当前位置:文档之家› 超级电容行业分析报告

超级电容行业分析报告

超级电容行业分析报告
超级电容行业分析报告

超级电容行业分析报告

超级电容行业分析报告

一、超级电容器行业分析

超级电容器根据制造工艺和外形结构可划分为钮扣型、卷绕型和大型三种类型,三者在容量上大致归类为5F以下、5F~200F、200F以上,它们由于其特点的不同,运用领域也有所差异。

钮扣型产品具备小电流、长时间放电的特点,可用在小功率电子产品及电动玩具产品中。而卷绕型和大型产品则多在需要大电流短时放电,有记忆存储功能的电子产品中做后备电源,适用于带CPU的智能家电、工控和通信领域中的存储备份部件。另外大型超级电容器通过串并联构成电源系统可用在汽车等高能供应装置上。

年份纽扣型卷绕型和大型总规模同比增长2007 10.2 34.8 45 45% 2008 15.3 52.2 67.5 50%

年份纽扣型卷绕型和大型总规模同比增长

2005 0.4 3.5 3.9 57.2%

2006 0.9 4.8 5.7 46.2%

2007 1.4 7.2 8.6 50%

2008 2.1 11.2 13.3 55%

表1、表2是对三种超级电容器产业规模进行调查而得到的数据整理而成的,分别反映了世界和中国超级电容器产业的情况。从这两个表中我们不难发现三个问题:

1、超级电容器产业的发展非常迅速,无论是钮扣型还是卷绕型或是大型超级电容器,其产业规模都在高速扩展。

2、中国在钮扣型超级电容方面的竞争力不明显,在中国钮扣型市场中,海外产品几乎占据了90%以上的份额,竞争非常激烈。数据表明,近几年国内厂家的市场份额也在逐步扩大。

3、卷绕型和大型方面,中国的技术水平与国际接近,市场份额也比较理想。近几年,中国厂商的销售收人也在呈几何倍数增长。据调查,国产超级电容器已占有中国市场60%~70%的份额。

二、超级电容器技术研究现状

超级电容器是利用双电层原理的电容器。当外加电压加到超级电容器的两个极板上时,与普通电容器一样,极板的正电极存储正电荷,负极板存储负电荷,在超级电容器的两极板上电荷产生的电场作用下,在电解液与电极间的界面上形成相反的电荷,以平衡电解液的内电场,这种正电荷与负电荷在两个不同相之间的接触面上,以正负电荷之间极短间隙排列在相反的位置上,这个电荷分布层叫做双电层,因此电容量非常大。当两极板间电势低于电解液的氧化还原电极电位时,电解液界面上电荷不会脱离电解液,超级电容器为正常工作状态(通常为3V以下),如电容器两端电压超过电解液的氧化还原电极电位时,电解液将分解,为非正常状态。由于随着超级电容器放电,正、负极板上的电

荷被外电路泄放,电解液的界面上的电荷响应减少。由此可以看出:超级电容器的充放电过程始终是物理过程,没有化学反应。因此性能是稳定的,与利用化学反应的蓄电池是不同的。

超级电容器因其独特的双层大容量储存结构对原材料及制作工艺提出了极高的要求。电极、电解质和隔膜的组成和质量对超级电容器的性能起着决定性的影响。下面将从原材料,制作工艺等几个方面对超级电容器的技术现状进行分析。

2.1正极材料

目前用作超级电容器电极的材料主要有三类:碳材料、金属氧化物材料和导电聚合物材料。

2.1.1 碳材料

碳是最早被用来制造超级电容器的电极材料。碳电极电容器主要是利用储存在电极与电解液界面的双电层能量,其比表面积是决定电容器容量的重要因素。尽管高比表面的碳材料比表面积越大,容量也越大,但实际利用率并不高,因为多孔碳材料中孔径一般要2nm及以上的空间才能形成双电层,从而进行有效的能量储存,而制备的碳材料往往存在微孔(孔径小于2nm)不足的情况。所以这个系列主要是向着提高有效比表面积和可控微孔孔径(孔径大于2nm)的方向发展。除此之外,碳材料的表面官能团、导电率、表观密度等对电容器性能也有影响。现在已有许多不同类型的碳材料被证明可用于制作超级电容器的极化电极,如活性炭、活性炭纤维、碳气溶胶、碳纳米管以及某些有机物的裂解碳化产物。

2.1.2 金属氧化物材料

金属氧化物作为超级电容器电极材料的研究是基于法拉第准电容储能原理,即是在氧化物电极表面及体相发生的氧化还原反应而产生的吸附电容。其电容量远大于活性炭材料的双电层电容,但双电层电容器瞬间大电流放电的功率特性比法拉第电容器好。金属氧化物作为超级电容器电极材料有着潜在的研究前景。近年来金属氧化物电极材料的研究工作主要围绕以下两个方面进行:(l)制备高比表面积的RuO2活性物质。(2) RuO2与其它金属氧化物复合。

2.1.3 导电聚合物材料

电聚合物电极电容器是通过导电聚合物在充放电过程中的氧化还原反应,在聚合物膜上快速产生n型或p型掺杂从而使其储存高密度的电荷,产生很大的法拉第电容来实现储存电量。研究发现聚毗咯、聚噻吩、聚苯胺、聚对苯、聚并苯等可用作超级电容器电极材料,其中聚毗咯及其衍生物由于其有优异的电化学性能、环境友好、合成简.单等特点,被认为是最具有应用价值的材料之一。导电聚合物超级电容器具有使用寿命长、温度范围宽、不污染环境等特点,并且可以通过设计聚合物的结构,优选聚合物的匹配特性,来提高电容器的整体性能、,但真正商业应用的电极材料品种还不多,价格也较高。今后研究的重点应放在合成新材料上,一寻找具有优良掺杂性能的导电聚合物,提高聚合物电极的充放电性能、循环寿命和热稳定性等方面。

从实用来讲,碳材料无疑是目前超级电容器各类电极材料中最具吸引力的,它几乎是市面上所有产品共同的选择,但电极材料的成本占到其产品总成本的近30%,是导致生产成本较高的主要原因,这在一定程度上限制了超级电容器的推广应用。而导电聚合物、金属氧化物等作为电极材料还处于探索之中,停留在实验室阶段。今后超级电容器电极材料的研究重点将集中在己有材料制备

工艺及结构优化,兼具法拉第准电容和双电层电容新材料的开发,高性能材料的规模化生产,以适应市场对高性能、低成本、性能稳定移动电源技术的需求。

2.2 负极材料

超级电容器负极材料主要是炭材料,商业化使用的负极炭材料主要是石墨。国内各厂家技术的差异不大,主要是材料性能的差异。

2.3 电解质

电解质是超级电容器的关键材料,在正负极之间起着输送和传导电流的作用,影响着器件的充放电特性、能量密度、安全性、循环性能、倍率充放电性能、高低温性能、储存性能和成本。根据其工作特点,要求电解液电导率高、杂质低、分解电压高、腐蚀性低、化学和电化学稳定性好、热稳定性能好、功能性强、低污染及低成本等特性。

国内目前采取的是水系(即无机电解质)和非水系(即有机电解质)两种不同的技术实现途径,电解质为水系的超级电容器单体电压不超过 1.6V,而非水系的超级电容器单体电压不超过3V。水系电解质主要有30%硫酸水溶液、30%氢氧化钾水溶液;而有机在国际上己成为主流,使用较多的有机电解液是丙烯碳酸脂或高氯酸四乙氨、六氟磷酸锂与有机溶剂的混合液等。

表3列出了有机系超级电容器和水系超级电容器的一些特性上的主要区别。

有机系超级电容器水系超级电容器

特性1、在非水质的电解液中使用多孔炭材料

2、不产生化学反应

3、能承受接近3V的电压

4、更高的功率

5、更大的充放电电流

6、通过静电积聚存储电荷,本质是静电的

7、适合大电流工作,不影响使用寿命

8、有较高温度范围,-40℃-70℃

9、因为不存在化学反应,产品寿命高,可

达100万次

1、在水质的电解液中使用金属氧化物

2、工作时产生化学反应

3、电压范围与金属氧化物有关,通常小于

2V

4、较低的功率

5、较小的充放电电流

6、正负极间发生电荷质子转移,本质是感应

电流,并不是静电

7、大电流会导致器件老化,产生气化膨胀,

引起电解液泄漏

8、工作温度范围较低(-10℃以下时,工作性

能大大降低)

9、因为存在化学反应,产品寿命较低,一般

为20万次

图1 超级电容器分类

图2 不同类型超级电容器特性

2.4 生产工艺

生产超级电容器的工艺流程主要分为以下九步:

配料混浆制电极裁片组装注液活化检测包装。

表4 超级电容工艺流程及主要设备

三、国际、国内超级电容器主要厂家

图3国际、国内超级电容器主要厂家

在全球民用超级电容器市场中,处于领先地位的企业有:美国Maxwell公司、日本Panasonic电器产业株式会社、韩国Ness Cap公司、法国Bollore 公司。

国内从事超级电容器研发的厂家共有50多家,然而能够批量生产并达到实用化的厂家只有10多家,目前,在国内超级电容器行业处于领先地位的有:上海奥威科技开发有限公司、北京合众汇能科技有限公司、北京集星联合电子科技有限公司、哈尔滨巨容新能源有限公司、锦州凯美能源有限公司和江苏双登集团有限公司。

3.1 上海奥威:新能源汽车领域的领导者

国内公交车用超级电容器领域的佼佼者,产品主要用于各种车辆、内燃机的启动以及轻型车、电动公交车的牵引和其他领域,其技术处于世界领先地位。所生产的超级电容器公交车己经用于世博会。

但经过市场调研,该公司主要生产无机超级电容器,容量较大(上百法拉),不适用于本方案设计。

3.2 北京合众汇能科技有限公司:核心炭材料技术处于领先地位

国内超级电容器电极材料领先企业,公司主要开发和生产高容量(HCC)系列有机高电压型双电层超级电容器。其生产的HCC超级电容主要以卷绕圆柱式为主,兼顾方形、异型模组等多种电容器产品规格,标准产品的容量从0.06F到10000F。公司可以提供高达10万法拉大容量的特制超级电容器单体产品。

目前公司HCC超级电容器产品广泛应用于电动、混合动力汽车、大功率短时功能电源、太阳能储能、风力发电机变桨系统、储能缓冲系统、智能电表、电动自行车、电动玩具等领域。早期与清华大学合作开展超级电容器碳纳米电极材料研究,公司在电极材料方面具有领先优势。

3.3 北京集星联合电子科技有限公司:产业链较为完整

公司是一家专注于新能源领域的革命性储能产品的研发和商业化应用的创新型企业,面向汽车、工业、民用领域提供高效、可靠的储能元件和系统产品,以提高电源的效率和可靠性。公司参与并支持电动汽车、风能和太阳能等可再生能源、工业节能降耗等产业的发展。

公司突破了核心活性炭材料技术和电极技术,整合了超级电容器生产的上下游产业链,在北京、常州分别建立了电极材料、电极、元件、储能系统的生产基地。

公司注册于北京中关村,研发基地设在北京中关村高科技产业园区,生产基地设在北京大兴工业区,公司致力于纳米技术等新型能源材料在绿色储能元器件上的研究与应用开发,并使其产业化,拥有完全的自主知识产权。

3.4 哈尔滨巨容新能源:超级电容器管理系统有望获得突破

超级电容器技术基础实力雄厚,产品广泛应用于港口起重设备电动车的牵引电源、汽车、坦克车、装甲车等的启动电源,激光武器、电动工具、安全气囊,电磁开关电源;功率补偿系统,UPS电源,电力峰谷平衡,风力发电机的能量储存装置。

但经过市场调研,该公司主要生产无机超级电容器,容量较大(上千法拉),不适用于本方案设计。

3.5 锦州凯美能源有限公司:运营管理仍有待提升

公司自2001年起承担国家科技部“十五”863计划电动汽车重大专项“电动汽车用超级电容器”项目,2002年起承担科技部科技型中小企业技术创新基金“超级电容器”项目研发,2003年承担信息产业部电了信息产业发展基金“新型绿色能源-超级电容器产品产业化”项目。

公司现有专业技术人员28人,其中高级工程师3人,博士生4人,硕士研究生8人,在产品开发、产品测试以及工艺改良方面有着丰富的理论和实际经验。

公司与中科院、北京有色金属研究院、华东理工大学、北京科技大学、中南大学、辽宁工学院、渤海大学等建立了合作关系。

公司目前己有18个系列、100多个规格的超级电容器产品,并拥有14项专利。价格从2元一70元/单元不等。

3.6江苏双登集团有限公司:还处于初级阶段

江苏双登集团有限公司与中科院电工所合作研制开发的超级电容器,与国内外同等性能相比,具有较强的成本优势,产品经中国工程院杨裕生院士鉴定,其主要技术指标达到国内领先水平,部分关键指标达到国际先进水平。

目前,公司研制的太阳能发电超级电容器己经应用于北京奥运村太阳能路灯项日,鸟巢、水立方、奥运数字大厦、五棵松体育馆、丰台泉球馆、奥运村地下车库、首都机场T3D航站楼、北京新南站、首都体育馆等场地,均有公司的超级电容器产品应用。

公司的研发主要基于南京双矜科技发展研究院,研究院设有博士后科研工作站和工程技术中心,主要开发燃料电池、超级电容器、锂电池材料、锂离子电池等在内的各类先进化学电源产品。

四、超级电容行业发展方向

尽管超级电容器技术已经进人了产业化的快车道,但其中仍然存在着许多技术难题,这些都限制了超级电容器性能的进一步提高,制作成本的进一步降低,应用范围的进一步延伸,及消费市场的进一步拓展。这些问题主要有如下

几个方面:

4.1 寻找性能更优,成本更低的电极材料。

电极材料是影响超级电容器性能和生产成本的关键因素,因此对于超级电容器的研究。几乎都是围绕着电极材料进行的。而国内电极材料存在性能不佳和可选择范围小等问题,所以我国在超级电容器的核心部分即高性能电极材料的生产上一直存在瓶颈。所以企业若想实现长足发展就必须加强对电极材料的创新研究,必要时可以与研究院和高校合作研发。

4.2 寻求更优化的匹配组合方法

超级电容器单体产生的电压一般比较低,每只电容耐压大约仅有2.5V左右,电池要靠多只串联组合提供高电压,这就需要非常复杂的电路来保证每只单体电容的均压问题,一旦电压过了,就会损坏,而且一旦组合匹配不好就会影响到电池组的性能和寿命。没有好的匹配方法将直接造成超级电容电池组的成本过高,储能相当于500 Ah电池组的价格估计要数百万元。所以企业若想生产出更多种类型号的超级电容器,想要自己的产品有更为广阔的应用领域,就必需寻求匹配组合技术的突破。

4.3 解决慢放电控制的问题。

超级电容器的自放电率很高,自放电现象较其他储能器件都要严重,这也就限制了超级电容器不能像传统电池一样长时间稳定储能。另外超级电容自放电大小还与充电条件有关,若是恒压充电,充电时间较长,效果很好;若是恒流充电,充电时间较短,自放电就较严重,因为迅速充完电以后,电荷只停留在超级电容的扩散层,所以超级电容器若要像普通电池一样广泛应用于多个领域就必须解决慢放电控制问题,而开发出能够稳定储能的超级电容电池也就显得尤为重要。 4.4 解决内阻较高的问题

双电层电容器与铝电解电容器相比内阻较大,超级电容器的较大的内阻会阻碍其快速放电,其时间常数τ在ls~2s,给阻容式电路完全放电大约需要5τ,所以要得到放电更快的超级电容器就必须进一步降低其内阻。目前主要可以从两方面降低内阻:一方面,从原材料上入手减少极片和电解液本身内阻;另一方面,通过改变封装结构减少接触内阻,达到降低产品内阻的目的。

4.5 进一步减小体积

尽管超级电容器较普通电容器的容量大了3-4个数量级,但和电池相比单位体积的容量还是太小,电池与其体积相当的超级电容器相比可以存储更多的能量。所以超级电容器若想与传统电池争夺市场,就必须在这方面下足功夫。

除此之外,如果超级电容器要运用在电动机车和电力等系统中,其可靠性还需进一步提高。

五、超级电容器选型

根据本文第三章所述,主要从国际国内一些技术相对领先的企业中来进行选型,在这些厂家中选型时,可主要从价格、漏电流大小、耐温情况、额定充放电电流、等效串联内阻、容量偏差几个角度来进行考虑。

5.1. 漏电流

行业内公认的漏电流都是在72小时充电后测量出的漏电流大小,有些厂家也做了24小时充电后的漏电流大小,在选型时可比较不同厂家的漏电流大小。

5.2耐温

目前不同厂家的耐温情况基本相同,最大范围一般都是-40℃~70℃,当然有些小厂家也有-20℃~60℃这种情况。

5.3 等效串联内阻(ESR)

等效串联内阻分为交流ESR与直流ESR,通常直流ESR约是交流ESR的1.5倍,随温度上升而减小。超级电容器等效串联电阻较大的原因是:为充分增加电极面积,电极为多孔化活性炭,由于多孔化活性炭电阻率明显大于金属,从而使超级电容器的ESR较其它电容器的大。超级电容器的ESR主要由电极物质内阻、电解液内阻、接触电阻等组成,代表电容器内部发热所消耗的功率,对电容器的充放电过程影响比较大,降低ESR可以提高超级电容器电源的效率和可靠性。内阻越小,充电、放电电流可以达到越大,它的放电效率越高、放电电流也越高,同时充放电过程产生的热量也越小有利于散热,反之,内阻越大,可以达到的充电、放电电流越小。相应地,充电时间会延长。因此,在相同的额定电压下,超级电容器的电容量与ESR乘积是超级电容器的最主要数据之一。如NESS的3500F、2.7V超级电容器的ESR为0.25mΩ,其额定放电电流为781A,如果采用6支600F/2.7V超级电容器并联,电容量与前者基本相等,但是放电电流则为150x6=900A,比单只高近120A,峰值电流由2305A 提高到3420A,提高近1115A。这对于短时高倍率电流放电极有意义。

厂家参数

E SR(mΩ) 北京集

北京

合众

锦州凯

2.7V,1F 400 90 2.7V,2.2F 160 150

2.7V,3F 120 100 50 2.7V,5F 70 80 35 2.7V,6F 33 2.7V,7F 45 30 2.7V,10F 40 60 20 2.7V,15F 30 50 25 2.7V,25F 25 25 15

2.7V ,50F

20 10 2.7V ,60F 12

5.4 等效并联电阻(EPR )

图4所示EPR 为等效并联电阻,代表超级电

容的漏电流,影响电容的长期储能性能,EPR 通常

很大,可以达到几十K Ω,所以漏电流很小,只有

几十至几百uA 。

图4 超级电容器的等效模型

5.5 容量偏差

从各厂家的超级电容的规格书中看出,有些厂家的规格书写明容量偏差为-10%-+10%,而有些厂家则写为-10%-+30%,如果有30%这种参数,则有可能说明该厂家的碳粉纯度比较高,单位体积下的容量会更大,性能更好。

5.6 容量计算

在已知外界所需能量的前提下,可利用公式)(2

12122U U C t I U E -??=??=(其中1U 、2U 分别为超级电容放电后和放电前的电压)计算出所需容值。

超级电容器行业研究报告:海迪研究(15)

2010年8月17日

超级电容器行业研究简报 一、超级电容器简介 随着新能源领域的技术进步和行业发展,储能技术越来越受到各方重视,成为解决未来新能源产业发展的关键性环节,产业应用前景和市场规模十分巨大。当前,储能技术大致分为物理储能和电化学储能两条路线。而超级电容器则是物理储能中最具商用前景的一种技术装置,是对其他电化学储能技术的良好补充。 从行业需求角度看,电动/混合动力汽车、太阳能、风能等新能源应用都需求高能量密度储能元件,同时也要求免维护、长寿命、兼备能量密度和功率密度、应用范围宽。锂离子电池、镍氢电池、超级电容是目前全球主要发展的先进储能技术。当前,可充电储能元件行业的发展速度已经远高于全球GDP增长速度。超级电容作为电池的补充,其发展速度将快于电池技术。

1.1超级电容器的概念和特性 超级电容器是介于传统电容器和充电电池之间的一种新型储能装置, 主要是双电层超级电容器(还有赝电容型超级电容器)。它是世界上已投入量产的双电层电容器中容量最大的一种,其基本原理和其它种类的双电层电容器一样,都是利用活性炭多孔电极和电解质组成的双电层结构获得超大的容量。 与传统电容器相比:它具有较大的容量、较高的能量、较宽的工作温度范围和极长的使用寿命;而与蓄电池相比:它又具有较高的比功率,且对环境无污染,因此可以说,超级电容器是一种高效、实用、环保的能量存储装置。 1.2 超级电容器工作原理 超级电容器是利用双电层原理的电容器。当外加电压加到超级电容器的两个极板上时,与普通电容器一样,极板的正电极存储正电荷,

负极板存储负电荷,在超级电容器的两极板上电荷产生的电场作用下,在电解液与电极间的界面上形成相反的电荷,以平衡电解液的内电场,这种正电荷与负电荷在两个不同相之间的接触面上,以正负电荷之间极短间隙排列在相反的位置上,这个电荷分布层叫做双电层,因此电容量非常大。当两极板间电势低于电解液的氧化还原电极电位时,电解液界面上电荷不会脱离电解液,超级电容器为正常工作状态(通常为3V以下),如电容器两端电压超过电解液的氧化还原电极电位时,电解液将分解,为非正常状态。由于随着超级电容器放电,正、负极板上的电荷被外电路泄放,电解液的界面上的电荷响应减少。由此可以看出:超级电容器的充放电过程始终是物理过程,没有化学反应。因此性能是稳定的,与利用化学反应的蓄电池是不同的。 二、超级电容器的行业分析 超级电容器产品获得投资关注虽然不久,但由于它具有特殊的优点,已在许多领域中获得了应用,其前景可以认为是非常广阔。2010年上海世博会中稳定运营的36辆超级电容客车更是吸引了众多观光者的眼球。超级电容车一旦展开普及,市场会大的超出想象。 基于中国消费电子近年来的惊人增长表现,预计今后几年内,我国纽扣型超级电容器有望保持30%以上的平均增长率,卷绕型和大型超级电容器则有可能保持50%以上的平均增长率。到2013年,我国超级电容器的整体产业规模有望达到79亿元。 依照美国国家能源局的数据预测,超级电容器在全球市场的容量

超级电容器行业基本情况

3.1超级电容器行业基本情况 3.1.1 超级电容器介绍 超级电容器(Supercapacitor,Ultracapacitor),又叫黄金电容、法拉电容,通过极化电解质来储能,属于双层电容的一种。由于其储能的过程并不发生化学反应,因此这种储能过程是可逆的,正因为此超级电容器可以反复充放电数十万次。由于其容量很大,对外表现和电池相同,因此也称作“电容电池”或说“黄金电池”。超级电容器是目前世界上已投入量产的双电层电容器中容量最大的一种,其基本原理和其它种类的双电层电容器一样,都是利用活性炭多孔电极和电解质组成的双电层结构获得超大的容量。 图超级电容器结构原理图 超级电容器的出现,填补了传统电容器和电池间的空白,广泛的应用于数码产品、智能仪表、玩具、电动工具、新能源汽车、新能源发电系统、分布式电网系统、高功率武器、运动控制领域、节能建筑、工业节能减排等各个行业,属于标准的低碳经济核心产品。超级电容器具有如下特点: (1)高功率密度。输出功率密度高达数kW/kg,是如何化学电源所无法比拟的,是一般蓄电池的数十倍。 (2)高能量密度。能量密度可以达到5-20Wh/kg,是传统电容器所无法想象的。 (3)循环寿命长。理论循环寿命为无限次,实际都为50万次以上,远高于蓄电池几百次的循环寿命。 (4)充电时间短。可在数秒内到几分钟内完成充电,远快于蓄电池的充电

时间。 (5)免维护、高可靠性,报废后不产生环境污染。 3.1.2 超级电容器与传统常规储能元器件比较 (1)超级电容器与静电电容器、电池的性能参数比较 图超级电容器与普通电容器及电池参数比较 (2)超级电容与电池相关指标比较 图超级电容与电池参数比较 结合以上数据我们可以看出超级电容器的优势在于能提供较大的比功率,因此适合与瞬态大电流充放电工作环境。 3.1.3 超级电容器运用领域 超级电容器的用途非常广泛,其应用领域涉及消费类电子产品,交通运输、移动通信、工业、能源、电力及军事等领域,并且应用范围还在不断地扩大。

超级电容行业分析报告

超级电容行业分析报告

超级电容行业分析报告 一、超级电容器行业分析 超级电容器根据制造工艺和外形结构可划分为钮扣型、卷绕型和大型三种类型,三者在容量上大致归类为5F以下、5F~200F、200F以上,它们由于其特点的不同,运用领域也有所差异。 钮扣型产品具备小电流、长时间放电的特点,可用在小功率电子产品及电动玩具产品中。而卷绕型和大型产品则多在需要大电流短时放电,有记忆存储功能的电子产品中做后备电源,适用于带CPU的智能家电、工控和通信领域中的存储备份部件。另外大型超级电容器通过串并联构成电源系统可用在汽车等高能供应装置上。 年份纽扣型卷绕型和大型总规模同比增长2007 10.2 34.8 45 45% 2008 15.3 52.2 67.5 50% 年份纽扣型卷绕型和大型总规模同比增长 2005 0.4 3.5 3.9 57.2% 2006 0.9 4.8 5.7 46.2% 2007 1.4 7.2 8.6 50% 2008 2.1 11.2 13.3 55% 表1、表2是对三种超级电容器产业规模进行调查而得到的数据整理而成的,分别反映了世界和中国超级电容器产业的情况。从这两个表中我们不难发现三个问题: 1、超级电容器产业的发展非常迅速,无论是钮扣型还是卷绕型或是大型超级电容器,其产业规模都在高速扩展。 2、中国在钮扣型超级电容方面的竞争力不明显,在中国钮扣型市场中,海外产品几乎占据了90%以上的份额,竞争非常激烈。数据表明,近几年国内厂家的市场份额也在逐步扩大。 3、卷绕型和大型方面,中国的技术水平与国际接近,市场份额也比较理想。近几年,中国厂商的销售收人也在呈几何倍数增长。据调查,国产超级电容器已占有中国市场60%~70%的份额。 二、超级电容器技术研究现状 超级电容器是利用双电层原理的电容器。当外加电压加到超级电容器的两个极板上时,与普通电容器一样,极板的正电极存储正电荷,负极板存储负电荷,在超级电容器的两极板上电荷产生的电场作用下,在电解液与电极间的界面上形成相反的电荷,以平衡电解液的内电场,这种正电荷与负电荷在两个不同相之间的接触面上,以正负电荷之间极短间隙排列在相反的位置上,这个电荷分布层叫做双电层,因此电容量非常大。当两极板间电势低于电解液的氧化还原电极电位时,电解液界面上电荷不会脱离电解液,超级电容器为正常工作状态(通常为3V以下),如电容器两端电压超过电解液的氧化还原电极电位时,电解液将分解,为非正常状态。由于随着超级电容器放电,正、负极板上的电

2016年国内外超级电容行发展现状及未来趋势分析

2016年国内外超级电容行发展现状及未来趋势分析 一、超级电容的定义 超级电容又名电化学电容器,双电层电容器是通过极化电解质来储能的一种电化学元件。它不同于传统的化学电源,是一种介于传统电容器与电池之间、具有特殊性能的电源,主要依靠双电层和氧化还原假电容电荷储存电能。但在其储能的过程并不发生化学反应,这种储能过程是可逆的,也正因为此超级电容器可以反复充放电数十万次。其基本原理和其它种类的双电层电容器一样,都是利用活性炭多孔电极和电解质组成的双电层结构获得超大的容量。 二、超级电容有哪些特点 (1)充电速度快,充电几秒-几分钟就可充满; (2)循环使用寿命长,深度充放电循环使用次数可达1-50万次,远高于充电电池的充放电使用寿命; (3)功率密度高,可以快速存储释放电荷,可达300W/KG-5000W/KG,相当于电池电量的5-10倍; (4)大电流放电能力强,能量转换效率高,循环过程能量损失小,循环效率≥90%; (5)贮存寿命长,因为充电过程没有化学反应,电极材料相对稳定; (6)低温特性好,温度范围宽-40℃~+70℃,随着温度的降低,锂电池放电性能显著下降;(7)可靠性高。 缺点:成本高,功率密度较高,能量密度低。 法拉(farad),简称“法”,符号是F 1法拉是电容存储1库仑电量时,两极板间电势差是1伏特1F=1C/1V 1库仑是1A电流在1s内输运的电量,即1C=1A·S。 1法拉=1安培·秒/伏特 一个12伏14安时的电瓶放电量=14×3600×1/12=4200法拉(F),图中一个30000F的超级电容的电量相当于7个12伏14安时的电瓶放电量,够大吧。 三、超级电容的种类 按储存电能的机理,超级电容器可分为以下2种:包括双电层电容器和赝电容器。 四、超级电容的用途 超级电容可以广泛应用于辅助峰值功率、备用电源、存储再生能量、替代电源等不同的应用场景,在工业控制、风光发电、交通工具、智能三表、电动工具、军工等领域具有非常广阔的发展前景,特别是在部分应用领域具有非常大的性能优势。 1、电子设备最早应用:例如我们电脑的内存系统、照相机的闪光灯,音响设备后备存储电源。 2、汽车工业中:插电式混合动力汽车中超级电容主要和电池相配合形成智能启停控制系统。(1)超级电容可以迅速高效地吸收电动汽车制动产生的再生动能; (2)加速和爬坡时超级电容为智能启停控制系统电机提供电能,延长了电池的使用寿命。 3、大尺寸超级电容器可用在火车和地铁的刹车制动系统上,可以节省30%的能量。 4、超级电容轻轨列车 超级电容轻轨列车是一种新型电力机车。2012年8月10日,世界第一列超级电容轻轨列车在湖南省株洲市下线。这种新型电力机车最多能运载320人,不再需要沿途架设高压线,停站30秒钟就能快速充满电。列车充电后能高速驶向相距2公里左右的另一个站点,再上下客并充电,如此周而复始。 5、全球首创超级电容储能式现代电车

2019超级电容器行业分析报告及技术研究现状

2012超级电容器行业分析报告及技术研究现状 一、电容器、超级电容器行业分析 超级电容器根据制造工艺和外形结构可划分为钮扣型、卷绕型和大型三种类型三者在容量上大致归类为5F以下、5F~200F、200F以上它们由于其特点的不同运用领域也有所差异。 钮扣型产品具备小电流、长时间放电的特点,可用在小功率电子产品及电动玩具产品中。而卷绕型和大型产品则多在需要大电流短时放电,有记忆存储功能的电子产品中做后备电源,适用于带CPU的智能家电、工控和通信领域中的存储备份部件。另外大型超级电容器通过串并联构成电源系统可用在汽车等高能供应装置上。 表1、表2是对三种超级电容器产业规模进行调查而得到的数据整理而成的,分别反映了世界和中国超级电容器产业的情况。从这两个表中我们不难发现三个问题: 1、超级电容器产业的发展非常迅速,无论是钮扣型还是卷绕型或是大型超级电容器,其产业规模都在高速扩展。 2、中国在钮扣型超级电容方面的竞争力不明显,在中国钮扣型市场中,海外产品几乎占据了90%以上的份额,竞争非常激烈。数据表明,近几年国内厂家的市场份额也在逐步扩大。 3、卷绕型和大型方面,中国的技术水平与国际接近,市场份额也比较理想。近几年,中国厂商的销售收人也在呈几何倍数增长。据调查,国产超级电容器已占有中国市场60%~70%的份额。 二、超级电容器技术研究现状

超级电容器是利用双电层原理的电容器。当外加电压加到超级电容器的两个极板上时,与普通电容器一样,极板的正电极存储正电荷,负极板存储负电荷,在超级电容器的两极板上电荷产生的电场作用下,在电解液与电极间的界面上形成相反的电荷,以平衡电解液的内电场,这种正电荷与负电荷在两个不同相之间的接触面上,以正负电荷之间极短间隙排列在相反的位置上,这个电荷分布层叫做双电层,因此电容量非常大。当两极板间电势低于电解液的氧化还原电极电位时,电解液界面上电荷不会脱离电解液,超级电容器为正常工作状态(通常为3V以下),如电容器两端电压超过电解液的氧化还原电极电位时,电解液将分解,为非正常状态。由于随着超级电容器放电,正、负极板上的电荷被外电路泄放,电解液的界面上的电荷响应减少。由此可以看出:超级电容器的充放电过程始终是物理过程,没有化学反应。因此性能是稳定的,与利用化学反应的蓄电池是不同的。 超级电容器因其独特的双层大容量储存结构对原材料及制作工艺提出了极高的要求。电极、电解质和隔膜的组成和质量对超级电容器的性能起着决定性的影响。下面将从原材料,制作工艺等几个方面对超级电容器的技术现状进行分析。 2.1正极材料 目前用作超级电容器电极的材料主要有三类:碳材料、金属氧化物材料和导电聚合物材料。 2.1.1 碳材料 碳是最早被用来制造超级电容器的电极材料。碳电极电容器主要是利用储存在电极与电解液界面的双电层能量,其比表面积是决定电容器容量的重要因素。尽管高比表面的碳材料比表面积越大,容量也越大,但实际利用率并不高,因为多孔碳材料中孔径一般要2nm及 以上的空间才能形成双电层,从而进行有效的能量储存,而制备的碳材料往往存在微孔(孔 径小于2nm)不足的情况。所以这个系列主要是向着提高有效比表面积和可控微孔孔径(孔径 大于2nm)的方向发展。除此之外,碳材料的表面官能团、导电率、表观密度等对电容器性 能也有影响。现在已有许多不同类型的碳材料被证明可用于制作超级电容器的极化电极,如活性炭、活性炭纤维、碳气溶胶、碳纳米管以及某些有机物的裂解碳化产物。 2.1.2 金属氧化物材料 金属氧化物作为超级电容器电极材料的研究是基于法拉第准电容储能原理,即是在氧化物电极表面及体相发生的氧化还原反应而产生的吸附电容。其电容量远大于活性炭材料的双电层电容,但双电层电容器瞬间大电流放电的功率特性比法拉第电容器好。金属氧化物作为超级电容器电极材料有着潜在的研究前景。近年来金属氧化物电极材料的研究工作主要围绕以下两个方面进行:(l)制备高比表面积的RuO2活性物质。(2) RuO2与其它金属氧化物复合。

超级电容器展现状及前景分析

超级电容器发展现状及前景分析 一、超级电容器的概念 超级电容器是一种具有超级储电能力,可提供强大的脉冲功率的物理二次电源,它是根据电化学双电层理论研制而成的,所以又称双电层电容器。 超级电容器基本原理为:当向电极充电时,处于理想极化电极状态的电极表面电荷将吸引周围电解质溶液中的异性离子,使这些离子附于电极表面上形成双电荷层,构成双电层电容。由于两电荷层的距离非常小(一般0.5mm以下),再加之采用特殊电极结构,使电极表面积成万倍的增加,从而产生极大的电容量。 超级电容器实现了电容量由微法级向法拉级的飞跃,彻底改变了人们对电容器的传统印象。目前,超级电容器已形成系列产品,实现电容量0.5-1000F(法),工们电压12-400V,最大放电电流400-2000A。 超级电容器的性能特点: ①.具有法拉级的超大电容量; ②.比脉冲功率比蓄电池高近十倍; ③.充放电循环寿命在十万次以上; ④.能在-40℃-70℃的环境温度中正常使用; ⑤.有超强的荷电保持能力,漏电源非常小; ⑥.充电迅速,使用便捷; ⑦.无污染,真正免维护。 二、超级电容器行业市场分析 超级电容器根据制造工艺和外形结构可划分为钮扣型、卷绕型和大型三种类型,三者在容量上大致归类为小于5F、5F~200F、大于200F,它们由于其特点的不同,运用领域也有所差异。 钮扣型产品具备小电流、长时间放电的特点,可用在小功率电子产品及电动玩具产品中;而卷绕型和大型产品则多在需要大电流短时放电,有记忆存储功能的电子产品中做后备电源,适用于带CPU的智能家电、工控和通信领域中的存储备份部件;另外大型超级电容器通过串并联构成电源系统可用在汽车等高能供应装置上。这三种超级电容器在全球和国内的生产规模情况分别见表1和表2 所示。

2020超级电容器项目可行性报告

超级电容器项目可行性报告 规划设计 / 投资分析

摘要说明— 该超级电容器项目计划总投资 13474.95 万元,其中:固定资产投资11770.85 万元,占项目总投资的 87.35%;流动资金 1704.10 万元,占项目总投资的 12.65%。 达产年营业收入 16168.00 万元,总成本费用 12896.82 万元,税金及附加 239.97 万元,利润总额 3271.18 万元,利税总额 3962.35 万元,税后净利润 2453.38 万元,达产年纳税总额 1508.96 万元;达产年投资利润率24.28%,投资利税率 29.41%,投资回报率 18.21%,全部投资回收期 6.99 年,提供就业职位 283 个。 坚持应用先进技术的原则。根据项目承办单位和项目建设地的实际情况,合理制定项目产品方案及工艺路线,在项目产品生产技术设计上充分体现设备的技术先进性、操作安全性。采用先进适用的项目产品生产工艺技术,努力提高项目产品生产装置自动化控制水平,以经济效益为中心,在采用先进工艺和高效设备的同时,做好项目投资费用的控制工作,以求实科学的态度进行细致的论证和比较,为投资决策提供可靠的依据。努力提高项目承办单位的整体技术水平和装备水平,增强企业的整体经济实力,使企业完全进入可持续发展的境地。 概论、建设背景、项目市场调研、建设规模、选址分析、土建工程分析、工艺分析、环境影响概况、项目安全保护、风险应对评价分析、节能方案分析、项目实施方案、投资可行性分析、经济评价分析、综合评价等。

第一章建设背景 一、项目建设背景 超级电容器是通过电极与电解质之间形成的界面双层来存储能量的新型元器件,其既具有电容器快速充放电的特性,又具有电池的储能特性。超级电容器具有功率密度高、充电速度快、循环寿命长、工作温限宽、绿色环保等优良特征,下游应用市场包括消费电子、电动汽车、轨道交通、电力系统、军工设备等众多领域。不过相较于储能电池,超级电容器虽然充放电速度快,但储电量较少,因此主要应用于辅助峰值功率、备用电源、存储再生能量、替代电源等场景。 因超级电容器的优良特性,我国政府积极推动产业发展,行业整体技术水平不断提升,超级电容器市场规模迅速扩大。2012 年,我国超级电容器市场规模为 16.3 亿元,发展到 2017 年已经增长至 101.0 亿元,年复合增长率达到 44.02%;2018 年,超级电容器市场规模达到 120.0 亿元,同比增长 18.81%。我国超级电容器市场规模迅速扩张。 我国新能源汽车市场保持高速增长,可再生能源发电以及分布式电力系统市场蓬勃发展,轨道交通、数据中心、消费电子等领域市场规模也在持续扩大,下游主要应用领域发展态势良好,对超级电容器需求将持续保持较快的速度增长。并且我国超级电容器行业经过不断发展,国际竞争力

超级电容器原理介绍及实验分析

五、结果与分析 1、实验过程总结与知识点查阅 ○1超级电容器的结构:[1] 超级电容器主要由三部分组成:电极、电解液和隔膜,其中电极由集流体和电极材料组成。本实验中,集流体为泡沫镍,集流体起到降低电极内阻的作用,活性物质为三维石墨烯-Co3O4复合材料。 ○2超级电容器的分类及原理 分为双电层电容器和赝电容器 双电层电容器:充电时,电解液中的带电粒子被吸附在电极表面,形成双电层结构,从而将能量储存起来。在双电层电容器工作的过程中,电解液中的粒子只发生电迁移、扩散、传质,完全是物理过程,不会和电极发生氧化还原反应。在充电时,接正极的电极集流体和活性物质带正电,活性物质吸附电解液中的负离子从而形成双电层结构。同样的,接负极的活性物质带负电,吸引电解液中的阳离子形成双电层结构。整个超级电容器相当于两个电容器串联。循环性能好,比电容较低。 赝电容器:由于电解液中粒子与电极材料发生高度可逆的氧化还原反应,形成不稳定的产物,将能量储存起来。在充电时,活性物质与电解液中的粒子在电极表面或者电极表面及内部发生高度可逆的化学吸附;在放电时则进行解吸附的过程。循环性能差,比电容高。 ○3超级电容器的电极材料[2]: (1)炭材料:活性炭、碳纳米管、石墨烯等。主要用于双电层电容器,比容量较低,而且能量密度与功率密度也较低。 ( 2 )过渡金属氧化物和导电聚合物,主要用于赝电容器,比容量与能量密度较高,导电性能和循环稳定性相对活性炭较差。 (3)改进材料:制备碳材料与金属氧化物或导电聚合物的复合材料,同时拥有比电容高和循环性能好的优点,如本实验中的三维石墨烯-Co3O4复合材料。 ○4循环伏安法测试及其原理 循环伏安法是指在工作电极和参比电极之间施加三角波扫描电压,记录工作电极上响应电流与施加电位之间的关系曲线,即循环伏安图。从伏安图的波形、氧化还原电流的数值及

超级电容器发展现状及发展前景分析

超级电容器发展现状及发展前景分析 超级电容器研究国世界分布图 超级电容器在新能源领域并不是一个陌生的名词。实际上,超级电容器已在该领域历经了几十年的坎坷,虽然它的应用形式同电池不同,但在实际应用上却总被电池取代,此外还面临成本高、技术难度大的劣势。然而,超级电容器在技术上一旦取得突破,将可对新能源产业的发展产生极大的推动力。因此,尽管研发过程困难重重,但攻克它的意义却很重大。 超级电容器的尴尬现状 超级电容器从诞生到现在,已经历了三十多年的发展历程。目前,微型超级电容器在小型机械设备上得到广泛应用,例如电脑内存系统、照相机、音频设备和间歇性用电的辅助设施。而大尺寸的柱状超级电容器则多被用于汽车领域和自然能源采集上,并可预见在该两大领域的未来市场上,超级电容器有着巨大的发展潜力。

超级电容器“全家福” 使用寿命久、环境适应力强、高充放电效率、高能量密度,这是超级电容器的四大显著特点,这也使它成为当今世界最值得研究的课题之一。目前,超级电容器的主要研究国为中、日、韩、法、德、加、美。从制造规模和技术水平来看,亚洲暂时领先。 然而,超级电容器的研发工作一直笼罩在电池(主要为镍氢电池、锂电池)的阴影之下。镍氢电池和锂电池的开发因为可以获得来自政府和大投资商的巨额资金支持,技术交流获得极大推动,也更容易聚焦全世界的目光。相比之下,超级电容器却很难得到雄厚的资金支持,技术的进步和发展也就受到很大程度地制约。另外,超级电容器成本高、能量密度低的现状也与锂电池形成鲜明对比,这使它在很多领域备受冷落。 先驱EEStor公司勇于挑战却惨遭败北 尽管超级电容器已发展多年,但实际生产厂家的数量却少得可怜。一部分厂商面对超级电容器技术上发育不完全的现状,不敢轻易投资,采取观望策略,期待市场能出现一个涉足此领域并获得成功的例子。另外一部分厂商则坚信,只要超级电容器的生产成本实现大幅下降,仅以当前它的快速充放电特性,就可实现快速普及。美国超级电容器生产商EEStor就属于后者。 上世纪90年代,美国超级电容器生产商EEStor为改变超级电容器的市场现状,曾用好几年的时间将大量财力物力投向如何提高超级电容能量密度的研发上,期望能通过自身技术让超级电容器在生产和应用方面上升到一个新的台阶。 当时,EEStor争取到了巨额的研发资金,还与电动汽车电机提供商ZENN公司达成了战略合作。然而,多名参与此项研究的科学家最后得出了令人遗憾的结论:我们很想打破超级电容器的市场僵局,但现有技术无法实现这一目标。世界超级电容器先驱之一——EEStor,在领域内建立的里程碑式研发项目最终以失败告终。

中国超级电容器电池行业概述及产值分析

中国超级电容器电池行业概述及产值分析 超级电容器电池产业作为新兴能源产业,是一种介于电容器和电池 之间的新型储能元件,主要利用双电层或者电极上快速和可逆的氧化还原反 应来储存能量,其储能的过程并不发生化学反应,它具有充电时间短、使用 寿命长、温度特性好、节约能源和绿色环保等特点。与二次电池相比具有更 优异的大电流放电特性。近几年,国内外都处于快速发展期,随着市场需求 的迅速扩大和国家新能源政策的牵引,特别是伴随着我国新能源汽车产业的 高速发展,我国超级电容器电池行业整体上进入了迅速发展的快车道。在中国,超级电容器电池主要应用于储能领域,电子设备,和动力系统等等。据 统计,目前中国混合动力客车的超级电容器装机保有量已超过2 万辆,宇 通、金龙、金旅、海格、南车等十多家国内知名车企都在新能源客车上采用 了超级电容器方案。超级电容器对新能源汽车有显著的节能减排,省油环保 作用。 目前国内的超级电容器电池研究、生产及应用起步较晚,较之国外先 进厂商生产技术相对滞后;同时,行业壁垒较高,国内市场各家生产商目前还 处于市场开拓期,整体处于不完全竞争的局面,核心企业间的竞争并不直 接。近年来由于生产技术的提高,进口的原材料在逐步降低,生产成本有一 定程度的降低。同时由于企业之间的相互竞争,价格也在不断的下降,而且 趋势比较稳定。 2016 年超级电容器电池的总产值达到114392 万元,2020 年有望达到301917 万元,2016 年到2020 年的复合增长率为21.42%。2016 年超级电容器电池市场总销售额大约284508 万元,到2020 年有望达到634396 万元,2016 到2020 年的年均增长率为17.39%。

超级电容器实验报告

实验报告 题目 C,MnO2的电化学电容特性实验姓名许树茂 学号 005 所在学院化学与环境学院 年级专业新能源材料与器件创新班 指导教师舒东老师 完成时间 2012 年 4 月

1.【实验目的】 1. 了解超级电容器的原理; 2. 了解超级电容器的比电容的测试原理及方法; 3. 了解超级电容器双电层储能机理的特点; 4. 掌握超级电容器电极材料的制备方法; 5. 掌握利用循环伏安法及恒流充放电的测定材料比电容的测试方法。 2. 【实验原理】 超级电容器的原理 超级电容器是由两个电极插入电解质中构成。超级电容与电解电容相比,具有非常高的功率密度和实质的能量密度。尽管超级电容器储存电荷的能力比普通电容器高,但是超级电容与电解电容或者电池的结构非常相似。 图1 超级电容器的结构图 从图中可看出,超级电容器与电解电容或者电池的结构非常相似,主要差别是用到的电极材料不一样。在超级电容器里,电极基于碳材料技术,可提供非常大的表面面积。表面面积大且电荷间隔很小,使超级电容器具有很高的能量密度。大多数超级电容器的容量用法拉(F)标定,通常在1F到5,000F之间。 (1) 双电层超级电容器的工作原理 双电层电容是在电极/溶液界面通过电子或离子的定向排列造成电荷的对峙所产生的。对一个电极/溶液体系,会在电子导电的电极和离子导电的电解质溶液界面上形成双电层。当在两

个电极上施加电场后,溶液中的阴、阳离子分别向正、负电极迁移,在电极表面形成双电层; 撤消电场后,电极上的正负电荷与溶液中的相反电荷离子相吸引而使双电层稳定,在正负极间产生相对稳定的电位差。这时对某一电极而言,会在一定距离内(分散层)产生与电极上的电荷等量的异性离子电荷,使其保持电中性;当将两极与外电路连通时,电极上的电荷迁移而在外电路中产生电流,溶液中的离子迁移到溶液中成电中性,这便是双电层电容的充放电原理。根据双电层理论,双电层的微分电容约为20μF/cm2,采用具有很大比表面积的碳材料可获得较大的容量。双电层电容具有响应速度快,放电倍率高的特点,但储能比电容较小。 (2) 法拉第鹰电容的工作原理 法拉第鹰电容器是在电极表面或体相中的二维或准二维空间上,电极活性物质进行欠电位沉积,发生高度可逆的化学吸附脱附或氧化还原反应,产生与电极充电电位有关的电容。对于法拉第准电容,其储存电荷的过程不仅包括双电层上的存储,而且包括电解液中离子在电极活性物质中由于氧化还原反应而将电荷储存于电极中。对于其双电层中的电荷存储与上述类似,对于化学吸脱附机理来说,一般过程为电解液中的离子一般为或在外加电场的作用下由溶液中扩散到电极溶液界面,而后通过界面的电化学反应而进入到电极表面活性氧化物的体相中若电极材料具有较大比表面积的氧化物,就会有相当多的这样的电化学反应发生,大量的电荷就被存储在电极中。放电时这些进入氧化物中的离子又会重新返回到电解液中,同时所存储的电荷通过外电路而释放出来,这就是法拉第准电容的充放电机理。法拉第鹰电容可以产生高的比电容,但因为法拉第反应的限制,倍率性能比双电层电容小。 目前使用的电极材料主要有碳材料、金属氧化物材料和导电聚合物材料,其中碳材料以双电层机理储能,而后两种材料以法拉第赝电容机理储能。 3.【仪器与试剂】 . 仪器 , 620C,上海辰华仪器公司。 2.电热恒温鼓风干燥箱 3.饱和甘汞参比电极, Pt电极 4.烧杯、玻璃棒、容量瓶 药品 名称化学式分子量级别生产商 不定形二氧化锰MnO2分析纯——硫酸钠Na2SO4——分析纯——

未来5年中国超级电容行业发展预测分析

1. 2018-2020年全球超级电容行业市场规模 中投产业研究院发布的《2021-2025年中国超级电容行业深度调研及投资前景预测报告》中显示:全球超级电容市场规模在2018年达到296.5亿美元,同比增长20%,预计将在2022年达到615亿美元。 图表2009-2022年全球超级电容市场规模 数据来源:中投产业研究院 2. 全球超级电容行业竞争格局 国外企业技术领先,占据全球大部分超级电容器市场。在超级电容器的产业化上,最早是1980年NEC-Tokin与1987年松下三菱生产的产品,到20世纪90年代,Econd和ELIT推出了适合于大功率启动动力场合的电化学电容器。 中投产业研究院发布的《2021-2025年中国超级电容行业深度调研及投资前景预测报告》中显示:目前,世界上许多国家积极开展超级电容相关的研究开发工作,主要的生产企业有:美国的MAXWELL公司、Ioxus公司,日本的ELNA公司、PANASONIC公司,韩国的LSMtron 公司、Vina Technology公司和俄罗斯的ECOND公司等。目前国外企业处于领先地位,占据着全球大部分市场。日、美、欧洲等均把超级电容器项目作为国家级的重点研究和开发项目,美国的USMSC计划、日本的New Sunshine计划和欧洲的PNGU计划均将超级电容器列入开发内容。

图表国外主要的超级电容器制造商 数据来源:中投产业研究院 3. 2018-2020年中国超级电容行业运行情况 随着超级电容器技术的成熟,应用领域不断拓展,成熟的应用案例不断增加,行业的市场规模保持稳定增长态势。中投产业研究院发布的《2021-2025年中国超级电容行业深度调研及投资前景预测报告》中显示:2012年中国超级电容器市场规模仅仅为15亿元,2015年中国超级电容器市场规模增长至40亿元,2018年中国超级电容器市场规模达到91.3亿元,2019-2020年超级电容器市场年均复合增速将维持在30%左右,预计2020年将达到152.7亿元。

超级电容器产业前景分析

超级电容器产业前景分析 https://www.doczj.com/doc/2c1830972.html, 国际电气电子工程师学会高级会员于凌宇 超级电容器作为一种新型储能装置,具有显著的特点和优势,可以在某些领域取代传统蓄电池,在节能环保日益成为主题的今天,它的应用越来越引起世界各国的重视。 超级电容器产业化受到各国重视 ●美国、日本、俄罗斯、瑞士、韩国、法国的一些公司凭借多年的研究开发和技术积累,目前处于领先地位 ●国内从事大容量超级电容器研发的厂家共有50多家,能够批量生产并达到实用化水平的厂家只有10多家 在超级电容器的产业化方面,美国、日本、俄罗斯、瑞士、韩国、法国的一些公司凭借多年的研究开发和技术积累,目前处于领先地位。如美国的Maxwel,日本的Nec、松下、Tokin和俄罗斯的Econd公司等,这些公司目前占据着全球大部分市场。国外主要的生产企业有:美国的Maxwell公司,俄罗斯的Econd 公司、Elit公司,日本的Elna公司、Panasonic公司、Nec-Tokin公司,韩国的Ness公司、Korchip公司、Nuintek公司等。 美国、日本、韩国等国家一直致力于开发高比功率和高比能量的超级电容器。在超级电容器的研究中,许多工作都是开发在各种电解液中有较高比能量的电极材料。目前应用于超级电容器的材料主要有碳基材料、金属氧化物及水合物材料和导电聚合物材料三种。 国外研究超级电容器起步较早,技术相对比较成熟。它们均把超级电容器项目作为国家级的重点研究和开发项目,提出了近期和中长期发展计划。俄罗斯的Esma公司是生产无机混合型超级电容器的代表,然而,Esma公司目前还没有形成规模生产能力。此外,俄罗斯的Elit公司、法国的Saft公司、美国的Cooper 公司、日本的Nec公司和松下公司也投入巨大资金对大容量超级电容器进行规模化生产的研究。 2007年,全球纽扣型超级电容器产业规模为10.2亿美元,卷绕型和大型超级电容器产业规模为34.8亿美元,超级电容器产业总规模为45亿美元,同比增长45%;预计2008年全球纽扣型超级电容器产业规模为15.3亿美元,卷绕型和大型超级电容器产业规模为52.2亿美元,超级电容器产业总规模为67.5亿美元,同比增长50%。 近年来,由于看好这一领域广阔的应用前景,中国一些公司也开始积极涉足这一产业,并已经具备了一定的技术实力和产业化能力。

超级电容器行业分析及技术现状

超级电容器行业分析及技术现状 一、超级电容器行业分析 致归类为5F以下、5F~200F、200F 钮扣型产品具备小电流、长时间放电的特点,可用在小功率电子产品及电动玩具产品中。而卷绕型和大型产品则多在需要大电流短时放电,有记忆存储功能的电子产品中做后备电源,适用于带CPU 的智能家电、工控和通信领域中的存储备份部件。另外大型超级电容器通过串并联构成电源系统可用在汽车等高能供应装置上。 表1、表2是对三种超级电容器产业规模进行调查而得到的数据整理而成的,分别反映了世界和中国超级电容器产业的情况。从这两个表中我们不难发现三个问题: 1.超级电容器产业的发展非常迅速,无论是钮扣型还是卷绕型或是大型超级电容器,其产业规模都在高速扩展。 2.中国在钮扣型超级电容方面的竞争力不明显,在中国钮扣型市场中,海外产品几乎占据了90%以上的份额,竞争非常激烈。数据表明,近几年国内厂家的市场份额也在逐步扩大。 3.卷绕型和大型方面,中国的技术水平与国际接近,市场份额也比较理想。近几年,中国厂商的销售收人也在呈几何倍数增长。据调查,国产超级电容器已占有中国市场60%~70%的份额。 二、超级电容器技术研究现状 超级电容器是利用双电层原理的电容器。当外加电压加到超级电容器的两个极板上时,与普通电容器一样,极板的正电极存储正电荷,负极板存储负电荷,在超级电容器的两极板上电荷产生的电场作用下,在电解液与电极间的界面上形成相反的电荷,以平衡电解液的内电场,这种正电荷与负电荷在两个不同相之间的接触面上,以正负电荷之间极短间隙排列在相反的位置上,这个电荷分布层叫做双电层,因此电容量非常大。当两极板间电势低于电解液的氧化还原电极电位时,电解液界面上电荷不会脱离电解液,超级电容器为正常工作状态(通常为3V以下),如电容器两端电压超过电解液的氧

超级电容器行业分析分析方案及技术研究分析现状

2012 超级电容器行业分析报告及技术研究现状 一、电容器、超级电容器行业分析 超级电容器根据制造工艺和外形结构可划分为钮扣型、卷绕型和大型三种类型三者在容量上大致归类为5F 以下、5F~200F 、200F 以上它们由于其特点地不同运用领域也有所差异.b5E2RGbCAP 钮扣型产品具备小电流、长时间放电地特点,可用在小功率电子产品及电动玩具产品中而卷绕型和大型产品则多在需要大电流短时放电,有记忆存储功能地电子产品中做后备电源,适用于带CPU 地智能家电、工控和通信领域中地存储备份部件.另外大型超级电容器通过串并联构成电源系统可用在汽车等高能供应装置上.p1EanqFDPw 表1、表2是对三种超级电容器产业规模进行调查而得到地数据整理而成地,分别反映了世界和中国超级电容器产业地情况.从这两个表中我们不难发现三个问题:DXDiTa9E3d 1、超级电容器产业地发展非常迅速,无论是钮扣型还是卷绕型或是大型超级电容器,其产业规模都在高速扩展. 2、中国在钮扣型超级电容方面地竞争力不明显,在中国钮扣型市场中,海外产品几乎占据了90% 以上地份额,竞争非常激烈.数据表明,近几年国内厂家地市场份额也在逐步扩大.RTCrpUDGiT

3、卷绕型和大型方面,中国地技术水平与国际接近,市场份额也比较理想.近几年,中国厂商地销售收人也在呈几何倍数增长.据调查,国产超级电容器已占有中国市场 60%~70% 地份额.5PCzVD7HxA 二、超级电容器技术研究现状超级电容器是利用双电层原理地电容器.当外加电压加到超 级电容器地两个极板上时, 与普通电容器一样,极板地正电极存储正电荷,负极板存储负电荷,在超级电容器地两极板上电荷产生地电场作用下,在电解液与电极间地界面上形成相反地电荷,以平衡电解液地内电场,这种正电荷与负电荷在两个不同相之间地接触面上,以正负电荷之间极短间隙排列在相反地位置上,这个电荷分布层叫做双电层,因此电容量非常大.当两极板间电势低于电解液地氧化还原电极电位时,电解液界面上电荷不会脱离电解液,超级电容器为正常工作状态(通常为3V 以下),如电容器两端电压超过电解液地氧化还原电极电位时,电解液将分解,为非正常状态.由于随着超级电容器放电,正、负极板上地电荷被外电路泄放,电解液地界面上地电荷响应减少.由此可以看出:超级电容器地充放电过程始终是物理过程,没有化学反应.因此性能是稳定地,与利用化学反应地蓄电池是不同地.jLBHrnAILg 超级电容器因其独特地双层大容量储存结构对原材料及制作工艺提出了极高地要求.电极、电解质和隔膜地组成和质量对超级电容器地性能起着决定性地影响.下面将从原材料,制作工艺等几个方面对超级电容器地技术现状进行分析.xHAQX74J0X 2.1正极材料 目前用作超级电容器电极地材料主要有三类:碳材料、金属氧化物材料和导电聚合物材料. 2.1.1碳材料 碳是最早被用来制造超级电容器地电极材料.碳电极电容器主要是利用储存在电极与电解液界面地双电层能量,其比表面积是决定电容器容量地重要因素.尽管高比表面地碳材料比表面积越大,容量也越大,但实际利用率并不高,因为多孔碳材料中孔径一般要2nm 及以上地空间才能形成双电层,从而进行有效地能量储存,而制备地碳材料往往存在微孔

超级电容器的现状及发展趋势综述(精选.)

文献综述 超级电容器的现状及发展趋势目录 1 前言 2 超级电容器发展现状 3 超级电容的特点 4 超级电容器电压均衡技术解决方案 5 超级电容器的发展趋势与展望 6 小结

1.前言 随着化石能源资源的日益匮乏和人们强烈的环保意识,有力地促进了太阳能和风能等可再生能源的发展。但太阳能、风能具有波动性和间歇性,需要有效的储能装置保证其能够稳定的在电网中并网工作。同时,电动汽车产业的快速发展也迫切需要发展低沉本、环境友好、能量密度高的储能装置。 超级电容器也叫做双电层电容器是一种具有高能量密度的新型储能元器件,它可提供大功率并具有超长寿命,是一种兼备电容和电池特性的新型元件,在混合动力电动车、脉冲电源系统和应急电源等领域具有广泛的应用前景。而对于大功率系统来说,由于超级电容单体的电压值和能量都比较低,不能满足应用系统功率、放电时间及电压要求。为满足实际应用工况的电压需求,需将多个单体串并联以提高储能模块的工作电压,单体电容器参数的分散性是制约超级电容器模块寿命和可靠性的主要因素。然而市面上同一型号规格的超级电容器在电压、内阻、容量等参数上存在着不一致,并且在超级电容器使用过程中,工作环境不同以及电压不均匀的积累又加剧了超级电容器的参数不一致性。这种离散性极易造成超级电容的过充或过放,从而影响系统的使用寿命和可靠性。因此,研究和实现超级电容器的电压均衡对于提高超级电容器的整体性能是十分必要和关键的技术。基于此本文将主要对超级电容器的发展现状、优缺点、电压均衡方法及未来的发展趋势进行阐述。 2.发展现状 超级电容器利用双电层原理直接存储电能,其容量可达数万法拉,是介于蓄电池和传统 电容器之间的一种新型储能装置。超级电容器储存的能量E=25.0V C ??,与容量C 和工作电 压V 的平方成正比,具有较大的比电容、充电时间短、使用寿命长、温度特性好、节约能源和绿色环保的特点。同时,与化学电源相比较,超级电容具有跟高的比功率,能够在短时间内释放化学电源所难达到的大电流,这一性质很好带地满足了某些电设备对瞬时大电流的需求,具有很大的发展潜能。目前,日本、美国、瑞士、俄罗斯等国家都在加紧超级电容器的开发,并研究超级电容器在电动车驱动和制动系统中的应用,而我国超级电容的研发较晚。 国内,电子部所率先研制出用于电子电路的容量为法拉级的产品,近年来,清华大学、上海交通大学、北京科技大学、哈尔滨工程大学、中科院电工研究所、解放军防化研究院、成都电子科技大学等,都开展了超级电容的基础研究和器件研制。其中,成都电子科技大学研制的基于碳纳米管一聚苯胺纳米复合物超级电容,能量密度达到了6.97Wh/kg,并具有良好的功率特性。在产业化方面,大庆华隆电子有限公司是首家实现超级电容器产业化的公司,其产品包括3.5V 、5.5V 、11V 等系列。北京金正平、石家庄高达、北京集星、江苏双登、锦州锦容和上海奥威等公司都开展了超级电容器的批量生产,并已在内燃机的电子启动系统、高压开关设备、电子脉冲设备、电动汽车等领域得到了应用。我国在超级电容器基础技术上的研究,以及产业化的形成,为开展超级电容器储能系统的研究和应用,奠定了良好的技术基础和物质条件。目前通过自主研发,我国成功研发出了3000F 超级电容器,经国家权威机构检测,静电容量3224.1F ,内阻0.256 m Ω,性能达到国际先进水平。 国外,2011年美国Nesscap Energy 公司与世界级的铁路车辆制造商CAF 达成协议将为西班牙主要城市的有轨电车提供超级电容,成为世界上最大的有轨机车用超级电容供应商。基于超级电容的储能系统可以使轻轨车辆在脱离输电线路电力供应时保持运行。当机车停止时,超级电容储能系统将在25秒内实现满负荷充电。通过储存刹车或机车加速时所产生的能量,超级电容可以帮助降低30%以上的轻轨或系统的能源消耗。此外,美国加州大学洛杉矶分校的研究小组实现了一个突破,用简单通用设备制造出超强功能的石墨烯电容器。这种电容器质量轻、储电量大、充电时间短,反复充电一万次不影响性能,并且即使在高压强下也能稳定放电,性能远远超过目前任何电化学电容器。而loxus 公司则发布了一种重大的电池改良

2016年超级电容国内市场调查报告

关于国内超级电容生产企业调查报告 一、国内超级电容生产企业名录 1.安徽铜峰电子(上市) 2.北京合众汇能(清华碳纳米实验室出身) 3.北京集星科技(清华碳纳米实验室出身,规模较大,实力雄厚) 4.哈尔滨巨容新能源(人和商业集团旗下公司) 5.江海股份(上市) 6.锦州凯美能源(东北老牌超电企业) 7.辽宁百纳电气(代理Maxwell) 8.上海奥威科技(新筑股份控股) 9.深圳今朝时代(新三板上市) 10.天津力神(大型国有企业) 11.烯晶碳能电子科技无锡有限公司(石墨烯为材料) 二、各企业情况简述 1.安徽铜峰电子 安徽铜峰电子集团有限公司的前身是个服装小厂,经过三十多年的艰苦创业,现已发展成为国家大型工业制造企业,国家重点高新技术企业。安徽铜峰电子集团主要生产薄膜电容器。 目前,铜峰公司的全资子公司安徽合汇金源科技有限公司于2014年10月31日成立,合汇金源公司主要负责超级电容器、模组系统的研发、生产、销售。根据铜峰公司发布的公告显示,“新材料、新能源及高端元器件研发产业基地项目”入选国家2015 年专项建设基金项目,其全资子公司合汇金源已于2015 年11月收到国家开发银行安徽省分行安排的23,100万元款项,项目合作协议于2016年7月签署,项目投资期限为10年。 根据签署合作协议,可以推论,合汇金源目前超电项目市场销售额较小,对市场情况影响不大。在其2015年年报中,未看到有关超级电容的信息,由于2015年安徽铜峰整体受经济下行压力影响,公司经营状况较差,已进行领导班子换届,新领导班子对市场布局主要集中在房地产业务、薄膜电容器及薄膜材料业务上,没有对超级电容进行产业化布局与投资。

相关主题
文本预览
相关文档 最新文档