当前位置:文档之家› 角焊缝及其计算

角焊缝及其计算

角焊缝及其计算
角焊缝及其计算

角焊缝及其计算

型式及分类

截面形式:普通型(等边凸形)、平坦型(不等边凹形)、凹面形

两焊脚边夹角:直角角焊缝、斜角角焊缝、焊缝长度与作用方向 1.侧面角焊缝(侧缝)

侧缝主要承受剪力,应力状态叫单纯,在弹性阶段,剪应力沿焊缝长度方向分布不均匀,两端大中间小,且焊缝越长越不均匀,但侧缝塑性好。

2.正面角焊缝(端缝)

端缝连接中传力线有较大的弯折,应力状态较复杂,正面角焊缝沿焊缝长度方向分布比较均匀,但焊脚及有效厚度面上存在严重的应力集中现象,所以其破坏属于正应力和剪应力的综合破坏,但正面角焊缝的刚度较大,变形较小,塑性较差,性质较脆。

3.斜向角焊缝

斜向角焊缝受力情况较复杂,其性能介于侧缝和端缝之间,常用于杆件倾斜相支的情况,也用在板件较宽,内力较大连接中。

4.周围角焊缝

主要为了增加焊缝的长度和使焊缝遍及板件全宽,而把板件交搭处的所有交搭线尽可能多的加以焊接,成为开口或封闭的周围角焊缝。构造及要求。

4.1.最小焊脚尺寸

4.2.最大焊脚尺寸贴边处满足

4.3.角焊缝最小长度

4.4.侧面角焊缝最大计算长度

4.5.板件端部仅有两条角焊缝时每条侧面角焊缝的计算长度

4.6.搭接连接中搭接长度应满足而且不宜采用一条正面角焊缝来传力。

4.7.在次要构件和焊缝连接中,允许采用断续角焊缝,各段间距满足以保证整体受力。

角焊缝连接计算

基本计算公式

轴心作用下的角焊缝计算

轴心作用下角钢的角焊缝计算

弯矩,剪力和轴心力共同作用下角焊缝计算(T形接头)

弯矩,剪力和轴心力共同作用下角焊缝计算(搭接形接头)

1. 端缝、侧缝在轴向力作用下的计算:

(1)端缝

——垂直于焊缝长度方向的应力;

he ——角焊缝有效厚度;

lw ——角焊缝计算长度,每条角焊缝取实际长度减10mm(每端减5mm);ffw ——角焊缝强度设计值;bf ——系数,对承受静力荷载和间接承受动力荷载的结构,bf =1.22,直接承受动力荷载bf =1.0。

(2)侧缝

tf ——沿焊缝长度方向的剪应力。

2. 角钢杆件与节点板焊接连接,承受轴向力N:

(1)角钢用两面侧焊缝与节点板连接的焊缝计算

K1、K2——焊缝内力分配系数;

N1 、N2 ——分别为角钢肢背和肢尖传递的内力。

(2)角钢用三面围焊与节点板连接的焊缝计算(图)

端部正面角焊缝能传递的内力为:

(3)角钢用“L”型焊缝与节点板连接的焊缝计算(图)

由N2 = 0得:

3. 弯矩、剪力、轴力共同作用下的顶接连接角焊缝:

弯矩M作用下,x方向应力

剪力作用下,y方向应力

轴力N作用下x方向应力

M、V和N共同作用下,焊缝上或下端点最危险处应满足:

式中:如果只承受上述M、N、V的某一、两种荷载时,只取其相应的应力进行验算。

4. 牛腿在弯矩、剪力共同作用下的角焊缝连接计算:M=Ve

翼缘竖向刚度较差,不能承受剪力,所以全部剪力均由竖向焊缝承受,弯矩由翼缘与腹板角焊缝共同承受。

点1:

点2:

点3:

5. 扭矩、剪力、轴力共同作用下搭接连接角焊缝:

扭矩T作用下各点应力计算(以A点为例):

Ix+Iy为焊缝计算截面对形心的极惯性矩,rx、ry为焊缝角点到焊缝形心的坐标距离。

V作用下A点

N作用下A点

A点合应力:,

要求:注意计算时需判断应力最大点!

钢结构的连接(一)

焊缝的缺陷形式

·钢板用纵横十字交叉或T形交叉焊缝拼接

·角焊缝的承载力计算公式来源

·外力和角焊缝长度方向成夹角θ 时的斜焊缝计算

·钢管节点连接焊缝构造与计算

·角钢与节点板连接焊缝的内力分配系数

·搭接连接的角焊缝在扭矩、剪力作用下的计算假定

·未焊透对接焊缝连接的构造要求和计算

·圆钢与平板、圆钢与圆钢之间的焊缝

1、焊缝的缺陷形式(图)

2、钢板用纵横十字交叉或T形交叉焊缝拼接

钢板的拼接,当采用对接焊缝时,纵横两方向可采用十字形交叉或T 形交叉。当为T形交叉时,交叉点的间距a不小于200mm (图)

3、角焊缝的承载力计算公式来源

角焊缝受力后的应力分布很复杂。目前主要以试验为基础,经偏于安全地修正后,建立角焊缝最小截面(450方向的有效截面)上三个相互垂直的应力之间的强度条件公式。

式中:——作用于焊缝有效截面上,垂直于焊缝轴线方向的正应力和剪应力;

——作用于焊缝有效截面上,平行于焊缝轴线方向的剪应力;

——角焊缝的强度设计值。

作用在焊缝上的外力N可分解成Nx、Ny和Nz。x和y轴都垂直于焊缝长度方向并平行于两个直角边(焊脚),z轴沿焊缝长度方向,如图。

大多数情况,Ny=0(或Nx=0),则破坏截面上沿x方向(或y 方向)的正应力为,沿z方向的剪应力为,且

式中:he ——角焊缝的有效厚度;

lw ——角焊缝的计算长度,取实际长度减去10mm。

从图中可见,有效截面与焊脚边所在截面成45°,因而整理后可得:从上式可见,正面角焊缝承载力是侧面角焊缝的1.22倍,比试验得到的1.35~1.55倍要小。这是因为上述是通过偏于安全地修正的。考虑到正面角焊缝的塑性较差,故钢结构设计规范规定:直接承受动力荷载的结构中的直角角焊缝,不宜考虑正面角焊缝强度的提高,即公式中的系数1.22,改为1.0。

因此,钢结构设计规范写成更一般的形式:

式中:——按焊缝有效截面计算,垂直于焊缝长度方向的应力;

——按焊缝有效截面计算,沿焊缝长度方向的剪应力;

——正面角焊缝的强度设计值增大系数:对承受静力荷载和间接承受动力荷载的结构,对直接承受动力荷载的结构。

4、外力和角焊缝长度方向成夹角时的斜焊缝计算

对于外力和焊缝轴线组成角的斜焊缝,如图所示,可直接用斜焊缝的强度设计值增大系数,这时:

5、钢管节点连接焊缝构造与计算

钢管结构的节点连接型式主要是采用对接连接,如图,钢管结构中的支管与主管连接焊缝沿钢管全周一般采用斜角角焊缝;也可部分采用角焊缝,部分采用对接焊缝图(b)、(c)、(d)分别为图(a)中a、b、c点处斜角角焊缝的截面型式。支管管壁与主管管壁之间的夹角如图(a),的区域宜采用对接焊缝或带坡口的角焊缝。支管与主管的连接焊缝应沿全周连续焊接,并平滑过渡。支管与主管的连接焊缝不论采用角焊缝还是对接焊缝,计算时可视为全周角焊缝。

角焊缝的焊脚尺寸hf 不宜大于支管壁厚的两倍。

钢管节点连接焊缝计算公式为:

式中:

N ——支管的轴心力;

hf ——角焊缝的焊脚尺寸,hf ≤2ts ;

t、ts ——主管、支管壁厚;

——角焊缝的强度设计值;

lw ——支管与主管相交线长度。

当ds/d ≤0.65时:

当ds/d >0.65时:

式中:d 、ds ——主管、支管外径;

——支管轴线与主管轴线的夹角。

支管与主管表面的相交线,是一条空间曲线,精确计算此空间曲线的长度很麻烦,不便于工程应用。上面式子可计算出相交线长度的近似值,而且偏于安全,完全满足工程要求。

6、角钢与节点板连接焊缝的内力分配系数

角钢类型分配系数

角钢肢背K1 角钢肢尖K2

等边角钢 0.70 0.30

不等边角钢(短边相连) 0.75 0.25

不等边角钢(长边相连) 0.65 0.35

7、搭接连接的角焊缝在扭矩、剪力作用下的计算假定

搭接连接的角焊缝在扭矩和剪力共同作用下的计算采用下列假定:①被连接件是绝对刚性的,而角焊缝是弹性的;②被连接件绕形心O 旋转,角焊缝群上任意一点处的应力方向垂直于该点与形心的连线,且应力的大小与连线距离r 成正比。

8、未焊透对接焊缝连接的构造要求和计算

下列情况可能会采用未焊透的对接焊缝:

①连接焊缝受力很小或不受力,焊缝主要起连系作用,而且要求焊接

结构外观齐平美观,这时就不必做成焊透的对接焊缝,可用不焊透的对接焊缝;②连接焊缝受力较大,采用焊透的对接焊缝,其强度又不能充分利用;而采用角焊缝时,焊脚又过大,这时宜采用坡口加强的角焊缝。

不焊透的对接焊缝截面型式如图所示。由于未焊透,在连接处存在着缝隙,应力集中现象严重,可能使这里的焊缝脆断。不焊透的对接焊缝实际上与角焊缝的工作类似。《钢结构设计规范》(GBJ17-88)规定:不焊透的对接焊缝的强度按角焊缝强度公式计算,在垂直于焊缝长度方向的压力作用下,取;其他情况取。

焊缝有效厚度he 的取值为

V形坡口时,取he=s;时,取he=0.75s

U形、J形坡口,取he=s

式中,s 为坡口根部至焊缝表面的最短距离(不考虑焊缝的余高);为V形坡口的角度。焊缝有效厚度he 应满足为坡口所在焊件的较厚板件厚度,单位为mm。

9、圆钢与平板、圆钢与圆钢之间的焊缝

圆钢与平板、圆钢与圆钢之间的焊缝如图。其抗剪强度计算为:

式中:N ——作用在连接处的轴心力;

lw ——焊缝的计算长度;

he——焊缝的有效厚度,对于圆钢与平板的连接,he =0.7hf ,圆钢与圆钢的连接,分别为大圆钢、小圆钢的直径,a 为焊缝表面到两个圆钢公切线的距离。

圆钢与圆钢、圆钢与钢板间的焊缝有效厚度,不应小于0.2倍圆钢直径(当焊接两圆钢的直径不同时,取平均直径)或3mm,并不大于1.2倍平板厚度,焊缝计算长度不应小于20mm。

10、连接板刚度对普通受拉螺栓中拉力的影响(图)

在受拉的连接接头中,普通螺栓所受拉力的大小和被连接板件的刚度有关。假如被连接板件的刚度很大,如图(a)所示的情况。连接的竖板端受拉力2N1 ,因被连接板件无变形,所以一个螺栓所受拉力Pf =N1 。实际被连板件的刚度常较小,受拉后和拉力垂直的角钢水平肢发生较大的变形,因而在角钢水平肢的端部因杠杆作用而产生反力Q ,如图(b)所示。根据平衡条件,即可求得

可见,由于杠杆作用的存在,使抗拉螺栓的负担加重了。

为了简化计算,规范中把普通螺栓的抗拉设计强度定得比较低,以考虑螺栓负担加重这一不利影响。而且,设计中应设加劲肋等构造措施来提高角钢的刚度,如图(c)(d)所示。

11、高强度螺栓连接受拉时,预拉力的变化(图)

高强度螺栓受拉的工作情况如图所示。图(a)所示为已施加预拉力的高强度螺栓,在承受外拉力作用之前的受力状态。此时,螺栓杆受预拉力P,摩擦面上作用着压力C。根据平衡条件,得C = P 。即摩擦面上的压力C等于预拉力P。

图(b)所示为高强度螺栓承受外拉力N0t时的受力状态。假设螺栓和被连接板件保持弹性性能。螺栓受外拉力N0t 后,螺栓杆中的拉力由原来的P增加到Pf 。此时,螺栓杆又被拉长,即螺栓杆伸长一

个增量;由于螺栓杆被拉长,使原先被P压缩的板件相应地有一个压缩恢复量,板件间的压力就由原来的C 降为Cf 。也就是说,当螺栓受外拉力N0t 作用后,螺栓杆中的拉力将增加,而接触面间的压力却随之降低。根据平衡条件,得

在板厚范围内螺栓杆与板的变形相同:

即螺栓杆的伸长增量等于板件压缩的恢复量。

设螺栓杆的截面面积为Ab ,摩擦面面积为Au ,螺栓和被连接板件的弹性模量都为E ,则

将C = P、Cf = Pf-N0t 代入上式中,整理后得

通常Au 比Ab 大很多倍,如取Au / Ab=10 ,代入上式,得

将上式中的拉力项N0t 除以荷载分项系数的平均值1.3,得到设计外拉力Nt ,即:Nt=1.0N0t 。

当设计外拉力Nt=P 时,Pt =1.07P 。这就是说,当加于螺栓连接的外拉力不超过P 时,高强度螺栓杆内的拉力增加得不多,可以认为螺栓杆内的原预拉力基本不变。

钢结构的材料

1. 强度设计值f

钢材的强度承载力极限为屈服点f y ,称为钢材抗拉(压、弯)强度标准值,除以材料分项系数之后,即得强度设计值。

2. 屈服点f y 作为结构钢材静力强度承载力极限的依据

(1)它是钢材开始塑性工作的特征点。钢材屈服后,塑性变形很大,极易被人们察觉,可及时处理,避免发生破坏。

(2)从屈服到钢材破坏,整个塑性工作区域比弹性工作区域约大200倍,且抗拉强度和屈服点之比(强屈比),是钢结构极大的后备强度,使钢结构不会发生真正的塑性破坏,比较安全可靠。在高层钢结构中,用于八度地震区时,为了保证结构具有良好的抗震性能,要求钢材的强屈比不得低于1.5。

3. 伸长率和面缩率Ψ

伸长率是钢材沿长度的均匀变形和颈缩区的集中变形的总和,所以它不能代表钢材的最大塑性变形能力。断面收缩率Ψ是衡量钢材塑性的一个比较真实和稳定的指标,但是在测量时容易产生较大的误差。因而钢材标准中往往只采用伸长率为塑性保证要求。

4. 冲击试验试件的缺口形式

钢材冲击韧性的数值,随试件刻槽(缺口)的形式和试验机的种类不同而相差很大。以前我国规定采用梅氏U型缺口的试件,现用夏氏V 型缺口。而其它国家分别采用图示三种类型的缺口。(图)

5. 平面应力状态和立体应力状态(图)

由上式可见,当三个主应力同号,它们的绝对值又接近时,即使、、的绝对值很大,大大超过屈服点,但由于其差值不大,折算应力并不大,材料就不易进入塑性状态,有可能直至材料破坏时还未进入塑性状态。相反,当主应力中有异号应力,或同号的两个应力差较大时,当最大的应力尚未达到 f y 时,折算应力就已达到 f y 而进入塑性状态了。

因此,钢材在多轴应力状态下,当处于同号应力场时,钢材易产生脆

性破坏;而当处于异号应力场时钢材将发生塑性破坏。

一般钢结构中,厚度不大,可忽略沿厚度方向的应力,则为平面应力状态。(图)

如果钢材受纯剪时,,由极限屈服状态为,则有,即得:钢材的剪切屈服点

钢材的抗剪强度设计值

钢结构的计算原理

1.超屈服荷载作用

结构在较少次数(少于104次)的高强度(部分材料进入屈服状态)反复荷载作用下因损伤累积而造成的断裂称为超屈服荷载累积损伤断裂或低周疲劳断裂。

2.应力幅和循环次数的关系(图)

3.疲劳计算的构件和连接分类

项次简图说明类别

1 无连接处的主体金属1)轧制工字钢2)钢板a)两侧为轧制边或刨边b)两侧为自动、半自动切割边(切割质量标准应符合《钢结构工程施工及验收规范》一级标准) 1 1 2

2 横向对接焊缝附近的主体金属1)焊缝经加工、磨平及无损检验(符合《钢结构工程施工及验收规范》一级标准)2)焊缝经检验,外观尺寸符合一级标准 23

3 不同厚度(或宽度)横向对接焊缝附近的主体金属,焊缝加工成平滑过渡并经无损检验符合一级标准 2

4 纵向对接焊缝附近的主体金属,焊缝经无损检验及外观尺寸检查均符合二级标准 2

5 翼缘连接焊缝附近的主体金属(焊缝质量经无损检验符合二级标准)1)单层翼缘板a)自动焊b)手工焊2)双层翼缘板 2 3 3

6 横向加劲肋端部附近的主体金属1)肋端不断弧(采用回焊)2)肋端断弧 4 5

7 梯形节点板对焊于梁的翼缘、腹板以及桁架构件处的主体金属,过渡处在焊后铲平、磨光,圆滑过渡,不得有焊接起弧、灭弧缺陷 5

8 矩形节点板用角焊缝连于构件翼缘或腹板处的主体金属,l >150mm 7

9 翼缘板中断处的主体金属(板端有正面焊缝) 7

10 向正面角焊缝过渡处的主体金属 6

11 两侧面角焊缝连接端部的主体金属 8

12 三面围焊的角焊缝端部主体金属 7

13 三面围焊或两侧面角焊缝连接的节点板主体金属(节点板计算宽度按扩散角θ=30°考虑) 7

14 K形对接焊缝处的主体金属,两板轴线偏离小于0.15t,焊缝经无损检验且焊趾角α≤45° 5

15 十字形接头角焊缝处的主体金属,两板轴线偏离小于0.15t 7

16 角焊缝按有效截面确定的应力幅计算 8

17 铆钉连接处的主体金属 3

18 联系螺栓和虚空处的主体金属 3

19 高强度螺栓连接处的主体金属 2

注:1. 所有对接焊缝均需焊透

2.角焊缝应符合《钢结构设计规范》(GBJ17-88)第8.2.7条的要求

3.项次16中的剪应力幅,其中的正负值为:与同方向时,取正值;与反方向时,取负值。

钢材的强度设计值

焊缝的强度设计值

螺栓的强度设计值

钢板上螺栓的容许距离

型钢上螺栓的容许距离

强螺栓的属性

螺栓的有效面积

角焊缝地焊接既计算

第三章连接返回 §3-3角焊缝的构造和计算 3.3.1角焊缝的构造 一、角焊缝的形式和强度 角焊缝(fillet welds)是最常用的焊缝。角焊缝按其与作用力的关系可分为:焊缝长度方向与作用力垂直的正面角焊缝;焊缝长度方向与作用力平行的侧面角焊缝以及斜焊缝。按其截面形式可分为直角角焊缝(图3.3.1)和斜角角焊缝(图3.3.2)。 直角角焊缝通常做成表面微凸的等腰直角三角形截面(图3.3.1a)。在直接承受动力荷载的结构中,正面角焊缝的截面常采用图3.3.1(b)所示的坦式,侧面角焊缝的截面则作成凹面式(图3.3.1c)。图中的h f为焊角尺寸。 两焊脚边的夹角α>90°或α<90°的焊缝称为斜角角焊缝(图3.3.2)。斜角角焊缝常用于钢漏斗和钢管结构中。对于夹角α>°或α<60°的斜角角焊缝,除钢管结构外,不宜用作受力焊缝。 传力线通过侧面角焊缝时产生弯折,应力沿焊缝长度方向的分布不均匀,呈两端大而中间小的状态。焊缝越长,应力分布越不均匀,但在进入塑性工作阶段时产生应力重分布,可使应力分布的不均匀现象渐趋缓和。

正面角焊缝(图3.3.3b)受力较复杂,截面的各面均存在正应力和剪应力,焊根处有很大的应力集中。这一方面由于力线的弯折,另一方面焊根处正好是两焊件接触间隙的端部,相当于裂缝的尖端。经试验,正面角焊缝的静力强度高于侧面角焊缝。国外试验结果表明,相当于Q235钢和E43型焊条焊成的正面角焊缝的平均破坏强度比侧面角焊缝要高出35%以上(图3.3.4)。低合金钢的试验结果也有类似情况。由图3.3.4看出,斜焊缝的受力性能和强度介于正面角焊缝和侧面角焊缝之间。 二、角焊缝的构造要求 1、最大焊脚尺寸 为了避免烧穿较薄的焊件,减少焊接应力和焊接变形,角焊缝的焊脚尺寸不宜太大。规规定:除了直接焊接钢管结构的焊脚尺寸hf不宜大于支管壁厚的2倍之外,hf不宜大于较薄焊件厚度的1.2倍。 在板件边缘的角焊缝,当板件厚度t>6mm时,h f≤t;当t>6mm时,hf≤t-(1-2)mm;。圆孔或槽孔的角焊缝尺寸尚不宜大于圆孔直径或槽孔短径的1/3。 2、最小焊脚尺寸

直角角焊缝连接的构造和计算

§3.3 直角角焊缝连接的构造和计算 一.定义 侧焊缝——焊缝轴线平行于力线; 端焊缝——焊缝轴线垂直于力线; 斜焊缝——焊缝轴线倾斜于力线。 二.直角角焊缝应力分析 大量试验结果表明,侧面角焊缝主要承受剪应力。传力线通过侧面角焊缝时产生弯折,应力沿焊缝长度方向的分布不均匀,呈两端大而中间小的状态。 试验证明: 1.侧焊缝以45°“咽喉截面”破坏居多; 2.端焊缝的强度是侧焊缝强度的1.35~1.55倍。 规范规定:在焊缝计算时以侧焊缝强度为基准(w f f ),端焊缝强度为1.22w f f ,斜焊缝强度为 。3 θ sin 12 w f -f 三.直角角焊缝的构造 t 1-(1~2) t 1 h f ≤1.2t min h f ≤ (当t 1>6) (当t 1≤6)h f h f t 2 t 1 t 1 t 2 1.最小焊缝高度:fmin h =11.5t ,1t —较厚板件的厚度; 2.最大焊缝高度:2fmax 1.2t h =,2t —较薄板件的厚度; 对于贴边焊

当t ≤6mm 时,fmax h =t ; 当t >6mm 时,fmax h =t -(1~2)mm 要求:fmin h ≤f h ≤fmax h 3.最大焊缝长度:fmax l =60f h (静荷) fmax l =40f h (动荷) 若内力沿角焊缝全长分布,则计算长度不受此限; 4.最小焊缝长度:fmin l =8f h ≮40mm 要求:fmin l ≤f l ≤fmax l 5.搭接连接的构造要求 试验结果表明,连接的承载力与b/lw 有关。 要求: w b l ≤ 和 16 (1190 (12)t t m m b m m t m m >?

角焊缝的构造和计算

第三章连接 §3-3角焊缝的构造和计算 3.3.1角焊缝的构造 一、角焊缝的形式和强度 角焊缝(fillet welds)是最常用的焊缝。角焊缝按其与作用力的关系可分为:焊缝长度方向与作用力垂直的正面角焊缝;焊缝长度方向与作用力平行的侧面角焊缝以及斜焊缝。按其截面形式可分为直角角焊缝(图3.3.1)和斜角角焊缝(图3.3.2)。 直角角焊缝通常做成表面微凸的等腰直角三角形截面(图3.3.1a)。在直接承受动力荷载的结构中,正面角焊缝的截面常采用图3.3.1(b)所示的坦式,侧面角焊缝的截面则作成凹面式(图3.3.1c)。图中的hf为焊角尺寸。 两焊脚边的夹角α>90°或α<90°的焊缝称为斜角角焊缝(图3.3.2)。斜角角焊缝常用于钢漏斗和钢管结构中。对于夹角α>135°或α<60°的斜角角焊缝,除钢管结构外,不宜用作受力焊缝。 传力线通过侧面角焊缝时产生弯折,应力沿焊缝长度方向的分布不均匀,呈两

端大而中间小的状态。焊缝越长,应力分布越不均匀,但在进入塑性工作阶段时产生应力重分布,可使应力分布的不均匀现象渐趋缓和。 正面角焊缝(图3.3.3b)受力较复杂,截面的各面均存在正应力和剪应力,焊根处有很大的应力集中。这一方面由于力线的弯折,另一方面焊根处正好是两焊件接触间隙的端部,相当于裂缝的尖端。经试验,正面角焊缝的静力强度高于侧面角焊缝。国内外试验结果表明,相当于Q235钢和E43型焊条焊成的正面角焊缝的平均破坏强度比侧面角焊缝要高出35%以上(图3.3.4)。低合金钢的试验结果也有类似情况。由图3.3.4看出,斜焊缝的受力性能和强度介于正面角焊缝和侧面角焊缝之间。 二、角焊缝的构造要求 1、最大焊脚尺寸 为了避免烧穿较薄的焊件,减少焊接应力和焊接变形,角焊缝的焊脚尺寸不宜太大。规范规定:除了直接焊接钢管结构的焊脚尺寸hf不宜大于支管壁厚

角焊缝强度计算.

锅炉角焊缝强度计算方法 JB/T 6734-1993 中华人民共和国机械行业标准 JB/C 6734-1993 锅炉角焊缝强度计算方法 主题内容与适用范围 本标准规定了锅炉角焊缝强度计算方法 本标准适用于额定蒸汽压力大于2.5MYa固定式蒸汽锅炉锅筒,集箱和管道」_各种骨接 头连接焊缝和焊接到锅炉受压元件土受力构件的连接焊缝以及在制造,安装与运输过程中所 用受力构件的连接焊缝. 2名词术语及符号说明 2.1名词术语 2.1.1对接接头 两焊件端面相对平行的接头 2.1.2角接接头 两焊件端面问构成大于300,小于135'夹角的接头 2.1.3'r形接头 一焊件之端面与另一焊件表面构成直角或近似直角的接头_飞 2.1.4搭接接头 两焊件部分重叠构成的接头, 2.1.5圆钢连接接头 两圆形焊件表面连接或一圆形焊件与一非国形焊件连接的接头) 2.1.6对接焊缝 在焊件的坡口面间或一焊件的坡口面与另一焊件表面间焊接的焊缝. 2.1.7角焊缝 沿两直交或近直交焊件的交线所焊接的焊缝 2.1.8正面角焊缝 焊缝轴线与焊件受力方向相垂直的角焊缝,见图2-1 2.1.9侧面角焊缝 焊缝轴线与焊件受力方向相平行的角焊缝,见图2-2 2.1.10纵向焊缝 沿焊件长度方向分布的焊缝. 2.1.11横向焊缝 垂直于焊件长度方向的焊缝. 机械工业部1993-08-21批准1993-10-01实施 1962 2.1.12环形焊缝 沿筒形焊件分布的头尾相接的封闭焊缝. 图2-1正面角焊缝图2-2侧面角焊缝 2.1.13承载焊缝 焊件上用作承受荷载的焊缝 2.1.14非承载焊缝

焊件上不CL接承受荷载,只起连接作用的焊缝,习惯上称联系焊缝. 2.1.15坡口深度 焊件开坡口时,焊件端部沿焊件厚度方向加_r掉的尺寸 2.1.16焊脚尺寸 在角焊缝横截面中画出的最大直角三角形中直角边的长度. 2.1.17焊缝计算厚度 设计焊缝时使用的焊缝厚度. 2.1.18焊缝计算长度 计算焊缝强度时使用的焊缝长度.封闭焊缝的计算长度取实际长度;不封闭焊缝的计算 长度,对每条焊缝取其实际长度减去l Omm 2.1.19焊缝计算厚度截面积 焊缝计算厚度与焊缝计算长度的乘积. 2.1.20全焊透型焊缝 焊缝在其连接部位的全厚度上,用熔敷金属充分连接,无未焊透的部位,见图2-3必 要时,全焊透型焊缝可用角焊缝进行加强 2.1.21部分焊透型焊缝 焊件在其连接部位的部分厚度上用熔敷金属连接,尚有未焊透的部位,见图2-4必要 时,部分焊透焊缝可用角焊缝进行加强. 2.2符号说明 G焊缝计算厚度,二; A—焊缝计算厚度截面积,例n2; b—耳板宽度,mm; bI—搭接焊横向焊缝长度,mm; b2—搭接焊纵向焊接长度,圆钢与钢板连接焊焊缝长度,二; b3.佑—弯头耳板尺寸,mm; F3,13,,B2- 'F形接头焊缝长度,mm; 1963 图2-3全焊透型焊缝 图2-4部分焊透型焊缝 .—横向耳板与集箱及耳板与弯头连接焊缝圆弧部分的弦长,mm; d—管接头装配前筒体上的开孔直径,二; 试)—管接头外径,mm; d,—管接头内径,mm; d,,d2—大,小圆钢直径,二; D;—筒体内径,mm; .—耳板与弯头连接焊缝直段部分的长度,,; 厂—管接头,T形接头坡口深度,二; F-集中力,N; FFy.,凡-.r , y,二方向上的集中力,N; h—耳板孔中心沿耳板高度方向到连接焊缝的距离,mm; hi, h2—耳板孔中心沿耳板高度方向至连接焊缝的最大和最小距离,二;

(完整word版)试计算如图所示钢板与柱翼缘的连接角焊缝的强度

1. 试计算如图所示钢板与柱翼缘的连接角焊缝的强度。已知N=390kN (设计值),与焊缝之间的夹 ) 10200(87.022l h w e f -?? 23 /6.91)10200(87.02101952mm N l h N w e y f =-???==τ 满足)(1601596.91)22 .17.158()(2222MPa f MPa w f f f f =<=+=+τβσ 14. 求图示钢梁所能承受的最大均布荷载设计值(含自重),已知梁截面为热轧普通工字钢I45a,其截面特性为 A=102cm 2 I X =32240cm 4 w x =1430cm 3 I y =855cm 4 w y =114cm 3 材料为Q235,强度设计值?=215 N/mm 2 ,梁两端不能扭转,跨中无侧向支撑点,挠度不起控制作用,截面无削弱。整体稳定系数?b =0.44. m kN mm N l W f q W f ql M f W M x b x b x b maz /36.13/36.13900010143044.0215888 1 2322max ==????==??==?=???

即 kN N n n f A N n 5.728728500915.0121510325.01211==?-??=-= II-II 截面净截面面积为 2 2201221146.294.1]15.235.75.4)13(52[])1(2[cm t d n e a n e A II n =??-+-+?=-+-+=kN N n n f A N II n 1.760760100915.012151046.295.0121==?-??=-= III-III 截面净截面面积为 2098.284.1)15.2225()(cm t d n b A III III n =??-=-= 因前面I -I 截面已有n 1个螺栓传走了(n 1/n )N 的力,故有f A N n n n n III n III ≤--)5.01(1

角焊缝的焊接既计算

第三章 连接 返回 §3-3 角焊缝的构造和计算 3.3.1角焊缝的构造 一、角焊缝的形式和强度 角焊缝(fillet welds )是最常用的焊缝。角焊缝按其与作用力的关系可分为:焊缝长度方向与作用力垂直的正面角焊缝;焊缝长度方向与作用力平行的侧面角焊缝以及斜焊缝。按其截面形式可分为直角角焊缝(图3.3.1)和斜角角焊缝(图3.3.2)。 直角角焊缝通常做成表面微凸的等腰直角三角形截面(图3.3.1a )。在直接承受动力荷载的结构中,正面角焊缝的截面常采用图3.3.1(b )所示的坦式,侧面角焊缝的截面则作成凹面式(图3.3.1c )。图中的h f 为焊角尺寸。 两焊脚边的夹角α>90°或α<90°的焊缝称为斜角角焊缝(图3.3.2)。斜角角焊缝常用于钢漏斗和钢管结构中。对于夹角α>135°或α<60°的斜角角焊缝,除钢管结构外,不宜用作受力焊缝。 传力线通过侧面角焊缝时产生弯折,应力沿焊缝长度方向的分布不均匀,呈两端大而中间小的状态。焊缝越长,应力分布越不均匀,但在进入塑性工作阶段时产生应力重分布,可使应力分布的不均匀现象渐趋缓和。

正面角焊缝(图3.3.3b)受力较复杂,截面的各面均存在正应力和剪应力,焊根处有很大的应力集中。这一方面由于力线的弯折,另一方面焊根处正好是两焊件接触间隙的端部,相当于裂缝的尖端。经试验,正面角焊缝的静力强度高于侧面角焊缝。国内外试验结果表明,相当于Q235钢和E43型焊条焊成的正面角焊缝的平均破坏强度比侧面角焊缝要高出35%以上(图3.3.4)。低合金钢的试验结果也有类似情况。由图3.3.4看出,斜焊缝的受力性能和强度介于正面角焊缝和侧面角焊缝之间。 二、角焊缝的构造要求 1、最大焊脚尺寸 为了避免烧穿较薄的焊件,减少焊接应力和焊接变形,角焊缝的焊脚尺寸不宜太大。规范规定:除了直接焊接钢管结构的焊脚尺寸hf不宜大于支管壁厚的2倍之外,hf不宜大于较薄焊件厚度的1.2倍。 在板件边缘的角焊缝,当板件厚度t>6mm时,h f≤t;当t>6mm时,hf≤t-(1-2)mm;。圆孔或槽孔内的角焊缝尺寸尚不宜大于圆孔直径或槽孔短径的1/3。 2、最小焊脚尺寸

角焊缝强度计算

角焊缝强度计算 锅炉角焊缝强度计算方法JB/T 6734-1993中华人民共和国机械行业标准JB/C 6734-1993锅炉角焊缝强度计算方法主题内容与适用范围本标准规定了锅炉角焊缝强度计算方法本标准适用于额定蒸汽压力大于 2.5MYa 固定式蒸汽锅炉锅筒集箱和管道」_各种骨接头连接焊缝和焊接到锅炉受压元件土受力构件的连接焊缝以及在制造安装与运输过程中所用受力构件的连接焊缝.2 名词术语及符号说明2.1 名词术语2.1.1 对接接头两焊件端面相对平行的接头2.1.2 角接接头两焊件端面问构成大于 300小于 135夹角的接头2.1.3r 形接头一焊件之端面与另一焊件表面构 成直角或近似直角的接头_飞2.1.4 搭接接头两焊件部分重叠构成的接头2.1.5 圆钢连接接头两圆形焊件表面连接或一圆形焊件与一非国形焊件连接的接头2.1.6 对接焊缝在焊件的坡口面间或一焊件的坡口面与另一焊件表面间焊接的焊缝.2.1.7 角焊缝沿两直交或近直交焊件的交线所焊接的焊缝2.1.8 正面角焊缝焊缝轴线与 焊件受力方向相垂直的角焊缝见图 2-12.1.9 侧面角焊缝焊缝轴线与焊件受力方向相平行的角焊缝见图 2-22.1.10 纵向焊缝沿焊件长度方向分布的焊缝.2.1.11 横向焊缝垂直于焊件长度方向的焊缝.机械工业部 1993-08-21 批准 1993-10-01 实施19622.1.12 环形焊缝沿筒形焊件分布的头尾相接的封闭焊缝.图 2-1 正面角焊缝图 2-2 侧面角焊缝2.1.13 承载焊缝焊件上用作承受荷载的焊缝2.1.14 非承载焊缝焊件上不 CL 接承受荷载只起连接作用的焊缝习惯上称联系焊缝.2.1.15 坡口深度焊件开坡口时焊件端部沿焊件厚度方向加_r 掉的尺寸2.1.16 焊脚尺寸在角 焊缝横截面中画出的最大直角三角形中直角边的长度.2.1.17 焊缝计算厚度设计焊缝时使用的焊缝厚度.2.1.18 焊缝计算长度计算焊缝强度时使用的焊缝长度.封闭焊缝的计算长度取实际长度不封闭焊缝的计算长度对每条焊缝取其实际长度减去 l Omm2.1.19 焊缝计算厚度截面积焊缝计算厚度与焊缝计算长度的乘积.2.1.20 全焊

角焊缝的构造和计算

3.3 角焊缝的构造和计算 3.3.1 角焊缝的形式和强度 角焊缝按其与作用力的关系可分为:正面角焊缝、侧面角焊缝、斜焊缝; 正面角焊缝:焊缝长度方向与作用力垂直; 侧面角焊缝:焊缝长度方向与作用力平行。 按其截面形式分:直角角焊缝(图3.10)、斜角角焊缝(图3.11)。 直角角焊缝通常焊成表面微凸的等腰直角三角形截面[图3.10(a)]。在直接承受动力荷载的结构中,为了减少应力集中,提高构件的抗疲劳强度,侧面角焊缝以凹形为最好。但手工焊成凹形极为费事,因此采用手工焊时,焊缝做成直线性较为合适[图3.10(a)]。当用自动焊时,由于电流较大,金属熔化速度快、熔深大,焊缝金属冷却后的收缩自然形成凹形表面[图3.10(c)]。为此规定在直接承受动力荷载的结构(如吊车梁)中,侧面角焊缝做成凹形或直线形均可。对正面角焊缝,因其刚度较大,受动力荷载时应焊成平坡式[图3.10(b)],直角边的比例通常为1:1.5(长边顺内力方向)。 两焊脚边的夹角α>90°或α<90°的焊缝称为斜角角焊缝,斜角角焊缝常用于钢漏斗和钢管结构中。对于夹角α>135°或α<60°的斜角角焊缝,除钢管结构外,不宜用作受力焊缝。 大量试验结果表明: 侧面角焊缝(图3.12)主要承受剪应力,塑性较好,弹性模量低(E=0.7×105~1×105N/mm2),强度也较低。由于传力线通过侧面角焊缝时产生弯折,因而应力沿焊缝长度方向的分布不均匀,呈两端大中间小的状态,焊缝越长,应力分布不均匀性越显著。但在在接近塑性工作阶段时,产生应力重分布,可使应力分布的不均匀现象渐趋缓和。即分布不均匀,且不均匀程度随的增大而增加,破坏常在两端开始,再出现裂纹后很快沿焊缝有效截面迅速断裂

角焊缝的质量等级是如何划分的

角焊缝的质量等级是如何划分的?为什么抗拉,抗压,抗剪强度没有按等级区别开来? 角焊缝是按受力状态由计算得出所需的高度及长度,无需进行分级。 角焊缝绝大多数情况都是三级焊缝,只有有非常特殊要求时才提高到二级(很少),钢结构规范7.1中有详细说明,角焊缝只受剪力,因此只有一个值 概念上的错误:角焊缝不分质量等级,只有对接焊缝才分质量等级。 因之所以分质量等级,它是为了保证强度。 角焊缝为达到强度,可以通过增加焊脚高度来实现。 一般认为,对接焊缝能达到等强。事实上它是通过控制其质量等级来实现的。一,二级检验的焊缝不但通过外观检查,而且通过X光或r射线检查; 三级只要通过外观检查。 另外,一二级质量的对接焊缝,抗拉弯的强度为200MPA 三级质量等级的为170MPA  T型角焊缝(很多梁的端头板)有图纸说明和探伤的通常是坡口焊加角焊缝且背面清根,此焊缝一板为二级,探20% 绝大多数角焊缝都是三级焊缝,只做外观检查.一二级焊缝都需要无损探伤,而角焊

缝因为母材搭接而成,本身就有缝,做无损探伤不现实.故只能做三级焊缝对待.设计上有特殊要求的,如某些端板,或是吊车梁腹板和翼缘板连接处,这些部位受力复杂,故要求完全熔和,故要求一级或二级焊缝质量标准.其实这些部位焊缝已经不能算是角焊缝了,算是对接焊缝还差不多. 严格来讲角焊缝质量等级只能是3级,没有1,2级的说法,只是在某写情况下对其外观要求达到1,2级焊缝标准,是比较而言,不是说角焊缝要求1,2级,更不能说角焊缝质量等级有1,2级。原因如楼上所述! 从设计强度的角度说:规范将焊缝分为对接焊缝和角焊缝两种,对接焊缝有分为一、二、三级对应不同的设计强度;角焊缝并未分级只有一个设计强度,并且其设计值远远低于同级别的母材,所以楼上这位的观点应该没有根据。 从施工检测的角度说:一、二级焊缝没有本质的区别,仅仅是抽检比例的不同,一级要求100%,二级要求20%;三级不要求探伤。因而较为重要的部位都要求二级焊缝,必须探伤。 规范同时提出角焊缝可根据实际需要选取为二级焊缝,这里我觉得有些矛盾, 角焊缝不存在分级问题,只有全熔透焊缝才存在分级问题。

直角角焊缝连接的构造和计算

§3.3直角角焊缝连接的构造和计算 ?定义 侧焊缝一一焊缝轴线平行于力线; 端焊缝一一焊缝轴线垂直于力线; 斜焊缝一一焊缝轴线倾斜于力线。 二?直角角焊缝应力分析 大量试验结果表明,侧面角焊缝主要承受剪应力。传力线通过侧面角焊缝时 产生弯折,应力沿焊缝长度方向的分布不均匀,呈两端大而中间小的状态。 试验证明: 1 ?侧焊缝以45° “喉截面”破坏居多; 2 ?端焊缝的强度是侧焊缝强度的1.35?1.55倍。 规范规定:在焊缝计算时以侧焊缝强度为基准(f f w ),端焊缝强度为1.22 f f w , f w 斜焊缝强度为「f f 2。 sin 2 0 ■1-—— \ 3 三?直角角焊缝的构造 h fmin =15,t 1 , t 1 —较厚板件的厚度; 2 ?最大焊缝高度:h fmax =1?2t 2 , t 2 —较薄板件的厚度; ~tr --------------- 1 \ t 2 11 ------------- 1 ?最小焊缝高度: f r- t 1 (当"W 6) h W t 仁(1?2) (当 t >

对于贴边焊 当 t < 6mmB 寸,h fmax =t ; 当 t>6mm 时,h fmax =t —( 1 ?2) mm 要求:h fmin Whf Wflfmax 3 ?最大焊缝长度:l fmax =60h f (静荷) 1 fmax =40h f (动荷) 若内力沿角焊缝全长分布,则计算长度不受此限; 4 ?最小焊缝长度:l fmin =8h f < 40mm 要求: 1 5 ?搭接连接的构造要求 w 1 J 1 J F ~ f 科钢扳拱曲 I L 试验结果表明, 连接的承载力与 b/lw 有关。 要求: b 轧 和 :1 6 b <彳 19mm t> m m 1 理 (mm ) 当b 不满足上述要求时,应加焊正面焊缝将两板贴合。围焊的转角处必须连 续施焊。在搭接连接中,当仅采用正面角焊缝时,搭接长度不少于 5倍板厚。 四?直角角焊缝的计算 1.基本假定:

角焊缝计算讲解

角焊缝及其计算型式及分类 截面形式:普通型(等边凸形)、平坦型(不等边凹形)、凹面形两焊脚边夹角:直角角焊缝、斜角角焊缝、焊缝长度与作用方向 1.侧面角焊缝(侧缝) 侧缝主要承受剪力,应力状态叫单纯,在弹性阶段,剪应力沿焊缝长度方向分布不均匀,两端大中间小,且焊缝越长越不均匀,但侧缝塑性好。 2 .正面角焊缝(端缝)端缝连接中传力线有较大的弯折,应力状态较复杂,正面角焊缝沿焊缝长度方向分布比较均匀,但焊脚及有效厚度面上存在严重的应力集中现象,所以其破坏属于正应力和剪应力的综合破坏,但正面角焊缝的刚度较大,变形较小,塑性较差,性质较脆。 3.斜向角焊缝斜向角焊缝受力情况较复杂,其性能介于侧缝和端缝之间,常用于杆件倾斜相支的情况,也用在板件较宽,内力较大连接中。 4.周围角焊缝主要为了增加焊缝的长度和使焊缝遍及板件全宽,而把板件交搭处的所有交搭线尽可能多的加以焊接,成为开口或封闭的周围角焊缝。构造及要求。 4.1.最小焊脚尺寸 4.2.最大焊脚尺寸贴边处满足 4.3.角焊缝最小长度 4.4.侧面角焊缝最大计算长度 4.5.板件端部仅有两条角焊缝时每条侧面角焊缝的计算长度 4.6.搭接连接中搭接长度应满足而且不宜采用一条正面角焊缝来传力。 4.7.在次要构件和焊缝连接中,允许采用断续角焊缝,各段间距满足以保

证整体受力。 角焊缝连接计算 基本计算公式轴心作用下的角焊缝计算轴心作用下角钢的角焊缝计算弯矩,剪力和轴心力共同作用下角焊缝计算(T 形接头)弯矩,剪力和轴心力共同作用下角焊缝计算(搭接形接头) 1.端缝、侧缝在轴向力作用下的计算: (1)端缝——垂直于焊缝长度方向的应力;he ——角焊缝有效厚度; lw ——角焊缝计算长度,每条角焊缝取实际长度减10mm (每端减 5mm );ffw ——角焊缝强度设计值;bf ——系数,对承受静力荷载和间接承受动力荷载的结构,bf =1.22 ,直接承受动力荷载bf =1.0 。 2)侧缝tf ——沿焊缝长度方向的剪应力。 2.角钢杆件与节点板焊接连接,承受轴向力N :(1 )角钢用两面侧焊缝与节点板连接的焊缝计算 K1、K2 ——焊缝内力分配系数; N1 、N2 ——分别为角钢肢背和肢尖传递的内力。(2 )角钢用三面围焊与节点板连接的焊缝计算(图) 端部正面角焊缝能传递的内力为: (3)角钢用“ L型焊缝与节点板连接的焊缝计算(图) 由N2 = 0 得: 3.弯矩、剪力、轴力共同作用下的顶接连接角焊缝: 弯矩M 作用下,x 方向应力剪力作用下,y 方向应力轴力N 作用下x

角焊缝的焊接既计算

第三章?连接返回 §3-3 角焊缝的构造和计算 一、角焊缝的形式和强度 f 传力线通过侧面角焊缝时产生弯折,应力沿焊缝长度方向的分布不均匀,呈两端大而中间小的状态。焊缝越长,应力分布越不均匀,但在进入塑性工作阶段时产生应力重分布,可使应力分布的不均匀现象渐趋缓和。

二、角焊缝的构造要求 1、最大焊脚尺寸 为了避免烧穿较薄的焊件,减少焊接应力和焊接变形,角焊缝的焊脚尺寸不宜太大。规范规定:除了直接焊接钢管结构的焊脚尺寸hf不宜大于支管壁厚的2倍之外,hf不宜大于较薄焊件厚度的倍。 在板件边缘的角焊缝,当板件厚度t>6mm时,h f≤t;当t>6mm时,hf≤t-(1-2)mm;。圆孔或槽孔内的角焊缝尺寸尚不宜大于圆孔直径或槽孔短径的1/3。 2、最小焊脚尺寸

3、侧面角焊缝的最大计算长度 侧面角焊缝的计算长度不宜大于60h f,当大于上述数值时,其超过部分在计算中不予考虑。这是因为侧焊缝应力沿长度分布不均匀,两端较中间大,且焊缝越长差别越大。当焊缝太长时,虽然仍有因塑性变形产生的内力重分布,但两端应力可首先达到强度极限而破坏。若内力沿测面角焊缝全长分布时,比如焊接梁翼缘板与腹板的连接焊缝,计算长度可不受上述限制。 4、角焊缝的最小计算长度 角焊缝的焊脚尺寸大而长度较小时,焊件的局部加热严重,焊缝起灭弧所引起的缺陷相距太近,以及焊缝中可能产生的其他缺陷,使焊缝不够可靠。对搭接连接的侧面角焊缝而言,如果焊缝长度过小,由于力线弯折大,也会造成严重应力集中。因此,为了使焊缝能够有一定的承载能力,根据使用经验,侧面角焊缝或正面角焊缝的计算长度均不得小于8h f和40mm,也就是说,其实际焊接长度应较前述数值还要大2h fw有关。b为两侧焊缝的距离,l w为侧焊缝长度。当b/l w>1时,连接的承载力随着b/l w比值的增大而明显下降。这主要是因应力传递的过分弯折使构件中应力分布不均匀造成的。为使连接强度不致过分降低,应使每条侧焊缝的长度不宜小于两侧面角焊缝之间的距离,即 b/l w

相关主题
文本预览
相关文档 最新文档