年市区污水排放量约为230×104 m3/d[2]。规划建设14座污水处理厂,2015年污水处理能力预计将超过320×104 m3/d,处理率将超过90%。到2008年,北京市将新增9座中水处理厂,深度处理能力将目前的1×104 m3/d提高到×104 m3/d,届时每年产生含水率80% 城市污泥超过80×104 m3。北京市最大的污水处理厂——高碑店污水处理厂污泥外运运输费用占到全厂运行费用的1/3[3]。城市污泥的大量产生,已引起日益严峻的二次污染,并成为城市污水处理行业瓶颈。污泥处理处置率低,其中非常重要的一个原因就是投资和运行成本方面的限制。但到目前为止,还未见关于不同污泥处理处置方案的经济分析,导致不同单位和设计人员在方案的选择上存在较大的盲目性。以北京为例,对几种典型的城市污泥处理处置方式进行经济分析,以便为城市污泥处理处置技术的选择提供参考依据。 1 城

低温污泥干化技术Word版

低温污泥干化技术? 2009年以来,我国环境保护部、住房和城乡建设部以及科技部等部委,纷纷颁布了《污泥处理处置及污染防治技术政策》、《污泥处理处置污染防治最佳可行技术指南》以及《城镇污水厂污泥处理处置技术规范》等多项污泥处理处置的相关政策、规范及标准。这些文件明确了污泥干化焚烧技术在我国的定位及应用条件。其中,《污泥处理处置及污染防治技术政策》(2009年)明确提出:经济较为发达的大中城市,可采用污泥焚烧工艺。鼓励污泥焚烧厂与垃圾焚烧厂合建;在有条件的地区,鼓励污泥作为低质燃料在火力发电厂焚烧炉、水泥窑或砖窑中混合焚烧。该技术政策的颁布促进了污泥干化焚烧项目的建设,据不完全统计,目前已建成的项目接近40个,主要在建项目有30个。环保部出台的《城镇污水处理厂污泥处理处置污染防治最佳可行技术指南》(2010年)则确定了两个污泥处理最佳可行技术:厌氧消化和污泥堆肥;确定了两个污泥处置最佳可行技术:土地利用和污泥干化焚烧。文件细化了单独焚烧、混烧和掺烧的排放限值,以及相关环节的污染控制策略及技术经济适用性等。之后出台的《城镇污水处理厂污泥处理处置技术指南》(2011年)给出了不同技术应用的优先序。例如,厌氧消化后污泥优先考虑土地利用;不具备土地利用条件时,采用焚烧和建材利用。综上所述,干化焚烧技术是政策标准范围内规定的一项最佳可行技术,是我国污泥处理处置的主流技术之一。

低温污泥干化技术是一种通过低温干化系统产生的干热空气在系统内循环流动对污泥进行干化的处理技术。可把经板框压滤机、带式压滤机和离心脱水机的含固量20%的污泥干燥为含固率90%的干化泥块。该技术能够将污泥体积缩减4分之1,只需要消耗电能,不需要其他辅助能源,而且能耗是常规干化设备的1/3。进料时也无需特别对污泥进行均匀分布的装置,对湿度也没有任何要求,只要外界的温度在10-35摄氏度之间,整个系统就能保持高效率的运动。这种技术所集成的全智能自动控制系统,在提高运行效率的同时也具有良好的运行环境,用于处置特别是中小型污水厂产生的各类污泥。 污泥干化焚烧热处理技术作为最快捷、最彻底实现污泥减量化、稳定化、无害化的最终处置技术,在国外已发展成为主流的成熟技术之一。而在我国,雾霾问题的日益加剧,对污泥干化焚烧热处理技术而言成为一个挑战,社会舆论也俨然已把生活垃圾焚烧妖魔化,污泥干化焚烧热处理技术着“去”和“留”的局面。 低温污泥干化技术的设备结构 污泥除湿干化=热风循环+冷凝除湿烘干(除湿热泵)。其核心过程有二。其一:污泥水份吸热(热空气)汽化=湿空气+干料(汽化);其二:★湿空气经过除湿热泵=冷凝水+干燥热空气(冷凝)

市政污泥干化设计方案

2t/d市政生活污泥干化设计方案

第一绪论 1.1市政污泥处理工艺的发展和现状 早在20世纪40年代,日本和欧美等国家开始将干化技术用于对污泥的处理,经过几十年的发展,污泥干化技术的优点正逐渐显现出来。干化后的污泥显著减少容积;形成颗粒或粉状稳定产品,污泥性状大大改善;使干化后的污泥更易被后续处理;而其产品具有多种用途,如作肥料、土壤改良剂、替代能源等。所以无论填埋、焚烧、农业利用还是热能利用,污泥干化处理都是重要的一步。 污泥的干化分为全干化和半干化两种方式,其中全干化是将含水率大约80%脱水污泥干燥到含水率10%左右,而半干化是将含水率大约80%脱水污泥干燥到含水率40%左右。同全干化处理方式相比较,半干化方式投资和运行费用相对较低,系统运行安全可靠,干化过程中产品的含水率可以根据需要进行调整,干化后的产品用途较广。 根据调研资料,市政生活污泥含水率一般在75%~80%,污泥呈半固态,需干化脱水后再进行下一步处理。污泥干化常规方法主要有自然干化、热力干化、高干脱水等。第二章污泥干化工艺介绍及选择 2.1自然干化 自然干化是指将污泥摊铺晾晒于具有自然滤层或人工滤层的干化场中,借助自然力和介质(如太阳能、风能和空气),使得污泥中的水分因周边空气的蒸汽压的不同而形成从内向外的迁移(蒸发)。该方法适用于气候比较干燥、占地不紧张以及环境卫生条件允许的地区。由于气候条件(降雨量、蒸发量、相对密度、风速、年冰冻期)起着至关重要的作用,我国南方大多数具有多雨潮湿季节的地区难以适用。此外随着工业化、城市化的高速发展,很多北方的大中型发达城市也已难找到适当的土地。 自然干化的周期长(根据气候条件差异极大),可以采用频繁机械搅拌和翻到工艺的强化自然干化来缩短周期;但占地面积大,臭气污染严重等问题的存在,仍以处理小规模经过厌氧消化的脱水污泥为佳。 2.2热干化 污泥的大规模、工业化处理工艺中最常见的是热干化工艺。事实上,通常人们所讨论的“干化”多数是指热干化。热干化是指利用燃烧化石燃料所产生的热量或工业余热、废热,通过专门的工艺和设备,使污泥失去

某污泥具体方案

xxxx污水处理厂 污泥处置方案xxxx环境工程技术有限公司 2016年3月5日

目录 一、污泥概述................................................... 错误!未定义书签。 二、污泥干化................................................... 错误!未定义书签。 1、深度脱水是污泥处置的前提...................... 错误!未定义书签。 2、污泥干化技术............................................... 错误!未定义书签。 2.1 热干化.................................................... 错误!未定义书签。 2.2 石灰干化................................................ 错误!未定义书签。 2.3 常温高效深度干化(TSP工艺)...... 错误!未定义书签。 2.4 技术比较................................................ 错误!未定义书签。 三、TSP常温干化系统.................................... 错误!未定义书签。 1、工艺流程概述............................................... 错误!未定义书签。 1.1 调理+压滤单元.................................... 错误!未定义书签。 1.2 预混单元及输送................................... 错误!未定义书签。 1.3 干化单元................................................ 错误!未定义书签。 2 极端天气(温度低于20℃)情况说明...... 错误!未定义书签。 四、污泥最终处置 ........................................... 错误!未定义书签。 1、烧制水泥....................................................... 错误!未定义书签。 2、焙烧制砖....................................................... 错误!未定义书签。 3、焚烧................................................................ 错误!未定义书签。 4、卫生填埋....................................................... 错误!未定义书签。 五、污泥脱水实验结果(某污水水厂剩余污泥实验)错误!未定义书 签。

介绍几种污泥干化技术

介绍几种污泥干化技术 1 引言 随着社会的发展和人类的进步,人们对生存环境的保护和改善意识不断加强。加之,国家对环境保护政策实施力度不断加强,使全国范围内污水处理率不断提高,各城市纷纷建设污水处理厂,大、中、小型污水处理厂已达几百座,而且还在迅速增加。各污水处理厂都面临着如何处置每天产生的大量剩余污泥的问题。在我国目前尚无妥善的最终处置方法,加之,致病菌的超标,传统上用作农肥,不能完全符合卫生标准。特别是天津市作为老工业城市,污水中工业废水的比例一直较高,污泥中含有一定比例的重金属物质长期使用会在土壤中富集,造成土地板结,因此近年来污水处理厂脱水污泥无适当出路随意堆放造成二次污染,污泥处置问题已经成为多数污水处理厂急待解决的问题,污泥处置是否妥当已关系到污水处理厂的生存。 纵观欧、美一些国家进入80年代末期,由于污泥在农用、填埋、投海上的各种限制条件和不利因素的逐渐突出,也由于污泥热干化技术在欧、美等国家一些污水处理厂的成功应用,使污泥干化技术在西方工业发达国家很快推广开来。例如:欧盟在80年代初只有数家污水处理厂采用污泥热干化设备处理污泥,但到1994年底已有110家污泥干化处理厂,并且还在逐年增加。这项技术同时也得到了越来越多发展中国家环境工程界的重视,也为我国污泥处置提供了宝贵的经验。 2 污泥干化设备的类型

2.1 按热介质与污泥接触的方式可分为: 2.1.1直接加热式:将燃烧室产生的热气与污泥直接进行接触混合,使污泥得以加热,水分得以蒸发并最终得到干污泥产品,是对流干化技术的应用; 2.1.2间接加热式:将燃烧炉产生的热气通过蒸气、热油介质传递,加热器壁,从而使器壁另一侧的湿污泥受热、水分蒸发而加以去除,是传导干化技术的应用; 2.1.3“直接一间接”联合式干燥:即是"对流一传导技术"的结合。2.2 按设备的形式分为: 转鼓式、转盘式、带式、螺旋式、离心干化机、喷淋式多效蒸发器、流化床、多重盘管式、薄膜式、浆板式等多种形式。 2.3 按干化设备进料方式和产品形态大致分为两类: 一种是采用干料返混系统,湿污泥在进料前先与一定比例的干泥混合,然后才进入干燥器,产品为球状颗粒,是干化、造粒结合为一体的工艺;另一种是湿污泥直接进料,产品多为粉末状。 3 结合在欧、美的实际考察情况,就目前西方国家主要采用的几家公司的污泥干化技术和设备,介绍其工作原理和工艺流程。 3.1 直接加热转鼓干化技术 如图1是带返料、直接加热转鼓式干化系统流程图。

城市污泥干化处理课程设计

城市污泥干化处理课程设计 一、课程设计基础资料 广州污水处理厂污泥干化工程即将大规模启动,广州市水务局计划推动西朗污水厂、沥滘污水厂、京溪地下净水厂、大坦沙污水厂和猎德污水厂等污泥干化减量工程。按照计划,将要求相关污水处理厂建设污泥干化减量设施,再将干化污泥运输至水泥厂、电厂和垃圾焚烧厂直接焚烧。从而实现所有污泥都可以在广州本地处理,不再产生臭气扰民的同时还能够实现资源化利用。 某污水处理厂按照污水厂规模10万立方米/日(20万立方米/日、50万立方米/日),配套建设污泥处理系统,折合干基污泥约15吨/日(30吨/日、75吨/日)。将在厂内新建污泥脱水干化车间,配套物料分选系统、板框压滤系统、热干化系统、热源供给和回收系统、废气净化除湿系统,生物除臭系统,以及浓缩、调理、出料等相关辅助设备。污泥在厂内进行处理后,含水率从原来的80%以上,降低到30%~40%。 本课程设计的目的和要求:能够将数学、自然科学、工程基础和专业知识用于解决固体废物处理与资源化方面的复杂工程问题。运用深入的工程原理通过系统分析解决复杂工程问题,重点如下:1、设计多种技术、工程和其他因素,分析其中存在的冲突,做到扬长避短,尽量做到互相借鉴;2、通过建立合适的抽象模型解决工程问题,建模过程中需要体现出创造性(建立模型可理解为利用有关工程原理进行合理的情景分析和预测,提出解决思路);3、以常用的技术方法为基础,从多学科交叉和方法移用方面体现出创新性,以推动问题的解决;4、分析有关专业标准和规范中所涉及的因素是否全面,找出或发掘解决复杂问题的关键因素,并对标准和规范进行拓展;5、技术方法的确定方面,既要考虑处理效率和环保政策要求,又要考虑经济成本的可接受性,还需考虑短期和长远的发展预期;6、提出解决方案需要综合考虑经济、环境和社会效益,也需要采用综合性的解决思路和多学科工程技术的集成,还需考虑固体废物、废水、废气的全面有效处理,也需考虑技术的可行性、选用设备的处理能力和组合方式、工程应用的安全性等,即从多角度、多层次、多阶段、整体性等方面综合性解决。

污泥干化详细方案

污泥干化案 1.1 总体案思路 本项目含铜污泥的处理处置流程为:污泥—收集运输—进场接收(称重计量)—鉴别—贮存—干化预处理—包装外售。 1.2 污泥干化工艺选择 根据调研资料,含铜污泥含水率一般在75%~80%,污泥呈半固态,需干化脱水后送至金属冶炼厂进一步提炼。污泥干化常规法主要有自然干化、热力干化、高干脱水等。 1.2.1自然干化 自然干化是指将污泥摊铺晾晒于具有自然滤层或人工滤层的干化场中,借助自然力和介质(如太阳能、风能和空气),使得污泥中的水分因边空气的蒸汽压的不同而形成从向外的迁移(蒸发)。该法适用于气候比较干燥、占地不紧以及环境卫生条件允的地区。由于气候条件(降雨量、蒸发量、相对密度、风速、年冰冻期)起着至关重要的作用,我国南大多数具有多雨潮湿季节的地区难以适用。此外随着工业化、城市化的高速发展,很多北的大中型发达城市也已难找到适当的土地。 自然干化的期长(根据气候条件差异极大),可以采用频繁机械搅拌和翻到工艺的强化自然干化来缩短期;但占地面积大,臭气污染重等问题的存在,仍以处理小规模经过厌氧消化的脱水污泥为佳。 1.2.2热力干化 污泥的大规模、工业化处理工艺中最常见的是热力干化。事实上,通常人们所讨论的“干化”多数是指热力干化。热力干化是指利用燃烧

化燃料所产生的热量或工业余热、废热,通过专门的工艺和设备,使污泥失去部分或大部分水分的过程。这一过程具有处理时间短、占用场地小、处理能力大、减量率高、卫生化程度高、外部因素影响小(如气候、污泥性质等)、最终处置适用性好和灵活性高等优点。 污泥热力干化工艺通常有半干化(含水率不高于40%)和全干化(含水率低于20%)两种,热干化工艺一般仅用脱水污泥,主要技术性能指标(以单机升水蒸发量计)为:热能消耗2940~4200KJ/kgH2O,电能消耗0.04~0.90KW kgH2O。污泥含水率55%~65%时,热值为4.8~6.5MJ/kg,可自持燃烧,这样不会受电厂热负荷的影响,真正达到无害化处理效果。 但热力干化的缺点在于初建投资大,具有一定的运行风险,采用化燃料提供热能的成本因燃料价格而相对较高。因此,对于人口密集、土地资源紧的大中型城市污水厂来说,热力干化成为一种首先的减量化工具。 1.2.3高干脱水 高干脱水一般是指采用化学和物理的综合法对污泥颗粒进行表面化学改性,使其颗粒表面的水和毛细道中的束搏水使其成为自由水,然后通过高强度机械压滤析出达到高干的目的。一般污泥是通过加药改性和机械压滤式把含水率从80%左右降低至50%以下,干化后的污泥或填埋或送至燃煤电厂或垃圾电厂与燃煤或生活垃圾混合焚烧发电。 该技术是从机理、药剂、机械进行匹配。其中所加药剂不仅可以通过螯合作用除去水中的金属离子,还可以通过电中和作用、氢键作用和

吨污泥干化方案

15吨污水厂污泥处置方案 一、我们推荐的污泥处理工艺技术路线 1、我们的工艺路线: 我们认为《国家城镇污水处理厂污泥处理处置污染防治最佳可行技术指南(试行) 》中提出“最佳”与“可行技术”是符合目前中国污泥处置工业国情的,中国在一定时期内的技术、经济发展水平和环境管理要相适应。在经济和技术许可的条件下要因地制宜,在考虑成本和综合效益的前提下,综合整体地考虑污泥处置方案。通过技术和管理措施使污染污泥处理能够实现达标排放,同时达到高水平的整体的环境保护效果。 2、我们建议的污泥处置出处: 污泥中含有具有潜在利用价值的有机质,氮、磷、钾和各种微量元素,寄生虫卵、病原微生物等致病物质,铜、锌、铬等重金属,以及多氯联苯、二噁英等难降解有毒有害物质,如不妥善处理,易造成二次污染.我们认为处理后的污泥或污泥产品在环境中或利用过程中达到长期稳定,并对人体健康和生态环境不产生有害影响才是最终消纳方法。 对于一些污水厂所在地区的工业经济比较发达而且没有空余土地消纳污泥的可以采取对污泥进行适当处理后作为生产水泥的辅助燃料或电厂补充燃料。 3、我们推荐电渗透污泥干化方法的理由。 污水厂污泥是市政污泥,市政污泥的细胞水含量多且具有发热量,低位发热量约为2000-3400大卡/吨干污泥。如卖给发电厂做燃料每吨干泥可以产生2000-3300大卡的热量,现在5500大卡的热量的燃煤在中国买到800元/吨左右,而且用量每天很大,火电厂都有烟气和粉尘处理设施,如把干燥后的污泥(90%含固率)作为燃料送到发电厂,不仅可以产生效益,而且合理利用电厂环保设施

资源,避免投资浪费(污水厂减少处理污泥的环保投入),高效环保的最终处置了污泥,而且污泥作为燃料发挥了自身最大化的利用率,真正做到了再生能源。 并且我们认为电能是今后发展的主要能源,而且风力发电、太阳能发电、潮汐发电、水力发电等不消耗矿产资源的绿色发电方法越来越多,2020年绿色电能将占我国总发电量的40%这样许多工业企业都将利用电能这种低成本绿色可持续能源作为主要生产能源,随着电力工业发展逐渐走向一条清洁高效环保之路,电费也随之降低。所以利用电能这种经济清洁能源作为污泥转化生产能源的这条路发展方向是正确的。 4、污泥低温燃料化 解决能源危机的途径 ⑴节能 《中华人民共和国节约能源法》1997通过,2007修订,2008年4月1日实施。2007年12月《中华人民共和国能源法》征求意见稿出台。 ⑵能源综合利用 上述2个方法无法避免世界一次能源必将枯竭的局面,未来能源的出路在哪里,资源要综合、循环利用才是出路。2005通过《中华人民共和国可再生能源法》

污泥干化焚烧技术及运用(2021)

Enhance the initiative and predictability of work safety, take precautions, and comprehensively solve the problems of work safety. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 污泥干化焚烧技术及运用(2021)

污泥干化焚烧技术及运用(2021)导语:根据时代发展的要求,转变观念,开拓创新,统筹规划,增强对安全生产工作的主动性和预见性,做到未雨绸缪,综合解决安全生产问题。文档可用作电子存档或实体印刷,使用时请详细阅读条款。 摘要:随着社会经济的发展和人们生活水平的提高,工业废水和城市污水的产量日益增多,污水在处理的过程中会产生大量的悬浮物质,这些物质统称为污泥。污泥的成分较为复杂,若任意堆放将会对人类及动植物的健康造成较大影响。减量化、稳定化和无害化是污泥处理的基本原则。污泥焚烧技术具有处理速度快、减量化程度高、能源可再利用等优点,在国内外被广泛应用。该技术是污泥处置最彻底的方式,当污泥中有毒有害物质含量很高且短期不可降低时尤为实用。 关键词:市政污泥;干化;焚烧;运用 一、污泥干化、焚烧技术介绍 1.1污泥干化技术 通过开展污泥干化能够有效降低污泥体积,通常能够缩小到4倍以上,生产出稳定、无菌、无臭的原生物,干化后的污泥产品用途非常广泛,不仅能够用作于肥料、土壤改良剂等,同时也能够替代部分能源。将污泥干化设备根据介质与接触方式进行划分,能够分为直接

城市污水处理厂污泥处置技术

城市污水处理厂污泥处置技术 摘要:近年来,随着社会发展形态的转变,我国城市化发展进程不断加快,社会总体生产力逐年提升。与此同时,在城市发展过程中所产生和处理的污泥总量也在持续提升。而在我国多数城市污水处理厂运行和污泥处置过程中,普遍存在污泥处理效率低下、处置经济成本过高以及污泥利用率不足等问题,这也是当前城市污水处理行业所面临的主要发展瓶颈之一。因此,本文对各项有效城市污水处理厂污泥处置技术进行分析,探讨问题的技术解决途径。 关键词:城市污水处理厂;污泥处置技术;发展趋势 一、我国城市污水处理厂污泥处置工作现状 近年来,我国政府提出构建可持续发展、发展低碳经济战略号召,强调对城市污水及污泥加以再生利用,挖掘潜在应用价值。目前来看,我国多数城市污水处理厂在运行过程中,对于所产生的污泥仍采取传统处置方法,如集中堆积、填埋等,没有对污泥开展有效处理作业,导致多数污泥中含有大量重金属元素以及各类有毒物质,对周边生态环境造成二次污染,如图1所示。 二、我国城市污泥处置工作的未来发展趋势 污泥利用率过低、生态环境遭受二次破坏的根本原因在于,当前我国污水处理与污泥处置工作理念较为僵化,与社会发展形态相脱节。因此面对这样的现状,

我们应向西方发达国家城市污泥处置工作体系与理念加以充分借鉴,并汲取工作经验。 为直观阐述这一问题,本文以英国、美国、西班牙三国城市污泥处置工作开展现状为例:英国选择将多数污泥进行处理后作为肥料用于农业生产。而针对处理经济成本过高的污泥,则选择将其进行排海处理,仅选择将极少部分污泥直接填埋;西班牙主要选择将污泥经过简单处理后用于土地利用以及排海处置;美国由于幅员辽阔,中部区域处于大陆腹地、污泥远距离运输成本较为高昂。因此主要选择将经过处理后的污泥用于土地利用与直接焚烧,临海区域则选择将污泥进行排海处理(排海处理所占比重为20%)。根据对比分析可知,不同国家根据自身实际国情不同,所制定城市污泥处置方案也有所不同。因此根据我国实际国情,则需要将所需处理城市污泥以土地利用与排海处理为主,直接焚烧与土地填埋为辅。 三、主要城市污水处理厂污泥处置技术 1.污泥制肥以及土地利用处置技术 从污泥处置经济成本、处置效率与再生利用价值等多方面角度来看,土地利用都是最佳的污泥处置技术方向,不但不会对生态环境造成二次污染,还在一定程度上推动了我国有机农业的发展进程。的处置方法是将所需处置的城市污泥进行分类处理,例如将其分为单独堆肥(所需处置城市污泥单独堆放)以及混合堆肥(城市污泥与适当种类的城市生活垃圾共同堆放,抑或是城市污泥与动物粪便等加以混合堆放)两种。混合堆放的污泥在长时间堆积过程中逐渐产生化学反应,最终形成有机肥料。而单独堆放的城市污泥则与所添加的各类营养物与化学添加剂产生反应,最终形成有机复合肥料。 为直观阐述城市污泥土地利用处置技术的应用价值,以北京市城市污泥土地利用实际情况为例。我国北京市现有农用土地面积总数为110万平方公里,没有得到有效利用与开发的荒地面积总数为21万平方公里,占总体农用土地面积的19%。而这类荒地未到充分开发问题的主要成因在于,土壤中所分布各类有机物质的含量过低,无法为所栽种绿化植物与农作物提供充足生长养分。据相关调查统计数据显示,北京市每年需要32-34万吨有机肥料。而通过对城市污泥制肥以及土地利用处置技术的应用,每年可向北京市提供所需有机肥料的70%。

污泥干化详细方案

污泥干化详细方案

污泥干化方案 1.1 总体方案思路 本项目含铜污泥的处理处理流程为:污泥—收集运输—进场接收(称重计量)—鉴别—贮存—干化预处理—包装外售。 1.2 污泥干化工艺选择 根据调研资料,含铜污泥含水率一般在75%~80%,污泥呈半固态,需干化脱水后送至金属冶炼厂进一步提炼。污泥干化常规方法主要有自然干化、热力干化、高干脱水等。 1.2.1自然干化 自然干化是指将污泥摊铺晾晒于具有自然滤层或人工滤层的干化场中,借助自然力和介质(如太阳能、风能和空气),使得污泥中的水分因周边空气的蒸汽压的不同而形成从内向外的迁移(蒸发)。该方法适用于气候比较干燥、占地不紧张以及环境卫生条件允许的地区。由于气候条件(降雨量、蒸发量、相对密度、风速、年冰冻期)起着至关重要的作用,中国南方大多数具有多雨潮湿季节的地区难以适用。另外随着工业化、城市化的高速发展,很多北方的大中型发达城市也已难找到适当的土地。 自然干化的周期长(根据气候条件差异极大),能够采用频繁机械搅拌和翻到工艺的强化自然干化来缩短周期;但占地面积大,臭气污染严重等问题的存在,仍以处理小规模经过厌氧消化的脱水污泥为佳。

1.2.2热力干化 污泥的大规模、工业化处理工艺中最常见的是热力干化。事实上,一般人们所讨论的“干化”多数是指热力干化。热力干化是指利用燃烧化石燃料所产生的热量或工业余热、废热,经过专门的工艺和设备,使污泥失去部分或大部分水分的过程。这一过程具有处理时间短、占用场地小、处理能力大、减量率高、卫生化程度高、外部因素影响小(如气候、污泥性质等)、最终处理适用性好和灵活性高等优点。 污泥热力干化工艺一般有半干化(含水率不高于40%)和全干化(含水率低于20%)两种,热干化工艺一般仅用脱水污泥,主要技术性能指标(以单机升水蒸发量计)为:热能消耗2940~4200KJ/kgH2O,电能消耗0.04~0.90KW kgH2O。污泥含水率55%~65%时,热值为4.8~6.5MJ/kg,可自持燃烧,这样不会受电厂热负荷的影响,真正达到无害化处理效果。 但热力干化的缺点在于初建投资大,具有一定的运行风险,采用化石燃料提供热能的成本因燃料价格而相对较高。因此,对于人口密集、土地资源紧张的大中型城市污水厂来说,热力干化成为一种首先的减量化工具。 1.2.3高干脱水 高干脱水一般是指采用化学和物理的综合方法对污泥颗粒进行表面化学改性,使其颗粒表面的水和毛细孔道中的束搏水使其成为自由水,然后经过高强度机械压滤析出达到高干的目的。一般污泥

污泥干化焚烧处理技术

公司简介: 华西能源工业股份有限公司(原东方锅炉工业集团有限公司)位于四川省自贡市,是我国大型电站锅炉、大型电站辅机、特种锅炉研发制造商和出口基地之一。华西能源一直专注于各类大中型电站锅炉以及世界先进动力技术的研发、设计和制造,开发了具有国内领先水平的以煤粉、煤矸石、水煤浆、油页岩、石油焦、油气、高炉煤气及工业废弃物与生活废弃物等为燃料的高新锅炉技术,并发展成为我国专业从事电站锅炉、碱回收锅炉、生物质燃料锅炉、垃圾焚烧锅炉、油泥砂锅炉、高炉煤气锅炉、工业锅炉以及其它各类特种锅炉研发、设计、制造的大型骨干企业。 污泥干化焚烧技术来源 华西能源和韩国HANSOL EME等国外知名公司合作,可以提供湿污泥直接焚烧系统、污泥干化焚烧系统、污泥全干化系统及污泥半干化系统的设计、供货、建设、运营、维护的全方位服务,也可提供技术咨询、工艺设计、核心及配套设备集成供货等多种形式服务。 污泥热处理的优势 焚烧 (最大程度的

细菌和微生 污泥处理技术 干化: 间接水平转碟式干化机 焚烧: 具有高效能量回收的流化床炉 污泥含水率和有机物含量对燃烧的影响 我国污水处理厂机械脱水污泥含水率多在80~83%(含固率在17~20%),有机物含量大多数在60%以下。从污泥的含固率和有机物含量对燃烧的影响曲线可以看到,污泥直接焚烧不能依靠自身的热量维持燃烧温度,要自持燃烧,污泥的含水率要小于70%。 污泥含固率和有机物含量对燃烧的影响曲线 “全干化”和“半干化”的选择 ?“全干化”指较高含固率的类型,如含固率85%以上;而半干化则主要指含固率在50-65%之间的类型。 ?将含固率20%的湿泥干化到90%或干化到60%,其减量比例分别为78%和67%,相差仅11个百分点。但全干化对干化系统的安全监测和措施要求更高,同样处理能力的

城市污泥不同处理处置方式的成本和效益分析-一栏知识分享

城市污泥不同处理处置方式的成本和效益 分析-一栏

城市污泥不同处理处置方式的成本和效益分析城市污泥是污水处理的副产物,以含水率97%计算,体积占处理污水的0.3%~0.5%[1],深度处理产泥量还将增加50%~100%。目前我国每年排放的干污泥大约1.3×106 t,并以大约10%的速率在增加。 北京市全区域规划污水排放量为330×104 m3/d,其中2003年市区污水排放量约为230×104 m3/d[2]。规划建设14座污水处理厂,2015年污水处理能力预计将超过320×104 m3/d,处理率将超过90%。到2008年,北京市将新增9座中水处理厂,深度处理能力将由目前的1×104 m3/d提高到47.6×104 m3/d,届时每年产生含水率80% 城市污泥超过80×104 m3。北京市最大的污水处理厂——高碑店污水处理厂污泥外运运输费用占到全厂运行费用的1/3[3]。 城市污泥的大量产生,已引起日益严峻的二次污染,并成为城市污水处理行业瓶颈。污泥处理处置率低,其中非常重要的一个原因就是投资和运行成本方面的限制。但到目前为止,还未见关于不同污泥处理处置方案的经济分析,导致不同单位和设计人员在方案的选择上存在较大的盲目性。本文以北京为例,对几种典型的城市污泥处理处置方式进行经济分析,以便为城市污泥处理处置技术的选择提供参考依据。 1 城市污泥处理处置成本估算 1.1 估算方法 以1 t干污泥(DS)为计算基准,综合成本=运行成本+设备折价成本。运行成本以目前较为成熟的处理处置方式进行估算。 北京市污泥机械脱水效果通常在80%左右。各方案中的成本估算涉及或包括焚烧、运输、填埋等3个流程;设备折价成本取15 a使用年限,年折旧7%,社会利率10%,即年折价17%,设备年工作时数以8000 h计。因此,设备折价=设备价格×指数×0.17/8000。 1.2 估算细则 (1)单位成本 填埋:生活垃圾卫生填埋的成本约60~70 ¥/t,污泥填埋时按照压实生活垃圾∶土∶污泥容重比为0.8∶1∶1,污泥填埋成本为48~56 ¥/t,取52¥/t。 干化:干燥能耗与脱水量成正比。燃气加热效率85%、锅炉热效率70%、过程热损失5%时,水的蒸发能耗为150 (kW·h)/t,每小时去除1 t水的设备投资为180×104¥[4]。 焚烧:目前多采用流化床技术,每h焚烧1 t干化污泥的设备成本为528×104¥,污泥按干质量减量60%。焚烧的运行费用24¥/t,烟气处理消耗NaOH量约为37 kg/t,折价约128¥/t [5]。 电价:北京市工业电价高峰期、平段区、低谷期分别为0.278、0.488、0.725¥/(kW·h)。按不同补贴方案,将电价设定为0.30、0.60¥/(kW·h)。 运费:北京市运输价格在0.45~0.65¥/(t·km)之间,污泥为特殊固体废物,需特殊箱式货车运送,价格处于高端。另外,近年运输价格有上涨趋势。因此,运费取0.65 ¥/(t·km)。 此外,干化及焚烧均按设备成本添加30%物耗人工管理费及土建配套费。 (2)污泥含水率 污泥的有机质和水分含量较高,填埋存在一系列问题,当前主要关心的是土力学性能,当含水率高于68% 时需按m(土)∶m(污泥)=0.4~0.6的比例混入土 [6-8]。含水率降低时污泥性状存在突变,因此填埋脱水目标设定为80%、30%。 含水率是污泥焚烧处理中的一个关键因素。有机质含量高、含水率低利于维持自燃,降低污泥含水率对降低污泥焚烧设备及处理费用至关重要。一般将污泥含水率降至与挥发物含量之比小于3.5时,可形成自燃[9]。北京市污泥有机物含量在45% 以下,因此使污泥维持自燃焚烧的水分含量应小于61.2%。朱南文总结了几种国外污泥热干燥技术,可以将污泥干燥至10%含水率[10]。污泥焚烧综合成本随干燥程度动态变化,干化程度越高,干化能耗升高,焚

鹰潭项目MVR污泥干化方案

10吨/日市政污泥 空心桨叶MVR干化处理项目 技术案

1、技术案总体思路 本项目干化处理对象为脱水后含水率80%的污泥,处理量为10吨/天,湿污泥首先通过车辆短驳运输或污泥输送设备送至湿污泥暂存仓,污泥仓的污泥通过污泥泵输送到空心桨叶式污泥干化机(含水率从80%干化至40%左右),干化后的污泥输送至垃圾焚烧电厂同生活垃圾一并协同焚烧处置。空心桨叶污泥干化机的热源启动时采用新蒸汽,正常使用采用循环蒸汽。最大程度地降低污泥处置成本。整个污泥处置系统包括:污泥存储和输送系统、污泥干燥系统、蒸汽压缩系统及相应的配套的辅助设备。 2、污泥处理系统描述 2.1、污泥接收和输送系统 污泥经过汽车或污泥输送设备送入污泥料仓。料仓上部为半闭半启装置,保证在没有污泥加入时料仓的密封,防止污泥中的臭味溢出污染空气。污泥储仓上设吸风口,有管道与垃圾焚烧炉给风管路或垃圾储坑相通,保持微负压状态,避免臭气外泄。 污泥泵形式采用单螺杆泵,通过污泥泵将湿污泥泵送到空心桨叶干燥机中干化处理。污泥泵可以变频调节实现流量的控制。 污泥仓钢板要有足够的厚度,保证在长期运行的情况下稳定可靠运行,污泥料仓做防腐耐磨处理。污泥仓设有料位计可连续监测污泥料位,料仓底部设置液压滑架系统防止污泥搭桥,让污泥卸料畅通。 污泥料仓底部设有可移动滑架,滑架行程期为2~3分钟,运行缓慢,磨损小。 通过液压缸的驱动,滑架单元在料仓底部做往复运动,从而保证了物料在卸料口均匀输出。

滑架的运行向通过电感应到位开关切换,如果到位开关没有被按动,在液压包上设置的压力开关,也会改变运行滑架的运行向。这样可以避免引起滑架与料仓的损坏。 滑架在来回往复移动的过程中,将脱水污泥推入污泥泵,污泥由污泥泵送入空心桨叶式干燥机的进料口。 2.2、污泥干化系统 污泥干化系统对湿污泥进行干化;干化产生的蒸汽循环利用,不凝结气体通过抽气风机进行连续抽气,防止臭气外溢影响环境;出料空心螺旋对高温物料进行边冷却边出料;操作便。系统由污泥干化机、蒸汽压缩机、风机、管道泵等组成。 2.2.1污泥干化系统 (1)系统启动时采用锅炉新蒸汽,经过加热后的污泥蒸发产生蒸汽,产生的再生蒸汽进MVR蒸汽压缩机,在此再生蒸汽的温度和压力得到提升并能满足连续蒸发的需要。经过蒸汽压缩机压缩后的蒸汽为过热蒸汽,其压力稍高于大气压。 (2)不凝结气体再经排湿风机提升压力后,送至锅炉送风机入口经送风机送入锅炉焚烧分解。 (3)蒸汽凝结产生的废水,经污水泵排至污水处理站。

相关主题
文本预览
相关文档 最新文档